Harmonic functions with two singular points

By Hirosi Yamasuge

(Received Nov. 9, 1956)

In this paper we assume that \mathfrak{M} is a closed orientable analytic Riemannian manifold with a positive-definite metric $d s^{2}=g_{i k} d x^{i} d x^{k}$ where $g_{i k}$ are holomorphic functions of x^{1}, \cdots, x^{n}.

In 1 we shall prove the existence of a harmonic function φ with two singular points such that

$$
\varphi \text { is harmonic in } \mathfrak{M}-\xi_{1}-\xi_{2},
$$

$$
\begin{array}{lr}
\text { if } n>2, \quad \lim _{x \rightarrow \xi_{i}}(n-2) \omega_{n} r^{n-2}\left(x, \xi_{i}\right) \varphi(x)=(-1)^{i-1}, i=1,2, \\
\text { and if } n=2, & \lim _{x \rightarrow \xi_{i}} 2 \pi \varphi(x) / \log r\left(x, \xi_{i}\right)=(-1)^{i}, i=1,2,
\end{array}
$$

where $r\left(x, \xi_{i}\right)$ is the geodesic distance between x and ξ_{i}, and ω_{n} is the surface area of the n-dimensional unit sphere. Hence we may consider that $\varphi(x)$ is the potential at x of the pair of masses which has the mass 1 at ξ_{1} and the mass -1 at ξ_{2}.

Now we consider the equipotential surface U_{C} given by $\varphi=C$. We shall say that a point is stational if all first partial derivatives of φ are zero at this point, and say that a stational point is non-degenerate if at this point the determinent $\left|\frac{\partial^{2} \varphi}{\partial x^{i} \partial x^{k}}\right|$ is not zero. We change C from $+\infty$ to $-\infty$, then U_{C} is homeomorphic with a sphere if $|C|$ is sufficiently large, and the topological structure of U_{c} changes only when U_{C} passes stational points. Hence if we ${ }^{\top}$ assume that all stational points are non-degenerate, there are close relations between the number of all stational points and the topological structure of \mathfrak{M}. We shall state about them in 2.

1. Existence of a harmonic function with two singular points

Let G be a sufficiently small geodesic sphere in \mathfrak{M} and ξ an arbitrary interior point of G. Then the Laplace's equation $\Delta \Xi=0$ has a solution

$$
\Xi(x, \xi)= \begin{cases}-\frac{1}{2 \pi} \log r(x, \xi) \cdot u(x, \xi)+v(x, \xi), & (n=2), \tag{1}\\ \frac{1}{(n-2) \omega_{n}} r^{2-n}(x, \xi) u(x, \xi)+\log r(x, \xi) \cdot v(x, \xi), & (n>2),\end{cases}
$$

defined for x, ξ in G, where u, v are holomorphic with respect to x, ξ, and $u(\xi, \xi)$ $=1$. See [1].

Let ξ_{1} and ξ_{2} be two interior points given in G.

Putting

$$
h=\Xi\left(x, \xi_{1}\right)-\Xi\left(x, \xi_{2}\right),
$$

we have

$$
\Delta h=0 \text { in } G-\xi_{1}-\xi_{2} .
$$

We shall say that a form α is regular harmonic in a domain D if $d \alpha=0$ and $\delta \alpha=0$ in D. Then we have
Lemma. There exists 1 -form e possessing the following properties:
e is regular harmonic in $\mathfrak{M}-\xi_{1}-\xi_{2}$
and

$$
e=d h+f \quad \text { in } G-\xi_{1}-\xi_{2}{ }^{\circ}
$$

where f is a regular harmonic 1-from in G.
Proof. By the general existence theorem shown in [1] it is sufficient to prove that $d h \times B G=\int_{B G} * d h=0$ for the surface $B G$ of a geodesic sphere G.

For an arbitrary function g

$$
d * d g=-* \delta d g=-* \Delta g .
$$

Hence if g is harmonic in a domain D and its first derivatives are continuous in $\bar{D}=D+B D$, then

$$
\int_{B D} * d g=\int_{D} d * d g=\int_{D}-* \Delta g=0 .
$$

Applying the above to $d h, d \boldsymbol{\Xi}\left(x, \xi_{1}\right)$ and $d \boldsymbol{\Xi}\left(x, \xi_{2}\right)$,
we have $\quad \int_{B G} * d h=\int_{B G_{\delta}^{\prime}} * d \Xi\left(x, \xi_{1}\right)-\int_{B G_{\delta}^{\prime \prime}} * d \Xi\left(x, \xi_{2}\right)$
where $G_{\delta}^{\prime}, G_{\delta}^{\prime \prime}$ are geodesic spheres of the center ξ_{1}, ξ_{2} and of the radius δ respectively. Moreover we can verify that

$$
\lim _{\delta \rightarrow 0} \int_{B G_{\delta}^{(i)}} * d \Xi\left(x, \xi_{2}\right)=-1, \quad i=1,2 .
$$

Hence $\int_{B G} * d h=0$, q. e. d. [See the proof of Theorem 2 in [4]].
Now we consider the periods of e along loops which do not pass through the points ξ_{1} and ξ_{2}. Since e is closed, the periods of e depend only on homology classes of loops in \mathfrak{M}. Let $\gamma_{i}\left(i=1, \cdots, R_{1}\right)$ be a base for 1 -cycles of \mathfrak{M}. Then by the theorem of de Rham there exists harmonic 1 -form e^{r} such that

$$
\int_{\gamma_{i}} e=\int_{\gamma_{i}} e^{\prime},\left(i=1, \cdots, R_{1}\right) .
$$

Let P_{0} be a fixed point in \mathfrak{M} and P an arbitrary point in \mathfrak{M}.
Put

$$
\varphi(P)=\int_{P_{0}}^{P}\left(e-e^{\prime}\right),
$$

then the periods of $\varphi(P)$ on every loops are always zero. Hence $\varphi(P)$ is an one valued function defined in \mathfrak{M}. From the construction of φ we have

Theorem 1. For arbitrary two points ξ_{1} and ξ_{2} given in a small subdomain

G, there exists a harmonic function φ such that

$$
\Delta \varphi=0 \quad \text { in } \quad \mathfrak{M}-\xi_{1}-\xi_{2},
$$

and in a neighbourhood of $\xi_{i}(i=1,2)$

$$
\varphi(x)= \begin{cases}\frac{1}{(n-2) \omega_{n}} r^{2-n}\left(x, \xi_{i}\right) u_{i}+\log r\left(x, \xi_{i}\right) \cdot v_{i}+w_{i}, & (n>2), \tag{2}\\ -\frac{1}{2 \pi} \log r\left(x, \xi_{i}\right) \cdot u_{i}+v_{i}, & (n=2)\end{cases}
$$

where u_{i}, v_{i} and w_{i} are holomorphic functions of x, and $u_{i}\left(\xi_{i}\right)=1$.

2. Relations between the number of stational points and the topological structure of \mathfrak{m}.

From now on let us assume that all stational points are non-degenerate. Then in a suitable coordinate system, the Taylor's expansion of φ at every stational point becomes

$$
\begin{equation*}
\varphi(x)=C+\left(-x_{1}^{2}-\cdots-x_{v}^{2}+x_{v+1}^{2}+\cdots+x_{n}^{2}\right)+\chi(x) . \tag{3}
\end{equation*}
$$

Hence the stational point $x=0$ is isolated, and since \mathfrak{M} is closed, the number of stational points is finite.

Suppose $\nu=0$ and take a sufficiently small positive number δ. Then the closed subdomain G_{δ} given by the inequality $\varphi(x) \leqq C+\delta$ is homeomorphic with a sphere. Using maximum principle for φ, we see that φ is the constant $C+\delta$ in G_{δ}. By [1], φ is holomorphic in $\mathfrak{M}-\xi_{1}-\xi_{2}$. Therefore φ would be identically the constant $C+\delta$, contrary to (2) of Theorem 1 . Hence $\nu \geqq 1$.

Similarly we have $\nu \leqq n-1$.
Now let us consider the equipotential surface $U=C$ and denote it by U_{c}. If U_{C} has no stational point, U_{C} is an orientable ($n-1$)-dimensional manifold.

Change C from $+\infty$ to $-\infty$. Then U_{C} moves in \mathfrak{M} but the topological structure of U_{C} changes only when U_{C} passes the stational points of φ.

The case of $n=2$. In this case (3) becomes

$$
\begin{equation*}
\varphi(x)=C-x_{1}^{2}+x_{2}^{2}+\chi(x) . \tag{4}
\end{equation*}
$$

Let δ be a sufficiently small positive number. Then in a neighbourhood V of the stational point $x=0, U_{C_{ \pm \delta}}$ are hyperbolas and U_{C} is two straight lines. If U_{C} passes no stational point, U_{C} cosists of some loops, and the number of the loops increases by 1 or decreases by 1 whenever U_{C} passes a stational point. Suppose $\left\{P_{i}, Q_{j} ; i=1, \cdots, g, j=1, \cdots g^{\prime}\right\}$ is the complete set of all stational points such that the number of the loops increases by 1 when U_{C} passes P_{i} and decreases by 1 when U_{C} passes Q_{j}. And if C is sufficiently large, by (2) $U_{ \pm C}$ consists of one loops. Hence we have $g=g^{\prime}$. Moreover we can assume without loss of generality that $\varphi\left(P_{i}\right)>\varphi\left(Q_{j}\right)$ for $i, j=1, \cdots, g$. Take C so that $\varphi\left(P_{i}\right)>C>\varphi\left(Q_{j}\right)$ for $i, j=1, \cdots, g$.

Put
(5)

$$
\mathfrak{M}(a, b)=\{P \mid a \leqq \varphi(P) \leqq b\}
$$

then

$$
\mathfrak{M}=\mathfrak{M}(C, \infty)+\mathfrak{M}(-\infty, C)
$$

where $\mathfrak{M}(C, \infty)$ and $\mathfrak{M}(-\infty, C)$ are homeomorphic to a sphere with g holes. Hence we have

Theorem 2. If all stational points of φ are non-degenerate, then the number of these points is equal to twice the genus of \mathfrak{M}.

The case of $n=3$. In this case ν of (3) is 2 or 1 . Let P_{1}, \cdots, P_{g} be all stational points at which $\nu=2$ and $Q_{1}, \cdots, Q_{g^{\prime}}$ all stational points at which $\nu=1$. Then in a neighbourhood of P_{i}, U_{c} changes from a hyperboloid of two sheets to a hyperboloid of one sheet, and in a neighbourhood of Q_{j}, U_{C} changes from a hyperboloid of one sheet to a hyperboloid of two sheets. Thus we see easily that the genus of a connected component of U_{C} increases by 1 or decreases by 1 according as the component passes point P_{i} or Q_{j}. Moreover if C is sufficiently large, then by (2), $U_{ \pm c}$ is homeomorphic with a sphere, and hence $g=g^{\prime}$.

We may assume without loss of generality that $\varphi\left(P_{i}\right)>\varphi\left(Q_{j}\right), i, j=1, \cdots, g$. Then similarly to (5) we have

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{M}(C, \infty)+\mathfrak{M}(-\infty, C) \tag{6}
\end{equation*}
$$

where $\mathfrak{M}(C, \infty)$ and $\mathfrak{M}(-\infty, C)$ are homeomorphic with a closed subdomain bounded by a surface of genus g in E^{3}. Thus we have

Theorem 3. If all stational points of φ are non-degenerate, then the number g of these points is even. Take two closed domains bounded by a surface of genus $g / 2$ in E^{3}. Then \mathfrak{M} is obtained from these two domains by identifying their boundaries by a homeomorphism.

Reference

[1] K. Kodaira, Harmonic fields in Riemanian manifolds, Annals of Mathematics, vol. 50 (1949).
[2] G. de Rham and K. Kodaira, Harmonic Integrals, Mimeographed Notes, Institute for Advanced Study, 1950.
[3] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Berlin, Teubner, 1934.
[4] H. Yamasuge, Maximum principle for harmonic functions in Riemannian manifolds, Jour. Inst. Poly. Osaka City Univ. vol. 8 (1957).

