Maximum principle for harmonic functions in Riemannian manifolds

By Hirosi Yamasuge

(Received Nov. 9, 1956)

Let \mathfrak{M} be an n-dimensional analytic Riemannian manifold with a positive-definite metric $d s^{2}=g_{i k} d x^{i} d x^{k}$ where $g_{i k}\left(x_{1}, \cdots, x_{n}\right)$ are holomorphic functions of x_{1}, \cdots, x_{n}.

The "Laplacian" is defined by

$$
\Delta=d \delta+\delta d
$$

Theorem 1. Let $r(x, \xi)$ be the geodesic distance between x and ξ, and ω_{n} the surface area of the n-dimensional unit sphere. Then for every point ξ_{0} in \mathfrak{M}, the Laplace's eqation $\Delta \Xi=0$ has an elementary solution

$$
\Xi(x, \xi)= \begin{cases}-\frac{1}{2 \pi} \log r(x, \xi) \cdot u(x, \xi)+v(x, \xi), & (n=2) \\ \frac{1}{(n-2) \omega_{n}} \cdot r^{2-n}(x, \xi) \cdot u(x, \xi)+\log r(x, \xi) \cdot v(x, \xi), & (n>2)\end{cases}
$$

defined for x, ξ in a certain neighbourhood of ξ_{0}, where r, u and v are holomorphic with respect to x, ξ, and $u(\xi, \xi)=1$.

Proof. We shall expand u and v in Ξ in formal power series

$$
\begin{aligned}
& u=m\left\{1+\sum_{\nu=1}^{\infty} r^{2 \nu} u_{\nu}\right\} \\
& v=m \sum_{v=0}^{\infty} r^{2 v} v_{v}
\end{aligned}
$$

and dethrmine m, u and v so that $\Delta \Xi=0$, then we can show that these series converge absolutely and uniformly in a certain domain. See [1].

Lemma (Green's Formura). For C^{2}-functions φ, ψ

$$
(\varphi, \Delta \psi)_{G}-(\Delta \varphi, \psi)_{G}=\int_{B G}^{*}(\psi d \varphi-\varphi d \psi)
$$

where G is a subdomain of \mathfrak{M} with the regular boundary $B G$ and $*$ is the adjoint operator.

$$
\begin{array}{ll}
\text { Proof. } \quad & (\varphi, \Delta \psi)_{G}-(\psi, \Delta \varphi)_{G} \\
= & (\varphi, \delta d)_{G}-(\psi, \delta d \varphi)_{G} \\
= & \int_{G}(\varphi \cdot * \delta d \psi-\psi \cdot * \delta d \varphi) .
\end{array}
$$

Using
(1)

$$
\delta \alpha=(-1)^{n p+n+1} * d * \alpha \text { and } \quad * * \alpha=(-1)^{p n+p} \alpha
$$

for every p-from α, we have

$$
(\varphi, \Delta \psi)_{G}-(\psi, \Delta \varphi)_{G}=\int_{G}(-\varphi \cdot d * d \psi+\psi \cdot d * d \varphi) .
$$

On the other hand we have

$$
\begin{aligned}
& \int_{B G} *(\psi d \varphi-\varphi d \psi) \\
= & \int_{G} d *(\psi d \varphi-\varphi d \psi) \\
= & \int_{G}(\psi \cdot d * d \varphi-\varphi \cdot d * d \varphi) .
\end{aligned}
$$

Hence the Lemma is proved.
A function is said to be harmonic in G if it satisfies the Laplace's equation at all points of G.

Theorem 2. If φ is harmonic in G and its first derivatives are continuous in $\bar{G}=G+B G$ and $\Xi(x, \xi)$ is defined for x, ξ lying in G. Then for ξ in $G \varphi(\xi)$ can be represented as

$$
\varphi(\xi)=-\int_{B G} *(\varphi d \Xi-\Xi d \varphi)
$$

Proof Let $S(C)$ be the set of all points satisfying the inequality $\Xi(x, \xi) \leqq C$, where C is a sufficiently large positive number.

Putting $G^{\prime}=G-S(C)$ and using Green's formula we have

$$
\begin{aligned}
& \int_{B(G-S(C))} *(\varphi d \Xi-\Xi d \varphi) \\
& =(\Xi, \Delta \varphi)_{G^{\prime}}-(\Delta \Xi, \varphi)_{G^{\prime}} \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int_{B G} *(\varphi d \Xi-\Xi d \varphi)=\int_{B S(C)} *(\varphi d \Xi-\Xi d \varphi) \tag{2}
\end{equation*}
$$

Since Ξ is the constant C on $B S(C)$,

$$
\int_{B S(C)} * \Xi d \varphi=C \int_{B S(C)} * d \varphi=C \int_{S(C)} d * d \varphi
$$

Using (1) we have $d * d \varphi=-* \delta d \varphi=-* \Delta \varphi=0$.
Hence

$$
\begin{equation*}
\int_{B S(C)} * \Xi d \varphi=0 \tag{3}
\end{equation*}
$$

Let G_{δ} be a geodesic shpere which has the radius δ and the center ξ. Taking δ so small that G_{δ} is cantained in $S(C)$, then we have

$$
\begin{equation*}
\int_{B\left(S(C)-G_{\delta}\right)} * d \Xi=\int_{S(C)-G_{\delta}} d * d \Xi=0 \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{B S(C)} * d \Xi=\int_{B G_{S}} * d \Xi \tag{4}
\end{equation*}
$$

We introduce on $B G_{\delta}$ a coordinate system (y).
Then an arbitrary point x in the neighbourhnnd of $B G_{\delta}$ is uniquely determined by $r(x, \xi)$ and the coordinates $\left(y_{1}, \cdots, y_{n-1}\right)$ of the intersection of the geodesic between x and ξ with the surface $B G_{\delta}$.

We use therefore

$$
x_{1}=r, x_{2}=y_{1}, \cdots, x_{n}=y_{n-1}
$$

as a coordinate system in the neighbourhood of $B G_{\delta}$. Then for arbitrary function f we have

$$
* d f=\frac{\partial f}{\partial r} * d r+\frac{\partial f}{\partial y_{k}} * d y^{k}
$$

Since $d r=0$ on $B G_{\delta}$,
We have $\quad * d y^{k}=0$ on $B G_{s}$.
Hence we have $* d f=\frac{\partial f}{\partial r} * d r$ on $B G$.
By Theorem 1 an elementary caluculation shows that

$$
* d \Xi=\left\{\begin{array}{ll}
-\frac{1}{\omega_{n}} r^{1-n} u * d r+h r^{2-n} * d r, & (n>2) \tag{5}\\
-\frac{1}{2 \pi} \frac{u}{r} * d r+\left(-\frac{1}{2 \pi} \log r \frac{\partial u}{\partial r}+\frac{\partial v}{\partial r}\right) * d r, & (n=2)
\end{array} \quad \text { on } B G_{\delta}\right.
$$

where $h(x)$ is continuous on $B G_{\delta}$.
For an arbitrary point P on $B G_{\delta}$ we can choose coordinates (y) so that r, y_{1}, \cdots, y_{n-1} may be a ortho-normal coordinate system at point P. Then we have

$$
* d r=d y^{1} \cdots d y^{n-1}=d S
$$

where $d S$ is the surface element of $B G_{\delta}$.
Using $\lim _{\delta \rightarrow 0} \frac{1}{\delta^{n-1}} \int_{B G_{\delta}} d S=\omega_{n}, \lim _{x \rightarrow \xi} u(x, \xi)=1$ and (5)
we have easily

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{B G_{\delta}} * d \Xi=-1 \tag{6}
\end{equation*}
$$

By (2), (3) we have

$$
\int_{B G} *(\varphi d \Xi-\Xi d \varphi)=\int_{B S(\mathcal{C})} * \varphi d \Xi,
$$

and by (4), (6)

$$
\begin{align*}
\lim _{C \rightarrow \infty} \int_{B S(C)} * \varphi d \Xi & =\varphi(\xi) \lim _{C \rightarrow \infty} \int_{B S(C)} * d \Xi \\
& =\varphi(\xi) \lim _{\delta \rightarrow 0} \int_{B G_{\delta}} * d \Xi \\
& =-\varphi(\xi),
\end{align*}
$$

Now we shall put $G=S(C)$ in Theorem 2, then by (3) we have
Corollary. If φ is harmonic in $S(C)$ and continuous in $\bar{S}=S+B S$, then $\varphi(\xi)$ can be writen as

$$
\varphi(\xi)=-\int_{B S(C)} \varphi(x) * d \Xi(x, \xi) .
$$

Let (z) be a coordinate system on $B S(C)$. Then we may use $-\Xi, z_{1}, \cdots, z_{n-1}$ as a coordinate system in the neighbourhood of $B S(C)$. Then we have

$$
* d \Xi=-d z^{1} \cdot \cdots \cdot d z^{n-1}=-a d S, \quad a>0
$$

where $d S$ is the surface element of $B S(C)$.
Using (4) and (6) we see that

$$
\int_{B S(C)} a d S=1
$$

and hence by the corollary of Theorem 2 we have
Theorem 3. If φ is harmonic in $S(C)$, then $\varphi(\xi)$ can be written as

$$
\varphi(\xi)=\int_{B S(C)} a \varphi d S
$$

where $a>0$ and $\int_{B S(C)} a d S=1$.
Theorem 4 (Maximum Principl). If a function φ is not constant and harmonic in a bounded domain G and continuous in $\bar{G}=G+B G$ where $B G$ is the boundary of G. Then the maxismum and minimum of φ in \bar{G} are attained at points of $B G$.

Proof. Since \bar{G} is compact and f is continuous in \bar{G}, there exists a point ξ at which f takes its maximum. Suppose that ξ is in G. By [1] φ is holomorphic in G, hence if φ is a constant in a neighbourhood of ξ, then φ would be identically the constant in G, contrary to our assumption. Therefore in an arbitrary neigbourhood of ξ, exists a point x_{0} such that $\varphi\left(x_{0}\right)<\varphi(\xi)$, hence in a sufficiently small neighbourhnnd of $x_{0}, \varphi(x)<\varphi(\xi)$. Hence putting $\Xi\left(x_{0}, \xi\right)=C$ and using Theorem 3 for $\varphi(\xi)$, we have

$$
\varphi(\xi)=\int_{B S(C)} a \varphi d S<\int_{B S(C)} a \varphi(\xi) d S=\varphi(\xi) \int_{B S(C)} a d S=\varphi(\xi) .
$$

This is contradictory. Hence ξ is on $B G$. Similary the points at which φ takes its minimum are on $B G$.
q.e.d.

Corollary. If a function is harmonic in the whole of a compact manifold \mathfrak{M}, then it must be a constant.

References

[1] K. Kodaira, Harmonic fields in Riemanniam manifolds, Annals of Mathematics, vol. 50 (1949).
[2] G. de Rham and K. Kodaira, Harmonic Integrals, Mimeographed Notes, Institute for Advanced Study, 1950.

