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Introduction

In the previous paper [8] a method® to calculate the mod p cohomology of
the m-fold symmetric product &,,(K) of a finite simplicial complex K was
explained, and the method was practiced to calculate the cohomology group
H*(©,(8") ; Z,) in ‘stable’ range. In the present paper it will be shown that
the use of the method is also successful practically in the determination of the
‘entire’ cohomology H*(©.(S");Z,).

Throughout this paper, a prime p and a positive integer n are fixed. We
assume always that » >1 if p=2,

§1. Statement of the result

We denote by £2(p, u) the set of all sequences

I= (i, ,ip =0

satisfying the following conditions :

(1) Each i is a positive integer=0 or 1 mod 2(p—1),

2) kz=pire, AZER<D,

@ pi:(p—DD.(D),

@ i==1,

where
D,(I) = ntiy+ - +ig.
We refer to D,(I) as the n-degree of I, and [/=I[(I) as the length of I

We define the free commutative Z,~-algebra U(p, n) on 2(p,n) to be the Z,-
algebra which is generated by all elements 7€ 2(p, n) subject to the relations

IJ = (=DPADPDJT,  LJeR(p,n).

The monomial of U(p, n) is an element which is not zero and is of type:

I I = [ o 6 LeQ(p,n) 2
i=1

* The author is supported by the National Science Foundation through The Institute for Ad-
vanced Study.

1) This is different from the method due to Steenrod [107] which uses the Cartan’s computation
for the homology of Eilenberg-MacLane complex.

2) For this to be not zero, it is necessary and sufficient that e¢(i)=0 or 1 whenever pD,(I;)
is odd.
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The definition of n-degree is extended to any monomial 0:== I I :

Da(0) = 31 ¢() Do) -

Define U?(p,n) to be the submodule generated in the module 2(p,n) by all
monomials ¢ such that D,(0)=q. Then

Ulp,m) = 22U (p,n)
becomes a graded algebra.

ReEMARK. Let 2,(p,n) (resp. £,(p,n)) denote the totality of elements
1€ 2(p, n) such that D,(I) are even (resp. odd), and for any set X denote by
P(X) (resp. E(X)) the polynomial (resp. exterior) algebra on X with coefficients
in Z,. Then the algebra U(p, #) is isomorphic as graded algebra with the tensor
product P(2,(p, n)) QER,(p, n)) if p>>2 and with P(R(p, n)) if p=2.

We shall next define another gradation in U(p,#), and make U(p,#n) a
bigraded algebra:

Ulp,n) = qZ‘ Ui(p, m) .

This is done by assigning to each monimal ¢ a positive integer R,(#) defined
as follows:

R, () = 31 e()pI?,

where ¢ =‘I_cI1 59, R,(0) is called the p-rank of . Now Uj(p, n) is the submodule

generated in the module U(p, ») by all monomials ¢ such that D,(#)=¢ and
R,(0)=r. We write

Us(p,7) = ST UL, ).
It should be noticed that r;.‘n U,(p, n) is an ideal in U(p, n) for any integer m.
For any complex K the Steenrod reduced power is denoted by
Sq°: HY(K; Z,) —> H""(K; Z,) (p=2),
®°: HI(K; Z,) —> HHSPD(K; Z,)  (p>2),
and the Bockstein homomorphism by
4: H (K;Z,) — H""(K; Z,) .
With H. Cartan [2] we define for each sequence I= (i, 75, -+, 4;) satisfying (1)
a homomorphism
Stl: HI(K; Zp) —> HY ivh i (K Zp)
by
StT = St o St%0 .m0 SF2
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where Sti=Sg? if p=2, and =4'®° if i=2s(p—1)+e (¢=0 or 1) and p >2. If
I(I) =0, St denotes the identity.

Suppose that there are given a compiex K and a cohomology class y€ H*(K;
Z,). We may then have a homomorphism of algebra T,: U(p, n)—>H*(K; Z,)
such that

(5) T, (I 1) = 1T (StTip)*<o,

because of the anti-commutativity of the cohomology algebra H*(K;Z,). In
the right side of (5), the product and the power are of course taken in the sense
of the cup product. 7, is a homomorphism of graded algebra.

Now the mod p cohomology structure of the m—fold symmetric product &,,(S")
of an n-sphers S” is given as follows:

MaiN THEOREM. Let u(m) € H*(&w(S") ; Z,) ~Z, be a generator. Then the
homomorphism Tucm>: U(p, n) —> H*(©,(S") ; Z,) is onto, and its kernel is the
ideal ,%;Uf( b, n).

As a corollary we obtain the following which was proved in the previous
paper [8]:

CoroLLARY 1. Let g<n and p*<m<p"*'. Then a basis for the module
H"t(&u(S") ; Z,) can be formed with all elements StI(u(m)), where I satisfies
I(I)<h, D,(I)=n-+q in addition to the conditions (1), (2) and (4).

If we regard &,,,(S") as a subset of &,,(S”) canonically, the sequence

%
0—> H¥(8,,(S"), ms(S" ; Z,) 28 HH(©(S™) 5 Z,)
;%K
D K (@ g (ST 3 Z,) — 0
is exact, where #f ;. and j%_,. are the injection homomorphisms. (See [3],
[7], [10].) Therefore the main theorem implies

CoroOLLARY 2. The cohkomology algebra H*(S,(S™), ©,(S"); Z,) is isomor-
Phic with U, (p, n) regarded as an algebra by giving trivial multiplicative structure.
If we notice that H""?(&,_,(S"); Z,)=0 for ¢<n, we have furthermore

CoroLLARY 3. If q<n then the homomorphism Tucw restricted to U™ 9(p, n)
is an isomorphism onto H™1(&,,(5") 3 Z,).

$2. Reduction of the main theorem

In what follows we shall omit to write up the coefficient group Z,, and use
H*(K), H?(K) in places of H*(K; Z,), H'(K; Z,) respectively. Since we take
only Z, as coefficient group, no confusion will occur.

Let K, L be complexes and f: L—K be a map. Consider the homomorphism
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¥ H¥(K)——>H*(L) induced by f. Then, as a direct consequence of the natu-
rality of cup product and St!, we have

(1) S¥eT, =T, with z:=f*(y)
for any y€ H*(K).

Proof of the first part of Main Theorem

Recall first the following well-known facts :

2.1. The infinite symmetric product ©.(S*) of an #n-sphere S” is the
Eilenberg-MacLane complex & (Z, n). (See [4], [5])

2.2. The homomorphism Tuc.): U(p, n)—> H*(K(Z, n)) is onto®, where
u(oo) € H*(J(Z, n)) is the fundametal class. (See [2], [8])

2.3. The homomorphism i .. : H*(&.(5")) —> H*(&,,(S8")) induced by the
natural inclusion im,..; ©,(S")C &..(S*) is onto®. (See [8])

Let u(m) =i} .(u(e)). Then we have Tuim> =i, Tucsy by virtue of (1) and
2.1. Therefore it follows from 2.2 and 2.3 that Tucm is onto. However u(m)
is a generator of H"(&,,(S")). (See [8]) This completes the proof.

Let ©,, , denote a p-Sylow subgroup of the symmetric group &, of degree
m, and &,, ,(S") the orbit space over the m-fold cartesian product S”XxS"X --- X"
relative to &, , operating naturally on it. Let ou: Sy, ,(S")—> &,,(S") be the
natural projection, and put

(2) v(m) = op(u(m)) € H"(&m,,(S")) ,

where p¥: H¥(&,,(8")—> H*(&,,,(8") is the homomorphism induced by .
Denote by A, the set of all monomials &€ U,(p, n). A, is a basis for the
module U,(p, n).

THEOREM 1. Tum(0)=0 if 0 € A, and r>m. The elements Toem>(0), 0 € Ap,
are linearly independent.

The second part of the main theorem will be obtained as a corollary of this
theorem which will be proved in §7 after making many preliminaries. We show
here that Theorem 1 implies the second part of the main theorem.

It follows from (1) and (2) that ofc Tucm> = Tocmy. However, as is shown in
[8], the homomorphism e} is a monomorphism. Therefore if we assume Theorem
1 we have

2.4, Tum()=0 if #c A, and »>m. The elements Tucmy(#), ¢ A,,, are
linearly independent.

On the other hand, the set of elements #€ A4,, »=>0, is a basis for the module
U(p, n), so that it is sufficient for our purpose to show

3) It is known [2] that T,c.) is also a monomorphism, but we do not need this fact. Rather
that is a consequence of our final result.
4) This is valid for any complex.
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2.5, Tuem(@)=0 if 8¢ A, and r>m. The elements Tucm(8), 0€ A4, with
r<m, are linearly independent.

Thus it remains to prove that 2.4 implies 2.5. To do this, we assume induc-
tively that the elements T,cn_(#), 0 € A, with » <m—1, are linearly independent,
and prove that an equation

( 3 ) 2 “eTqu) (0> =0 (0( € Zp)
OEA,,rém

yields ap=0 for every 0.

Consider the homomorphism i%_i,,: H¥(&,,(S")) —> H*(S,,_,(S™). Then
i1,m° Tucm>= Tucm—p In view of (1). Therefore if we apply to (3) the homo-
morphism 7%, ,, and use the first part of 2.4, we obtain

b & Tucm—(#) = 0.

6c4,,r=m-1

By the hypothesis of induction this implies =0 for every 0¢€ A, (r<m—1).
Consequently (3) becomes

2 @ Tumy(@) =0,
0cdy,

so that ap, must be 0 for also every €€ A, according to the second part of 2.4.
Thus we have ay=0 for every 0 € A, (»<m), and the proof is complete.

To conclude this section, we remark that Theorem 1 is considered as a
problem on the p-fold cyclic product. In fact, as is shown in [8], &,,,(5") is
homomorphic with the product:

PRGHEDEE

13
if the p-adic expansion of m is %a(r)p’, where the product and the power are

of the cartesian product, and 35(S”) is the r-times iterated p—fold cyclic product
of §”» We shall use in full the results on the mod p cohomology of the p-fold
cyclic product to prove Theorem 1.

§3. Cohomology of cyclic products

For convenience of the reader, we shall in this section recall from [6] the
results on the mod p cohomology of the p-fold cyclic product 3,(K) of a complex.
We assume that K is a connected finite simplicial complex.

Let the homomorphisms ¢§ : H/(K?)—> H(3,(K), b,(K)) and E,:H‘K)
—>H""(3 (K), 9,(K)) (m=1) denote the same as in [6], where K? is the
p-fold cartesian product of K and 5,(K) is the diagonal of 3,(K). These
homomorphisms followed by the injection homomorphism j*: H*(3,(K), b,(K))
—>H*(3,(K)) will be denoted by

¢ HU(K?) —> HY(3,(K))
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and
Op: HY(K) —> H""(3,(K)), (m=1)

respectively. In the description of the cohomology H*(3,(K)) in terms of the
cohomology H*(K), ¢* and @, are fundamental, as the properties 3.1-3.5 below
show. It is convenient for the present purpose to define @, for m-=0 by

Oo(y) = —g*(yxX1x -+ X1)  yeH*K),
where 1 is the unit cohomology class and X stands for the cross product. For

the proof of 3.1-3.5, see §311-12 of [6].

3.1. Let {2;} be a basis for the module H*(K). Then H*(3,(K)) is the
module having as generators all elements of types: 1, @,(z;) with 2<m=<
(p—1) dim z;, ¢*(2; X -+ X2;,) where ij=Fi; for some j, k; and as relations the
following: @,(z;)==0, ¢*(2;,X2;,X =+ X2;,) = (—1)N@™D¢*(z;, X --- X2;,X2;), Where

3
g;=dim z;; and d= .}_iq]-.
=

3.2 S0, =3 (") OuiaoSet (p=2),

k=0
P, — i:o (t-i—‘z—l) Doy 1>imo B°F
(p>2, m=2t+v with »=0 or 1),
do@p = (—1)" 0o d+A+(—1D")/2 4+,
where m>>0 and ( ) denotes the binomial coefficient. (See Appendix)
3.3 Sqod*(3x3) = 6% 0S¢ (3:x9)+ 3] 0xoSg*H(5u3)
@0 (p1xX =+ Xyp) = ¥ @ (31X ++ X,)
T3 (DM e O Hy 3, (D),
dog* = g*od,
where y, y;€ H¥*(K) and y,9, -y, denotes the cup product of y/’s.
3.4. Let x,y,%;, y:€ H¥(K) and /, m=>1. Then the cup products @;(x)+®,,( )
and @:(x)-¢*(yX -+ Xy,) are trivial.
3.5. Let g;=dim y; and put d(@)=(g:+ -+ +g,)(q:+ =+ +gi).
Then we have
FECa X - X2,) FF (X e X))
= é}l(_l)dcn FE((@X o Xxp) (9 - X))
3.6. (Theorem of Bott-Thom) Let y€ HY(K), then ¢*(yx - xy)

= S0, 408¢"(») it p-2, and
a 3 (—=D*0c, g2 @*(y) with OFacZ, if p>2.

0= £<4/2

I

3.7. (Theorem of Wu) Let y€ HY(K) and j=1, then O, 1,+;(5
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7
= 2 0q-r+j°S¢"(y) if p=2, and
;(kz;l;)(—1>k+1@<p—1)<q~2k)+fve°AE0(Pk(y) with e=0or 1if p>2,

where the sum is taken over all pairs (k, &) such that 1<2k(p—1)+e<(p—1)g.

§4. Auxiliary propositions on H*(3,(K))

We prove in this section some propositions on H*(3,(K)) which are needed
later. The proofs will depend only on 3.1-3.7.

ProrosiTioNn 1. We may replace in 3.1 the generators by all elements of type:
1, 9,(2) with 2<m<_(p—1) dim z;, $*(24X - X2;,) with dimension >0. Here we
assume H'(K)=0 if p=2.

Proor. Immediate from 3.1 and 3.6.

Given a submodule G of H*(X), denote by & G) the submodule generated
in the module H*(3,(K)) by all elements @,(y) for which y€G and m=0.

LemMa 1. Assume that every element of a submodule G C H*(K) is of positive
dimension, and let {x;} be a basis for G. Then a basis for the module ®(G) can be
formed with all elements O, (x;) for which 0<m=<(p—1) dim x; and m==1.

Proor. For any element y€ H*¥(K) and any /2>0, @;(») can be represented
as a linear combination of elements with type 0,(z), where z€ H*(K), 0=m=<
(p—1) dim z and m==1. This is easily seen from the fact @, =0 and 3.7 by
induction on /—(p—1)dimy. Therefore the elements described in Lemma 1
generate @ G). It is obvious from 3.1 that these are linearly independent.

ProrosiTiON 2. If }:‘ e(1) =2 then
=1
17 (tT3e 04())"® = 1T (D0 SH1i( )P
for any y€ H¥(K) and any I;, where the product and the power arve of the cup

product.
Proor. Let @(G) denote the submodule obtained if in the definition of
@(G) the condition m=>0 is replaced by m >0. Then we have
Stlo@y(y)— @, SH(y) C O (H*(K)) .
In fact, this is obvious by 3.2 if the length /(J)=1. Since 3.2 implies also that
@' (H*(K)) is closed under the operations S, the above assertion for general [
is easily proved by induction on /(I). Therefore for each i we have
Stlio@y(y) = Byo Stli(y)+w;, w; €@ (H*(K)).
On the other hand
(@yoSti(y))wr =0, wi~we =0

by 3.4. Thus we obtain the proposition.
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Given integers ¢, »=>0, we denote by zn”(e) the set of all sequences E=(e(1),
<+, e(r)) of non-negative integers whose sum is e. The set of all elements
E=(e(1), -+, e(#)) €n"(e) for which e(1)= --- =e(#) do not hold, will be denoted
by ni(e). Any two elements E, E'€rnj(e) are defined to be equivalent if and
only if the one is obtained from the other by a cyclic permutation of terms.
We shall denote by w5(e) an arbitrary but fixed system of representatives in w§(e)
for the set of the equivalence classes. Consequently 75(e) Cnh(e) Cn”(e).

Given a sequence E=(e(1), -, e(r)) of integers (»==2), we shall denote
the polynomial coefficient by P(E)=P(e(1), -+, e(r)) (see Appendix for the de-
finition).

ProrosiTION 3. Let y€ HI(K) then the followirig formula holds for any e=>1
if pq is even, and for e=1 if pq is odd:

(=0())° = ; P(EYFF(yPD X e X y°82)
+Ple/p—1, e/p, -+, e/PIFF(Y/P X oo X)),
where E=(e(1), -, e(p)) runs over wy(e), and it is understood that the last term is

0 if e is not a multiple of p.

Proor. Since the assertion for odd pg is trivial, we assume pg is even, i.e.
g is even if p>>2 and is any if p=2. By 3.5 and the ‘polynomial theorem’ we
have
(=@(3))° = (F*(yx1x -+ xX1))*
= FF((pXIX - XD(PXIX 14 o F1IX1IX -+ xg)e™D)
= qj*((yx]_x Xl)(?P(I)yicl)x Xyi(?))
= ;‘pg) FH(PiDHIK e X i)
where I=(i(1), -+, i(p)) runs over n?(e—1). Since P(I)=P{(1),-,i(p))=0 if
some 7(k) <0 (cf. Appendix), the above expression is equal to
g PlR(1)—1, k(2), -+, k() $*(pFD X yk® 3¢ ooo x ykP)
+P(e/p_1a e/ﬁ: Tty e/P) ¢*(ye/"><ye/1’>< Xye/l’>
where K=(k(1), ---, k(p)) runs over nj(e). However, by the relation in 3.1 and
Lemma 1 in Appendix, the sum é_‘, is equal to

% illP(e(l), ey e(@)—=1, 0, () FF(YEDX e X yoP)
= 31 P(E) (30 - x5°)
where E=(e(1), ---, e(p)) runs over nj(e). This completes the proof.

ProrosiTioN 4. Let y;€ H%(K), and assume that e(i)=1 if pq; is odd. Then
for ¢=2 we have
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I (@oCyyeer
= 3 (& I PCED) ¢%(CIT 355) -+ X (I y565))

where the sum is taken over all sequences (Ei, -, E.) such that E,=(e(1,1), -,
e(1,)) € mh(e(1)) and E;=(e(i, 1), -, e(i, p)) €nfle(d)) for i=2, -, c.
Proor. Let x;, x€ H*(K), and assume that p(dim x) is even. Then 3.5
implies
¢*<x1>< Xxp)~¢*(x>< Xx)
= ¢y X o Xx,) p(AX o+ X X))
=0.

In view of this fact, it follows from Proposition 3 that
I (0430
=z£{ ((—1)eDd %; P(E;) ¢*(yeirtdx oo X p3i??))
==*x Zc‘: (‘,131 P(E,o))(lI:I1 FE( YD K e X pgiPY))

where the sum is taken over all sequences (E,, -, E;) such that E; € a5(e(z))
for /=1, .-, ¢c. Now the proposition follows from 3.5 and the definitions of
7h(e(?) and #fe(d)).

§5. The submodule H(35(S™))
For any integer »>1, write
o= U=n"(@).
i=0

Denote by e¢” a fixed generator of H*(S*)., Given M=(my, -+, m,) € n”, we shall
define an element [M]=[m,, ---, m,] € H*(35(S*)) by

[M] = @m1°0m2° °Qm,,(en> »

where 0, : H¥(3;7(S")) —> H*(3,(3574(S")) =H*(3;7#*(S")) is the homo-
morphism defined in §3. The dimension of [M] is D,(M)=n-+m+ - +m,.
The following lemma is a direct consequence of 3.1.

LemMma 2. HY(335(8™)=0 for 0<q<n, and H"(33(S™)) is a cyclic group of
order p gemerated by [0,1=[0,0, ---, 0].

Define HF(35(S™)) to be the submodule generated in the module H*(35(5"))
by all elements [M] for which M€z”. The purpose of this section is to study
the structure of the module HF(35(S)).

Let Bj denote a set consisting of all elements [y, -+, m,] € H*(35(S*)) such
that

pmp < (p—1D)(n+mp+ - +m,) and mp=F1 (k=1,2,---,7).
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Then we have
ProrosiTiON 5. Set B} is a basis for the module HF(35(S")).

Proor. Using the notation in §4, HF(3;(S")=0(HF(357(S™)). Therefore
the proposition follows from Lemma 1 by induction on 7.

Order the set n” by the lexicographic order from the left, i.e. for any two
elements M= (m,, -, m,), N=(n, -+, n,) €z, write M<_N if and only if my =n,

v, Mp_1=np_, and m;<n; for some k.

LemmMA 3. Let Nern” and let
[N]1=3auM], aumcZ,, [M]€Bs.

Then ay=+0 implies M N.

Proor. Since the lemma is trivial if =1, we proceed by induction on 7.
Let N=(#n,, -, n,) and put N'=(n,, -+, n,). Then

[N/]Z ;bL[L]’ bLEZp’ [L]EBO_I-
Applying @,, to this equation, we have [N]= %‘ br @, [L]. Let
9,,[L]= ;cL,M[M], cLm€Z,, [M]€B;.

Then we obtain %aM[M]: %‘;bLCL’M[M], hence am= Z;]bLCL,M. Therefore
if am==0 then there is an element L such that 6.0 and cr m=0. Take such
an L and put L=(l,, -+, {,).

Case 1: m<(p—-1)D,(L).
Since @,,[L1=[n,l., -, 1,1€B, cL,m=+0 implies M=(#n, l,, -, {,). Since br=0
we have L<N’ by the hypothesis of induction. Therefore M= (n, l,, -, 1) <
(ny, ngy -+ s my)=N.

Case 2: n, >(p—-1)D,(L).
Since D,(N)=D,(M), D,(N)=D,(L) and D,(N)=wn+D,(IN'), we have D,(M) -
m+D,(L). On the other hand pm, < (p—1)D,(M) because of [M]€ B;. There-
fore we obtain pm < (p—1)(u,+D,(L)) = (p—1n,+(p—1)D,(L)< pn,, hence
my<_n,. This shows M<_N, and completes the proof.

The following formulas can be obtained from 3.2 by induction on 7. The
calculations are straightforward, and are left to the reader.

5.1 Sq*Lmy, -, my]

=5y (™) (D s, mers ] (0= 2),

G [my, -, m]

=y (AR e (P D 25,(p - 1), e et 25,5 1))
(p>2),
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A[mls Tty mr]
= 3 ((— D™ (= 1)) /20my, e, mi+ L, o, ],

where S=(sy, =+, s,) runs over the set n”(s), m;=2¢;+%; with ;=0 or 1, and
m(@)=my+ - +m;.

A direct consequence is:

5.2. SH[M]e€ HF(3%(S")) for Mecan’.

A sequence I=(ij, - ,i;) satisfying the conditions (1) and (2) in §1 is
called to be admissible.

ProrosiTION 6. Let I be an admissible sequence such that I(I)>r. Then we
have StI[0,]=0.

Proor. Let I= (4, ++,4;) and put d=i,+ -~ +1i;.

Case 1: d<m.
The proposition is Theorem 3 of [8].

Case 2: d=un.

Take an integer »’ such that d<#’. For any M¢rn” define [M] € H*(35(5™))
as the analogy of the element [M1]e€ H*(33(S®)), and B4 the analogy of Bj.
Then all the elements [M1=[m,, -+, m,] such that m,-+ -+ +m,=d and m;==1
for each i are contained in B{" because m,+ -+ +m,<x’ implies pm;<(p—1)(w'+
m;+ - +m,) for each i. Therefore there is a homomorphism %, : Hy +*4(35(S""))
—> H§+4(35(S™)) such that

oy ([MY)=[M] for Mecxz".
It follows from 5.1 that
0% 5o SHLO,Y = SHO,].

However by the fact in Case 1 we have SH[0,]=0. These prove St{[0,]=0 and
we complete the proof.

Since it is easily seen that pip<(p—1)(m-+ip+ - +i,) is equivalent with
Gr—pipr)+ - + Gy —piy) +i,< (p—1)m, the definition of 2(p, n) implies

5.3. If I=0(, ,i,)€R(p,n), then pir<(p—1)(n+ip-+i,) for any k;
hence 7€ B3.

LemMA 4. Let I be an admissible sequence with I(I)=v, and
StI[Or]=§dM[M], am€Z,, [M]eBs.
(See 5.2) Then am==0 implies M<1I; if 1€ 2(p,n) then ar==0. (See 5.3)

Proor. We retain the usage of the notations in the proof of the above
proposition.
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Case 1: d<m.
The lemma is Proposition 8 of [8].

Case 2: d=>un.
Take an integer »’ such that d<#’, and let

SHLO.Y = SbnINT,  bv€Z,, [INYCBY .

Applying o, . to this equation, we obtain

SHL0,] = 3 byIN]
so that
}; am[M] = 12;] on[N].
Let
[N]1=2ewulM],  cnm€Z,, [M]CBS.

Then ay= ; bN Cnom. Therefore if an==0, there is an [N"]€ By such that by ==0

and ¢y ,m=+0. Take such an N, then by=F0 implies N<1 in view of the result
in Case 1, and cy,m=F0 implies M< N in view of Lemma 3. This proves M<71
Assume 1€ 2(p,n). Then [I]€Bj by 5.3, and ar= %,‘bzv ¢n,7. Therefore the

above arguments show that a;=b;. However b;==0 by the fact in Case 1, so
that @s==0. Thus the proof has been finished.
Denote by Bj (resp. Bj;) the set of all M=(m, -+, m,)€B; such that
pmy<(p—1)D,(M) (resp. pm—(p—1)Dn(M)). :
LeMMA 5. Let M= (my, -, m,) € By and put M = (my, -+, my). Then M € B§™*
and

[M] = B¢ UMD - XIM'D) — 2l an[N],

where 0-FB€Z,, an€Z,, [N1€B§ and N<M.
Proor. Itis clear that M’ € By, Put ¢=dim [M']=D,(M’). Then it follows
from 3.6 that
$*(MIx - xX[M'])
p._
~ OLM 1+ 3] 00 o SPTM] (p=2),
= a0, M1+ 3 (=1FDc, 13cq—2m° CHLMT)
1<k<q/2
with O=Fa€Z, (Pp>2).
Since (p—1)¢=(p—1)D,(M’)=my, this implies
- .
[MI=* M XM D=3 00 o SHMT (p=2)
= a ' ¢*([MIX - x[M']) — <E (=D*0cy13cq—2m° CHLM
1=<k<4a/2
(p>2).
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In view of 5.2, S¢*LM’] and P M’] are in HF(357*(S*)), so that they may be
written as }L:‘bk,L[L] for which b, r€Z, and [L]1€ Bf™". Put

[Nkl =0, [L] for 1<k<gq (p=2),
= Ocp-v>g—aml L] for 1<k<g/2 (p>2).
Then we have
[M] = QI M D~ & S beNes]  (p=2)
=a! ¢*([M/]>—l %ﬂ ; (=1)%bp, LI Ni,] (p>2).

<k
Since it is easily seen that [N r]€ Bf and N <M, this completes the proof.
Denote by Bj, the set of all elements ¢*([M’]x --- x[M’]) for which M’ Bj™,
and put B;=Bj UB%,. Since Bj=Bj UBj, is a basis for the module HF(35(S"))
by Proposition 5, Lemma 5 yields
ProposITION 7. Set B is a basis for the module Hg(3,(S™)).
From with Lemmas 4 and 5 we get easily

ProprosiTION 8. Let I be an admissible sequence with [(I)=v, and represent
SH[O,] in terms of the basis Bj:
SH[0,] = NZ‘, bN[N]+ MZ{‘. by F(CM/IX - x[M"]) by, bm€Z,.

Then bn==0 implies NI, and if 1€ 2(p, n) we have br==0. (Note that [I]€ Bj
by 5.3 if 1€ 2(p, n)).

RemArk. If we regard an admissible sequence I=(i, -+, 7;) with /<7 as
an element (4, --+, 4z, 0, ---, 0) € z”, then the assumption /(I)=r may be weaken
in Lemma 4, and hence in Proposition 8, to /(J) <r. (See Proposition 8 of [8].)

$6. Poof of Theorem 1 for m=p”

As is stated at the end of §2 the space ©,,,,(S*) is homeomorphic with
35(S"), and we know by Lemma 2 that H?(35(S™)) is generated by [O,]. There-
fore we may regard v(p”) =[0,] in the proof of Theorem 1.

To simplify the notation, we shall write T, for Tto,,: U(p, n) —> H*(35(S™).

TuEOREM 2 (the first part of Theorem 1 for m=p"). If 0 is a monomial of
U(p,n) such that Rp(ﬁ)>p”, then T,(0)=0.

Proor. We do this by induction on ». Let & :iljl I3,

Case 1: ge(i):l.
In this case 6=I€2(p,n) and I(I)>r. Therefore T,(0)=SH[0,]=0 follows
from Proposition 6.

Case 2: g e(1)=2.

It follows from Proposition 2 that



80 Minoru NAKAOKA

T,8) = T,(1 159) = 1 (SHL0,1)*

= 11 (St1:00[0, 1)*® = 1T (8,2 S0, )5

=1

By Propositions 3 and 4, this can be expressed as a linear combination of elements
with type:

(1) @I (SHIL0, 100 e x [T (S0, T*cH2%)
= =1
= GECTo s D)% oo % Ty I T7))
where ké e(i,k)=e() for i=1,---,c. It follows that each element (1) has k
such that
S e, k) pI0 >

In fact otherwise we should have R,(#)= i‘ e(1)p*IP> < p” which contradicts with

our assumption. Hence the hypothesis of induction implies
Ty ( I Iiik00) = 0
=1
so that each element (1) is zero. Thus we have T,(f)=0, and complete the proof.
LemMmA 6. Assume that i} e()p* D =p" and ,}c_} e(d)=2. Then we have
=1 =1
(2) T
= agt( T (I{EOP) X Ty (KPP X oo X Ty (E97%))  if =1,
= 5 (& 1T POED) $5C Ty (I I52) ¢ ooe 5 Ty (T 15667))
=1 = i=
if ¢c=2,

where 0+ac€Z,, and the sum runs through all sequences (Ei, -, E;) such that
E = (@D, -, eld,p)erple)), Es= (e, 1), -, e(d, p)) €nfle(@) Qi< p)
and ¥ oli, DPP=p A<k=p).

Proor. Case: c¢=1
Put I—=I, and e=e(1). Since ¢e==2 we have

T,(I°) = (QOOStI[Or—1])e

in view of Proposition 2. Therefore it follows from Proposition 3 and Theorem
2 that

(=D°T,(I°) = %] PEYF(Tyy(I1) X -+ X Tpey(I°))
+P<€/P—1, e/p) Ty e/ﬁ) ¢*(Tr——1(-[e/1>)>< e X Tr—1<1e/p))

where the sum runs through all elements E=(e,, -+, e,) €mg(e) such that

erp' P < p™*  for k=1,--,p.
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b
However L‘lekplm: p*D=p", so that each epp’> must be p”~*. Therefore ¢,="-
k=
=e,. This shows that 3}=0. On the other hand, since 2=<e=p"""D, if we put
B
g=r—I(I)—1, then ¢>0 and

P\/Q/P—‘l’ e/f’: Ty e/i’) = P\Pq_l, pq’ )ﬁq) .
Therefore by virtue of Lemma 2 in Appendix P(e/p—1, ¢/p, -+, ¢/p)=0 mod p.
Thus we obtain the desired result.
Case 2: ¢c=>=2.

The proof is similar as above if Proposition 4 is used instead of Proposition 3
and is left to the reader.

TueoreM 3 (the second part of Theorem 1 for m=p"). The elements T,(0),
0c Ay, are linearly independent.

Proor. Since the theorem for =0 is trivial, we proceed by induction on 7.
Let {J, -+, J-} be the totality of elements of £(p, n) having length ». We
assume J;<--<_J,. Regarding J; as an element of A,,, we write

Qf = Apr_{js-i-l’ T ]o-} .

Since Q7=A,,, Theorem 3 is established by proving the following 6.1 and 6.2.
6.1. The elements T,(f), @€ Qj, are linearly independent.
6.2. If the elements T,(f), 8€Q;_,, are linearly independent, then so are
T,(®), 0€Q:.

(Proor of 6.1.) Let 0:{”11150%@5. Then _i:e(i>p1<fi>=pr and _L (i) =2,

so that T,(f) is equal to (2) in Lemma 6. Therefore if we denote by Hi*(35(5"))
the submodule generated in the module H*(35(S™)) by all elements of type:

(3) ¢F( Ty (O X - X T (B3)), Oy Ay,
then it follows that
(4) T,(0) € H{*(35(S™)) if 0€qs.

Let BY be a basis for H¥(35(S”)) whose elements are of type (3). We shall now
prove that (2) gives the representation of 7,(f) in terms of the basis Bj.
Since the elements T,.,(8), #€A,,,, are linearly independent by the
hypothesis of induction, it follows from Proposition 1% that for every sequence
(71, -+, 8;) of elements of A,,_, there is determined uniquely e¢=1 or —1 such
that e¢*(T,_,(0) % -+ x T,_,(85_,)) € Bf. Therefore the above assertion follows

from that if (E,, -, E.)=F(E{, -+, E}) then ¢*(T,_,( ICIIIZ-"“’D)X e X Try( 1 I @p)y)
1= =1
= eqﬁ*(T,_l('{I1 Iy ¢ e X T,_,(E 562y, This is proved as follows: Assume

5) Here the assumption that #z>>1 if p=2 is needed.
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otherwise, then according to 3.1 we have T’_l(;é I‘é'“:k)):T,_l(inl IR+ for
some ¢ (0<<g<p) and any & (1<k<p), where e(4, k+g) means ¢(i, k+g—p) if
k+q>p. By the hypothesis of induction, this shows that ¢'(7, k) =e(i, k+¢) for
1<i<c¢ and 1<Ek<p. Therefore E, and E{ are equivalent. However E,, E{¢
73(e(1)), so that E,==E|. Consequently we have ¢=0, hence (Ei,,E.)~
(E{, -+, E}) which contradicts with the assumption.

In view of Lemma 4 in Appendix it follows that in the representation (2)
of T,(#) there is at least one element of B having non-zero coefficient. Further-
more it is readily seen that if 6==0 then the elements of Bf arising with non-zero
coefficients in the representations (2) of T,(f#) and Tr((7) are entirely different.
These show that T,(8), 0 € Qj, are linearly independent.

(Proof of 6.2.) We shall first make some preliminaries. Denote by
H#(3571(S")) the subalgebra generated in the algebra H*(337(S")) by the unit
cohomology class 1 and all elements of B;™, and take a basis Bj~! for the module
1175“_(8;_‘(8")) such that B; D B;'. Then it follows from Proposition 5 that the
product of elements of HF(3;°(S")) is in HF(3:'(S"). Since T,_,I) =
SO, 1€ H¥(357°(S™) by 5.2, we have that

(5) T,—1(0") € H¥ (3372(S™)
for any monomial & € U(p,n). We shall next define H3*(35(S*)) (resp. HF¥(35(5™))
as the submodule generated in the module H*(3;(S*)) by all elements of the
following type (6) (resp. (7)).

(6) 6.(2) for which z€ B5* and 2<m<(p—1) dimz,

(7)  ¢*(ax - xz,) for which z;€ By and dim (z,x -+ X2,)>0.
Using (5), compare (3) and (7). Then it follows that H{f(35(S™)) D HF(B35(S™).
Therefore (4) implies

(8) T,(8) € HF(35(5™), fecQp.

According to Proposition 1 and the fact By B5™, a basis Bj for the module
H¥(B9(8M) =H¥(35(S™)) +Hi(35(S™) can be taken as follows:

(9) B; C By ®
and '
(10) B} C B,

where Bj is the set of all elements of type (6). Since Ji € 2(p, n), the following
(11) is obvious from the definitions.

11 [JdeBiC HFf(B5(S*), (A=i=o).

Since By B, Proposition 7 implies Hi (85(S™) < H#(35(S*)). Therefore we
have



Cohomology mod p of symmetric products of spheres IT 83

(12) T,(Jo € H¥(B5(S™)), (A=i<a).

We shall now proceed to the proof of 6.2, and show that an equation
(13) SlaT,(0)+ S8BT, (J) =0 (a0, Bi€Z,, 0€Q5)

implies ay=0 for every 6 and B;=0 for every :.
In view of (8) and (12) we have

(14) ST T, (0) € i (B5(S") < HF(BH(S™)
; B:T,(J) € HE(B5(S™) .

Therefore we shall let R, (resp. R,) to be the representation of %]ong,((?)
(resp. gB;Tr( J)) in terms of the basis B;. According to (10) and (11), [ 1
is'an element of B;. We shall calculate the coefficients of [ /s] in R, and R,.

It follows from (11) and (14) immediately that the coefficient of [ J,] in R, is O.
Proposition 8 shows that 7,[J;] is a linear combination of elements of Bj:

TLJid = 208N+ 2 biy ¥([M Tx - X[M'D),

bk, bir€Z,. Here b4=0 if N>J; and b}izi:O. Owing to (9) the above expres-
sion may be regarded as the representation in terms of the basis B;. Therefore
it follows that the coefficient of [Js] in R, is Bsbj-s. Thuys the representation
R,+R, of the left side of (13) in terms of the basis Bj has Bsb}S as the coefficient
of [Js], so that we have Bsb}s=0. Since b}s:r'—O this implies 8;,=0. Now (12)
becomes

SlayT,(0)+ 31 BT, () = 0.

Since the left side of this equation belongs to Q%_,, we have ay,=0 for every
0c@y and ;=0 for every 1<i<s—1 by the hypothesis of induction. This
completes the proof of 6.2, hence that of Theorem 3.

§7. Proof of Theorem 1

If m:r}_h__,; a(r)p” is the p-adic expansion of m, we may identify &,, ,(5") with

the product
§75¢ e X ST BHSM) K o+ ) BHS™) X - X BES) X -+ x BE(S™)

—e
a(0) a(1) a(h)

especially &, ,(S*) with 3;5(S™). (See the final part of §2) For each pair (#,5)

of integers such that 0<r<% and 1<j<a(r), define maps &%: &,, ,(§")—>

©,(S") and 7}: ©,(8")—>&,, ,(5") to be the injection and the projection

respectively to the (@, :---+a,_,+j)-th factor. Then it is obvious that &7 oypik==
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the identy if (#, j)=(¢ k) and =0 otherwise, and that the commutativity holds
in the diagram:

&
S, 5 (S —> ©p, ,(SM)

Opr . lpm
" m

&, (8" —> ©,(S") .
Furthermore it follows from Lemma 2 and Kiinneth formula that the module
H*(&,, ,(8") is generated by all elements %7*([O,]), so that the element v(m)
alr
can be expressed as a linear combination }:(‘) Ejoz;&?*([or]). Now we have
¥ = ]:
EF(v(m)) = &0 0 (u(m)) = o%r o ifr m(u(m))

= ppr(u(p"),

and
alt)

Epso0m) = 315 at &5ko 1[0, = 50,1

r=1
Consequently o3~(u(p"))=aj[0,]. This shows a0 mod p, because o}r is a
monomorphism. Thus we have proved that

alr)
u(m):hz; >! @750, ]) with 0=aj€ Z, for every pair (7, ).
7 =l j:

Proof of Theorem 1. Let ﬂzé I be a monomial of U(p, n). Then it

follows from the above fact by a straightforward calculation that
(1) Tuom(0) = Tucms( 1 1)
= S1QB:, =, B) (TCIL I x o x Ty I T¢6o)
% Tl(ﬁllf<"»“‘°)+1>)>< e X T i JoCi,acoteskacmy
P =1

where Q(E,, -+, E.)=a(E, -, Ec).{c{P(Ei) with O=Fa(E, -, E.)€Z,, and the

sum runs through all sequences (E;, -+, E;) such that E;=(e(, 1), -, e(i,a)) €
7%e(d)) for 1<i<c (a=a(0)+ - +a(h)). Owing to Theorem 2 we may assume
in (1) that

ST e, PP < p
=1

for a(0)+ - +a(r—1)<j<La(0)+ - +a(#) and 0<r<h. Therefore in order to
Toom>(@) =0 we must have

R,(#) = fie(i)p“ﬂ = SV ST e, PP
1= =1 j=1
= é: a(P)p’ =m.

This proves the first part of Theorem 1.
It follows from Theorem 3 and Kiinneth formula that a basis for the module
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H*(&,,,(S")) can be formed with a set C,, containing all elements of type:

To(8) X+ X To(0000) X Ty(0ycor41) X -+ X Ty(0gco>+acrd)

X e X Th(0a<0)+...+,,(;,_l)+1)>< e X Th(ﬂa(o)+--'+a(h))

where 0;€ Ay if aot - +ar<j<ao++a,, (0<r=<h). Let 0 be a monomial
with Rp(ﬂ) =m, and consider again (1). Then the above arguments show that
we may assume

S e, pI2 = 47

for a(0)+ - +a(r—1)<j<a(0)+ - +a(r) and 0<r<h Therefore (1) is re-
garded as the representation of Ty, (#) in terms of the basis C,. According
to Lemma 5 in Appendix, it follows that in the representation (1) there is at
least one element of the basis C, having non-zero coefficient. Furthermore it is
easily seen that if @, ¢ A,, are different, then the elements of C,, arising with
non-zero coefficients in the representations (1) of Tumr(#) and Tuem (8) are
entirely different. These show that the elements Ty (#), 8 € B,,, are linearly
independent, and complete the proof of the second part of Theorem 1.

Appendix

We give in this appendix proofs of the arithmetical lemmas used in $84, 6
and 7.

For any integers ¢ and j we define the binomial coefficient by

. 1) o (G—Ft1 . -
(;).;Z(Z ) j!(l Jj+1) if j>0,

=1if j=0,and =0 if ;<TO.

For every sequence E=(e(1), -+, e(#)) of integers (» =>2), we define the polynomial
coefficient P(E)=P(e(1), -+, e(¥)) inductively by

(1) Ple(l), -+, 6r) = (3 ) Pe@), =, e()

where e= }r:]le(i) and we agree P(e(2))=1. It follows that P(e(1), -, e(r))==

el/ I e(i)! if (i) =0 for every i, and =0 otherwise. Since
i\ _ (i—1\, (i—1
(j) *(j—l)*( j )
induction on 7 proves easily

LEmMA 1. Ple(1), -, e(#))= ;;;P@(l), cy e =1, -, e(r).

As is well-knon [1], the following formula is very useful if we deal with the
biomial coefficient mod p.

’

)= (1) o

(4 i=1
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where b= i]lb,-p" and c= jZl‘ c;p? are the p-adic expansion of integers b and c¢>=0.
LemMma 2. If e()=p'—1 and e¢(2)= - =e(p)=p? (¢=0), then P(e(1). -,
e($))=£0 mod p.
Proor. From (1) it follows that

P(p?—1, p%, -, p9) = (p;;”——ll) :121 (pq—i-;;_ipq) .

However (2) implies

(133 (g =
(P )= (7=~  asizp-v.
Therefore P(p?—1, p7, -, pH) = (-1 (p—1'FE0.
LEMmMA. 3. For non-negative integers a, b, e(7) and h(@) let
(3) Se@pP = pa.

Assume that ¢ >0 if a=£0 mod p, and that ¢ >a/p if a=0 mod p. Then we can
find integers ¢ (i) such that

(4) 31 e/() i = p
and
(5) H(e) 0 modp.

Proor. Without loss of generality we may assume e(7) >0 for every i. Let
first #=0. It follows then that there is 7, such that %(7,) =0 and e¢(i,)==0. Because
otherwise ge(i)phfi)zo and e(®)pP>p for every i, so that we should have

a=0 and a¢=pc which contradicts our assumption. Take such an i,, and put
¢’ (¢)=1 if /=i, and =0 otherwise. Then obviously (4) and (5) hold, and we
have the lemma.

To establish the general case we proceed by induction on % It does not
lose the generality to assume in (3) the following:

@) =0 if 1<i<bh, and =1 if s<iZc,
e(d) = pg()+r(E) with 0<r@ <p if 1<i<a,
=pq(@) if a<iZLhb,

where 1<<a<b<c. Since };ﬁlr(i) is a multiple of p, it follows that there are

integers #(7) >0 such that

p(5) =51y, 1) <rG) for 1<i<a.
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Dividing (3) by p we obtain
a &b ‘., .
S t@)pt X qlipt 3L e(IpP = pa.
1= 1= i=b+

Applying to this the hypothesis of induction, we can find #(2), ¢’(Z) and ¢ (@)
such that

(6) D@Dpt g @Dpr 3} @pP = ph
and
2 (q(i) & (i) o (1)
0 AR =0 I (68)=0, 5(if)=o.

The last implies #(7)<t(#) for 1<i<a, hence
BOEFE) Sp(EHD) = 317G
Therefore it follows that there are p’(¢) such that
p(EH@) =70,  rH=r() for 1<i<a.
Since 0<7(7) <p, we have that
(8) (Z8) %0 for 1<i<a.
Multiplying (6) by p we have

.g‘l‘ ?’(i)p"‘ ighl Q’(ﬁﬁl‘l“ é 3/<Z.)ph(i) _ ph .

i=bF1
Putting
@) = pg D) if 1<i<a,
= pg’(¥) if a<i<b,
we obtain
Zh: ¢ (Dp+ A:‘__bf‘ile’(i)p”“) = ph,
and
e(@) \ — [¢() \[r(D . .
(e'(i))*(g’(z‘))(r’(i)) if 1si=a,
=(23) it a<i<b.

(see (2)) This, together with (7) and (8), proves (5). Now the inductive step
is complete, and we end the proof.

LeMmMmA 4. Let non-negative integers h, k(@) and e(i) satisfy an equation
(9) Z}le(z‘)phci) = ph.
Then if ¢=>2 there exists a sequence (Ey, Es, -, E;) such that
Sl Ry =p for 1<k=p,

HPE)=0 modp



88 Minoru NAKAOKA
where E;=(e(i,1), -, e(d, p)) €nsle(@)) for 1<i<ec.

Proor. Since ¢ >p/p=1, the above Lemma 4 implies the existence of integers
e(i,1) such that

P2 - ¢ e(®)
(10, 31t Do = pir, I ( D) 0,
Subtracting (10), from (9), we have

(9 33 (e(i)—e(i, )PP = i (p—1).

Since p—1=0 and e(@) —e(,1)>=0, the application of Lemma 3 to (9), implies
the existence of integers ¢(Z,2) such that
(10).

e, 2pr0 = i,

cle(i)—e(d, 1)
A OGa) =o.
Substract (10), from (9),, and apply Lemma 4 to the result. Continuing this
process we can find integers e(Z, k) such that
(10) S e, pi> = pi,
cle(@)—e(l,1)— -+ —e(i, k—1)
1 B )0 for 1=k<p.
In particular e(7, p)=e(@)—e(i,1)— -+ —e(i, p—1). Now the desired lemma is
readily obtained if we take into consideration the following facts whose proofs
are easy :
S 1Y e (s _ e —elG, D— - —e(, k—1)
Ple(i, 1), -+, e, p)) -—MIJI( (i, ) )
PCeCD), =+, e(p)) = (2) Ple(@), -, e())

i ()= =e(p) =e.

LeMMA 5. Let m, ¢(3), k(i) be non-negative integers satisfying an equation
[@h))

C .
2 e =m,
i=1

h 3

and m= Y} a(r)p" be the p-adic expansion of m. Put a= }:La(r) and assume a=>2.
r=0 r=

Then there exists a sequence (E., E,,

«, E.) satisfying
S e, PP = o
for a(0)+ - +a(r—1D<j<La(0)+ - +a(») and 0<r<h, and
HPE)+0  mod p,
where E;=(e(i,1), -+, e, a)) €en®(e(d)) for 1<i<e.
Proor. We do this by induction on a.

Let a(0) =+ =a(g—1)=0 and
a(g)==0. Then m/p?=(a(g)p’+ - +a(h)p??)£0, so that Lemma 3 applied to
(11) implies the existence of integers e(i,1) such that
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(12) SeGvp = p7, T ( 40)) %0

=1

Subtracting (12) from (11) we obtain
é‘.l (e(@)—e(, 1))p"? = (a(g)—1)p?+ Ig a(qg+i)p?+i.

b
Since (a(g)—1)+ }_:.:qa(q—%-i):a«l, we can find by the hypothesis of induction a
sequence (Ef, ---, E}) such that

@ e

= p?  if 2<ji<aly),

=p  if a@+ - +ar—-D<j<alg)+ - +alr) and ¢<r<h,
and

1 P(E}) %0,

where E}=(e(7,2), -+, e(i,a)) €n®(e(t)—e(i,1)) for 1<i<c. Put E;=(e(i, 1),
-, e(i,a)), then i!{P(E,) =g (efg”i))f’uz;go by (2). Thus (12) and (13)
prove the lemma.
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