Decomposition of radical elements of a commutative residuated lattice

By Kentaro Murata

(Received Nov. 8, 1958)

1. Recently E. Schenkman [4] has pointed out the similarlity between the properties of ideals in a commutative ring and of normal subgroups of a group. In particular he obtained that every radicali) A of a group G such that G / A has finite principal series has a unique minimal decomposition as an intersection of primes ${ }^{2}$.

In the present note we shall define a radicial element of a commutative residuated cm -lattice ${ }^{3)} \mathrm{L}$, and obtain a decomposition theorem for radical elements of L, which is a lattice-formulaltion of the above result and of the minimal decomposition theorem ${ }^{4}$) of radical ideals in (commutative) Noetherian rings.
2. Let L be a commutative residuated $c m$-lattice with a greatest element e, and suppose that $a b \leq a$ for any two elements a and b of $L^{5)}$.

For example, the lattice of all normal subgroups of any group forms a commutative residuated $c m$-lattice with above properties, if we define a multiplication $A \cdot B$ of normal subgroups A and B as the subgroup generated by all commutators. $x y x^{-1} y^{-1}(x \in A, y \in B)^{6}$.

For any element a of L, we define inductively $a^{(1)}=a, a^{(\rho)}=a^{(\rho-1)} \cdot a^{(\rho-1)}$ for $\rho>1^{7}$. Then we have
(1) $a \leq b$ implies $a^{(\rho)} \leq b^{(\rho)}$,
(2) $\rho \leq \sigma$ implies $a^{(\rho)} \geq a^{(\sigma)}$,
(3) $(a \cap b)^{(\rho)} \leq a^{(\rho)} \cap b^{(\rho)}$,
(4) $(a \cdot a)^{(\rho)}=a^{(\rho)} \cdot a^{(\rho)}$,
(5) $a^{(\rho)(\sigma)}=a^{(\sigma)(\rho)}$,
(6) $a^{(\rho \sigma)} \leq a^{(\rho)(\sigma)}$,
(7) $(a \cup b)^{(\rho \sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$.
(1), \cdots, (4) are immediate by induction on the whole number ρ.
1), 2) Cf. [4, p. 376].
3) Cf. [1, p. 201]. The associative law for multiplication is not assumed.
4) Cf. [2, p. 202, Theorem 70].
5) The greatest element e is not necessarily a unity of L. If e is a unity then $a b \leq a$ for any two elements a and b of L.
6) Cf. [1, p. 204].
7) No confusion arises, even if we write $\mathfrak{a}^{\rho}=\mathfrak{a}^{(\rho)}$ for $\rho=1,2$.

Proof of (5): Fix the whole number ρ. (5) is trivial for $\sigma=1$. Assume that $a^{(\rho)(\sigma-1)}=a^{(\sigma-1)(\rho)}$. Then $a^{(\rho)(\sigma)}=\boldsymbol{a}^{(\rho)(\sigma-1)} \cdot a^{(\rho)(\sigma-1)}=a^{(\sigma-1)(\rho)} \cdot \boldsymbol{a}^{(\sigma-1)(\rho)}=\left(\boldsymbol{a}^{(\sigma-1)} \cdot \boldsymbol{a}^{(\sigma-1)}\right)^{(\rho)}$ $=a^{(\sigma)(\rho)}$. Similarly for ρ.

Proof of (6): Fix the whole number ρ. (6) is trivial for $\sigma=1$. We assume that $a^{(\rho(\sigma-1))} \leq a^{(\rho)(\sigma-1)}$. Then $a^{(\rho)(\sigma)}=a^{(\rho)(\sigma-1)} \cdot a^{(\rho)(\sigma-1)} \geq a^{(\rho(\sigma-1))} \cdot a^{(\rho(\sigma-1))}=a^{(\rho(\sigma-1)+1)}$ $\geq a^{(\rho(\sigma-1)+\rho)}=a^{(\rho \sigma)}$. Similarly for ρ.

Proof of (7): Since $(a \cup b)^{(\rho)} \leq a^{(\rho)} \cup b$, we have $(a \cup b)^{(\rho)(\sigma)} \leq\left(a^{(\rho)} \cup b\right)^{(\sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$. Hence, using (6), we obtain $(a \cup b)^{(\rho \sigma)} \leq a^{(\rho)} \cup b^{(\sigma)}$.

Let Γ_{a} be the set of all elements x which satisfies $a \leq x$ and $x^{(\rho)} \leq a$ for a suitable whole number $\rho=\rho(x)$.

Definition. Sup $\left[\Gamma_{a}\right]$ is called a radical of a, and denoted by $\operatorname{rad}(a)$. If $\operatorname{rad}(a)$ $=a$, then a is called a radical element of L.

Lemma 1. In order that an element p is prime, it is necessary and sufficient that (1°) p is a radical element and (2°) p is a meet-irreducible element.

Proof. Suppose that p is a prime element. Then it is easily verified that Γ_{p} consists of p only. Hence p is evidently a radical element. If $p=a_{\cap} b$, then we have $a b \leq p$ because $a b \leq a \cap b$. Hence $a \leq p$ or $b \leq p$; and $a=p$ or $b=p$.

Conversely, if p has the properties (1°) and (2°), then $a b \leq p$ implies ($a \cup p$) $\cdot(b \cup p)=a b \cup a p \cup b \cup^{2} \leq p$. Since $\quad((a \cup p) \cap(b \cup p))^{2} \leq(a \cup p)(b \cup p) \leq p \leq$ $(a \cup p) \cap(b \cup p)$, we have $(a \cup p) \cap(b \cup p) \leq r a d(p)=p$. Hence $(a \cup p) \cap(b \cup p)=p$. This implies $a \cup p=p$ or $b \cup p=p$. That is, either $a \leq p$ or $b \leq p$.

Lemma 2. Let p be a prime element of L. Then $p: a$ is equal to e or equal to p according as $a \leq p$ or $a \not \ddagger p$.

Proof. If $a \leq p$, then $a x \leq p$ for every element x of L. Particularly $a e \leq p$. Hence $p: a \geq e, p: a=e$. Since $(p: a) a \leq p$, we have $p: a \leq p$, if $a \not \leq p$. On the other hand $p \leq p: a$ is evident. Hence $p: a=p$.

Lemma 3. Suppose that a is a radical element of L. If $a=b \cap c$, then $a=b^{\prime} \cap c^{\prime}$ for any b^{\prime} of Γ_{b} and c^{\prime} of Γ_{c}.

Proof. Since there exist whole numbers ρ and σ such that $b^{\prime(\rho)} \leq b$ and $c^{\prime(\sigma)} \leq c$, we have that $\left(b^{\prime} \cap c^{\prime}\right)^{(\rho \sigma)} \leq b^{\prime(\rho \sigma)} \cap c^{\prime(\rho \sigma)} \leq b^{\prime(\rho)(\sigma)} \cap c^{\prime(\sigma)(\rho)} \leq b^{(\sigma)} \cap c^{(\rho)} \leq b \cap c=a$. It is evident that $a \leq b^{\prime} \cap c^{\prime}$. Hence we have that $b^{\prime} \cap c^{\prime} \leq \operatorname{rad}(a)=a$, and $b^{\prime} \cap c^{\prime}=a$.

Lemma 4. Suppose that the ascending chain condition holds for the closed interval $[e, a]$. Then the radical of any element of $[e, a]$ is a radical element.

Proof. Let c be any element of $[e, a]$. By the ascending chain condition for [e, a], the lattice-ideal $J\left(\Gamma_{c}\right)$ generated by Γ_{c} of the sublattice $[e, a]$ forms a principal ideal: $J\left(\Gamma_{c}\right)=J\left(c^{*}\right)$ where $c^{*}=\sup \left[\Gamma_{c}\right]$. Since $c^{*} \epsilon J\left(\Gamma_{c}\right)$, there exists a finite number of elements $u_{1}, \ldots, u_{\lambda}$ such that $c^{*} \leq u_{1} \cup \ldots \cup u_{\lambda}, u_{i} \in \Gamma_{c}$. Hence c^{*}
$=u_{1} \cup \ldots \cup u_{\lambda}$. Hence c^{*} is contained in $\Gamma_{c}{ }^{8)}$, i. e. $c^{*(\rho)} \leq c$ for some whole number ρ. Let x be any element of $\Gamma_{c^{*}}$. Then $x^{(\sigma)} \leq c^{*} \leq x$ for a suitable σ. Hence $x^{(\sigma \rho)} \leq x^{(\sigma)(\rho)} \leq c^{*(\rho)} \leq c \leq x$. Hence $\Gamma_{c^{*}}$ is contained in Γ_{c}. We get therefore $c^{*} \leq \sup \left[\Gamma_{c^{*}}\right] \leq \sup \left[\Gamma_{c}\right] \leq \sup \left[J\left(\Gamma_{c}\right)\right]=c^{*}, c^{*}=s u p\left[\Gamma_{c^{*}}\right]=\operatorname{rad}\left(c^{*}\right)$. This completes the proof.

Definition. If $a=a_{1 \cap} \cap \cap a_{n}$ where no a_{ν} can be omitted, then this decomposition is called minimal.

Theorem. Let a be a radical element of L. If the ascending chain condition holds for the interval $[e, a]$, then a has a unique minimal decomposition of prime elements.

Proof. It is easy to see that a can be decomposed as a meet of a finite number of meet-irreducible elements: $a=c_{1 \cap} \cap \cap c_{n}$. Then by Lemmas 3 and 4 we have

$$
a=c_{1}^{*} \cap \cdots \cap c_{n}^{*}, c_{i}^{*}=\operatorname{rad}\left(c_{i}\right) .
$$

If c_{i}^{*} is meet-reducible, then repeating the above arguments we obtain, after a finite number of steps, a meet-irreducible radical elements of a. That is, a can be decomposed into a finite number of prime elements: $a=p_{1 \cap} \cap \cap p_{m}$.

Now we suppose that a has two minimal decompositions of prime elements: $a=p_{1 \cap} \cap \cap p_{m}=p_{1}^{*} \cap \cdots \cap p_{n}^{*}$. Then either $m=n$ and the set of all p 's coincides with the set of all p^{*} s or else it is possible to pick a p_{i} or p_{k}^{*} which is not contained in the set of $p^{* \prime}$ s or the set of p^{\prime} s respectively. For definiteness suppose it to be p_{1}. Then, using Lemma 2, we have ${ }^{9}$) $a: p_{1}=\left(p_{1}: p_{1}\right) \cap\left(p_{2}: p_{1}\right) \cap \cdots \cap\left(p_{m}: p_{1}\right)$ $=e_{\cap} p_{2} \cap \cdots \cap n_{m}=p_{2} \cap \cdots \cap p_{m}$. On the other hand $a: p_{1}=\left(p_{1}^{*}: p_{1}\right) \cap \cdots \cap\left(p_{n}^{*}: p_{1}\right)$ $=p_{1}^{*} \cap \cdots \cap p_{n}^{*}=a$. Hence $a=p_{1 \cap} \cap \cap p_{m}=p_{2} \cap \cdots \cap p_{m}$. This contradicts to the minimality of the decomposition. q.e.d.

Remark 1. The prime elements determined by the Theorem is called the prime elements of a. Suppose that a is a radical element with prime elements p_{1}, \ldots, p_{m}. If p is a prime element containing a then p contains one of the p_{ν}. For, since $\left(\cdots\left(p_{1} \cdot p_{2}\right) \cdots p_{m}\right) \leq p_{1 \cap} p_{2} \cap \cdots \cap p_{m} \leq a \leq p$, there exists p_{ν} such that $p_{\nu} \leq p$.

Remark 2. If $a: b=a$ then b is called relatively prime to a. Let a be a radical element with prime elements p_{1}, \cdots, p_{m}. Then in order that b is relatively prime to a, it is necessary and sufficient that b is contained in no p_{ν}. For, since $a: b=\left(p_{1 \cap} \cap \cap p_{m}\right): b=\left(p_{1}: b\right) \cap \cdots \cap\left(p_{m}: b\right)$, we have $p_{\nu}: b=p_{\nu}$ if $a: b=a$. Hence by Lemma 2 we get $b \nleftarrow p_{\nu}(\nu=1, \ldots, m)$. Conversely, if $b \nleftarrow p_{\nu}$, then $p_{\nu}: b=p_{\nu}(\nu=1$, $\ldots, m)$. This implies $a: b=a$. Using the above results, we obtain the following:

Let a and b be two radical elements with minimal decompositions: $a=p_{1} \cap \cdots$ $\cap p_{m}, b=p_{1}^{\prime} \cap \cdots \cap p_{n}^{\prime}$. In order that b is relatively prime to a, it is necessary and
8) Γ_{c} forms a sublattice.
9) Cf. [1, p. 202, Theorem 3].
sufficient that no p_{ν}^{\prime} is contained in a p_{μ}.
Remark 3. Suppose that L is associative and integral ${ }^{10)}$. If any prime element is divisor-free, then it is verified that Lemma 2 in [3] holds for L, and we can prove the following:

Suppose that a is a radical element such that the descending chain condition holds for $[e, a]$. If $a=c_{1 \cap \cdots} \cap c_{\lambda}$, then $a=\operatorname{rad}\left(c_{1}\right) \cap \cdots \cap \operatorname{rad}\left(c_{\lambda}\right)$, where $\operatorname{rad}\left(c_{\nu}\right)$ is a radical element of $L, \nu=1, \ldots, \lambda$.

References

[1] G. Birkhoff, Lattice theory, Amer. Math. Colloq. Publ., 25 (2nd ed.) (1948).
[2] H. McCoy, Rings and Ideals, The Carus Mathematical Monogrophs. 8 (1948).
[3] K. Murata, A theorem on residuated lattices, Proc. Japan Acad., 33. (1957), pp. 639-641.
[4] E. Schenkman, The similarlity between the properties of ideals in commutative rings and the properties of normal subgroups of groups, Proc. Amer. Math. Soc., 9 (1958), pp. 375-381.

[^0]
[^0]: 10) Cf. [1, p. 202].
