Journal of the Institute of Polytechnics, Osaka City University, Vol. 10, No. 1, Series A

Decomposition of radical elements of a commutative residuated lattice

By Kentaro MURATA

(Received Nov. 8, 1958)

1. Recently E. Schenkman [4] has pointed out the similarlity between the properties of ideals in a commutative ring and of normal subgroups of a group. In particular he obtained that every radical¹) A of a group G such that G/A has finite principal series has a unique minimal decomposition as an intersection of primes²).

In the present note we shall define a radicial element of a commutative residuated cm-lattice³⁾ L, and obtain a decomposition theorem for radical elements of L, which is a lattice-formulation of the above result and of the minimal decomposition theorem⁴⁾ of radical ideals in (commutative) Noetherian rings.

2. Let L be a commutative residuated cm-lattice with a greatest element e, and suppose that $ab \leq a$ for any two elements a and b of L^{5} .

For example, the lattice of all normal subgroups of any group forms a commutative residuated *cm*-lattice with above properties, if we define a multiplication $A \cdot B$ of normal subgroups A and B as the subgroup generated by all commutators $xyx^{-1}y^{-1} (x \in A, y \in B)^{6}$.

For any element *a* of *L*, we define inductively $a^{(1)}=a$, $a^{(\rho)}=a^{(\rho-1)}\cdot a^{(\rho-1)}$ for $\rho>1^{7}$. Then we have

- (1) $a \leq b$ implies $a^{(\rho)} \leq b^{(\rho)}$,
- (2) $\rho \leq \sigma$ implies $a^{(\rho)} \geq a^{(\sigma)}$,
- (3) $(a \cap b)^{(\rho)} \leq a^{(\rho)} \cap b^{(\rho)}$,
- (4) $(a \cdot a)^{(\rho)} = a^{(\rho)} \cdot a^{(\rho)}$,
- (5) $a^{(\rho)(\sigma)} = a^{(\sigma)(\rho)}$
- (6) $a^{(\rho\sigma)} \leq a^{(\rho)(\sigma)}$,
- (7) $(a \cup b)^{(\rho\sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$.

(1), ..., (4) are immediate by induction on the whole number ρ .

- 4) Cf. [2, p. 202, Theorem 70].
- 5) The greatest element e is not necessarily a unity of L. If e is a unity then $ab \le a$ for any two elements a and b of L.
- 6) Cf. [1, p. 204].
- 7) No confusion arises, even if we write $a^{\rho} = a^{(\rho)}$ for $\rho = 1, 2$.

^{1), 2)} Cf. [4, p. 376].

³⁾ Cf. [1, p. 201]. The associative law for multiplication is not assumed.

Proof of (5): Fix the whole number ρ . (5) is trivial for $\sigma=1$. Assume that $a^{(\rho)(\sigma-1)}=a^{(\sigma-1)(\rho)}$. Then $a^{(\rho)(\sigma)}=a^{(\rho)(\sigma-1)}\cdot a^{(\rho)(\sigma-1)}=a^{(\sigma-1)(\rho)}\cdot a^{(\sigma-1)(\rho)}=(a^{(\sigma-1)}\cdot a^{(\sigma-1)})^{(\rho)}=a^{(\sigma)(\rho)}$. Similarly for ρ .

Proof of (6): Fix the whole number ρ . (6) is trivial for $\sigma=1$. We assume that $a^{(\rho(\sigma-1))} \leq a^{(\rho)(\sigma-1)}$. Then $a^{(\rho)(\sigma)} = a^{(\rho)(\sigma-1)} \cdot a^{(\rho)(\sigma-1)} \geq a^{(\rho(\sigma-1))} \cdot a^{(\rho(\sigma-1))} = a^{(\rho(\sigma-1)+1)} \geq a^{(\rho(\sigma-1)+\rho)} = a^{(\rho\sigma)}$. Similarly for ρ .

Proof of (7): Since $(a \cup b)^{(\rho)} \leq a^{(\rho)} \cup b$, we have $(a \cup b)^{(\rho)(\hat{\sigma})} \leq (a^{(\rho)} \cup b)^{(\sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$. Hence, using (6), we obtain $(a \cup b)^{(\rho\sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$.

Let Γ_a be the set of all elements x which satisfies $a \le x$ and $x^{(\rho)} \le a$ for a suitable whole number $\rho = \rho(x)$.

DEFINITION. Sup $[\Gamma_a]$ is called a radical of a, and denoted by rad(a). If rad(a) = a, then a is called a radical element of L.

LEMMA 1. In order that an element p is prime, it is necessary and sufficient that (1°) p is a radical element and (2°) p is a meet-irreducible element.

Proof. Suppose that p is a prime element. Then it is easily verified that Γ_p consists of p only. Hence p is evidently a radical element. If $p=a_{\cap}b$, then we have $ab \le p$ because $ab \le a_{\cap}b$. Hence $a \le p$ or $b \le p$; and a=p or b=p.

Conversely, if p has the properties (1°) and (2°) , then $ab \le p$ implies $(a \cup p) \cdot (b \cup p) = ab \cup ap \cup bp \cup p^2 \le p$. Since $((a \cup p)_{\frown} (b \cup p))^2 \le (a \cup p) (b \cup p) \le p \le (a \cup p)_{\frown} (b \cup p)$, we have $(a \cup p)_{\frown} (b \cup p) \le rad(p) = p$. Hence $(a \cup p)_{\frown} (b \cup p) = p$. This implies $a \cup p = p$ or $b \cup p = p$. That is, either $a \le p$ or $b \le p$.

LEMMA 2. Let p be a prime element of L. Then p: a is equal to e or equal to p according as $a \leq p$ or $a \leq p$.

Proof. If $a \le p$, then $ax \le p$ for every element x of L. Particularly $ae \le p$. Hence $p:a \ge e$, p:a=e. Since $(p:a)a \le p$, we have $p:a \le p$, if $a \le p$. On the other hand $p \le p:a$ is evident. Hence p:a=p.

LEMMA 3. Suppose that a is a radical element of L. If $a=b_{\cap}c$, then $a=b'_{\cap}c'$ for any b' of Γ_b and c' of Γ_c .

Proof. Since there exist whole numbers ρ and σ such that $b'^{(\rho)} \leq b$ and $c'^{(\sigma)} \leq c$, we have that $(b' \cap c')^{(\rho\sigma)} \leq b'^{(\rho\sigma)} \cap c'^{(\rho\sigma)} \leq b'^{(\rho)} \cap c'^{(\sigma)(\rho)} \leq b^{(\sigma)} \cap c^{(\rho)} \leq b \cap c = a$. It is evident that $a \leq b' \cap c'$. Hence we have that $b' \cap c' \leq rad(a) = a$, and $b' \cap c' = a$.

LEMMA 4. Suppose that the ascending chain condition holds for the closed interval [e, a]. Then the radical of any element of [e, a] is a radical element.

Proof. Let c be any element of [e, a]. By the ascending chain condition for [e, a], the lattice ideal $J(\Gamma_c)$ generated by Γ_c of the sublattice [e, a] forms a principal ideal: $J(\Gamma_c)=J(c^*)$ where $c^*=\sup[\Gamma_c]$. Since $c^* \in J(\Gamma_c)$, there exists a finite number of elements u_1, \ldots, u_{λ} such that $c^* \leq u_1 \cup \cdots \cup u_{\lambda}, u_i \in \Gamma_c$. Hence c^*

33

 $=u_1 \cup \cdots \cup u_{\lambda}$. Hence c^* is contained in Γ_c^{s} , i.e. $c^{*(\rho)} \leq c$ for some whole number ρ . Let x be any element of Γ_c^* . Then $x^{(\sigma)} \leq c^* \leq x$ for a suitable σ . Hence $x^{(\sigma\rho)} \leq x^{(\sigma)(\rho)} \leq c^{*(\rho)} \leq c \leq x$. Hence Γ_c^* is contained in Γ_c . We get therefore $c^* \leq sup[\Gamma_c^*] \leq sup[\Gamma_c] \leq sup[J(\Gamma_c)] = c^*$, $c^* = sup[\Gamma_c^*] = rad(c^*)$. This completes the proof.

DEFINITION. If $a = a_1 \cap \cdots \cap a_n$ where no a_{ν} can be omitted, then this decomposition is called minimal.

THEOREM. Let a be a radical element of L. If the ascending chain condition holds for the interval [e, a], then a has a unique minimal decomposition of prime elements.

Proof. It is easy to see that a can be decomposed as a meet of a finite number of meet-irreducible elements: $a=c_1 \cap \cdots \cap c_n$. Then by Lemmas 3 and 4 we have

$$a = c_1^* \cap \cdots \cap c_n^*, c_i^* = rad(c_i)$$

If c_i^* is meet-reducible, then repeating the above arguments we obtain, after a finite number of steps, a meet-irreducible radical elements of a. That is, a can be decomposed into a finite number of prime elements: $a = p_1 \cap \cdots \cap p_m$.

Now we suppose that *a* has two minimal decompositions of prime elements: $a=p_{1} \cap \cdots \cap p_{m}=p_{1}^{*} \cap \cdots \cap p_{n}^{*}$. Then either m=n and the set of all *p*'s coincides with the set of all *p*'s's or else it is possible to pick a p_{i} or p_{k}^{*} which is not contained in the set of *p*'s's or the set of *p*'s respectively. For definiteness suppose it to be p_{1} . Then, using Lemma 2, we have³ $a: p_{1}=(p_{1}:p_{1}) \cap (p_{2}:p_{1}) \cap \cdots \cap (p_{m}:p_{1})$ $=e_{\cap}p_{2} \cap \cdots \cap n_{m}=p_{2} \cap \cdots \cap p_{m}$. On the other hand $a: p_{1}=(p_{1}^{*}:p_{1}) \cap \cdots \cap (p_{n}^{*}:p_{1})$ $=p_{1}^{*} \cap \cdots \cap p_{n}^{*}=a$. Hence $a=p_{1} \cap \cdots \cap p_{m}=p_{2} \cap \cdots \cap p_{m}$. This contradicts to the minimality of the decomposition. q. e. d.

REMARK 1. The prime elements determined by the Theorem is called the *prime* elements of a. Suppose that a is a radical element with prime elements $p_1, ..., p_m$. If p is a prime element containing a then p contains one of the p_{ν} . For, since $(\cdots(p_1, p_2)\cdots p_m) \leq p_1 \cap p_2 \cap \cdots \cap p_m \leq a \leq p$, there exists p_{ν} such that $p_{\nu} \leq p$.

REMARK 2. If a:b=a then b is called *relatively prime to a*. Let a be a radical element with prime elements p_1, \dots, p_m . Then in order that b is relatively prime to a, it is necessary and sufficient that b is contained in no p_{ν} . For, since $a:b=(p_1,\dots,p_m):b=(p_1:b),\dots,(p_m:b)$, we have $p_{\nu}:b=p_{\nu}$ if a:b=a. Hence by Lemma 2 we get $b \leq p_{\nu}$ ($\nu=1, \dots, m$). Conversely, if $b \leq p_{\nu}$, then $p_{\nu}:b=p_{\nu}$ ($\nu=1, \dots, m$). This implies a:b=a. Using the above results, we obtain the following:

Let a and b be two radical elements with minimal decompositions: $a=p_{1}_{\bigcirc}\cdots$ $_{\bigcirc}p_{m}, b=p'_{1}_{\bigcirc}\cdots_{\bigcirc}p'_{n}$. In order that b is relatively prime to a, it is necessary and

⁸⁾ Γ_c forms a sublattice.

⁹⁾ Cf. [1, p. 202, Theorem 3].

sufficient that no p'_{ν} is contained in a p_{μ} .

REMARK 3. Suppose that L is associative and integral¹⁰). If any prime element is divisor-free, then it is verified that Lemma 2 in [3] holds for L, and we can prove the following:

Suppose that a is a radical element such that the descending chain condition holds for [e, a]. If $a=c_1,\dots,c_{\lambda}$, then $a=rad(c_1),\dots,rad(c_{\lambda})$, where $rad(c_{\nu})$ is a radical element of $L, \nu=1, \dots, \lambda$.

References

- [1] G. Birkhoff, Lattice theory, Amer. Math. Colloq. Publ., 25 (2nd ed.) (1948).
- [2] H. McCoy, Rings and Ideals, The Carus Mathematical Monogrophs. 8 (1948).
- [3] K. Murata, A theorem on residuated lattices, Proc. Japan Acad., 33. (1957), pp. 639-641.
- [4] E. Schenkman, The similarlity between the properties of ideals in commutative rings and the properties of normal subgroups of groups, Proc. Amer. Math. Soc., 9 (1958), pp. 375-381.