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In this note we shall define the weak dimension of algebras A, analogous to 

the dimension of algebras in Cartan and Eilenberg [6], Ch. IX. In section 1 we 

shall characterize the algebras with the weak dimension zero, and study sorne pro

perties of the weak dimension of the tensor product of two algebras, and we shall 

completely determine the weak dimension of fields. If an algebra A has a finite 

degree over a field K, it is well known that A is separable if and only if A®A* 

(=A') is semi-simple, where A* is anti-isomorphic to A. Rosenberg and Zelinsky 

[15] proved that if A' is a semi-simple algebra with minimum conditions, then 

[A: K] < =. Therefore if we want to define sorne generalized separability of alge

bras with infinite degree over K, then we may restrict ourselves to the case where 

A' is semi-simple in the sense of Jacobson. In section 2 we shall call A R-.separable 

if A' is regular, and A has the property E, if A® L is regular for any field L?;,K. 

We shall consider these algebras and relations between these two algebras. In 

section 3 we shall study sorne properties of tensor products of separable fields and 

algebras. In this note we always assume an algebra A has a unit element and 

that A-modules are unitary. We use [6] as a reference source for homological 

algebras. 

1. The weak dimension of algebras 

Let A be an algebra over a commutative ring K. We shall define the weak 

dimension of A (notation w. dim A), analogous to Cartan and Eilenberg [6], Ch. 

IX. 7. 

DEFINITION 1. w. dim A=the minimal integer n such that 

for any two sided A-module A. 

First we state sorne remarks about the definition. Let A be an algebra over 

a field K. If A' is Noetherian or if A is semi-primary with radical N such that 

[A/N:K]<=, then we have 

w. dim A=w. dimAeA=dimAeA=dimA 

from [6], Ch. VI, Exer. 3, and Auslander [2], Coro. 8 and [3], Th. 5. 
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In general we have clearly by the definition 

dimA2':w. dimA, 

and there exists an algebra A in which the ab:we equality is not satisfied. 

Let K be a commutative ring, and A, r and }:; be K-algebras. We consider 

the functor 

T(A,C)=A (59 (BQ?JC)=(A®B) ® C1l 
A®r 2. A r®"-2. 

for the symbol (AA,r, AB"J,, r, "J, C). According to Eilenberg, Rosenberg and Zel

insky [9], we have the spectral sequence when r is K-fiat: 

1) Tor ';rCA, Tor~ (B,C))-:":)LnT(A,C), 
p 

2) Tor r~"J, (Tor ~(A, B), C)-:":)LnT(A, C). 
q 

If Tod(B, C) =O=Tor~(A, B) for p, q>O, 1) and 2) collapse and we have 

(*) Torg0r(A,B6<C)::::;Tor~0"J,(A®B,C), (cf. [6], Ch. IX, Th. 2.8). 
~ A 

If we replace }:; by r* and c by r in (*), we have 

LEMMA 1. If A is a regular K-algebra and r is a K-jlat K-algebra, we 

ob tain 

Hp(r, A®B) ::::;Tor~0r(A, B) for (AAr, uB). 
A 

If we replace A by K in the lemma 1, we obtain 

LEMMA 2. If K is commutative regular and r zs a K-algebra, we have 

isomorphisms 

for (Ar, rB). 

If we replace A by r* in the lemma 1, we obtain 

LEMMA 3. If r is a K-flat regular algebra, we have isomorphisms 

Hp(r, A®B) :=:;;Torpr'(A, B) 
r 

for CrAr, rBr). 

We can obtain the analogous theorem to [6], Ch. IX, Prop. 7.10. 

THEOREM 1. Let K be a commutative regular ring and A be a K-algebra, 

then the following conditions are equivalent: 

a) w. dim A=O, 

b) A®A* is regular. 

Proof. If A' is regular we have immediately w. dimA=O by the definition and 

the author [10], Th. 5. Conversely if w. dimA=O, we obtain by the lemma 2 

1) Unadorned ® is always taken over K. 



The weak dimension of algebras and ifs applications 49 

O=w. dimA-,2':w. gl. dimA, 

hence A is regular. We have, therefore, by the lemma 3 

O=w. dimA-,2':w. gl. dimA'. 

Hence Ae is regular. 

CoROLLARY. Let L be a commutative regular extension ring of K. If 

w. dim A=O then A® L is regular. 

Proof. It is clear that (A®L)®CA®L)*"'"(A®Ae)rg;L. On the other hand, if 
K 1. K K K 

we replace (A, r, L;) by (L, Ae, K) and (B, C) by (L, A) in (*) we have 

Tor~L®Al(A, L ®A) "'"Tor~'(A, 

Therefore it follows from the lemma 2 that 

Tor4ŒL(C, D) "'"Tor~L®Al'(C(g;D, L®A) "'"Tor~'(CQ?JD, A) =0 
L L L 

for P>O and (CL,r, L,rD). Hence L®A is regular. 

W e can obtain the following lemma from the spectral sequences 1) and 2) 

analogously to [9], Prop. 3. 

LEMMA 4. Let A be a K-jlat K-algebra and let K be an L-algebra. Then we 

have 

L-w. dim A~L-w. dim K+K-w. dim A. 2l 

If further A is K-projective and contains a K-direct summand K 1 isomorphic 

with K, then 

L-w. dim K~L-w. dim A. 

REMARK. Let K be a field. We assume A®L is regular for any commuta

tive regular ring L containing K. If we replace L by the center Z of A, since 

Z®Z is the center of A®Z, Z®Z is regular. Hence K-w. dim Z=O. Further 

if L' is any commutative regular ring containing Z, A®L' is regular since A®L' 
2 z 

is a homomorphie image of A ®L'. Therefore in the consideration of the converse 

of the corollary, we may restrict ourselves to the case of a central algebra by 

the lemma 4, (cf. Prop. 3 below). 

The following theorems have been proved independently by Eilenberg, Rosen

berg and Zelinsky [9], using the above spectral sequences. 

THEOREM 2. Let K be a field and A and r be K-algebras. Then we have 

w.l. dim A<zrA®B=w.l. dim,A+w.l. dimrB, 

for CA,rB). 

2) L-w. dim means w. dim A where A is considered as an L-algebra. 
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Especially w.dimA(i!)T=w.dimA+w.dimr, (cf. [9], Prop. 10). 

W e use the following two lemmas to prove the theorem. 

LEMMA 5. Let K be a field. Then we have 

w.l. dim A®r A(i!)B;;;;w.l. di mAA +w.!. dimrB, 

for CA,rB) 

We can easily prove this lemma by using T-product of [6], Ch. XI. 

LEMMA 6. For an exact sequence: o-A"-->-A-A'-0 of A-modules, we have 

This is clear by the exactness of Tor. 

Proof of the theorem. By the lemma 5 we may assume w.l. dimAA+w.l. dimrB 

<=. Renee we can prove the theorem by the induction with respect of w.l. dimAA 

-1-w. 1. dimrB. If w. 1. dimAA=w. 1. dimrB=O, replacing L: by K in (*) we obtain 

Tor A®r(C,A®B):::;Torr(c®A,B), CC,r), 

hence w.l. dim A®rA!59B=O. Assume now that the theorem is true for any left 

A-module A' and left T-modu!e B 1 with w.l. dimAA' +w.l. dimrB';'Sm, (O:s;m<=), 

and that w.l.dimAA+w.l.dimrB=m+l. We may assume w.l.dimAA=n>L 

From a A-exact sequence: o-R-P-A--'0, of A with P projective, we obtain 

the exact sequence: 

By the induction hypothesis and the lemmas 5 and 6 we obtain w. 1. dimA0 rA!59B 

=w.l. dimAA+w.l. dimrB. 

We can prove similarly the following theorem. 

THEOREM 3. Let K be a commutative ring, and A and r be K-algebra. If 

r is K-jlat, then 

w. gl. dimA(i!)T;'Sw. dimA+w. gl. dimr. 

REMARK. Let K be a field. If w. dim A=O we have 

w. gl. dimA(i!)T=w. gl. dimT, 

from the theorem 3 and lemma 5. If A is a semi-primary K-algebra with radical 

N su ch that dim A and [A/ N: K] are fini te, th en 

w. gl. dimA(i!)T=w. gl. dimA+w. gl dimT, 

for any K-algebra r. Because, by the assumption and Auslander [3], we obtain 

w. dimA=dimA=gl. dimA=w. gl. dimA. 

Next we shall consider the weak dimension of algebras which are represented 

as the direct limit of sub-algebras. 
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PROPOSITION 1. Let K be a commutative ring and A be a K-algebra. Assume 

that A is a union of a family {A«} (œE l) of subalgebras A"' such that if œ<{3, 

(œ, {3d), A., ~As, where I is a direct set. Then we have 

w. gl. dim A:::;,sup w.gl.dim A"', 

and w. dim A~sup w.dim A«, (cf. [15], Prop. 3). 

Proof. A is the direct limit of system {A.,, n~} (n~ are inclusions). Since 

A= UA"', unit element of A is contained in ali Aao for œ;;:: sufficently large œo. For 

any A-module A we have a A«·module A•A«=A«. lt is clear that if œ<{3, A.,~ 

As, hence A=lim A"' by the above remark. Form [6], Ch. VI, Exer. 17, we have ___,. 

Tora CA, C) =lim Tora"' CA«, Cao), ___,. 
This proves the first part of the proposition. W e can prove similarly the second 

part. 

If A is a commutative algebra over a field K with minimum condition, and A 

is not semi-simple, then w. dim.A=co by [2], Prop. 15 and the lemma 2. Renee we 

can restrict ourselves to the semi-simple case, and further we may restrict our

selves to the case where A is itself a field. 

The following arguments are slight modifications of [15], 5. 

PROPOSITION 2. Let K be a field and A the field KCt1···tn) of rational june

tians in n indeterminates over K. Then K·w. dmA=n. 

Since A® A is Noetherian, we have the proposition 2 from the remark of the 

definition 1 and [15], Th. 7. 

LEMMA 7. Let A be a locally separable algebra,3 l then A' is regular. 

Proof. Let A be locally separable and a= L. b; ®ci be an element of A' 
(b;, c; EA), then there exists a separable subalgebra A' of fini te order over K, con

taining ali b;, c;. Therefore a is regular in A'' and hence in A'. 

PROPOSITION 3. Let A be a field of transcendental degree n~= over K with 

separable basis. Then K-w.dim A=n. 

Proof. Let B be a separable basis with n elements, then A is algebraic 

separable over K(B). By the lemmas 4 and 7, and the proposition 2, we have 

n=K-w.dimK(B)~K-w. dimA 

~K-w. dimK(B) +K(B)-w. dimA=n. 

PROPOSITION 4. If A is a finitely generated extension field of K with no sepa
rable basis over K, then K-w. dim A=co. 

Proof. Let A=KCx1,···, x,.) and lets be the largest integer such that S=KCx1, 

···, Xs) can be separably generated over ·K. Let t1.···, tn be a separable basis of 

3) Every finite subset can be embedded in a separable subalgebra of finite order. 
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Sand L=K(t,,.··, tn). Then there exists a finite extension field G of K such 

that L(x.,+l) ®G is not semi-simple. (see the proof of the theorem 9 in [15]). 

Hence K-w.dimA2::K-w.dimL(Xs+l)=G-w.dim(L(Xs+l)QS:G)=oo, ([6], Ch. IX, Coro. 
7.2). 

PROPOSITION 5. Let A be a field over L of transcendental degree n<oo. Then 

w. dim A=n if and only if A is locally separabty generated.<) 

Proof. If A is locally separably generated, there exists, for any elements 

..l, · · ·, Àn, a separably generated extensition Fu .. , ... An} containing À;. The proposi

tion 2 implies w. dim F{A, ... An)=the transcendental degree of F(AL .. A,}, hence 

w. dimA;;=:;n by the proposition 1. On the other hand, w. dim A2=:n is an immediate 

consequence of the proposition 2 and the lemma 4. 

Conversely if {..l,···,Àm} is any sub-set of A, then K(..l,,.··,..ln) has a separable 

basis by the proposition 4 and the lemma 4. Renee A is locally separably gene
rated. 

CoROLLARY Let A be a field over K of transcendental degree n<oo. Then 

if w. dimA>n, w. dimA==. 

This is clear from the lemma 4 and the propositions 4 and 5. From above 

propositions we obtain 

THEOREM 4. Let A be a field over K. 
If w.dim A=n<=, A is a locally separably gederated field of transcendental 

degree n. 
If w.dim A==, we have either case a) orb): 

a) A is of finite transcendental degree over K and is not local/y separably 
generated, 

b) A is of infinite transcendental degree over K. Further the converse 

holds. 

2. R-separable algebras. 

We shall always consider algebras over a fixed field K. 

DEFINITION 2. Let A be an algebra over K. A is called R-separable if A' 

=A®A* is regular, i.e. w. dimA=O. 

We obtain immediatly the following theorem from the theorems 1 and 2, and 

the re mark of the theorem 3 and [10], Th. 5. 

THEOREM 5. Let A and r be algebras over K. Then A® r is R-separable if 

and only if A and r are R-separable. If A is R-separable, then A® r is regutar 

if and only if so is r. 
PROPOSITION 6. Let e be an idempotent of A. If A is R-separable then eAe is 

R-separable and any homomorphie image of A is so. 

4) A field is locally separably generated if every finite subset can be embedded in a finite
ly sepo:trably generated extension of K. 
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This is clear by definitions. 

W e shall make conveniently the following definition. 

DEFINITION 3. We call "A has the property E" if AQ<)L is regular for any 

extension field L of K. 

PROPOSITION 7. If A is an R-separable algebra, then it has the property E. 

It is an immediate consequence of the corollary of the theorem 1. 

From the remark of the !emma 4 we obtain the converse of the proposition 

7 under special assumptions. 

PROPOSITION 8. Let A be a direct/y indecomposable algebra over K. If A 

has the property E and A is of finite degree over its center, then A is R-separa

ble. 

LEMMA 8. Let A be a semi-simple algebra over K (in. the sense of Jacobson 

[12]). We assume that A is a sub-direct sum of R-separable algebras. Then 

A&;;r is semi-simple for any regular algebra r. Next if 2::: is a semi-simple al

gebra which is a sub-direct sum of primitive algebra with one sided minimal 

ideals, and further we assume 2.:: has the property E, then L:&;!LI is semi-simple 

for any semi-simple algebra LI. 

Proof. By the assumption there exist two sided ideals a., such that A/aœ are 

R-separable and that na.,=(O). 
"' 

a,.Q<;;r are two sided ideals of A&;;r, and since A/a,.Q<;;r are regular by the 

theorem 5, it is semi-simple. On the other hand n(a.,Q<;;T)=(O). Therefore A&;;r 
"' 

is semi-simple. Next let 2.:: be any primitive image with one sided minimal ideals 

of 2.:: and A be its associated division algebra (see [13], Ch. IV) with center Z. 

By the assumption L:&;!Z is regular, and (ë&;;1)(I:Q<;;Z)(e&;;l);;::;A*Q<;;Z is regular, 

where e is an idempotent of 2.:: such that eL:e;;::;A*. Since ZQ<;;Z is the center of 

A*&;;Z, it is regular, hence Z is algebraic separable by the theorem 4 and I:&;;LI 

is semi-simple by [Il], Lemma 5. Therefore it follows by the similar reason 

above mentioned that I:&;;LI is semi-simple. 

PROPOSITION 9. Let A be a commutative algebraic algebra over K. If A has 

the property E, then A is locally separable. 

Proof. Since al! primitive images are fields by the assumption, A' is semi

simple by the !emma 8. Moreover since A' is commutative algebraic, for any finite 

elements X;(i=l,· .. , m) of A, [K [X;]: K] <= and K[x;]Q<;;K[x;] is a semi-simple 

algebra with minimum conditions, hence K[x;] is separable. 

PROPOSITION 10. If A is an integral K-algebra and has the property E, then 

A is locally separable. 

Proof. Let A' be the field of quotients of A, and L any extension field of K. 

Since 2.:: ~~&;;1;=2.:: ),{~ Q<;;l; in A'Q<)L, there exists an element L:vj&;;l~ of AQ<)L such 
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that (L:,p,~@l;) (L:.vi®lj) ('J:.p,i(i!;Jl;) = ('J:.p,i@l;). Hence 
1 1 ' 

C:E ii ®l;)CZ:.J..vj®lj)CL:.-i)_i_(i!)l;)='i..>l).i-®1;. Therefore since A' has the pro-

perty E, A' is R-separable. By the theorem 4 and the proposition 9 A is localiy 

separable. 

CoROLLARY. An integral R-separable algebra is locally separable. 

PROPOSITION 11. If A has the property E, then the tensor product of its center 

Z and itself is semi-simple. 

Proof. By the assumption A is regular, and so Z is regular, too. Therefore 

Z is a subdirect sum of fields Lx. Sin ce Z®Lro is the center of A®Lrx, Z®Lro is 

regular. Hence Lro®Lro is regular, which proves the proposition by the !emma 8. 

PROPOSITION 12. Let A be an algebra with minimum or maximum conditions. 

If A has the property E, then its center is a direct sum of algebraic separable 

fields, and A' is semi-simple. 

Proof. By the assumptions A bas minimum conditions, bence A=(Dt)n/B··· 

ŒCDm)n,., where D; are division rings. Since D; have the property E, their cen

ter Z; are ali algebraic separable by the theorem 4. Therefore, since Z;®Zi are 

semi-simple, we have the proposition by [11], Lemma 4. 

ExAMPLES: 1. Let A be the algebra of ali column-finite matrices over an R

separable algebra Ao of degree M, and let Abe the algebra of ali finite matrices. 

Then the algebra A generated by A and Ao•1 in Ais R-separable. Because, any 

finite sub-set of Ais contained in a sub-algebra A'=At+Ao•1 where At is the sub

algebra of ali matrices whose ali but fixed finite components are zero. 

Sin ce A' ;::::e (Ao)nŒAo, A' is R-separable by the theorems 1 and 2, bence A is 

R-separable. 

2. Let rr be a localiy finite group. The group algebra A=K(rr) is a supple

mented algebra with the augmentation map e:A-K given by EX=1 for ali Xfrr. 

We assume that r•K =K for order r of any element of n:. Then we can easily 

see that A is locally separable, bence R-separable. If we assume that rK*K for 

order r of sorne central element, then A is not R-separable from [8], Th. 12 and 

the !emma 4. On the other hand if n is a free group, it follows from [6], Ch. 

X, 5, and the analogons theorem to [6], Ch. X, Th. 6. 1 that w. dimA=w.l. dimAK 

=1. 

REMARK. If A is a K-algebra with finite degree over K, and A®L is semi

simple (regular) for any algebraic extension field L of K, th en A®A* is semi

simple (regular). But if [A:K] =co, this is not true. For instance, a purely 

transcendental field K(x) preserves regularity for algebraic extension fields of 

the coefficient field K, but K(x) is not R-separable. 
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3. S-separable algebras. 

We shall now define an algebra which has a weaker property than R-separable. 

DEFINITION 4. Let A be an algebra over K. A is called S-separable if and 

only if A'=AQ?!.A* is semi-simple (in the sense of Jacobson [12]). 

It is clear that R-separable algebras are all S-separable, and the following 

theorem shows that the converse is not true in general. 

An argument of the proof of this theorem essentially owes to that of Amitsur 

[1], Lemma 1 J. 
THEOREM 6. Let K(x.,) be a purely transcendental field over K with finite or 

infinite indeterminantes x.,. If R is an algebra over K which has no nil ideals 

=FO, then K(x.,)c:<JR is semi-simple. 

Proof. If R has not unit element, then the algebra R' adjoined freely unit 

element to R has no nil ideals =FO and R is an ideal of R'. Hence we may as

sume R has unit element. All elements '/'cO of K[x.,] are not zero divisors in 

K(xœ) c:<JR. Hence we have an isomorphism of K(x.,) ®R to the ring of quotients 

of R[x.,] with respect to K[x.,] (cf. [7], p. 80 Lemma 4). We shall denote this 

homomorphie image by R*[x,.] and the Jacobson radical of a ring T by !CT). We 

shall first show J(R*[x.,]) nR:;;J(R). Let YE/(R*[x.,]) nR, then there exists a 

quasi-inverse element f(x.,)/k(x.,) of r, where f(x.,) E R[xœ], k(x.,) E K[xœ], and 

rk(xœ) +/(x.,) -rf(x,.) =0. 

From this equality we have d=total degree of k(xœ)~total degree of f(x,.). Com

paring coefficients of a monomial of degree d of this equality we have 

r+s-rs=O, sER. 

Since J(R*[x,.]) nR is an ideal of R, JCR*[x.,]) nR~J(R). 

Next we shall show J(R*[x,.]) nR is a nil ideal. Let YE/(R*[xœ]) nR, then 

YXE/(R*[x.,]) where x=x,. Hence there exists an element /(x.,)/t(x.,)ER*[x.,] 

such that rx+ f(x.,)/t(x,.) -rx•fCxœ)/t(xœ) =0, where f(x,.) E R[x.,], t(x,) E 

K[x.,]. As above we have m'=degree of t(x,) on x~degree of /(x.,) on x=m. 

Let 

g,(y) E K[xz, X3,-··]. 

From the above equality we obtain 

Substitute /(x"') on the right by the whole expression of the right-hand side of 

this equality. Repeating this process yields 

If we replace n by m-1-2 and we compare the coefficients of degree m+1 on x 
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in the equality, then we obtain 

where fJj are coefficients of a fixed monomial in gmt(y) and fJj are not all zero. 

Hence r is algebraic over K and r is nilpotent by [13], p. 19, Th. 1. Therefore 

by the assumption, ](R*[xœ]) nR=(O). Now let g(xœ) rJ(R*[xœ]) and g(xœ) 

= f(xœ)/k(xœ), k(xœ) E K[Xœ], f(xœ) E R[Xœ], then g(xœ) •k(Xœ) E](R*[xœ]) nR[Xa,], 

hence 

](R*[xœJ) =Cf(R*[xœ]) nR[xœ])•R*[x,]. 

In virtue of this equalty, it is sufficient for the proof of the theorem to prove 

](R*[xœD nR[x.,] = (0). First we assume the number of indeterminates is one. 

If ](R*[x]) nR[x] =F (0) there is a non zero polynomial f(x) of minimal degree 

in it. Then f(x) is not constant by the above. We have an automorphism of 

R[x] sending g(x) to g(x+k), where g(x)ER[x], kEK. Hence we obtain an 

automorphism of R*[x] by which ](R*[x]) nR[x] is sent onto itself. There

fore f(x)-f(x+k)E]CR*[x])nR[x]. Since its degree is less than f(x), we 

obtain f(x)=f(x+k). If we represent f(x) by using a basis U; of R over K: 

f(x)=""E,u;g;(x), g;(x)EK[x], 

we have 

g,(x)=g;(x+k). 

If K is an infinite field we have immediately g;(x) =constant from this equality. 

Hence f(x) is a constant, which is a contradiction. If K is a fini te field of 

characteristric P=FO we can easily prove by the induction on the degree of f(x) 

that f(x)ER[xP-x] (see [1], p. 356). Hence we may write f(x)=h(xP-x), 

h(x)ER[x]. We shall now show that f(x)E](R*[xP-x]). Let k(x) be any ele

ment of f(x)•R*[xP-x](Cf(x)R*[x]Cj(R*[x])), then k(x) has a unique quasi

inverse k'(x) in R*[x], 

k(x) +k'(x) -k(x)k'(x) =0. 

By using a mapping: X->-x+1 we obtain an automorphism of R*[x] and 

k(x+ 1) +k'(x+ 1) -k(x+ 1)k'(x+ 1) =0. 

Since k(x) =k(x+ 1) has the unique quasi-inverse, we obtain 

k'(x)=k'(x+1). 

If we represent k'(x) in terms of u;: 

k'(x) = ~·u _j;(x) 
""' ' t;(x) ' 

then we obtain 

(/;(x), t;(x))=1, /;(x), t;(x) E K[x], 
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and (f;(x+1), t;(x+1))=1. 

From this equality we can easily see that 

f;(x)=(x+l), t;(x)=t;(x+1). 

Renee as above t;(x), /;(x) E K[xP-x]. Renee k'(x)ER*[xP-x], which proves 

f(x) E](R*[xP-x]). Finally by using a mapping: X--"Xp-x we obtain an isomor

phism of R*[x] to R*[xP-x], and a inverse image of f(x) is h(x), and since 

f(x) E](R*[xP-x]) we have h(x) E](R*[x]). But the degree of h(x) is lower than 

f(x), which is a contradiction. Now we shall prove the theorem in a general 

case. If J(R*[xrt,]) nR[x,] *0 there exist') a non ;;::ero polynomial f(x,,, xs) of 

minimum degree with respect to an indeterminate xs. By using a mapping: Xs--" 

xs+ g(x,,) we obtain an automorphism of R*[x,], where g(x"',) E K[Xor,t], and we 

have 

Renee since K(x,,) is an infinite field, we have a contradiction as above. This 

proves the theorem. 

CoROLLARY 1. A purely transcendental field K(x") over K is S-separable, 

but not R-separable. 

This is an immediate consequence of Theorems 4 and 6. 

CoROLLARY 2. Let A be an algebraic separable extension over a subfield Ao 

and Ao be purely transcendental over K. Then for any algebra R which has no 

nil ideal*(O), A(;/)R is semi-simple, and hence A is S-separable. 

Proof. It is clear that A(;/)R=(A(;/)Ao)(;/)R=A(;/)(Ao(;/)R). From the theorem 6 
Ao Ao 

Ao(;/)R is semi-simple, and bence A(;)()(Ao®R) is semi-simple by the assumption and 
A a 

the lemma 8. 

PROPOSITION 13. If A is finitely separably generated, A®R is semi-simple for 

any algebra which has no nil ideal* CO). Converse/y if A'(;/)KP-1 has no nilpotent 

elements, then A' is separable (not necessarily finitely generated) in the sence of 

Bourbaki [5], where p is the characteristic of K. 

Proof. The first part is clear from [5], p. 141 Th. 2 and the corollary 2. If 

A(;/)KP-1 bas no nilpotent elements *0 for any basis {bA} of A', {bK} is linearly 

independent over K. Otherwise we have 

and bence 0 * L:b;(;/)af-1 E (A'®KP- 1) is nilpotent, which is a contradiction. Renee 

we obtain the proposition from [5], p. 129, Coro. 

REMARK. If K is a field of transcendental degree 1 over a perfect subfield P, 
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and .A is a S-separable extension field of K of finite transcendental degree, then 

.A has a separating transcendental basis over K (see [14], p. 384, Coro.). 

The corollary 1 and the following example show that S-seprable algebras are 

not necessarily algebraic. 

Let .A be a complete dircet sum of an infinite number of infinite fields K. 

Then we. can easily show that .A is not algebraic and is S-separable by the 

lemma 8. 

Bibliography 

[ 1] A. Amitsur, Radicals of polynomial rings, Canadian J. Math., vol 8, (1956), 355-361. 
[ 2] M. Auslander, On the dimension of modules and algebras III, Nagoya Math.]., vol 9, 

(1955), 67-78. 
[ 3] , _ __ _ VI ibid., vol 11, (1957), 61--66. 
[ 4] G. Azumaya and T. Nakayama, Algebra II, Press in Japan, (1954). 
[ 5] N. Bourbaki, Algébre, V, (1950). 
[ 6] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, (1956). 
[ 7 ] C. Chevalley, Introduction to the theory of the algebraic functions of one variable, 

Amer Math. Soc., (1951). 
[ 8] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras VI, 

Nagoya Math. T., vol. 9 (1955), 1-16. 
[ 9 ] S. Eilenbe,.g, A. Rosenberg and D. Zelinsky, , VIII ibid, vol. 12 (1957), 71-93. 
[10] M. Harada, Note on the dimension of modules and algebras, this Journal, vol. 7 

(1956), 17-27. 
[11] _____ and T. Kanzaki, On Kronecker products of primitive algebras, ibid., vol. 

9, (1958), 19-28. 
[12] N. Jacobson, The radical 'lnd semi-simplicity for arbitrary rings, Amer. ]. Math., 

vol. 67 (1945), 300-320. 
[13] _______ , The structure of rings, Amer. Math. Soc., (1957). 
[14] S. Maclane, Modular fields, Duke Math. ]., vol. 5 (1939), 372-393. 
[15] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. 

Soc., vol. 82 (1956), 85-98. 


