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Harmonic functions with two singular points
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In this paper we assume that M is a closed orientable analytic Riemannian
manifold with a positive-definite metric ds®=g;,dx'dx* where g;; are holomorphic
functions of %, ---, 4"

In 1 we shall prove the existence of a harmonic function ¢ with two singular
points such that

¢ is harmonic in M—&—&,,

if #n>2, lim #—2)w. 7" 2(x, € e (x) = (—1)"1, i=1, 2,

x5 &;
and if n =2, 11_}11; 2mp(x)/logr (x, €) = (=1, i=1, 2,

where 7(x, &) is the geodesic distance between x and &;, and o, is the surface area
of the n-dimensional unit sphere. Hence we may consider that ¢(x) is the poten-
tial at x of the pair of masses which has the mass 1 at &; and the mass —1 at &,.
Now we consider the equipotential surface Uc given by ¢=C. We shall say
that a point is stational if all first partial derivatives of ¢ are zero at this
point, and say that a stational point is non-degenerate if at this point the determi-

nent [a_g%ox—k is not zero. We change C from + oo to — oo, then U¢ is homeo-
morphic with a sphere if |C| is sufficiently large, and the topological structure of
Uc changes only when Uc passes stational points. Hence if we7assume that all
stational points are non-degenerate, there are close relations between the number
of all stational points and the topological structure of M. We shall state about

them in 2.

1. Existence of a harmonic function with two singular points

Let G be a sufficiently small geodesic sphere in I and & an arbitrary interior
point of G. Then the Laplace’s equation 48=0 has a solution

“2% log r(x, &) ~u(x, &) +v(x, £), (n=2),
1)) B, &) = 1
(7’2——2)60,,72_”06’ Su(x, $)+10g7(x, & v(x, &), (n>2),

defined for x, & in G, where u, v are holomorphic with respect to x,¢, and #(¢, &)
=1. See [1].
Let &; and &, be two interior points given in G.
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Putting
h=2(x, &) — 2(x, £2),
we have
4dh =0 in G—&—¢&,.
We shall say that a form « is regular harmonic in a domain D if da =0 and ga =0
in D. Then we have
LEMMA. There exists 1-form e possessing the following properties :
e is regular havmonic in M — & — &
and ,
e=dh+f in G—§& —§&
where f is a regular harmonic 1-from in G.
Proof. By the general existence theorem shown in [1] it is sufficient to prove

that dkaG=jBG* dh=0 for the surface BG of a geodesic sphere G.

For an arbitrary function g
d+dg= —%ddg= —*A4g.

Hence if g is harmonic in a domain D and its first derivatives are continuous in
D =D+BD, then

jan*dngpd*dg=JD— *dg=0.
Applying the above to dk, d=(x, &) and dZ(x, &),
we have j * dh=j xdE(x, &) —j S dE(x, &)

BG BGY BGy
where Gj, G5 are geodesic spheres of the center &, & and of the radius & respectively.

Moreover we can verify that

lim wd5(x, &) =-—1, i=1,2.
520 BGgi)

Hence jBG* dh=0, q.e.d. [See the proof of Theorem 2 in [4]].

Now we consider the periods of ¢ along loops which do not pass through
the points & and &,. Since ¢ is closed, the periods of e depend only on homology
classes of loops in M. Let 7;(G=1,--, Ry be a base for 1-cycles of M. Then
by the theorem of de Rham there exists harmonic 1-form e’ such that

Lie =J7ie’, G=1,,Rp.

Let P, be a fixed point in MM and P an arbitrary point in .
Put

o) =" -,

then the periods of ¢(P) on every loops are always zero. Hence ¢(P) is an one
valued function defined in M. From the construction of ¢ we have
THEOREM 1. For arbitvary two points & and &, given in a small subdomain
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G, theve exists a harmonic function ¢ such that
dop=0 in M—E& — &,
and in a neighbourhood of &; (i=1, 2)

5 “(n—lzm, 7 (x, EQuitlog r(x, €) rvitw;,  (n>2),
@ p(x) = 1
l — o g r(x, &) cuitv;, , (n=2),

where u;, v; and w; ave holomorphic functions of x, and u;(&;)=1.

2. Relations between the number of stational points and the topological
structure of IN.

From now on let us assume that all stational points are non-degenerate.
Then in a suitable coordinate system, the Taylor’s expansion of ¢ at every stational
point becomes
3 e(x)=C+(—x3— - —22+2% 4+ - +22)+X ().

Hence the stational point x=0 is isolated, and since M is closed, the number of
stational points is finite. )

Suppose »=0 and take a sufficiently small positive number §. Then the closed
subdomain G; given by the inequality ¢(x) =< C+ 4§ is homeomorphic with a sphere.
Using maximum principle for ¢, we see that ¢ is the constant C+4§ in Gs. By
[1], ¢ is holomorphic in M—&;—&,. Therefore ¢ would be identically the constant
C+4, contrary to (2) of Theorem 1. Hence v = 1.

Similarly we have » = n—1.

Now let us consider the equipotential surface U = C and denote it by Uc. If
U¢ has no stational point, U is an orientable (#z—1)-dimensional manifold.

Change C from +oo to —oo, Then Uc moves in M but the topological struc-
ture of Ug changes only when Uc passes the stational points of ¢.

The case of #=2. In this case (3) becomes

4 o(x) =C—x3+x5+X(x).
Let ¢ be a sufficiently small positive number. Then in a neighbourhood V of the
stational point x=0, Uc,; are hyperbolas and U¢ is two straight lines. If Uc
passes no stational point, Uc¢ cosists of some loops, and the number of the loops
increases by 1 or decreases by 1 whenever Uc passes a stational point. Suppose
(P, Q;;i=1,-,g j=1,---g’} is the complete set of all stational points such
that the number of the loops increases by 1 when Uc passes P; and decreases by
1 when U¢ passes ;. And if C is sufficiently large, by (2) U.c consists of one loops.
Hence we have g=g’. Moreover we can assume without loss of generality
that o(P,) > ¢(@;) for i, j=1,--,g Take C so that o(P,) >C> ¢(Q,) for
i, j=1,,g.
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Put
5) M(a, b)={Pla = ¢(P) =b}
then M = M(C, o0) +M (=00, C)

where M (C, ) and M(~oo, C) are homeomorphic to a sphere with g holes.
Hence we have

THEOREM 2. If all stational points of ¢ arve non-degenerate, then the number
of these points is equal to twice the genus of M.

The case of #=3. In thiscase » of (3)is2or 1. Let Py, -, P, be all stational
points at which »=2 and @y, --,Q, all stational points at which v =1. Then
in a neighbourhood of P;, Uc changes from a hyperboloid of two sheets to a hyper-
boloid of one sheet, and in a neighbourhood of @;, Uc changes from a hyperboloid
of one sheet to a hyperboloid of two sheets. Thus we see easily that the genus
of a connected component of Uc increases by 1 or decreases by 1 according as the
component passes point P; or @;. Moreover if C is sufficiently large, then by
(2), Uyc is homeomorphic with a sphere, and hence g = g’.

We may assume without loss of generality that ¢(P;) > ¢(@Q)), ¢, j=1,-, 4
Then similarly to (5) we have
©) M =M, o) +M(—00, C)
where M (C, o) and M (—oo0, C) are homeomorphic with a closed subdomain
bounded by a surface of genus g in E3 Thus we have

TrreoreM 3. If all stational points of ¢ are non-degenervate, then the number g
of these points is even. Take two closed domains bounded by a surface of genus
g/2 in E3. Then M is obtained from these two domains by identifying their boun-
daries by a homeomovphism.
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