Journal of the Institute of Polytechnics, Osaka City University, Vol. 10, No. 1, Series A

On P-components of normal ideals in a semigroup

By Kentaro MURATA

(Received Aug. 5. 1958)

Recently Professor Keizo Asano has shown to the author that *P*-components of normal ideals in rings can be characterized as follows:

Let G be a Brandt's groupoid of normal ideals in a ring R with a unit element, P a set of prime-spots, and \mathfrak{a}_P the P-component of \mathfrak{a} in G. Then the mapping φ_P : $\mathfrak{a} \rightarrow \varphi_P(\mathfrak{a}) = \mathfrak{a}_P$ gives a homomorphism form G into the multiplicative semigroup \mathfrak{S} consisting of all submodules of R, and it satisfies $\varphi_P(\mathfrak{a}) \supseteq \mathfrak{a}$. Conversely, let φ be a mapping from G into \mathfrak{S} which satisfies $\varphi(\mathfrak{a}) \supseteq \mathfrak{a}$ and $\varphi(\mathfrak{a}\mathfrak{b}) = \varphi(\mathfrak{a})\varphi(\mathfrak{b})$ ($\mathfrak{a}\mathfrak{b}$: proper multiplication). Then φ coincides with some φ_P . Hence the set \mathfrak{O} of all φ satisfying $\varphi(\mathfrak{a}) \supseteq \mathfrak{a}$ and $\varphi(\mathfrak{a}\mathfrak{b}) = \varphi(\mathfrak{a})\varphi(\mathfrak{b})$ forms an atomic Boolean algebra under $\varphi \leq \psi$, where $\varphi \leq \psi$ means $\varphi(\mathfrak{a}) \subseteq \psi(\mathfrak{a})$ for all \mathfrak{a} in G.

In the present paper we shall generalize the above facts for the case of semigroups.

1. Let 0 be an order of a (noncommutative) semigroup S with an identity 1. A subset α of S is called a left s-2-ideal if (1) $\alpha \subseteq \alpha$, (2) α contains a regular element¹ and (3) $\alpha \lambda \subseteq 0$ for a suitable regular element λ in S. Right s-0'-ideals are defined in a similar fashion, where 0' denotes an order of S. If α is a left s-2-ideal and a right s-2'-ideal, then α is called an s-2'-ideal. An s-2-ideal is called an s-2'-ideal.

Let $\{i, j^k, \dots\}$ be a system of orders which are equivalent²) to a fixed order 0 of S. Then any two orders in the system are equivalent to each other. The product $a^{ik}b^{jl}$ of an s- $j^{j}-0^{k}$ -ideal a and an s- $0^{j}-0^{l}$ -ideal b is called proper if k=j. If i^{j}, j^{k}, \dots are maximal orders, then the set G of all v-ide $|ls,^{3}\rangle$ defined on this system of the orders, forms the Brandt's groupoid with respect to $a \cdot b = (ab)^*$, where ab is proper.

We shall now impose that

- 1. \mathfrak{o}^i , \mathfrak{o}^k , \cdots are maximal orders of S.
- 2. A fixed order o^i is regular⁴).

¹⁾ An element of S is called regular if it satisfies both right and left cancelation laws.

²⁾ Two subsets M, N of S are called equivalent if there exist regular elements λ , μ , λ' , μ' in S such that $\lambda M \mu \subseteq N$ and $\lambda' N \mu' \subseteq M$. Two orders are called equivalent if they are equivalent as subsets of S. See [1], [2] and [3].

³⁾ An s-ideal \mathfrak{a} is called a v-ideal if $\mathfrak{a}^* = \mathfrak{a}^{-1-1} = \mathfrak{a}$. See [3].

⁴⁾ An order v of S is called regular when, for any x in S, there exist two regular elements α and β in v such that $xc\alpha \subseteq v$ and $\beta v x \subseteq v$. See [1], [2] and [3].

3. Ascending chain condition (A.C.C.) holds for integral two-sided $v \cdot v^i$ -ideals for a fixed order v^i .

Then it may be seen that every order 0^k in the system is regular, and the A.C.C. holds for integral two-sided $v \cdot 0^k$ -ideals. Moreover it is verified that the A.C.C. holds for $v \cdot 0^i \cdot 0^k$ -ideals which are contained in any fixed $s \cdot 0^i \cdot 0^k$ -ideal. Using this fact we can prove that there exist, for any $s \cdot 0^i \cdot 0^k$ -ideal a, a finite number of elements c_1, \dots, c_n in a such that a^* is generated by c_1, \dots, c_n . That is, $a^* = [c_1, \dots, c_n] = (\bigcup_{\nu=1}^n 0^{\nu} c_\nu 0^k)^*$.

A subset A of S is called an $v^{i}-v^{k}$ -set if $v^{i}Av^{k}\subseteq A$ and A contains a regular element of S. For any $v^{i}-v^{k}$ -set A we define a closure operation as the set-theoretical sum of all $v \cdot v^{i}-v^{k}$ -ideals generated by a finite number of elements in A, i.e.

$$\overline{A}^{(ik)} = \bigcup_{a_{\nu} \in A} (\mathfrak{o}^{i} a_{1} \mathfrak{o}^{k} \cup \cdots \cup \mathfrak{o}^{i} a_{n} \mathfrak{o}^{k})^{*}.$$

LEMMA 1. If an $0^{i}-0^{k}-set A$ is an $0^{j}-0^{l}-set$, then $\overline{A^{(ik)}}=\overline{A^{(jl)}}$.

Proof. Let x be any element in $\overline{A}^{(jl)}$. Then there exists an $v \cdot v^j \cdot v^{l-i}$ -ideal $c = [c_1, \dots, c_m]$, $c_{\nu} \in A$, which contains x. Since $a = o^i (o^j c_1 o^{l} \cup \dots \cup o^j c_m o^{l}) o^k \subseteq o^i A o^k = A$, and $a^* = [a_1, \dots, a_n]$, $a_{\nu} \in a \subseteq A$, we obtain $x \in c \subseteq a^* \subseteq \overline{A}^{(ik)}$, i.e. $\overline{A}^{(jl)} \subseteq \overline{A}^{(ik)}$. Similarly $\overline{A}^{(ik)} \subseteq \overline{A}^{(jl)}$. Therefore we have $\overline{A}^{(ik)} = \overline{A}^{(jl)}$ q.e.d.

Now we define \overline{A} by $\overline{A} = \overline{A}^{(ik)} = \overline{A}^{(jl)}$. Then the operation $A \rightarrow \overline{A}$ has the following properties:

- 1) $A \subseteq \overline{A}$,
- 2) $\overline{\overline{A}} = \overline{A}$,

3) If A, B are $o^i \cdot o^k$ -sets then $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$,

4) If A and B are $o^{i} \cdot o^{k}$ -and $o^{k} \cdot o^{i}$ -sets respectively, then $\overline{AB} \subseteq \overline{AB}$.

An \mathfrak{o}^{i} - \mathfrak{o}^{k} -set A is called closed if $\overline{A} = A$. For s-ideals, the closure operation coincides with the *-operation: $\overline{\mathfrak{a}} = \mathfrak{a}^{*}$. Hence \mathfrak{a} is a closed ideal if it is a v-ideal.

LEMMA 2. Let A, B be $0^{i}-0^{k}$, $0^{i}-0^{i}$ -sets respectively, and M a subset of S. If $AM \subseteq B$ and $A\lambda \subseteq B$ for a regular element λ , then $\overline{AM} \subseteq \overline{B}$. Particularly, if \mathfrak{a} , \mathfrak{b} are s- $0^{i}-0^{k}$ -, s- $0^{i}-0^{i}$ -ideals respectively, then $\mathfrak{a}M \subseteq \mathfrak{b}$ implies $\mathfrak{a}^{*}M \subseteq \mathfrak{b}^{*}$.

LEMMA 3. Let a, b be v-oⁱ-o^k-, v-oⁱ-oⁱ-ideals respectively, and M a subset of S. If $aM \subseteq b$ then $(c \cdot a)M \subseteq c \cdot b$ for any v-o^j-oⁱ-ideal c. If particularly $ax \subseteq b$ then $x \in a^{-1} \cdot b$.

The proofs of the above two lemmas are similarly obtained as in [3, §5].

From now on 'ideals' will always mean *v*-ideals and '*c*-ideals' closed ideals, respectively.

Let $p=p^{ii}$ be a prime ideal. The set **p** of all (prime) ideals which are conjunctive to p is called a prime spot of S. Let $p'=p^{kk}$ be a prime ideal conjunctive to $p=p^{ii}$, then $(a^{ik} \cup p)^*=o^i$ implies $(a^{ik} \cup p')^*=o^k$ and conversely. In such a

case $a = a^{ik}$ is called coprime to p. Let P be any set of prime spots in S. Then a is called coprime to P when a is coprime to all prime spots in P.

We now define, analogously to the case of rings⁵⁾, the *P*-component $a_P = a_P{}^{ik}$ of an ideal $a = a^{ik}$ as the set of all elements x in S such that $nx \subseteq a$ for a suitable integral ideal $n = n^{ii}$ which is coprime to P. If $n = n^{kk}$ is conjunctive to n, then by Lemma 2 $nx \subseteq a$ implies $xn' \subseteq a$ and conversely. Hence a_P is defined symmetrically with respect to the left and the right orders of a, and represented as the set-theoretical sum of all $n^{-1} \cdot a = a \cdot n'^{-1}$ with n(n') coprime to P.

Let *P* be any set of prime spots in *S*. Then $\{\mathfrak{o}_{P}^{i}, \mathfrak{o}_{P}^{k}, \ldots\}$ forms an another system of orders (equivalent to one another) of *S*. Our main object is the closed $\mathfrak{o}_{P}^{i} \cdot \mathfrak{o}_{P}^{k} \cdot \mathbf{i}$ deals. In the following n, n', ... will denote ideals which are coprime to *P*.

LEMMA 4. Let $a = a^{ik}$ be an ideal. Then a_P forms a closed (c-) $o_P^i \cdot o_P^k \cdot ideal$, and $a_P = \overline{o_P^i a} = \overline{ao_P^k} = \overline{o_P^i ao_P^k}$.

Proof. This is similarly obtained as in [3, §5].

LEMMA 5. \mathfrak{o}_P^i , \mathfrak{o}_P^k , ... form a system of regular orders equivalent to one another.

Proof. Regularity was proved in [3, §5]. Equivalency is evident by Lemma 4.

LEMMA 6. If \mathfrak{A} is an $s \circ \mathfrak{o}_P^i \circ \mathfrak{o}_P^k \cdot ideal$, then $\overline{\mathfrak{A}}$ is a $c \circ \mathfrak{o}_P^i \circ \mathfrak{o}_P^k \cdot ideal$.

LEMMA 7. Let a and b be any two ideals Then

 $((\mathfrak{ab})^*)_P = \overline{\mathfrak{a}_P \mathfrak{b}_P}.$

The proofs of the above two lemmas are similarly obtained as in [3, §5]. LEMMA 8. Let \mathfrak{A} be an $s \cdot o_{P}^{i} - o_{P}^{k}$ -ideal. Then

$$\mathfrak{A} \subseteq \mathfrak{o}_P^i \leftrightarrows \mathfrak{A} \subseteq ((\mathfrak{o}^k \mathfrak{o}^i)^{-1})_P \leftrightarrows \mathfrak{A} \subseteq \mathfrak{o}_P^k.$$

Proof. Suppose that $\mathcal{X} \subseteq \mathfrak{o}_P^i$. Then $\overline{\mathfrak{o}_P^k \mathfrak{o}_P^i} \mathcal{Y} \overline{\mathfrak{o}_P^k \mathfrak{o}_P^j} \subseteq \overline{\mathfrak{o}_P^k \mathfrak{O}_P^i} \mathcal{Q} \overline{\mathfrak{o}_P^k \mathfrak{O}_P^j} \subseteq \overline{\mathfrak{o}_P^k \mathfrak{O}_P^j} \mathcal{Q} \overline{\mathfrak{o}_P^k \mathfrak{O}_P^j} \subseteq \overline{\mathfrak{o}_P^k \mathfrak{O}_P^j} \mathcal{Q} \mathcal{Q} \mathcal{Q}_P^k \mathcal{Q} \mathcal{Q}_P^j \subseteq \overline{\mathfrak{o}_P^k \mathfrak{O}_P^j} \mathcal{Q} \mathcal{Q}_P^j \mathcal{Q} \mathcal{Q}_P^j \mathcal{Q} \mathcal{Q}_P^j \mathcal{Q} \mathcal{Q}_P^j \mathcal{Q}_P^j$

THEOREM 1. Let \mathfrak{A} be an $s \cdot \mathfrak{o}_P^i \cdot \mathfrak{o}_P^k \cdot ideal$ contained in \mathfrak{o}_P^i . Then

$$\mathfrak{a} = \mathfrak{A} \cap (\mathfrak{o}^k \mathfrak{o}^i)^{-1}$$

is an s-pⁱ-p^k-ideal, and

$$\overline{\mathfrak{A}} = (\mathfrak{u}^*)_P.$$

⁵⁾ See [1] and [2].

⁶⁾ Let a be any ideal. Then the mapping a→a_P gives a groupoid-homomorphism from G of all v-ideals onto the P-components of all ideals in G. Hence (a⁻¹)_P=(a_P)⁻¹.

Proof. a is evidently $s \cdot o^i \cdot o^{k} \cdot ideal$. Since $a \subseteq \mathfrak{A}$, \mathfrak{A} contains $n^{-1}a$ for all $n = n^{ii}$. Hence $\overline{\mathfrak{A}} \supseteq n^{-1} \cdot a$ for all n, hence $\overline{\mathfrak{A}} \supseteq (a^*)_P$. Suppose that $a \in \overline{\mathfrak{A}}$. Then there exist $a_{\nu} \in \mathfrak{A}(\nu=1,...,n)$ such that $a \in [a_1,...,a_n]$. Since $\mathfrak{A} \subseteq o_P^i$, by Lemma 8 $a_{\nu} \in (o^k o^i)_P^{-1}$. Hence there exists $n = n^{ii}$ such that $na_{\nu} \subseteq (o^k o^i)^{-1}$ ($\nu = 1,...,n$). On the other hand, $na_{\nu} \subseteq o^i \mathfrak{A} = \mathfrak{A}$. We obtain $na_{\nu} \subseteq \mathfrak{A}_{\cap}(o^k o^i)^{-1} = \mathfrak{a}$, $a_{\nu} \in n^{-1} \cdot \mathfrak{a}^*(\nu=1,...,n)$. Hence $a \in [a_1, ..., a_n] \subseteq n^{-1} \cdot \mathfrak{a}^* \subseteq (a^*)_P$, as desired.

COROLLARY. Let \mathfrak{A} be a $c \circ \mathfrak{o}_{P}^{i} \circ \mathfrak{o}_{P}^{k}$ -ideal contained in \mathfrak{o}_{P}^{i} . Then there exists an $\mathfrak{o}^{i} \circ \mathfrak{o}^{k}$ -ideal a such that $\mathfrak{A} = \mathfrak{a}_{P}$.

REMARK. Let \mathfrak{A} be an $s \circ p_P^i \circ p_P^k$ -ideal contained in \mathfrak{o}_P^i . Then evidently $\mathfrak{a}_1 = \mathfrak{A}_{\bigcirc} \mathfrak{o}^i \mathfrak{o}^k$ is an $s \circ \mathfrak{o}^i \circ \mathfrak{o}^k$ -ideal and it is proved that $\overline{\mathfrak{A}} = (\mathfrak{a}_1^*)_P$. Hence by Theorem 1, we obtain $\overline{\mathfrak{A}} = (\mathfrak{a}^*)_P = (\mathfrak{a}_1^*)_P = (\mathfrak{a}_k^*)_P$, where $\mathfrak{a}_i = \mathfrak{A}_{\bigcirc} \mathfrak{o}^i$, $\mathfrak{a}_k = \mathfrak{A}_{\bigcirc} \mathfrak{o}^k$.

THEOREM 2. The $c \cdot o_{P}^{k} \cdot o_{P}^{k} \cdot ideals \mathfrak{A}, \mathfrak{B}, ...$ form a groupoid G_{P} with respect to the product $\mathfrak{A} \cdot \mathfrak{B} = \overline{\mathfrak{AB}}$, where \mathfrak{A} is a $c \cdot o_{P}^{k} \cdot o_{P}^{k} \cdot ideal$ and \mathfrak{B} a $c \cdot o_{P}^{k} \cdot o_{P}^{k} \cdot ideal$. G_{P} is homomorphic to G of all ideals as groupoids: $G \simeq G_{P}$.

Proof. The mapping $\mathfrak{a} \to \mathfrak{a}_p(\mathfrak{a} \in G)$ is a homomorphism of G into G_P . If \mathfrak{A} is a $c \cdot \mathfrak{o}_P^i \cdot \mathfrak{o}_P^k$ -ideal contained in \mathfrak{o}_P^i , then there exists $\mathfrak{a} = \mathfrak{a}^{ik} \in G$ such that $\mathfrak{A} = \mathfrak{a}_P$. If \mathfrak{C} is a $c \cdot \mathfrak{o}_P^i \cdot \mathfrak{o}_P^k$ -ideal not contained in \mathfrak{o}_P^i , then there exists $\mathfrak{a}_P(\mathfrak{a} = \mathfrak{a}^{ii})$ such that $\mathfrak{a}_P \cdot \mathfrak{C} \subseteq \mathfrak{o}_P^i$. Hence by the above corollary there exists $\mathfrak{b} = \mathfrak{b}^{ik}$ in G such that $\mathfrak{a}_P \cdot \mathfrak{C} = \mathfrak{b}_P$. Hence $\mathfrak{C} = \mathfrak{a}_P^{-1} \cdot \mathfrak{b}_P = (\mathfrak{a}^{-1} \cdot \mathfrak{b})_P$, and the proof is complete.

THEOREM 3. Let $a = a^{ik}$ be an integral ideal in G. Then the following conditions are equivalent.

- 1. α is coprime to P.
- 2. $\mathfrak{a}(\mathfrak{o}^{\iota}\mathfrak{o}^{k})^{-1}$ is coprime to P.
- 2'. $(\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1}\mathfrak{a}$ is coprime to P.
- 3. $\mathfrak{a}_P = \mathfrak{o}_P^i$.
- 3'. $\mathfrak{a}_P = \mathfrak{o}_P^k$.

Proof. $1 \rightarrow 2$: $\mathfrak{a} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = \mathfrak{c}$ is evidently a two-sided \mathfrak{o}^{i} -ideal contained in \mathfrak{a} . Suppose that \mathfrak{a} is coprime to P. Then $(\mathfrak{a} \cup \mathfrak{p})^{*} = \mathfrak{o}^{i}$ for any $\mathfrak{p} = \mathfrak{p}^{ii}$ in P $(P \in P)$. Hence we have $(\mathfrak{c} \cup \mathfrak{p})^{*} = (\mathfrak{a} \cup \mathfrak{p} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = (\mathfrak{a} \cup \mathfrak{p}\mathfrak{o}^{i}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = ((\mathfrak{a} \cup \mathfrak{p})^{*}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = ((\mathfrak{a} \cup \mathfrak{p})^{*}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = (\mathfrak{a} \cup \mathfrak{p}\mathfrak{o}^{i}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = (\mathfrak{a} \cup \mathfrak{p})^{*}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = (\mathfrak{o}^{i}\mathfrak{o}^{k})^{*} \cdot (\mathfrak{o}^{i}\mathfrak{o}^{k})^{-1} = \mathfrak{o}^{i}. 2 \rightarrow 3$: From $\mathfrak{c}_{P} = \mathfrak{o}_{P}^{i} \supseteq \mathfrak{a}_{P} \supseteq \mathfrak{c}_{P}$, we obtain $\mathfrak{a}_{P} = \mathfrak{o}_{P}^{i}. 3 \rightarrow 1$: If $\mathfrak{a}_{P} = \mathfrak{o}_{P}^{i}$, then $\mathfrak{a}_{P} \ni 1$. Hence there exists $\mathfrak{n} = \mathfrak{n}^{ii}$ such that $\mathfrak{1} \in \mathfrak{n}^{-1} \cdot \mathfrak{a}$. Hence $\mathfrak{n} \subseteq \mathfrak{a}$. Thus \mathfrak{a} is coprime to P. Similarly we obtain $\mathfrak{1} \rightarrow 2' \rightarrow 3' \rightarrow 1$.

The groupoid-homomorphism $G \cong G_P$ in Theorem 2 is characterized by the following

THEOREM 4. Let G be a groupoid of v-ideals defined on the system $\{v^i, v^k, ...\}$, and \mathfrak{M} the set of all closed $v^i \cdot v^k \cdot \operatorname{sets}^{\tau}$ of S. Then the mapping $\varphi_P \colon \mathfrak{a} \to \varphi_P(\mathfrak{a}) = \mathfrak{a}_P$

⁷⁾ If S is a ring, then \mathfrak{M} coincides with the set of all \mathfrak{c}^{i} - \mathfrak{c}^{k} -modules, each of which contains a regular element. See [3, §5].

from G into \mathfrak{M} satisfies $\varphi_P(\mathfrak{a}) \supseteq \mathfrak{a}$ and $\varphi_P(\mathfrak{a}\mathfrak{b}) = \varphi_P(\mathfrak{a}) \cdot \varphi_P(\mathfrak{b}), \ \mathfrak{a} = \mathfrak{a}^{ik}, \ \mathfrak{b} = \mathfrak{b}^{kl}$. Conversely, if a mapping φ from G into \mathfrak{M} satisfies

- 1) $\varphi(\mathfrak{a}) \supseteq \mathfrak{a}$,
- 2) $\varphi(\mathfrak{ab}) = \varphi(\mathfrak{a})\varphi(\mathfrak{b}),$

then φ coincides with some φ_P . Hence the set Φ of all φ satisfying 1) and 2) forms an atomic Boolean algebra under $\varphi \leq \psi$, where $\varphi \leq \psi$ means $\varphi(\mathfrak{a}) \subseteq \psi(\mathfrak{a})$ for all \mathfrak{a} in G. Moreover, \mathfrak{a}_P coincides with the set-theoretical sum of all inverse image of $\varphi_P(\mathfrak{a})$.

Proof. The first part is easy. We now prove the latter part. Since $\varphi(\mathfrak{o}^i) \supseteq \mathfrak{o}^i$ and $\varphi(\mathfrak{o}^i)\varphi(\mathfrak{o}^i)=\varphi(\mathfrak{o}^i)$, $\varphi(\mathfrak{o}^i)$ forms a closed \mathfrak{o}^i -semigroup⁸). Hence there exists a set \mathfrak{P}_i of prime \mathfrak{o}^i -ideals such that $\varphi(\mathfrak{o}^i)=\mathfrak{o}_{P_i}^{i,\mathfrak{g}}$. We shall now use P(i) to denote the set of all prime spots which contain $\mathfrak{p}=\mathfrak{p}^{ii}$ in \mathfrak{P}_i . Then P(i)=P(k) for arbitrary indices i and k. Because if $P(k) \oplus P(i)$, then we can take \mathfrak{p}' such that $\mathfrak{p}' \in \mathbf{p}'$, $\mathbf{p}' \in P(k)$, and $\mathfrak{p}_0 = \mathfrak{c}^{-1} \cdot \mathfrak{p}' \cdot \mathfrak{c}(\mathfrak{c} = \mathfrak{c}^{k_i})$ is not contained in every \mathbf{p} in P(i). Hence $\varphi(\mathfrak{o}_i) \oplus \mathfrak{o}_{\mathfrak{o}_0}$. This implies $\mathfrak{p}_0^{-1} \subseteq \varphi(\mathfrak{o}^i)^{-1}$. Therefore $\mathfrak{p}'^{-1} = \mathfrak{c} \cdot \mathfrak{p}_0^{-1} \cdot \mathfrak{c}^{-1} \subseteq \overline{\varphi(\mathfrak{c})} \varphi(\mathfrak{o}^i) \varphi(\mathfrak{c}^{-1}) \subseteq$ $\varphi(\mathfrak{c} \cdot \mathfrak{o}^i \cdot \mathfrak{c}^{-1}) = \varphi(\mathfrak{o}^k) = \mathfrak{o}_{\mathfrak{P}_k}^k \subseteq \mathfrak{o}_{\mathfrak{p}'}^k$, i.e. $\mathfrak{p}'^{-1} \subseteq \mathfrak{o}'\mathfrak{p}'$. This is a contradiction. Hence $P(k) \subseteq P(i)$. Similarly $P(i) \subseteq P(k)$. Hence we obtain P = P(i) = P(k), as desired.

Next we prove that $\varphi(\mathfrak{a}) = \mathfrak{a}_P$. Since $\mathfrak{o}_P^i = \varphi(\mathfrak{o}^i) \subseteq \overline{\varphi(\mathfrak{o}^i)} \mathfrak{a} \cdot \mathfrak{a}^{-1} = \overline{\varphi(\mathfrak{o}^i)} \mathfrak{a} \mathfrak{a}^{-1} \subseteq \overline{\varphi(\mathfrak{o}^i)} \varphi(\mathfrak{a}) \mathfrak{a}^{-1} = \overline{\varphi(\mathfrak{o}^i)} \mathfrak{a} \mathfrak{a}^{-1} \subseteq \overline{\varphi(\mathfrak{o}^i)} \varphi(\mathfrak{a}) \mathfrak{a}^{-1} = \overline{\varphi(\mathfrak{o}^i)} = \overline{\varphi(\mathfrak{o}^i)} = \varphi(\mathfrak{o}^i)$, we have $\mathfrak{o}_P^i = \overline{\varphi(\mathfrak{a})} \mathfrak{a}^{-1}$ and $\mathfrak{a}_P = \overline{\mathfrak{o}_P^i} \mathfrak{a} = \overline{\varphi_P}(\mathfrak{a}) \mathfrak{a}^{-1} \mathfrak{a} = \overline{\varphi(\mathfrak{a})} \mathfrak{o}^k$. On the other hand, since $\varphi(\mathfrak{a}) \subseteq \overline{\varphi(\mathfrak{a})} \mathfrak{o}^k \subseteq \overline{\varphi(\mathfrak{a})} \varphi(\mathfrak{o}^k) \subseteq \varphi(\mathfrak{a})$, we have $\varphi(\mathfrak{a}) = \overline{\varphi(\mathfrak{a})} \mathfrak{o}^k$. Therefore we obtain $\varphi(\mathfrak{a}) \mathfrak{o} = \mathfrak{a}_P = \varphi_P(\mathfrak{a})$.

Suppose that A is the inverse image of $\varphi_P(\mathfrak{a})$. If $\mathfrak{c} \in A$, then $\mathfrak{c}_P = \mathfrak{a}_P$. Hence $\mathfrak{c} \subseteq \mathfrak{a}_P, \bigcup_{\mathfrak{c} \in \mathcal{A}} \mathfrak{c} \subseteq \mathfrak{a}_P$. Conversely let a be any element in \mathfrak{a}_P . Then there exists \mathfrak{c} such that $a\mathfrak{c}\mathfrak{c} = \mathfrak{n}^{-1} \cdot \mathfrak{a}$. Since $\mathfrak{c}_P = \mathfrak{n}_P^{-1} \cdot \mathfrak{a}_P = \mathfrak{o}_P^i \cdot \mathfrak{a}_P = \mathfrak{a}_P$, we have $\mathfrak{c} \in A$. Hence $\mathfrak{a}_P = \bigcup_{\mathfrak{c} \in \mathcal{A}} \mathfrak{c}$. This completes the proof.

2. We now consider a lattice-formulation of *P*-components of two-sided \mathfrak{o} -ideals in a semigroup. Let *L* be a lattice-ordered group (*l*-group) with the ascending chain condition for integral elements,¹¹⁾ and *P* a set of prime elements of *L*. A *P*-component of an element of *L* can be defined as follows:

DEFINITION. The ideal generated by $\{ap^{-1}; p \in P\}$ is called a P-component of $a \in L$. Symbol: $\varphi_P(a)$.

The object of this paragraph is to prove

THEOERM 5. Let L be an l-group satisfying the ascending chain condition for integral elements. Then the mapping $\varphi_P: a \rightarrow \varphi_P(a)$ gives a homomorphism from

⁸⁾ See §5 in [3].

⁹⁾ See §5 in [3]. If $\varphi(\mathfrak{o}^i) = S$, then we define $\varphi(\mathfrak{o}^i) = \mathfrak{o}\phi$, where ϕ denotes the vacuous.

¹⁰⁾ See §5 in [3].

¹¹⁾ An element x of L is called integral if x is contained in an identity of L. By the ascending chain condition for integral elements, L forms a commutative group.

Kentaro MURATA

L into the l-semigroup¹² \Im consisting of all ideals of L, and it satisfies $\varphi_P(a) \ni a$. Conversely, let φ be a mapping from L into \Im which satisfies $\varphi(a) \ni a$ and $\varphi(ab) = \varphi(a)\varphi(b)$. Then φ coincides with some φ_P . Hence the set Φ of all group-homomorphisms φ from L into \Im , each of which satisfies $\varphi(a) \ni a$ for every element $a \in L$, forms an atomic Boolean algebra under an inclusion relation \leq , where $\varphi \leq \psi$ means $\varphi(x) \subseteq \psi(x)$ for all x in L.

LEMMA. Let $J(\neq I)$ be an m-ideal¹³ of L. Then there exists a suitable set P of prime elements such that $J=\varphi_P(e)$.

Proof of Lemma. Since $J \supseteq I$ and $J \neq I$, we can take a non-integral element cin J. Let $c^{-1} \cap e = p_1 \cdots p_r$ be the factorization into prime elements p_i . Then since $p_i \ge c^{-1} \cap e$, we have $p_i^{-1} \le c^{-}e \in J$. Hence $p_i^{-1} \in J$. That is to say, $P = \{p; p^{-1} \in J\}$ is non-void. We now prove that $\varphi_P(e) = J$. Evidently $\varphi_P(e)$ is contained in J. Let $\varphi_P(e) \ne J$ and take an element $a \in J$ such that $a \notin \varphi_P(e)$. Then $a^{-}e \notin \varphi_P(e)$. Let $(a^{-}e)^{-1} = a^{-1} \cap e = \prod_{i=1}^{n} p_i$ be the factorization into prime elements p_i . Then $a^{-}e = \prod_{i=1}^{n} p_i^{-1}$. If $p_1^{-1}, \cdots, p_n^{-1}$ are contained in $\varphi_P(e)$, then $a^{-}e \in \varphi_P(e)$ and $a \notin \varphi_P(e)$, a contradiction. Hence there exists p_i^{-1} which is not contained in $\varphi_P(e)$. On the other hand, since $p_i^{-1} \le a^{-}e \in J$, we have $p_i^{-1} \in J$. This is a contradiction. Hence $J = \varphi_P(e)$, as desired.

Proof of Theorem. The first part of the theorem is easily obtained. We now prove the later part of the theorem. Evidently $\varphi(e)$ forms an *m*-ideal of *L*. If $\varphi(e) \neq I$, then by Lemma, $\varphi(e) = \varphi_P(e)$ for a suitable set *P* of prime elements of *L*. Since $\varphi(e) = a^{-1}a\varphi(e) \subseteq a^{-1}\varphi(a)\varphi(e) = a^{-1}\varphi(a) \subseteq \varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e)$, we have $a^{-1}\varphi(a) = \varphi(e) = \varphi_P(e)$. Hence $\varphi(a) = a\varphi_P(e) = \varphi_P(a)$. Conversely, for any set *P* of prime elements, the mapping $\varphi: a \to \varphi_P(a)$ gives a group-homomorphism satisfying $\varphi(a) \ni a$. It is easily verified that $\varphi_P(e) = \varphi_Q(e)$ implies P = Q. Hence the mapping $\varphi \to P(\varphi = \varphi_P)$ is one-to-one between \emptyset and \mathfrak{P} , where \mathfrak{P} is the set of all prime elements of *L*. If $\varphi_P(x) \subseteq \varphi_Q(x)$, then $P \subseteq Q$. Hence the mapping $\varphi \to P$ gives a lattice-isomorphism between \emptyset and \mathfrak{P} . \emptyset forms therefore an atomic Boolean algebra. This completes the proof.

REMARK. By the proof of Theorem 5, we obtain that \emptyset is lattice-isomorphic to the lattice \mathfrak{L} of all the *l*-ideals¹⁴ of *L*, and also to the lattice \mathfrak{N} of all the *m*-ideals of *L*. Hence of course \mathfrak{L} is lattice-isomorphic to \mathfrak{N} . In details this isomorphism is represented as follows:

¹²⁾ A multiplication $J \cdot J'$ of J and J' in \Im is defined as an ideal generated by $\{xx'; x \in J, x' \in J'\}$. Then \Im forms an *l*-semigroup ([4]) under this multiplication and set-inclusion relation.

¹³⁾ An ideal of an *l*-group is called an *m*-ideal when it forms a semigroup containing the identity e. Then the set I of all integral elements forms an *m*-ideal, any and *m*-ideal contains I.

¹⁴⁾ Cf. [4] Chapter XIII.

$$\begin{split} & N \rightarrow J = J(e, \ \{p^{-1}; \ p \in N\}), \quad (N \in \mathfrak{L}), \\ & L \rightarrow N = J \land J^*, \qquad (J \in \mathfrak{N}), \end{split}$$

where J^* denotes the dual ideal of J, and \wedge denotes the intersection.

References

- [1] K. Asano, Zur Arithmetik in Schiefringen I, Osaka Math. Journ. 1, (1949).
- [2] K. Asano, The Theory of Rings and Ideals. Tokyo (1949) (in Japanese).
- [3] K. Asano and K. Murata, Arithmetical Ideal Theory in Semigroups, Journ. Institute of Polytec. Osaka City Univ. Series A. 4 (1953).

[4] G. Birkhoff, Lattice Theory, New York (2nd edition) (1948).