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1. Let be a bounded plane region (connected open set) and let there be 
given a certain equation in one unknown function We shall say that 
U is an !^-function in an open set contained in S2 provided u is there a solution 
of S M  = O.

Let E he a closed set contained in Q. We shall say that E  is of g-capacity 
zero and write (E) = 0 , provided there exist an open set O containing E  and 
an g-function u(x,y)  in O-E, such that

Iim u(x,y)=  +  ©o

for all boundary points ( x \y ')  of O-E belonging to E. Such a function u will be 
called an Evans' function for E  with respect to = 0 .

Especially if

dx̂  dŷ

is taken for = 0, C<^(E)= O means that E  is of logarithmic capacity zero,
which we shall write C(E) = O in the sequel.

The main purpose of this paper is to give some conditions for that (E) = O 
implies C(E)=O or conversely C(E)=O implies Cf^(E)=O. Applications will be 
made to solutions of linear partial differential equations of elliptic type. Finally 
we shall obtain an extension of the theorem on removable singularities for har
monic functions.

2 . We define the generalized Laplace operator by
4  ( I  f  2'n- 'I

J^u(x,y) = Iim uQx+p cos6,y+psm 6)dd~u(x,y)  ^
p->0 P J O )

8 r I )J"^u(x,y) = Iim u(x+r cos 0,y + rsin 0) rdrd0-u(x,y)  >.
p->0 P  ̂^ p  )

It turns out that, if u is twice continuously differentiable, exists and is iden
tically equal to Ju.

T h e o r e m  I. Let O be a bounded open set in the plane, jE* the exterior frontier 
of a closed set E  lying in 0, and 0* the portion o f O exterior to E*. Let a(x,y), 
b(x,y) be continuously differentiable functions in 0* such that a, b, ax, by are uniformly

I) A solution must be continuous and have continuous derivatives of all orders appeared in



bounded therey and let <p(ix,y, u) be a continuous function fo r  (x^y) 6 0 * and — oo <  
U < + oo, satisfying

( 1 )  sup < + o o  

or
(2) inf < p ( x ,y ,u )  > - o o .
^ (̂ >:V) €0*, «>1

I f  there exists in 0* a solution u(x,y^ o f the equation 
A"^u+au:c+buy+(p(x,y, u)=  0, 

possessing the boundary behavior
Iim u{x,y)=-\^oo

(ar, :>’)->( >3»̂)
fo r  all points (^^*,3;*) o f then the logarithmic capacity o f  E  is zero.

Proof Without loss of generality we can assume that the boundary of 0 , 
say B (O'), consists of a finite number of smooth curves and that u is defined con
tinuously in 0 * U ^ (0 * )~ £ *  and u > l  there.

Let D  be any component (connected open set) of 0* and put
B^-= B{D )r\B(p).

Denoting by the set of points (_x,y) of D a t which U(Ix^y) < n ( n  = I, 2 •••), 
B{D'n) contains B^ if n is large enough. Let be the component of D^ which 
has Bt as boundary components. Shrinking i)* to Dn by changing B  — B^y we 
construct a sequence of regions Dn bounded by a finite number of smooth curves, 
such that

(3) \ < u < n  'm Dn\JBiDn), 
n -  K u  < n  on B(^Dn)-B ±

and Dn C Dn^l C Dn^2 C . . . , D n-^ D,
We now form the harmonic function hnix.y') which is continuous in Dn^J 

B(Dn), harmonic in Dn and equal to u on B(Dn). Then
A"^(u — hn)-haux+buy+(p(ix,y,u) = O in Dn

and
u —hn=0 on B(Dn)^

Therefore we may w rite u -h n  in the form

(4) u{x,y)-h„(.x,y')= = ^'^^  ̂ J^au^+bu., + (p{^,V,u)^ G„(?,v; x, y) dSdy,

where G „ H ,v ',x ,y)  is the Green’s function for D„ (with respect to the Laplace 
equation) with pole at (x^y).  To prove C(^o) = O, it suffices to show that

Iim = 0 .
«->cx) n

Let G (i,v  \ x , y)  be the generalized Green's function for D  with pole at Cx,y). 
We then have in view of (I) and (3),

Iim G „ i$ ,v ,x ,y )= 0 ,
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£(£A !»X

with A =  sup
eo* U >1

Hence we obtain 

(5 )

Next consider

n 
V, u)

U

O <

Hm —
«->oo fl

< A G ( $ , n ; x , y )

<  +  co, except at =  ix,y'), and

\ x,y)didr] <  +  CXD.

(pii, n, u)Gn($, n ; x,y)didv=a.

aufini^, V, X,y)didv.

In view of vanishing of G„ on B(D„) and by integration by parts, this integral 
can be brought in the form

= -  f a M G „ { i , ' n \ x , y ' ) d $ d v ~ \ \  a u - ^ G n { $ , n x , y ) d $ d v .J J Dn  ̂ J J Dn

Since is uniformly bounded in D, we have similary as the preceding argument

(6) Iim — [ [ a ^uGn (f, V ; x, y) dSdv = 0.
«->cx3 n  J J Dn ^

Let be the harmonic function in Dn with the boundary values log r=

log i/ {  ̂— x)^+{'n—y Y  on B(Dn). Then
I

so that

and so

G n ( $ , v ; x , y )  =  l o g — + H n ( $ , v ) ,

G „« ,v ; x , y ) =  H„(S, V),

au G„ (S, v ,x,y ')  d$dv
Dn

We now obtain by Schwarz inequality

Hn] dSdV

By Dirichlet's principle^^ we can find a positive constant K  such that

I .. {(-!■"■) ’ + (w "") ’} •= "■

2) R. Courant, Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces (1950), p. 11. 
K  may depend on ( x , y ) .
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Hence

Dn o S
Hndidv (IL.

■ O as n OO,
Thus

Iim —
« -> 0 0  ri .

a u -^
Dn d i

Hndidv =  O.

On the other hand it is easy to show that

Um -
« - > 0 0  ri

au X -S
Dn

didv =  0.

Therefore we get

(7) Iim —
«->oo U

d
D f^  ds G „ i$ ,v ,x ,y ') d idv^O .

(6) and (7) give us

(8) Iim —
n->oo n Dn

au^ GniStV ; x,y)dSdv =  Q.

Similarly we have

(9) Iim —
«->oo H  j b U r j G n  ( i y  V  ;x ,y ) didv =  0.

Finally it follows from (4), (5), (8) and (9), that

Iim h n { x , y )

■■ Iim
«->cx)L

u {x ,y ) I
27tn I Dni <P(^yV,u) ^Gn(i,V ;x ,y )d id v = O

for any {x ,y ) of D. This proves C(^o)=O.

Let us now assume (2) instead of (I). Then we have

Iim inf
n-̂ oo nJ <p(i, V ; u)Gn (i, v ; x , y )  didv ^  o

instead of (5), so that we get

Iim sup ... ^  0.

However hn{x,y) >  O for all n. Consequently

l i m A ( ^ ^ = 0.«->oo n
This proves C (B o ) = O .

0 *  has at most a finite number of components 2, ---,m) of the type

considered above. Putting =  we have =O for  ̂= l,2,--*,m.

Therefore

C(£*) ^2C(^(S^o=o. 
k=i

From this it follows that C (E ^ )= O , consequently £** is identical to E  and C { E ) = 0 .  

The theorem is thus proved completely.
As an application of this theorem we can state:

Let a {x, y ) , b {x, y )  be continuously dijferentiable in Q, and let <p {x, jy, u) be a 

continuous function for { x , y ) ^ Q  and —ooc^u< +  oo, satisfying
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(10  sup +
or

(20  inf <pix,y,u) > -o o
ix,y)eF^u>t

for  each closed subset F of  Q.
Let the equation

A^u+aux+buy + cpix ,y, w)=0 

he taken for  S[/^] = 0, then C^(E)=O implies C(E)=Q.
3. We shall denote by (S) a family of all S-f unctions defined in any open 

subset of and impose the following conditions to (S) ^
(Cl) If /  € (S), g  6 (S) in some open set 0, then ^f+/Jig^ (S) in O for any 

real numbers X and ix,
(C2) If /«€ (S) (^=1,2, •••) in some open set O and /„ converge uniformly 

toward /  in any closed subset of 0, then /6  (S) in 0.
(Ca) Let E he a closed set of measure zero in j?. Then it is possible to find 

a region D  containing E  such that, for each z^E ,  there is a function

G(C, z) = w(^, z) log - I + v(S, z)

which belongs to (S) in D - E  as a function of where w(^,z) and v(^,z) satisfy 
M>w (X ,  z )> m ,  \v(X, z ) \ < N  for ^ e D - E ,  ^eE,

M, m and N  denoting positive constants not depending on f
T h e o r e m  2. Let (S) satisfy the conditions (Cl), (C2) and (Ca). I f  C(E)=O,  

then C^(E)=Q.
P r o o f . Take n points 2:1, 22, ••• ,2« on E  and put

Mn = inf (max I ( z - z t ) ( z - z 2) ••• (z-zn)\).

Then C(E)=O  implies -log  V T W ; a s  n - ^ 00. Hence we can choose
nj for y= l,2 , ••• so that ^  2\  and find a sequence of sets of points {zl,j,zl,j, 

such that
max I  ( z  -  z%j) ( z  -  z%j)  •  •  •  ( 2  -  z ^ j ^ p  |  =  Mnj .
z e E

Then it is known that

as-^ ^ E  approaches to any point of E.
We shall now define a corresponding function for (S). Since E  is of measure 

zero, there is a region D - E  for which exist S-f unctions G(^,z) mentioned in 
(Ca). Putting

U J ( O =

3) Our method for the proof is analogous to that of the Evans’ theorem for harmonic fun
ctions. G. C. Evans, Potentials and positively infinite singularities of harmonic functions, Monatsh. 
fur Math. u. Phys. 43(1936), pp.419-424.



we define

(11) U ( 0 = ^  2 - ^ U j ( 0 .
J=I ^

We shall show at first that the series (11) converges uniformly in D —E. 
For any closed subregion F oi D - E ,  we find a positive constant L  such that 

|G (f,z) \ < L  for f 6F, z ^ E .
Then | \ <  L, so that the series (11) converges uniformly on F. Hence it 
follows from (Cl) uj^  {f?}, and so from (C^)U  ̂ in D —E.

It remains to show that
Iim t / ( 0  = +  ̂

for all To prove this, we may assume that E  lies in a square with sides
less than 1/2. Otherwise, we devide E  into a finite number of closed subsets Ek 
each of which lies in such a square, and have only to add all Uk(S) defined above 
for Ek (w^ere D may be the same for all k). If we make this assumption, we 
can find a small neighborhood V  of in which, except at points f  6 E,
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Then

G(f, z) >  m log — N  for any z^ E .

.K r )> t | .o g
Hence from (10),

Thus t/(f)  is an Evans' function for E  with respect to {g}, and so C^{E)=Q.
As an application of Theorems I and 2, we prove :
T h e o r e m  3. Let a(x,y), b(x,y), c{x,y) and f (x ,y )  be continuously differentiable 

in Q. Take for  S [^] = 0 the linear partial differential equation of elliptic type
(12) Au+aUx+bUy+cu+f=Q.

Then C^(E)=O is equivalent to C(E) =O
Proof. It is obvious from Theoreml that C(E)=O if C^(E)=O. Let us now 

suppose C(E)=O. Recognizing that the family of all solutions of the equation
(13) Au+aux+buy+cu=0

satisfies the conditions (Cl), (Cg) and (C3), there is, by Theorem 2, a region D -  
E  in which exists an Evans' function u for E  with respect to (13). On the other 
hand, we can find a solution v of the equation

Av+avx+bvy+cv+f=0

4) Theorem 3 is an extension of the Evans’ theorem. Recently I. Hong extended this 
theorem for solutions of the equation J u - h k ^ u  =  0  with a constant  ̂ >  0. I. Hong, On positively 
infinite singularities of a solution of the equation =  Kodai Math. Sem. Rep. v. 8, n. I
(1956) pp.9-12.



in Z), if the area of D is sufficiently small. Then w=^u+v becomes an Evans' 
function for E  with respect to (12). Hence C^{E)  =O and the theorem is established.

The fact that the family of all solutions of (13) satisfies the conditions (C i)^  
(Ca) is proved as follows:

(Cl) is trivial. (C2) is easily verified by applying the fact that the Dirichlet 
problem with respect to (13) has a unique solution for circles of small radius. 
To assure (C3), let us take a small region^^ D in which there exists, for each 
E,  a fundamental solution having a logarithmic infinity at z and it is written in 
the form®)

G ( f , .)  -  log T f L ,  +  T f ^  * - •

where dr 10 denotes the area element with respect to w and 2) is uniformly
bounded with respect to w and z ^ E .  From this expression, the property re
quired for G(X,z)  in (C3) follows.

4. We now set the following conditions:
(C4) Let D  be any region bounded by a finite number of smooth curves in Q 

and let /  be any ^-function on Then the Dirichlet problem for D and / ,
relative to {§}, has a solution, namely, there is a function which belongs to {g} 
in Z), is continuous in D\JB{D) and equal to /  on

(Cs) Let D  be any region in If u is continuous in D \jB {n ),  belongs to 
{SI in D and vanishes on B{D), then u vanishes identically in D.

T h e o r e m  4. Let satisfy the conditions (Cl), (C4) and (Cs). Let O be an 
open set in Q and E  a closed set o f ^-capacity zero contained in 0 . I f  U is a 
bounded '^-function in 0  — E, it is possible to define U on E, so that U becomes 
an ^-function in 0 .

Proof. W ithout loss of generality we can assume that B(Q) consists of a 
finite number of smooth curves and {SI in O - E  where 6  denotes OU ^(O ), 
and moreover that there is in O - E  an Evans' function u for E  with respect to (S ).

By (C4) there are two ^-functions t/*, in 0 , such that t/*, are con
tinuous in O and u = u^ on B(O). Put w ^ U —U' ,̂ h = u — u^. Then h is 
again an Evans' function for E, and, by assumption, we can find a constant M  
such that \ w\  < M  m O - E .

Denoting by the set of points at which h < n  (/z = l , 2 , •••), B(O) becomes 
boundary components of On , because /2 = 0 on B(Q). According to (Cl), ± M h / n  are 
S-functions in with the boundary values ± M  on B(Qn) -B (Q )  and zero on B(O).

Next we shall show using the condition (Cs) that

(14) -M Il  ^  ^  throughout 0 „.n n
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5) The smallness of D  is required for its area and the magnitude of the diameter of D  is 
irrelevant.

6) See R. Courant-D. Hilbert, Methoden der Mathematischen Physik, II, pp. 279-281.
7) / i s  said to be an S’-f unction on a closed set S if /  is so in a certain open set containing 5.



Suppose that the statement M h/n  is false. Then there are a point of 0„ at 
which W >  M h f n, and a region DndOn containing this point, on whose boundary 
W = Mhfn.  On the other hand, by virtue of ( C l ) ,  w — M h/n  is continuous in Dn 
and belongs to {??} in Z)„. Hence it follows from (C s) that

Mh ^ ^
W ------ ^  =  O m  Dn,

which is impossible. T husw e hdive M h /n '^w  throughout 0„. The inequality 
-M h In  is shown similarly.

Letting ;^->oo in (14), we see
W=U-  Û  = O

at all points of 0  — E, because O n O - E  as n -^co . This proves our theorem.
As an application of these results we can s ta te :
Let E  be a bounded closed set o f logarithmic capacity zero in a plane region D, 

and let u be a hounded solution o f the equation
(15) ^u+aux+buy -V CU+f

in D —E, where a, b, c and f  are continuously differentiable in D, and c ^  0. Then 
it is possible to define u on E, so that u satisfies (15) on E.

To prove this, consider without loss of generality any bounded solution v of
(15) in A  then w = u —v is bounded in D and satisfies

(16) Aw+aw X+ bwy + = O
in D —E. Theorems 3 and 4 now apply to w. In fact, taking the equation (16) 
for S [^ ]  = 0, {S‘} satisfies the conditions (Ci)--(Cs). Hence w, consequently, u is 
prolongable continuously over E, so that u satisfies again (15) at all points of E.

In the above statement the restriction on the sign of c was imposed to insure 
the conditions (C4) and (C5). But we notice that a set of logarithmic capacity 
zero is of measure zero, and that Theorem 4 remains true for any E  of S-capacity 
zero and of measure zero provided the conditions (C4) and (C s) are assumed for 
sufficiently small regions.

On the other hand, the Dirichlet problem for a region D and any continuous 
boundary value function, with respect to (15), has a unique solution regardless of 
the sign of c, if the boundary of D is smooth and its area is sufficiently small 
So the condition (C4) is fulfilled, while the condition (C5) is also assured for 
sufficiently small regions. Hence the above statement holds with no restriction on 
the sign of c. Thus we obtain

T h e o r e m  5. Let E  be a bounded closed set o f logarithmic capacity zero in a 
plane region D, and let u be a bounded solution o f the equation

Au+aux+buy+cu+f=^ 
in D —E, where a, b, c and f  are continuously differentiable in D. Then it is pos
sible to define u on E, so that u satisfies the above equation on E.

50 Masao In o u e

8) I. G. Petrowsky, Lectures on Partial Differential Equations, (1954), p.232.


