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Harmonic functions with two singular points
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In this paper we assume that is a closed orientable analytic Riemannian
manifold with a positive-definite metric gikdx'dx^ where gik are holomorphic 
functions of ,x"".

In I we shall prove the existence of a harmonic function cp with two singular 
points such that

(p is harmonic in 9)1—<fi—<?2 ,

if n >  2, Iim ^dcpix) = /=1, 2,
X

and if n = 2, \\m27t(p<ix)/logr (_x, = ( - l ) \  /=1, 2,x->
where rix, <?/) is the geodesic distance between x  and f /, and o>„ is the surface area 
of the ^-dimensional unit sphere. Hence we may consider that q?ix^ is the poten­
tial at X of the pair of masses which has the mass I at i and the mass — I at f  2.

Now we consider the equipotential surface Uc given by (p=C. We shall say 
that a point is stational if all first partial derivatives of cp are zero at this 
point, and say that a stational point is non-degenerate if at this point the determi-

nent ^ ^ - is not zero. We change C from + 0 0  to — 00, then Uc is homeo-
dx̂ dx̂

morphic with a sphere if | C | is sufficiently large, and the topological structure of 
Uc changes only when Ue passes stational points. Hence if we^assume that all 
stational points are non-degenerate, there are close relations between the number 
of all stational points and the topological structure of We shall state about 
them in 2.

I. Existence of a harmonic function with two singular points

Let G be a sufficiently small geodesic sphere in and f  an arbitrary interior 
point of G, Then the Laplace's equation AS=O has a solution

log r{x, -u(x, $)+v(x, 0 , in = 2),

 ̂ r ^ - \x , i)u (x , ^)+ log r(x, I) , (n > 2),
(n-2)con

defined for Xy ^ in G, where u, v are holomorphic with respect to x ,Sy and u{Sy <f) 
= 1. See [I ] .

Let and 2̂ be two interior points given in G,
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Putting
= f2),

we have
Ah = O in G —̂ \—̂ 2*

We shall say that a form a is regular harmonic in a domain D \i = and = O 
in D. Then we have
Le m m a . There exists I-form e possessing the following properties : 

e is regular harmonic in f 2

and
e = d h +  f  in G — — S2

where f  is a regular harmonic 1-from in G.
Proof, By the general existence theorem shown in [ I]  it is sufficient to prove

that d h x B G  = ^dh = O for the surface BG of a geodesic sphere G,
BG

For an arbitrary function g
d ^ d g =  ~ * ddg = -   ̂Ag.

Hence if g  is harmonic in a domain D  and its first derivatives are continuous in 
D = D + B D ,  then

Applying the above to dh, d3{x, fi) and dS{x, $2),

we have ^dh= dE^x, f i )  -  d3{x, $2)
BG':

where , Gl are geodesic spheres of the center fi, $ 2 and of the radius d respectively. 
Moreover we can verify that

Iim
5->0

* d3(_x, = - I , = I, 2.

Hence ^dh = O, q. e. d. [See the proof of Theorem 2 in [4]].

Now we consider the periods of e along loops which do not pass through 
the points f  1 and ^2 • Since e is closed, the periods of e depend only on homology 
classes of loops in 5QI. Let Ti(i = l, ••• , i?i) be a base for 1-cycles of Then 
by the theorem of de Rham there exists harmonic I -form e' such that

e =

Let Po be a fixed point in ^  and P  an arbitrary point in 
Put

r P
cpiP) = (^-0 ,

then the periods of ^(P ) on every loops are always zero. Hence ^(P) is an one 
valued function defined in Tl. From the construction of <p we have

T h eo r em  I. For arbitrary two points fi and ^2 given in a small subdomain
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G, there exists a harmonic function cp such that
A(p = O in 9)1 -  -  ^2 , 

and in a neighbourhood o f (z = l, 2)

I ?>■)“ <■+log fi) -Vi+Wi, (n > 2),
(2) <p(x) =  ̂  ̂ ”

-  log r(x, ii)'U i+ V i, , (« = 2) ,

where Ui, Vi and Wi are holomorphic functions o f x, and Uii^d = !.

2. Relations between the number of stational points and the topological 
structure of 5D?.

From now on let us assume that all stational points are non-degenerate. 
Then in a suitable coordinate system, the Taylor's expansion of cp at every stational 
point becomes
(3) (p {x )= C + (i-x l-  ••• - 4 + 4 + 1 +  ••• + xD + X ix).
Hence the stational point :\:=0 is isolated, and since M is closed, the number of 
stational points is finite.

Suppose and take a sufficiently small positive number 3. Thentheclosed 
subdomain given by the inequality ^  C +^ is homeomorphic with a sphere. 
Using maximum principle for cp, we see that cp is the constant C + 5 in . By
[I] , q) is holomorphic in 931—f i —<?2 . Therefore cp would be identically the constant 
C + 5, contrary to (2) of Theorem I. Hence v ' ^ l .

Similarly we have v ^ n ~ \ .
Now let us consider the equipotential surface U = C  and denote it by Uc- If 

Uc has no stational point, Uq is an orientable (;̂  —I) -dimensional manifold.
Change C from +oo to — ©o. Then Uc moves in but the topological struc­

ture of Uc changes only when Uc passes the stational points of cp.
The case of n ^ 2 .  In this case (3) becomes

(4) (p{x) ^ C —xl+xl+XCx).
Let  ̂ be a sufficiently small positive number. Then in a neighbourhood V  of the 
stational point x = 0, Ue±s are hyperbolas and Ue is two straight lines. If Ue 
passes no stational point, Ue cosists of some loops, and the number of the loops 
increases by I or decreases by I whenever Ue passes a stational point. Suppose 
{Piy Qj ; i = I, g, j  = 1, is the complete set of all stational points such 
that the number of the loops increases by I when Ue passes Pi and decreases by 
I when Ue passes Qj. And if C is sufficiently large, by (2) Z7±c consists of one loops. 
Hence we have g  = g \  Moreover we can assume without loss of generality 
that (p{Pi) > <p(Qj) for /, j = l , ••• ,g. Take C so that (p{Pd > C > <p(Qi) for 

•••



Put
(5) m ia ,b )  = {P \a ^ (p {P )  ^ b}  
then Tl = m (C, oo )+ m (-oo^  C)
where (C, ©o) and C) are homeomorphic to a sphere with g  holes.
Hence we have

T h eo r em  2. I f  all stational points o f cp are non-degenerate, then the number 
of these points is equal to twice the genus of

The case of /2 = 3. In this case v of (3) is 2 or I. Let P^, ' ,Pg  be all stational 
points at which v= 2  and " ,Qg^ all stational points at which v = \ ,  Then 
in a neighbourhood of P i, Vq changes from a hyperboloid of two sheets to a hyper­
boloid of one sheet, and in a neighbourhood of Qy, Uc changes from a hyperboloid 
of one sheet to a hyperboloid of two sheets. Thus we see easily that the genus 
of a connected component of Uc increases by I or decreases by I according as the 
component passes point Pi or Qy. Moreover if C is sufficiently large, then by 
(2), U^e is homeomorphic with a sphere, and hence g  = g'.

We may assume without loss of generality that >  <̂ (Qy), , ••• ,g>
Then similarly to (5) we have
(6) Tl = oo)+5m(-cx), c)
where 931 (C, cx>) and 9Jl(—oo, C) are homeomorphic with a closed subdomain 
bounded by a surface of genus g  in E^. Thus we have

T h eo r em  3. I f  all stational points o f <p are non-degenerate, then the number g  
of these points is even. Take two closed domains bounded by a surface o f  genus 
g/2 in E^. Then Tl is obtained from  these two domains by identifying their boun­
daries by a homeomorphism.
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