Harmonic functions with two singular points

By Hirosi Yamasuge

(Received Nov. 9, 1956)

In this paper we assume that \mathfrak{M} is a closed orientable analytic Riemannian manifold with a positive-definite metric $ds^2 = g_{ik}dx^idx^k$ where g_{ik} are holomorphic functions of x^1, \dots, x^n .

In 1 we shall prove the existence of a harmonic function φ with two singular points such that

$$\varphi \text{ is harmonic in } \mathfrak{M} - \xi_1 - \xi_2,$$
 if $n > 2$,
$$\lim_{x \to \xi_i} (n-2)\omega_n r^{n-2}(x, \xi_i)\varphi(x) = (-1)^{i-1}, \ i = 1, 2,$$
 and if $n = 2$,
$$\lim_{x \to \xi_i} 2\pi \varphi(x)/\log r(x, \xi_i) = (-1)^i, \ i = 1, 2,$$

where $r(x, \xi_i)$ is the geodesic distance between x and ξ_i , and ω_n is the surface area of the n-dimensional unit sphere. Hence we may consider that $\varphi(x)$ is the potential at x of the pair of masses which has the mass 1 at ξ_1 and the mass -1 at ξ_2 .

Now we consider the equipotential surface U_C given by $\varphi = C$. We shall say that a point is stational if all first partial derivatives of φ are zero at this point, and say that a stational point is non-degenerate if at this point the determinent $\left|\frac{\partial^2 \varphi}{\partial x^i \partial x^k}\right|$ is not zero. We change C from $+\infty$ to $-\infty$, then U_C is homeomorphic with a sphere if |C| is sufficiently large, and the topological structure of U_C changes only when U_C passes stational points. Hence if we assume that all stational points are non-degenerate, there are close relations between the number of all stational points and the topological structure of \mathfrak{M} . We shall state about them in 2.

1. Existence of a harmonic function with two singular points

Let G be a sufficiently small geodesic sphere in \mathfrak{M} and ξ an arbitrary interior point of G. Then the Laplace's equation $d\Xi = 0$ has a solution

(1)
$$\Xi(x,\xi) = \begin{cases} -\frac{1}{2\pi} \log r(x,\xi) \cdot u(x,\xi) + v(x,\xi), & (n=2), \\ \frac{1}{(n-2)\omega_n} r^{2-n}(x,\xi) u(x,\xi) + \log r(x,\xi) \cdot v(x,\xi), & (n>2), \end{cases}$$

defined for x, ξ in G, where u, v are holomorphic with respect to x, ξ , and $u(\xi, \xi) = 1$. See [1].

Let ξ_1 and ξ_2 be two interior points given in G.

Putting

$$h = \Xi(x, \xi_1) - \Xi(x, \xi_2),$$

we have

$$\Delta h = 0 \text{ in } G - \xi_1 - \xi_2.$$

We shall say that a form α is regular harmonic in a domain D if $d\alpha = 0$ and $\delta\alpha = 0$ in D. Then we have

LEMMA. There exists 1-form e possessing the following properties:

e is regular harmonic in $\mathfrak{M} - \xi_1 - \xi_2$

and

$$e = dh + f$$
 in $G - \xi_1 - \xi_2$

where f is a regular harmonic 1-from in G.

Proof. By the general existence theorem shown in [1] it is sufficient to prove that $dh \times BG = \int_{BG} *dh = 0$ for the surface BG of a geodesic sphere G.

For an arbitrary function g

$$d*dg = -*\delta dg = -*\Delta g.$$

Hence if g is harmonic in a domain D and its first derivatives are continuous in $\overline{D} = D + BD$, then

$$\int_{BD} * dg = \int_{D} d * dg = \int_{D} - * \Delta g = 0.$$

Applying the above to dh, $d\Xi(x, \xi_1)$ and $d\Xi(x, \xi_2)$,

we have

$$\int_{BG} * dh = \int_{BG'_{\delta}} * d\Xi(x, \xi_1) - \int_{BG''_{\delta}} * d\Xi(x, \xi_2)$$

where G'_{δ} , G''_{δ} are geodesic spheres of the center ξ_1 , ξ_2 and of the radius δ respectively. Moreover we can verify that

$$\lim_{\delta \to 0} \int_{BG_{\delta}^{(i)}} *d\Xi(x,\xi_i) = -1\,, \qquad \qquad i=1,\,2.$$

Hence $\int_{BC} *dh = 0$, q. e. d. [See the proof of Theorem 2 in [4]].

Now we consider the periods of e along loops which do not pass through the points ξ_1 and ξ_2 . Since e is closed, the periods of e depend only on homology classes of loops in \mathfrak{M} . Let $\Upsilon_i(i=1,\cdots,R_1)$ be a base for 1-cycles of \mathfrak{M} . Then by the theorem of de Rham there exists harmonic 1-form e' such that

$$\int_{\gamma_i} e = \int_{\gamma_i} e', \ (i = 1, \dots, R_1).$$

Let P_0 be a fixed point in $\mathfrak M$ and P an arbitrary point in $\mathfrak M$.

Put

$$\varphi(P) = \int_{P_0}^{P} (e - e'),$$

then the periods of $\varphi(P)$ on every loops are always zero. Hence $\varphi(P)$ is an one valued function defined in \mathfrak{M} . From the construction of φ we have

Theorem 1. For arbitrary two points ξ_1 and ξ_2 given in a small subdomain

G, there exists a harmonic function φ such that

$$\Delta \varphi = 0$$
 in $\mathfrak{M} - \xi_1 - \xi_2$,

and in a neighbourhood of ξ_i (i=1, 2)

(2)
$$\varphi(x) = \begin{cases} \frac{1}{(n-2)\omega_n} r^{2-n}(x, \xi_i) u_i + \log r(x, \xi_i) \cdot v_i + w_i, & (n > 2), \\ -\frac{1}{2\pi} \log r(x, \xi_i) \cdot u_i + v_i, & (n = 2), \end{cases}$$

where u_i , v_i and w_i are holomorphic functions of x, and $u_i(\xi_i) = 1$.

2. Relations between the number of stational points and the topological structure of \mathfrak{M} .

From now on let us assume that all stational points are non-degenerate. Then in a suitable coordinate system, the Taylor's expansion of φ at every stational point becomes

(3)
$$\varphi(x) = C + (-x_1^2 - \cdots - x_{\nu}^2 + x_{\nu+1}^2 + \cdots + x_n^2) + \chi(x).$$

Hence the stational point x=0 is isolated, and since \mathfrak{M} is closed, the number of stational points is finite.

Suppose $\nu=0$ and take a sufficiently small positive number δ . Then the closed subdomain G_{δ} given by the inequality $\varphi(x) \leq C + \delta$ is homeomorphic with a sphere. Using maximum principle for φ , we see that φ is the constant $C + \delta$ in G_{δ} . By [1], φ is holomorphic in $\mathfrak{M} - \xi_1 - \xi_2$. Therefore φ would be identically the constant $C + \delta$, contrary to (2) of Theorem 1. Hence $\nu \geq 1$.

Similarly we have $\nu \le n-1$.

Now let us consider the equipotential surface U = C and denote it by U_c . If U_c has no stational point, U_c is an orientable (n-1)-dimensional manifold.

Change C from $+\infty$ to $-\infty$. Then U_C moves in \mathfrak{M} but the topological structure of U_C changes only when U_C passes the stational points of φ .

The case of n=2. In this case (3) becomes

(4)
$$\varphi(x) = C - x_1^2 + x_2^2 + \chi(x).$$

Let δ be a sufficiently small positive number. Then in a neighbourhood V of the stational point x=0, $U_{C\pm\delta}$ are hyperbolas and U_C is two straight lines. If U_C passes no stational point, U_C cosists of some loops, and the number of the loops increases by 1 or decreases by 1 whenever U_C passes a stational point. Suppose $\{P_i, Q_j; i=1, \cdots, g, j=1, \cdots g'\}$ is the complete set of all stational points such that the number of the loops increases by 1 when U_C passes P_i and decreases by 1 when U_C passes Q_j . And if C is sufficiently large, by (2) $U_{\pm C}$ consists of one loops. Hence we have g=g'. Moreover we can assume without loss of generality that $\varphi(P_i) > \varphi(Q_j)$ for $i, j=1, \cdots, g$. Take C so that $\varphi(P_i) > C > \varphi(Q_j)$ for $i, j=1, \cdots, g$.

Put

(5)
$$\mathfrak{M}(a, b) = \{P \mid a \leq \varphi(P) \leq b\}$$
 then
$$\mathfrak{M} = \mathfrak{M}(C, \infty) + \mathfrak{M}(-\infty, C)$$

where $\mathfrak{M}(C, \infty)$ and $\mathfrak{M}(-\infty, C)$ are homeomorphic to a sphere with g holes. Hence we have

Theorem 2. If all stational points of φ are non-degenerate, then the number of these points is equal to twice the genus of \mathfrak{M} .

The case of n=3. In this case v of (3) is 2 or 1. Let P_1, \dots, P_g be all stational points at which v=2 and $Q_1, \dots, Q_{g'}$ all stational points at which v=1. Then in a neighbourhood of P_i , U_c changes from a hyperboloid of two sheets to a hyperboloid of one sheet, and in a neighbourhood of Q_j , U_c changes from a hyperboloid of one sheet to a hyperboloid of two sheets. Thus we see easily that the genus of a connected component of U_c increases by 1 or decreases by 1 according as the component passes point P_i or Q_j . Moreover if C is sufficiently large, then by (2), $U_{\pm C}$ is homeomorphic with a sphere, and hence g=g'.

We may assume without loss of generality that $\varphi(P_i) > \varphi(Q_j)$, $i, j=1, \dots, g$. Then similarly to (5) we have

(6)
$$\mathfrak{M} = \mathfrak{M}(C, \infty) + \mathfrak{M}(-\infty, C)$$

where $\mathfrak{M}(C, \infty)$ and $\mathfrak{M}(-\infty, C)$ are homeomorphic with a closed subdomain bounded by a surface of genus g in E^3 . Thus we have

Theorem 3. If all stational points of φ are non-degenerate, then the number g of these points is even. Take two closed domains bounded by a surface of genus g/2 in E^3 . Then $\mathfrak M$ is obtained from these two domains by identifying their boundaries by a homeomorphism.

Reference

- [1] K. Kodaira, Harmonic fields in Riemanian manifolds, Annals of Mathematics, vol. 50 (1949).
- [2] G. de Rham and K. Kodaira, Harmonic Integrals, Mimeographed Notes, Institute for Advanced Study, 1950.
- [3] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Berlin, Teubner, 1934.
- [4] H. Yamasuge, Maximum principle for harmonic functions in Riemannian manifolds, Jour. Inst. Poly. Osaka City Univ. vol. 8 (1957).