Some remarks on E-sequences in Noetherian rings

By Manabu HARADA

(Received June 30, 1958)

In this short note we shall always assume that a ring A is a commutative Noetherian ring with unit element and A-modules are unitary. We use [2] as a reference source for homological algebra. Let $\mathfrak a$ be an ideal of A and E be a finitely generated A-module with $\mathfrak a E \neq E$.

A sequence $\{a_1, \dots, a_k\}$ of elements in a is called an a-E sequence if

$$a_i E: (a_{i+1}) = a_i E$$
, for $i=0, \dots, k-1$,

where α_i is the ideal generated by a_1, \dots, a_i , and α_0 means the zero ideal of A. An α -E sequence $\{a_1, \dots, a_k\}$ is called a maximal α -E sequence if any sequence $\{a_1, \dots, a_k\}$ containing $\{a_1, \dots, a_k\}$ can not be an α -E sequence.

We shall prove in this note the following theorem:

Let A be a commutative Noetherian ring with an ideal α , and E be a finitely generated A-module. Then every α -E sequence can be extended to a maximal α -E sequence and all maximal α -E sequences have the same length.

Auslander and Buchsbaum [1], and Serre [6] have proved this theorem in the case of local ring with maximal ideal m by using the structure theorem of Cohen.

If a sequence $\{a_1, \cdots, a_k\}$ is an $\mathfrak{a} \cdot E$ sequence, from the definition and $\mathfrak{a} E \neq E$ $\mathfrak{a}_i \subseteq \mathfrak{a}_{i+1}, (i=0,\cdots,k-1)$. Hence the length of every $\mathfrak{a} \cdot E$ sequence is finite. The following arguments are modifications of the section 1 of [5].

LEMMA 1. Let $\{a_1, \dots, a_i, a_{i+1}, a_{i+2}\}$ be an α -E sequence. Then $\{a_1, \dots, a_i, a_{i+2}, a_{i+1}\}$ is an α -E sequence if and only if

$$(a_1, \dots, a_i)E:(a_{i+2})=(a_1, \dots, a_i)E.$$

See the lemma 1.1 of [5].

Lemma 2. Let a and $(a \supseteq)b$ be two ideals of A and let a, a' be two elements of a which satisfy the conditions:

$$\mathfrak{b} \cdot E:(a) = \mathfrak{b} \cdot E:(a') = \mathfrak{b} \cdot E.$$

Then the A/ \mathfrak{a} -modules $\{(\mathfrak{b}, a)E: \mathfrak{a}\}/(\mathfrak{b}, a)E$ and $\{(\mathfrak{b}, a')E: \mathfrak{a}\}/(\mathfrak{b}, a')E$ are isomorphic.

Proof. By replacing E by $E/\mathfrak{b} \cdot E$, we can reduce the proof to the case $\mathfrak{b} \cdot E = (0)$, in which case a, a' are not zero-divisors in E. Let G be the set of elements in A which are not zero-divisors in E. We denote by E^* the module of quotients of E

with respect to G.

If we denote by $(E:\mathfrak{a})_{E^*}$ the subset of elements x of E^* which satisfy a condition $\mathfrak{a}x \subseteq E$, $(E:\mathfrak{a})_{E^*}$ is an A-module. For any element x of $(E:\mathfrak{a})_{E^*}$, $ax = z \in E$ and $\mathfrak{a}z = \mathfrak{a} \cdot ax \subseteq aE$, hence $z \in (aE:\mathfrak{a})$. Therefore the mapping: $x \to z$ induces an isomorphism of $(E:\mathfrak{a})_{E^*}$ onto $(aE:\mathfrak{a})$. From this isomorphism we obtain $(E:\mathfrak{a})_{E^*}/E \approx (aE:\mathfrak{a})/aE$. Similarly we can obtain an isomorphism $(E:\mathfrak{a})_{E^*}/E \approx (a'E):\mathfrak{a}/a'E$, which proves the lemma.

The following property (a) is well known.

Let E be a finitely generated A-module. And \mathfrak{p}_i be the ideals belonging to a A-submodule F of E. For any ideal \mathfrak{a} of A, $(F:\mathfrak{a})=F$ if and only if \mathfrak{a} is not contained in any \mathfrak{p}_i .

LEMMA 3. Let $\{a_1, a_2, \dots, a_k\}$, $\{b_1, b_2, \dots, b_k\}$ be two a-E sequences of the same length. Then the A/a-modules $((a_1, \dots, a_k)E:a)/(a_1, \dots, a_k)E$ and $((b_1, \dots, b_k)E:a)/(b_1, \dots, b_k)E$ are isomorphic.

We can prove the lemma similarly to [5], Th. 1.3 by Lemmas 1 and 2, and the above property (a).

Proof of Theorem. Let $\{a_1, \dots, a_k\}$ and $\{b_1, \dots, b_t\}$ be two $\mathfrak{a}\text{-}E$ sequences. If k < t we have an isomorphism

$$(*) \qquad \{(a_1, \dots, a_k)E:\mathfrak{a}\}/(a_1, \dots, a_k)E$$

$$\approx \{(b_1, \dots, b_k)E:\mathfrak{a}\}/(b_1, \dots, b_k)E$$

by Lemma 3. Since $\{b_1, \dots, b_k, b_{k+1}\}$ is an \mathfrak{a} -E sequence, the right side of (*) is equal to (0). Hence $(a_1, \dots, a_k)E$: $\mathfrak{a}=(a_1, \dots, a_k)E$. From the property (a), therefore, we can find an element a_{k+1} in \mathfrak{a} such that $\{a_1, \dots, a_k, a_{k+1}\}$ is an \mathfrak{a} -E sequence. Thus we can obtain the theorem.

PROPOSITION 1. Let A be a MC-ring¹⁾ and α be an ideal of A. Then the length of the maximal α -A sequences is equal to the rank of α (in the sense of Krull).

Proof. If the rank of \mathfrak{a} is equal to r, there exist elements $x_i(1 \leq i \leq r)$ in \mathfrak{a} such that rank $(x_1, \dots, x_i) = i$ $(1 \leq i \leq r)$. Since A is a MC-ring, and rank \mathfrak{a} =rank (x_1, \dots, x_r) , $\{x_1, \dots, x_r\}$ is a maximal \mathfrak{a} -A sequence.

REMARK. We can obtain [6], Th. 2, [1], Prop. 3.4, and results of section 1 of [5], if we replace $\mathfrak a$ by the maximal ideal $\mathfrak m$ of a local ring, and E by A, respectively. From Proposition 1 we obtain [1], Prop. 2.7 and a fact that a MC-ring is a U-ring (see [4], p. 36).

The following lemma is stated in [3].

¹⁾ A Noetherian ring A is called a MC-ring, (see [5]), if A satisfies a condition: if (a_1, \dots, a_r) is an ideal of rank r with a basis of r elements, then all prime ideals of $(a_1, \dots a_r)$ have rank r.

It is clear that a regular local ring is a MC-ring.

LEMMA 4. Let E be an A-module and $\{a_1, \dots, a_k\}$ be an α -E sequence. For any integer $n \ge 0$, we have

$$Tor_m^A(A/\mathfrak{a}, E) = 0$$
 for all $m > n$

if and only if

$$Tor_{m'}^A(A/\alpha,E/\alpha_kE)=0$$
 for all $m'>n+k$.

In this case we have

$$Tor_{n+k}^{A}(A/\mathfrak{a}, E/\mathfrak{a}_k E) \approx Tor_n^{A}(A/\mathfrak{a}, E).$$

Hence we have $\dim_A A/\mathfrak{a} \geq k$, where \mathfrak{a}_k is an ideal genreated by a_1, \dots, a_k .

We can easily obtain the lemma by the induction on k and the same method as that of the proof of [6], Prop. 3.

If $\{x_1, \dots, x_n\}$ is a maximal $\mathfrak{a}\text{-}E$ sequence, then there exists some prime dieal \mathfrak{p} belonging to $(x_1, \dots, x_n)E$ such that $\mathfrak{p} \supseteq \mathfrak{a}$. Hence \mathfrak{p} contains some prime ideal \mathfrak{p}' belonging to (0) in E. We denote by $R\mathfrak{p}$ the ring of quotients of R with respect to $R-\mathfrak{p}$. Then the functor $\otimes R\mathfrak{p}$ is exact and $E \otimes R\mathfrak{p} = E\mathfrak{p}$ does not vanish from [2], VII, Exer. 10 and [1], Lemma 1.1. Since $\mathfrak{p}\mathfrak{p} \supseteq \mathfrak{a}\mathfrak{p}$, $\mathfrak{a}\mathfrak{p}E\mathfrak{p} \ne E\mathfrak{p}$. By the same method as that of [1], Prop. 3.3 we can prove that $\{x_1, \dots, x_n\}$ is also a maximal $\mathfrak{a}\mathfrak{p}E\mathfrak{p}$ sequence. Hence we have

PROPOSITION 2. $codim_{\mathfrak{A}}E = codim_{\mathfrak{A}\mathfrak{p}}E_{\mathfrak{p}} \leq dim_{R\mathfrak{p}} R_{\mathfrak{p}}/\alpha\mathfrak{p} \leq dim_{R}R/\alpha$ and $codim_{\mathfrak{A}\mathfrak{p}}E = codim_{\mathfrak{A}\mathfrak{p}}E_{\mathfrak{p}} \leq codim_{\mathfrak{p}\mathfrak{p}}E_{\mathfrak{p}} \leq dim R_{\mathfrak{p}} \leq dim R,$ where \mathfrak{p} is some prime ideal such that $E_{\mathfrak{p}} \neq 0$, $\alpha\mathfrak{p}E_{\mathfrak{p}} \neq E_{\mathfrak{p}}$ and $codim_{\mathfrak{A}}E$ is the length of maxinal $\alpha - E$ sequences.

If A is a regular local ring and E is a finitely generated A-projective module, and if we replace \mathfrak{a} by the maximal ideal \mathfrak{m} in Proposition 2, then the equalities in Proposition 2 hold by [6]. Coro. 1 of Th.1.

Bibliography

- [1] M. Auslander and D. A. Buchsbaum, *Homological dimension in local rings*, Trans. Amer. Math. Soc. vol. 85 (1957), 390-405.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, (1956).
- [3] A. Hattori and T. Nakayama, Homorogi Daisû, Press in Japan, (1957).
- [4] D. Rees, The grade of an ideal or module, Proc. Cambridge Phil. Soc., 52 (1957) 28-42.
- [5] D. Rees and D.G. Northcott, Extensions and simplifications of the theory of regular local ring, J. London Math. Soc. vol. 32, No. 127, (1957), 367-373.
- [6] J. P. Serre, Sur la dimension des anneaux et des modules noetheriens, Proc. Intern. Symposium Tokyo. 1955.