Reduced join and Whitehead product

By Hirosi Toda

(Received Sept. 30, 1956)

Introduction

Barratt and Hilton [1]* proved the formula

 $E^{n+1}\alpha \circ E^{p+1}\beta = (-1)^{(p+m)(q+n)}E^{m+1}\beta \circ E^{q+1}\alpha$

for $\alpha \in \pi_{p+1}(S^{m+1})$ and $\beta \in \pi_{q+1}(S^{n+1})$, by making use of the reduced join operation " \ll ". Then the element

 $E^{n}\alpha \circ E^{p}\beta - (-1)^{(p+m)(q+n)}E^{m}\beta \circ E^{q}\alpha$

is in the kernel of the Freudenthal suspension homomorphism $E: \pi_{p+q+1}(S^{m+n+1}) \longrightarrow \pi_{p+q+2}(S^{m+n+2})$ which is closely related with the Whitehead product.

We prove here the following formula

 $E^n \alpha \circ E^p \beta - (-1)^{(p+m)(q+n)} E^m \beta \circ E^q \alpha = \pm [\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n} H \alpha \circ E^p H \beta$ under some conditions. This formula will be applied, in the next paper, to prove the non-existence of mappings: $S^{31} \longrightarrow S^{16}$ of the Hopf invariant 1.

1. Reduced join and preliminaries

In the following, for each space X we fix a base point $x_0 \in X$. When X is a cell complex, we take a vertex v_0 of X as a basepoint, and when X is the unit sphere

 $S^{n} = \{ (t_{1}, \cdots, t_{n+1}) | t_{1}^{2} + \cdots + t_{n+1}^{2} = 1 \}$

of dimension *n* we take a point $e_0 = (-1, 0, \dots, 0)$ as the base point.

Consider two spaces X and Y with base points $x_0 \in X$ and $y_0 \in Y$. Let $X \lor Y$ denote the subspace

 $X \times y_0 \cup x_0 \times Y$

of $X \times Y$. A space Z, with a basepoint z_0 , is called *a reduced join* of X and Y if there exists a mapping

 $\phi : (X \times Y, X \lor Y) \longrightarrow (Z, z_0)$

which maps $X \times Y - X \vee Y = (X - x_0) \times (Y - y_0)$ homeomorphically onto $Z - z_0$, and we denote that

 $Z = X \bigotimes Y$ and $\phi(x, y) = x \bigotimes y$.

As is easily seen, the spaces $(X \otimes Y) \otimes Z$ and $X \otimes (Y \otimes Z)$ are naturally homeomorphic, and we denote these spaces by the same symbol $X \otimes Y \otimes Z$.

For two mappings

 $f: (X, x_0) \longrightarrow (X', x'_0) \text{ and } g: (Y, y_0) \longrightarrow (Y', y'_0),$

^{*} Numbers in bracket refer to the references at the end of the paper.

we define their reduced join

 $f \otimes g : X \otimes Y \longrightarrow X' \otimes Y'$

by setting

 $(f \otimes g)(x \otimes y) = (f \otimes g)(\phi(x, y)) = \phi'(f(x), g(y)) = f(x) \otimes g(y)$

for $x \in X$ and $y \in Y$, where ϕ and ϕ' are shrinking maps defining the reduced joins $X \bigotimes Y$ and $X' \bigotimes Y'$. The following formulas are easily verified:

 $(1\cdot 1), i)$ $(f \otimes g) \otimes h = f \otimes (g \otimes h),$

ii) $(f' \circ f) \bigotimes (g' \circ g) = (f' \bigotimes g') \circ (f \bigotimes g),$

iii) $\sigma' \circ (f \bigotimes g) = (g \bigotimes f) \circ \sigma,$

where $\sigma: X \otimes Y \longrightarrow Y \otimes X$ and $\sigma': X' \otimes Y' \longrightarrow Y' \otimes X'$ are homeomorphisms given by $\sigma(x \otimes y) = y \otimes x$ and $\sigma'(x' \otimes y') = y' \otimes x'$.

Denote by V^{n+1} the cube bounded by S^n , i.e.,

 $V^{n+1} = \{ (t_1, \cdots, t_{n+1}) \mid t_1^2 + \cdots + t_{n+1}^2 \leq 1 \}.$

Define a mapping

(1.2) $d'_n: (S^n \times V^1, S^n \times e_0 \cup e_0 \times V^1) \longrightarrow (V^{n+1}, e_0)$

which maps $(S^n - e_0) \times (V^1 - e_0)$ homeomorphically onto $V^{n+1} - e_0$ by the formula $d'_n((t_1, \dots, t_{n+1}), t) = ((t_1+1)(t+1)/2 - 1, t_2(t+1)/2, \dots, t_{n+1}(t+1)/2),$

 $(t_1, \dots, t_{n+1}) \in S^n, t \in V^1$. The mapping d'_n shows that $V^{n+1} = S^n \bigotimes V^1$.

Denote by E_{+}^{n+1} and E_{-}^{n+1} the upper and lower hemi-spheres of S^{n+1} , i.e., $E_{+}^{n+1} = \{(t_1, \dots, t_{n+2}) \in S^{n+1} | t_{n+2} \ge 0\}$ and $E_{-}^{n+1} = \{(t_1, \dots, t_{n+2}) \in S^{n+1} | t_{n+2} \le 0\}$. Define a mapping

 $(1\cdot 2)^{\cdot} \qquad d_n: \ (S^n \times V^1, \ S^n \times S^0 \cup e_0 \times V^1) \longrightarrow (S^{n+1}, \ e_0)$ by setting

$$d_n(x,t) = \begin{cases} p_+(d'_n(x, 1-2t)) & \text{for } 0 \le t \le 1, \\ p_-(d'_n(x, 2t+1)) & \text{for } -1 \le t \le 0, \end{cases}$$

where $p_+: V^{n+1} \longrightarrow E_+^{n+1}$ and $p_-: V^{n+1} \longrightarrow E_-^{n+1}$ are the projections (homeomorphisms) along the (n+2)-axis. The mapping d_n maps $(S^n - e_0) \times (V^1 - S^0)$ homeomorphically onto $S^{n+1} - e_0$.

Define a mapping

 $(1\cdot 3) \qquad \qquad \phi_{m,n}: \ (S^m \times S^n, S^m \vee S^n) \longrightarrow (S^{m+n}, e_0)$ inductively by the formulas

$$\begin{split} \phi_{m,0}(x,1) &= x, \quad \phi_{m,0}(x,-1) = e_0, \\ \phi_{m,n}(x, d_{n-1}(y,t)) &= d_{m+n-1}(\phi_{m,n-1}(x,y),t), \end{split}$$

 $x \in S^m$, $y \in S^{n-1}$, $n \ge 1$, $t \in V^1$. As is easily seen, $\phi_{m,n}$ maps $S^m \times S^n - S^m \vee S^n$ homeomorphically onto $S^{m+n} - e_0$. Then

$$S^{m+n} = S^m \bigotimes S^n$$

with respect to the mapping $\phi_{m,n}$. From the definition of $\phi_{m,n}$, the equality

$$\phi_{l+m,n}(\phi_{l,m}(u, x), y)) = \phi_{l,m+n}(u, \phi_{m,n}(x, y))$$

is verified directly. Then we have the identification

 $(S^{l} \otimes S^{m}) \otimes S^{n} = S^{l} \otimes (S^{m} \otimes S^{n}) \quad (=S^{l+m+n}).$

Define a homeomorphism

Then the degree of $\sigma_{m,n}$ is $(-1)^{mn}$.

(1.4) $\sigma_{m,n}: S^{m+n} \longrightarrow S^{m+n}$ by setting $\sigma_{m,n}(\phi_{m,n}(x, y)) = \phi_{n,m}(y, x), x \in S^{m}, y \in S^{n}$. LEMMA (1.4)'. The degree of $\sigma_{m,n}$ is $(-1)^{mn}$.

Proof. Let E^r denote a cube such that $E^r = \{(t_1, \dots, t_r) \mid -1 \leq t_i \leq 1, i=1, \dots, r\}$. Define a mapping $\varphi_r : E^r \longrightarrow S^r$ inductively by setting $\varphi_1(t) = d_0(1, t)$ and $\varphi_r(t_1, \dots, t_{r-1}, t_r) = d_{r-1}(\varphi_{r-1}(t_1, \dots, t_{r-1}), t_r)$, then φ_r shrinks the boundary of E^r to a single point e_0 . Let $\sigma : E^{m+n} \longrightarrow E^{m+n}$ be a homeomorphism given by the permutation $\sigma(t_1, \dots, t_m, t_{m+1}, \dots, t_{m+n}) = (t_{m+1}, \dots, t_{m+n}, t_1, \dots, t_m)$, then it is well known that the degree of σ is $(-1)^{mn}$. It is calculated directly that

 $\sigma_{m,n}\circ\varphi_{m+n}=\varphi_{m+n}\circ\sigma$.

q. e. d.

If f_t and g_t are homotopies fixing the base points, then $f_t \otimes g_t$ is a homotopy. Therefore, if $f: (S^{\beta}, e_0) \longrightarrow (X, x_0)$ and $g: (S^{q}, e_0) \longrightarrow (Y, y_0)$ represent $\alpha \in \pi_{\beta}(X)$ and $\beta \in \pi_q(Y)$ respectively, then $f \otimes g: (S^{m+n}, e_0) \longrightarrow (X \otimes Y, x_0 \otimes y_0)$ belongs an element $\alpha \otimes \beta \in \pi_{m+n}(X \otimes Y)$, called the *reduced join* of α and β , which depends only on α and β . From (1.1), we have that

(1.5), i) $(\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma),$ ii) $(f'_* \alpha) \otimes (g'_* \beta) = (f' \otimes g')_* (\alpha \otimes \beta),$ iii) $\sigma'_* (\alpha \otimes \beta) = (-1)^{pq} (\beta \otimes \alpha).$

The reduced join $X \bigotimes S^1$ is called *a suspension* of *X*, and we denote that $X \bigotimes S^1 = EX$.

Let $\phi: X \times S^1 \longrightarrow X \otimes S^1 = EX$ be the mapping which defines the reduced product $X \otimes S^1$. Define a mapping

 $(1 \cdot 6) \qquad \qquad d_X: (X \times V^1, \ X \times S^0 \cup x_0 \times V^1) \longrightarrow (EX, \ x_0)$

by the formula $d_X(x,t) = \phi(x, d_0(1,t))$, then d_X maps $(X-x_0) \times (V^{\frac{1}{2}} - S^0)$ homeomorphically onto $EX-x_0$. Conversely a suspension EX of X is defined by a shrinking map d_X of (1.6). We denote

 $C_{+}(X) = d_{X}(X \times [0, 1])$ and $C_{-}X = d_{X}(X \times [-1, 0])$

and identify each point x of X with a point $d_X(x, 0)$ of EX. Then C_+X and C_-X are contractible to the point $x_0 = x_0 \otimes e_0$ and $C_+X \cap C_-X = X$. With respect to the mapping d_n , we have $S^{n+1} = ES^n = S^n \otimes S^1$, $E_+^{n+1} = C_+S^n$ and $E_-^{n+1} = C_-S^n$.

For a mapping $f: (X, x_0) \longrightarrow (Y, y_0)$, let

$$Ef: EX \longrightarrow EY$$

denote the mapping $f \gg i_1$ and it is called a suspension of f. The mapping $Ef = f \gg i_1$ is also defined by the formula

$$Ef(d_X(x,t)) = d_Y(f(x),t),$$

 $x \in X$, $t \in V^1$. Obviously, $Ef(C_+X) \subset C_+Y$, $Ef(C_-X) \subset C_-Y$ and $Ef \mid X=f$, and conversely, a mapping satisfying these three conditions is homotopic to Ef.

We denote that

 $X \rtimes S^n = E^n X.$ Since $E^n X = X \times S^n = X \times S^{n-1} \times S^1 = E(X \times S^{n-1}) = E(E^{n-1}X)$, the space $E^n X$ is an *n*fold suspension of X. Also we denote by $E^n f$ the n-fold suspension of f, then $E^n f = f \otimes i_n$ for the indentity i_n of S^n . For the class $\alpha \in \pi_p(X)$ of a mapping $f: (S^p, e_0) \longrightarrow$ (X, x_0) , the *n*-fold suspension $E^n \alpha \in \pi_{p+n}(E^n X)$ is the class of $E^n f$. Then $E^n \alpha = \alpha \bigotimes_{i_n} (E \alpha = E^1 \alpha = \alpha \bigotimes_{i_1})$ for the class i_n of i_n . The following formula is verified in [1]. **Proposition** (1.7) $\alpha \otimes \beta = (-1)^{p(q+n)} E^n \alpha \circ E^p \beta = (-1)^{m(q+n)} E^m \beta \circ E^q \alpha$ for $\alpha \in \pi_{\mathfrak{p}}(S^m)$ and $\beta \in \pi_{\mathfrak{q}}(S^n)$. *Proof.* First we remark that $(-i_{r+s}) \circ E^s \gamma = -E^s \gamma$ for $s \ge 1$ and for $\gamma \in \pi_k(S^r)$. Then $\iota_s \rtimes \Upsilon = (-1)^{rs} \sigma_{k,s,*}(\Upsilon \rtimes \iota_s) = (-1)^{s(k+r)} E^s \Upsilon$ by (1.5), iii) and (1.4)'. $\alpha \otimes \beta = (\alpha \circ z_b) \otimes (z_n \circ \beta)$ By (1.5), ii), $= (\alpha \times i_n) \circ (i_n \times \beta)$ $= (-1)^{p(q+n)} E^n \alpha \circ E^p \beta.$ Also $\alpha \bigotimes \beta = (\iota_m \circ \alpha) \bigotimes (\beta \circ \iota_a)$ $= (\iota_m \otimes \beta) \circ (\alpha \otimes \iota_a)$ $= (-1)^{m(q+n)} E^m \beta \circ E^q \alpha$ q. e. d. Define a homeomorphism $\tau_{m,n}: (V^m \times V^n, V^m \times S^{n-1} \cup S^{m-1} \times V^n) \longrightarrow (V^{m+n}, S^{m+n-1})$ (1.8)by the formula $\tau_{m,n}((t_1,\cdots,t_m),(s_1,\cdots,s_n)) = (\lambda t_1,\cdots,\lambda t_m,\lambda s_1,\cdots,\lambda s_n),$ where $\lambda = \{ Max. (t_1^2 + \dots + t_m^2, s_1^2 + \dots + s_n^2) / (t_1^2 + \dots + t_m^2 + s_1^2 + \dots + s_n^2) \}^{\frac{1}{2}}$ For a mapping $f: S^m \times S^n \longrightarrow X$, a Hopf construction $\overline{f}: S^{m+n+1} \longrightarrow EX$ of f is a mapping which satisfies the following conditions. $\overline{f}(\tau_{m+1,n+1}(V^{m+1}\times S^n))\subset C_+X,$ $\overline{f}(\tau_{m+1,n+1}(S^m \times V^{n+1})) \subset C_-X,$ (1.9) $\overline{f} \circ \tau_{m+1,n+1} \mid S^m \times S^n = f$ It is easy to see that $(1\cdot9)'$ mappings which satisfy $(1\cdot9)$ are homotopic to each other. LEMMA (1.10) Let $\overline{\phi}_{m,n}: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a Hopf construction of the mapping $\phi_{m,n}$ of (1.3). Then the degree of $\overline{\phi}_{m,n}$ is $(-1)^n$. $Proof. \quad \text{Set } F^{m+1}_+ = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1} \mid t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1}_- \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- = \{ (t_1, \cdots, t_{m+2}) \in S^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_{m+2} \ge 1/\sqrt{2} \} \text{ and } F^{m+1}_- : t_$

Proof. Set $F_{+}^{m+1} = \{(t_1, \dots, t_{m+2}) \in S^{m+1} | t_{m+2} \ge 1/\sqrt{2}\}$ and $F_{-}^{m+1} = \{(t_1, \dots, t_{m+2}) \in S^{m+1} | t_{m+2} \le 1/\sqrt{2}\}$. $\overline{\phi}_{m,0}$ maps F_{+}^{m+1} and F_{-}^{m+1} into E_{+}^{m+1} and E_{-}^{m+1} respectively and the restriction $\overline{\phi}_{m,0} | F_{+}^{m+1} \cap F_{-}^{m+1}$ is given by $\overline{\phi}_{m,0}(t_1, \dots, t_{m+1}, 1/\sqrt{2}) = (\sqrt{2} t_1, \dots, \sqrt{2} t_{m+1}, 0)$. Then $\overline{\phi}_{m,0}$ is homotopic to the identity. Now we chose a Hopf

construction $\overline{\phi}_{m,n}$ of $\phi_{m,n}$ such that

(1.10)'
$$\overline{\phi}_{m,n}(\tau_{m+1,n+1}(d'_m(x,t),y)) = d_{m+n}(\phi_{m,n}(x,y), (1-t)/2), \\ \overline{\phi}_{m,n}(\tau_{m+1,n+1}(x,d'_n(y,t))) = d_{m+n}(\phi_{m,n}(x,y), (t-1)/2).$$

Let $\sigma: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a homeomorphism given by $\sigma(d_{m+n}(d_{m+n-1}(z,t_1),t_2)) = d_{m+n}(d_{m+n-1}(z,t_2),t_1)$, then $\sigma = i_{m+n-1} \otimes \sigma_{1,1}$ and its degree is -1. Since $E_{+}^{m+n+1} = \tau_{m+1,n+1}(V^{m+1} \times E_{+}^n \cup S^m \times d'_n(E_{+}^n \times V^1))$ and $\phi_{m,n}(S^m \times E_{+}^n) \subset E_{+}^{m+n}$, we have that $(\sigma \circ \overline{\phi}_{m,n}) (E_{+}^{m+n+1}) \subset \sigma(d_{m+n}(E_{+}^{m+n} \times V^1)) = E_{+}^{m+n+1}$. Similarly $(\sigma \circ \overline{\phi}_{m,n}) (E_{-}^{m+n+1}) \subset E_{-}^{m+n+1}$. Since $\tau_{m+1,n} = \tau_{m+1,n+1} | V^{m+1} \times V^n, \phi_{m,n-1} = \phi_{m,n} | S^m \times S^{n-1}$ and since $d'_{n-1} = d'_n | S^{n-1} \times V^1$, we have that $\overline{\phi}_{m,n-1} = (\sigma \circ \overline{\phi}_{m,n}) | S^{m+n}$. Therefore $\sigma \circ \overline{\phi}_{m,n}$ is homotopic to the suspension $E\overline{\phi}_{m,n-1}$. If the degree of $\overline{\phi}_{m,n-1}$ is $(-1)^{n-1}$, the degree of $\overline{\phi}_{m,n}$ is $(-1)^n$. Then $(1 \cdot 10)$ is proved by the induction.

PROPOSITION (1.11), i). Let $\overline{\gamma}$ be an element of $\pi_{p+q+1}(EX)$ which is represented by a Hopf construction $\overline{h}: S^{p+q+1} \longrightarrow EX$ of a mapping $h: (S^{p} \times S^{q}, S^{p} \vee S^{q}) \longrightarrow (X, x_{0})$. Let γ' be an element of $\pi_{p+q}(X)$ which is represented by a mapping $h': S^{p+q} \longrightarrow X$ such that $h' \circ \phi_{p,q} = h$. Then $\overline{\gamma} = (-1)^{q} E \gamma'$.

ii) For the cace that $X = K \ll L$ and $h(x, y) = f(x) \ll g(y) = \phi(f(x), g(y))$ for representatives f and g of $a \in \pi_p(X)$ and $\beta \in \pi_q(Y)$ respectively, we have that $\overline{\gamma} = (-1)^q E(a \ll \beta)$.

Proof. Consider a mapping $H = Eh' \circ \overline{\phi}_{p,q}$, then H is a Hopf construction of h. By (1.9)' and (1.10), we have that $\overline{\gamma} = (-1)^q E \gamma'$. In ii), $\gamma' = \alpha \not\otimes \beta$. q. e. d. Define a mapping

(1.12) $\psi_n : (V^n, S^{n-1}) \longrightarrow (S^n, e_0)$ by the formula

$$\psi_n(d_{n-1}'(x,t)) = d_{n-1}(x,t), \quad x \in S^{n-1}, \ t \in V^1,$$

then ψ_n maps $V^n - S^{n-1}$ homeomorphically onto $S^n - e_0$.

To consider homotopy groups $\pi_n(X, A)$ and $\pi_n(X)$, we take the orientations of the anti-images (V^n, S^{n-1}) and S^n such that the mapping ψ_n preserves the orientations. Then we remark that the following diagram is commutative:

(1.12)'
$$\begin{array}{c} \pi_{i}(V^{n}, S^{n-1}) \xrightarrow{\partial} \pi_{i-1}(S^{n-1}) \\ & \downarrow \psi_{n_{*}} E \\ \pi_{i}(S^{n}) . \vdash \end{array}$$

Consider mappings $f: (S^p, e_0) \longrightarrow (S^m, e_0)$ and $g: (S^p, e_0) \longrightarrow (S^n, e_0)$. Define extensions $F: V^{p+1} \longrightarrow V^{m+1}$ and $G: V^{q+1} \longrightarrow V^{n+1}$ of $f=F | S^p$ and $g=G | S^q$ respectively, by setting

$$E(d'_p(x,t)) = d'_m(f(x),t)$$
 and $G(d'_q(x,t)) = d'_n(g(x),t)$.

We define a join

$$f * g: S^{p+q+1} \longrightarrow S^{m+n+1}$$

of f and g by the formula

 $(f * g) (\tau_{p+1,q+1}(x, y)) = \tau_{m+1,n+1}(F(x), G(y)),$ then, for homotopies f_t and g_t , the join $f_t * g_t$ is also a homotopy. Let $\alpha \in \pi_p(S^m)$ and $\beta \in \pi_q(S^n)$ be the classes of f and g, then the class $\alpha * \beta \in \pi_{p+q+1}(S^{m+n+1})$ of f * g is independent of representatives f and g. This operation "*" coincides with that of [9]. We have the formula (cf. [1])

(1.13) $\alpha * \beta = (-1)^{q+n} E(\alpha \bigotimes \beta).$

Proof. It is easily verified that

$$\overline{\phi}_{m,n}\circ(f*g)=E(f\otimes g)\circ\overline{\phi}_{p,q}$$

for the Hopf constructions $\overline{\phi}_{m,n}$ and $\overline{\phi}_{p,q}$ defined by (1.10)'. Then by (1.10),

Combining this to (1.7), we have that

$$(1 \cdot 13)' \qquad \qquad \alpha * \beta = (-1)^{(p+1)(q+n)} E^{n+1} \alpha \circ E^{p+1} \beta$$

$$= (-1)^{(m+1)(q+n)} E^{m+1} \beta \circ E^{q+1} \alpha$$

for $\alpha \in \pi_p(S^m)$ and $\beta \in \pi_q(S^n)$.

For two mappings $f': (S^{m+1}, e_0) \longrightarrow (X, x_0)$ and $g': (S^{n+1}, e_0) \longrightarrow (X, x_0)$, we define their *Whitehead product*

$$[f', g']: S^{m+n+1} \longrightarrow X$$

by setting

$$[f',g'](\tau_{m+1,n+1}(x,y)) = \begin{cases} f'(\psi_{m+1}(x)), & (x,y) \in V^{m+1} \times S^n, \\ g'(\psi_{n+1}(y)), & (x,y) \in S^m \times V^{n+1}. \end{cases}$$

Let $\alpha' \in \pi_{m+1}(X)$ and $\beta' \in \pi_{n+1}(X)$ be the classes of f' and g' respectively, then the class $[\alpha', \beta'] \in \pi_{m+n+1}(X)$ of [f', g'] is independent of representatives f' and g'. From the definition of ψ_{r+1} , * and E, we have the formula

$$[f' \circ Ef, g' \circ Eg] = [f', g'] \circ (f * g).$$

Then by $(1 \cdot 13)'$ (cf. $(3 \cdot 59)$ of [9])

(1.14)
$$\begin{bmatrix} \alpha' \circ E\alpha, \ \beta' \circ E\beta \end{bmatrix} = \begin{bmatrix} \alpha', \ \beta' \end{bmatrix} \circ (\alpha * \beta)$$
$$= (-1)^{(p+1)(q+n)} \begin{bmatrix} \alpha', \ \beta' \end{bmatrix} \circ E^{n+1}\alpha \circ E^{p+1}\beta$$
$$= (-1)^{(m+1)(q+n)} \lceil \alpha', \ \beta' \rceil \circ E^{m+1}\beta \circ E^{q+1}\alpha.$$

 $\alpha' \in \pi_{m+1}(X), \ \beta' \in \pi_{n+1}(X), \ \alpha \in \pi_p(S^m), \ \beta \in \pi_q(S^n).$

A mapping

$$h: (S^{m+1} \times S^{n+1}, S^{m+1} \vee S^{n+1}) \longrightarrow (X, A)$$

is called to have a *type* (α, β) if $h | S^{m+1} \times e_0$ and $h | e_0 \times S^{n+1}$ represent α and β respectively. Let a mapping

$$H: (V^{m+n+2}, S^{m+n+1}) \longrightarrow (X, A)$$

be defined by the formula $H(\tau_{m+1,n+1}(x, y)) = h(\psi_{m+1}(x), \psi_{n+1}(y))$. Then we have easily

(1.15). $\partial \gamma = [\alpha, \beta]$ for the class $\gamma \in \pi_{m+n+2}(X, A)$ of H. In the case X = A, $[\alpha, \beta] = 0$ if and only if these exists a mapping $h: S^{m+1} \times S^{n+1} \longrightarrow X$ of type (α, β) .

Next we prove that

(1.16) a mapping $f_{m,n}$: $(V^{m+n}, S^{m+n-1}) \longrightarrow (S^{m+n}, e_0)$ which is given by the formula $f_{m,n}(\tau_{m,n}(x, y)) = \phi_{m,n}(\psi_m(x), \psi_n(y))$ is homotopic to ψ_{m+n} .

Proof. It is sufficient to prove that the composition $f_{m,n} \circ \psi_{m+n}^{-1} = f'_{m,n} : S^{m+n} \longrightarrow S^{m+n}$ is homotopic to the identity. Let $\rho_r : S^r \longrightarrow S^r$ be a permutation given by $\rho_r(t_1, \dots, t_{r-1}, t_r, t_{r+1}) = (t_1, \dots, t_{r-1}, t_r, t_r)$, then $\rho_r \circ \psi_r | V^{r-1} = \psi_{r-1}$. Since the degree of ρ_r is -1, the composition $(i_m \otimes \rho_n) \circ f'_{m,n} \circ \rho_{m+n}$ is homotopic to $f'_{m,n}$. On the other hand, $(i_m \otimes \rho_n) \circ f'_{m,n-1}$ maps E^{m+n}_+ and E^{m+n}_- into themselves respectively and coincides with $f'_{m,n-1}$ on S^{m+n-1} . Therefore $(i_m \otimes \rho_n) \circ f'_{m,n} \circ \rho_{m+n} \simeq f'_{m,n-1}$. This is true for n = 1 if we regard that $f'_{m,0}$ is the identity. By the induction, we have that $f'_{m,n}$ is homotopic to the identity.

Finally we prove the following lemma.

LEMMA (1.17) Let $\alpha \in \pi_m(X)$ be represented by a mapping $f: (S^m, e_0) \longrightarrow (X, x_0)$, and define mappings $F_1: S^{m+n+1} \longrightarrow X \otimes S^{n+1}$ and $F_2: S^{m+n+1} \longrightarrow S^{n+1} \otimes X$ by setting

$$\begin{split} F_1(\tau_{m+1,\,n+1}(x,\,y)) = &\begin{cases} f(x) \, \&\psi_{n+1}(y), & (x,\,y) \in S^m \times V^{n+1}, \\ x_0 \& e_0, & (x,\,y) \in V^{m+1} \times S^n, \end{cases} \\ F_2(\tau_{n+1,\,m+1}(x,\,y)) = &\begin{cases} e_0 \& x_0, & (x,\,y) \in S^n \times V^{m+1}, \\ \psi_{n+1}(x) \& f(y) & (x,\,y) \in V^{n+1} \times S^m, \end{cases} \end{split}$$

then F_1 and F_2 represent $(-1)^n(\alpha \otimes \iota_{n+1})$ and $-(\iota_{n+1} \otimes \alpha)$ respectively.

Proof. Define mappings k_1 and k_2 of S^{m+n+1} on itself by the formula

$$k_{1}(\tau_{m+1,n+1}(x,y)) = \begin{cases} \phi_{m,n+1}(x,\psi_{n+1}(y)), & (x,y) \in S^{m} \times V^{n+1}, \\ e_{0}, & (x,y) \in V^{m+1} \times S^{n}, \end{cases}$$
$$k_{2}(\tau_{n+1,m+1}(y,x)) = \begin{cases} e_{0}, & (y,x) \in S^{n} \times V^{m+1}, \\ \phi_{n+1,m}(\psi_{n+1}(y),x), & (y,x) \in V^{n+1} \times S^{m}. \end{cases}$$

Then $F_1 = (f \otimes i_{n+1}) \circ k_1$ and $F_2 = (i_{n+1} \otimes f) \circ k_2$. Therefore it is sufficient to prove that $(1 \cdot 17)'$ the degrees of k_1 and k_2 are $(-1)^n$ and -1 respectively. Let $\{x, y, t\}$ denote a point of S^{m+n+1} such that

$$\{x, y, t\} = \begin{cases} \tau_{m+1, n+1}(x, d'_n(y, 2t+1)) & \text{for } -1 \leq t \leq 0, \\ \tau_{m+1, n+1}(d'_n(x, -2t+1), y) & \text{for } 0 \leq t \leq 1, \end{cases}$$

 $x \in S^m$, $y \in S^n$, $t \in V^1$. Then $k_1(\{x, y, t\}) = \phi_{m, n+1}(x, d_n(y, 2t+1))$ for $-1 \leq t \leq 0$ and $k_1(\{x, y, t\}) = e_0$ for $0 \leq t \leq 1$. It is easy to see that k_1 is homotopic to a mapping k' which is given by $k'(\{x, y, t\}) = \phi_{m, n+1}(x, d_n(y, t)) = d_{m+n}(\phi_{m, n}(x, y), t)$. k' is a Hopf construction of the mapping $\phi_{m, n}$. Then the degree of k' is $(-1)^n$ by $(1 \cdot 10)$ and the degree of k_1 is $(-1)^n$. Also we denote by $\{y, x, t\}$ a point of S^{m+n+1} such that

$$\{y, x, t\} = \begin{cases} \tau_{n+1, m+1}(y, d'_m(x, 2t+1)) & \text{for } -1 \leq t \leq 0, \\ \tau_{n+1, m+1}(d'_n(y, -2t+1), x) & \text{for } 0 \leq t \leq 1. \end{cases}$$

Then $k_2(\{y, x, t\}) = e_0$ for $-1 \le t \le 0$ and $k_2(\{y, x, t\}) = \phi_{n+1, m}(d_n(y, -2t+1), x),$

Hirosi Toda

for $0 \leq t \leq 1$, and k_2 is homotopic to a mapping k'' which is given by $k''(\{y, x, t\}) = \phi_{n+1,m}(d_n(y, -t), x) = \sigma_{m,n+1}(\phi_{m,n+1}(x, d_n(y, -t))) = \sigma_{m,n+1}(d_{m+n}(\phi_{m,n}(x, y), -t)) = \sigma_{m,n+1}(d_{m+n}(\sigma_{n,m}(\phi_{n,m}(y, x)), -t)) = (\sigma_{m,n+1}\circ\rho)(d_{m+n}((\sigma_{n,m}\circ\phi_{n,m})(y, x), t))$, where ρ is a reflection giben by $\rho(d_{m+n}(z, t)) = d_{m+n}(z, -t)$. Then $\rho \circ \sigma_{n+1,m} \circ k'' = E\sigma_{n,m} \circ \overline{\phi}_{n,m}$ for a Hopf construction $\overline{\phi}_{n,m}$ of $\phi_{n,m}$ such that $\overline{\phi}_{n,m}(\{y, x, t\}) = d_{m+n}(\phi_{n,m}(y, x), t)$. Then the degree of k'' is $(-1)^{m+(n+1)m+nm+1} = -1$ by $(1 \cdot 10)$, and the degree of k_2 is -1.

2. Hopf invariant

In the following we suppose that each complex is finite and has only one vertex.

According to [3], we define the reduced product complex K_{∞} of K which is canonically imbedded in the loop-space $\mathcal{Q}(EK)$ of EK. A point of K_{∞} is represented by the product $x_1 \cdots x_k$ for some $x_1, \cdots, x_k \in K$, and the injection $K \subset \mathcal{Q}(EK)$ associates with a point x of K a loop $l_x : V^1 \longrightarrow EK$ given by $l_x(t) = d_K(x, t)$. The imbedding $\tilde{i} : K_{\infty} \longrightarrow \mathcal{Q}(EK)$ induces isomorphisms of the homotopy groups [3] [7] $(2 \cdot 1)$ $\tilde{i}_x : \pi_i(K_{\infty}) \approx \pi_i(\mathcal{Q}(EK))$.

For a mapping $f: (S^{i+1}, e_0) \longrightarrow (EK, u_0)$, we define a mapping $\Omega f: (S^i, e_0) \longrightarrow (\Omega(EK), u_0)$ by the formula

$$\mathcal{Q}f(x)(t) = f(d_i(x,t)),$$

 $x \in K, t \in V^1$. The correspondence $f \longrightarrow \Omega f$ induces an isomorphism

(2·2)
$$\mathcal{Q}: \pi_{i+1}(EK) \approx \pi_i(\mathcal{Q}(EK)).$$

Then we have that

(2.3) $E = (\mathcal{Q}^{-1} \circ \tilde{i}_*) \circ i_* : \pi_i(K) \longrightarrow \pi_i(K_\infty) \approx \pi_{i+1}(EK),$

that is to say, the suspension homomorphism E is equivalent to the injection homomorhism $i_*: \pi_i(K) \longrightarrow \pi_i(K_\infty)$. From the exact sequence for the pair (K_∞, K) , we have an exact sequence

$$(2\cdot 4) \qquad \cdots \longrightarrow \pi_i(K) \xrightarrow{E} \pi_{i+1}(EK) \xrightarrow{J} \pi_i(K_{\infty}, K) \xrightarrow{\partial} \pi_{i-1}(K) \longrightarrow \cdots,$$

where $J=j_*\circ \tilde{i}_*^{-1}\circ \mathcal{Q}$ for the injection homomorphism $j_*: \pi_i(K_\infty) \longrightarrow \pi_i(K_\infty, K)$. Define a mapping

$$h': (K_2, K) \longrightarrow (K \otimes K, u_0 \otimes u_0)$$

by setting

$$h'(x \cdot y) = x \rtimes y,$$

where $K_2 = \{x \cdot y \in K_\infty \mid x, y \in K\}$. Let

 $(2\cdot 5) h: (K_{\infty}, K) \longrightarrow ((K \otimes K)_{\infty}, u_0 \otimes u_0)$

be the *combinatorial extension* [3] of h'. Then h defines two generalizations of the Hopf invariant :

 $\begin{array}{ll} (2 \cdot 6), \ \mathbf{i}) & H' = (\mathcal{Q}^{-1} \circ \tilde{i}_*) \circ h_* \colon \pi_i(K_{\infty}, K) \longrightarrow \pi_i((K \otimes K)_{\infty}) \approx \pi_{i+1}(E(K \otimes K)) \ ; \\ \mathbf{i}) & H = H' \circ J = (\mathcal{Q}^{-1} \circ \tilde{i}_*) \circ h_* \circ (\tilde{i}_*^{-1} \circ \mathcal{Q}) \colon \pi_{i+1}(EK) \approx \pi_i(K_{\infty}) \longrightarrow \pi_i((K \otimes K)_{\infty}) \approx \pi_{i+1}(E(K \otimes K)). \end{array}$

The following proposition is proved without difficulties (cf. [2]).

PROPOSITION (2.7) If K is (r-1)-connected (r>1), then H' is an isomorphism for $i \leq 3r-2$ and a homomorphism onto for i=3r-1.

In the case $K=S^r$, we have that

PROPOSITION (2.8), i), if r is odd, then H' is an isomorphism for all i:

ii), if r is even, then H' is an isomorphism of the 2-components for all i.

For the proof, see [5] and [8].

For two mappings $f: (S^{\flat}, e_0) \longrightarrow (K, u_0)$ and $g: (S^q, e_0) \longrightarrow (K, u_0)$, define a mapping

$$\{f, g\} : (V^{p+q}, S^{p+q+1}) \longrightarrow (K_{\infty}, K)$$

by the formula

and

$$\{f,g\}(\tau_{p,q}(x,y)) = f(\psi_p(x)) \cdot g(\psi_q(y)), \qquad (x,y) \in V^p \times V^q.$$

Then the homotopy class of $\{f, g\}$ is an element $\{\alpha, \beta\} \in \pi_{p+q}(K_{\infty}, K)$ such that (2.9) $\partial \{\alpha, \beta\} = [\alpha, \beta]$

for the classes α and β of f and g respectively.

From the exactness of the sequence $(2\cdot 4)$, we have that

$$(2\cdot 10) E[\alpha,\beta] = 0$$

From (2.3), (2.6) and from the definition of the mappings, we have easily that (2.11) $H' \{\alpha, \beta\} = E(\alpha \otimes \beta).$

We introduce the following results of James from [4, Theorem (2.17)]. (2.12) An element γ of $\pi_{p+q+1}(EK)$ is represented by a Hopf construction of a mapping of a type (α, β) if and only if

$$\gamma \gamma = \{\alpha, \beta\}.$$

By (2·12) and (2·11),

 $(2\cdot 12)' \qquad \qquad H\Upsilon = E\left(\alpha \bigotimes \beta\right).$

In the case $K=S^r$, we have that

(2.13) if $i \leq 3r-2$, then an element Υ of $\pi_{i+1}(S^{r+1})$ is represented by a Hopf construction of a mapping $f: S^{i-r} \times S^r \longrightarrow S^r$ of a type (α, ι_r) where α is an element of $\pi_{i-r}(S^r)$ such that $E^{r+1}\alpha = H\Upsilon$. (See [10]).

Proof. Since $E^{r+1}: \pi_{i-r}(S^r) \longrightarrow \pi_{i+1}(S^{2r+1})$ is an isomorphism for $i-r \leq 2r-2$, there is an element Υ of $\pi_{i-r}(S^r)$ such that $E^{r+1}\alpha = H\Upsilon = E(\alpha \otimes \iota_r)$. By (2.7), $H'\{\alpha, \iota_r\} = E(\alpha \otimes \iota_r) = H\Upsilon = H'J\Upsilon$ implies that $\{\alpha, \iota_r\} = J\Upsilon$. Therefore Υ is represented by a Hopf construction of a mapping of the type (α, ι_r) , by (2.12). q. e. d.

3. Reduced join and Hopf construction

Let K and L be finite cell complexes with only vertices $u_0 = K^0$ and $v_0 = L^0$. Consider suspensions EK and EL of K and L, and let

$$d_K: (K \times V^1, K \times S^0 \cup u_0 \times V^1) \longrightarrow (EK, u_0)$$

$$d_I: (L \times V^1, L \times S^0 \cup v_0 \times V^1) \longrightarrow (EL, v_0)$$

be mappings defining the suspensions. Let

$$EK^* = EK \cup e^{p+2}$$
 and $EL^* = EL \cup e^{q+2}$

be cell complexes with characteristic maps

(3.1)
$$F: (V^{p+2}, S^{p+1}) \longrightarrow (EK^*, EK),$$

$$G: (V^{q+2}, S^{q+1}) \longrightarrow (EL^*, EL)$$

Let

 $\phi: (EK^* \times EL^*, EK^* \vee EL^*) \longrightarrow (EK^* \not \otimes EL^*, u_0 \not \otimes v_0)$

be a shrinking map defining the reduced join $EK^* \otimes EL^*$, then ϕ defines $EK \otimes EL^*$, $EK \otimes EL$, $K \otimes EL$, etc., and we denote that $\phi(x, y) = x \otimes y$ for points $x \in EK^*$ and $y \in EL^*$. Define subspaces M, M_+ , M_- and M_0 of $EK^* \otimes EL^*$ as follows:

 $M_+ = C_+ K \otimes EL^* \cup EK^* \otimes C_+ L, \qquad M_- = C_- K \otimes EL^* \cup EK^* \otimes C_- L,$

(3.2) $M = M_+ \cup M_- = EK \otimes EL^* \cup EK^* \otimes EL,$ $M_0 = M_+ \cap M_- = K \otimes EL^* \cup C_+ K \otimes C_- L \cup C_- K \otimes C_+ L \cup EK^* \otimes L.$

Consider a homeomorphism

 $\sigma: EK {\circledast} L \longrightarrow K {\circledast} EL$

given by the formula

(3.3) $\sigma(d_K(x, t) \otimes y) = x \otimes d_L(y, -t), \qquad x \in K, \ y \in L, \ t \in X^1,$

then σ is identical on $K \otimes L = EK \otimes L \cap K \otimes EL$. Attaching the subcomplex $EK \otimes L$ of $EK^* \otimes L$ to the subcomplex $K \otimes EL$ of $K \otimes EL^*$ by the homeomorphism σ , we obtain a complex

 $(3\cdot3)' N = K \otimes EL^* \cup \bar{\sigma} (EK^* \otimes L)$

where $\bar{\sigma}$ is a homeomorphism into N such that $\bar{\sigma} \mid EK \otimes L = \sigma$. Let

 $(3\cdot 4) \quad \psi_K : (EK^*, EK) \longrightarrow (S^{p+2}, e_0)$, and $\psi_L : (EL^*, EL) \longrightarrow (S^{q+2}, e_0)$ be mappings such that $\psi_K \circ F = \psi_{p+2}$ and $\psi_L \circ G = \psi_{q+2}$, then ψ_K and ψ_L skrink *EK* and *EL* to a single point e_0 . Define mappings

$$P_1 | K \otimes EL^* = i_K \otimes \psi_L, \qquad P_1(\bar{\sigma}(EK^* \otimes L)) = e_0 \otimes v_0,$$

$$P_2 \circ \bar{\sigma} | EK^* \otimes L = \psi_K \otimes i_L, \qquad P_2(K \otimes EK^*) = u_0 \otimes e_0,$$

$$F_2 \circ o \mid EK \quad \ll L = \Psi_K \ll i_L, \qquad \qquad F_2(K \ll EK) = u_0$$

where i_K and i_L are the identities of K and L.

First we prove the following lemma.

LEMMA (3.6). There exists a mapping

 $\chi: (M, M_+, M_-) \longrightarrow (EN, C_+N, C_-N)$

such that $\chi \mid K \otimes EL^* = identity$ and $\chi \mid EK^* \otimes L = \overline{\sigma}$. Such mappings χ are homotopic to each other and homotopy equivalences.

Proof. First consider the case $K = L = S^0$, then $EK \otimes EL = S^1 \otimes S^1 = ES^1 = S^2$ which is divided into four parts $C_+(E_+^1)$, $C_+(E_-^1)$, $C_-(E_+^1)$ and $C_-(E_-^1)$ by two circles $S^1 = S^1 \otimes S^0$ and $S_0^1 = S^0 \otimes S^1$. It is easy to see that S_0^1 is a deformation retract of $C_+(E_-^1) \cup C_-(E_+^1)$ and we may chose the retraction such that S^1 is mapped onto S_0^1 by the homeomorphism σ . Since $EK \otimes EL$ is naturally homeomorphic to $K \otimes L \otimes S^2$ such that $C_+K \otimes C_-L \cup C_-K \otimes C_+L$ corresponds to $(K \otimes L) \otimes (C_-(E_+^1) \cup C_+(E_-^1))$, the above deformation gives a deformation (retraction) of $C_+K \otimes C_-L \cup C_-K \otimes C_+L$ onto $K \otimes EL$ such that $EK \otimes L$ is mapped by the homeomorphism σ . This deformation shows that there exists a mapping of M_0 onto N carrying $K \otimes EL^* \cup EK^* \otimes L$ as in (3.6) and such mappings are homotopic to each other. Next since C_+N and C_-N are contractible to a single point, the above mapping of M_0 onto N is extended over the whole of M such that M_+ an M_- are mapped into C_+N and C_-N respectively, and such extensions are homotopic to each other. It is easy to see that this mapping induces isomorphisms of the homology groups. Since M and EN are simply connected, the mapping is an homotopy equivalence by Theorem 3 of [11].

Now suppose that

(3.7) $[\alpha', \alpha''] = 0 \text{ and } [\beta', \beta''] = 0$ for $\alpha' \in \pi_{p'}(K)$, $\alpha'' \in \pi_{p''}(K)$, $\beta' \in \pi_{q'}(L)$ and $\beta'' \in \pi_{q''}(L)$. By (1.15), there exist mappings $f: (S^{p'} \times S^{p''}, e_0 \times e_0) \longrightarrow (K, u_0)$

and

$$g: (S^{q'} \times S^{q''}, e_0 \times e_0) \longrightarrow (L, v_0)$$

of the types (α', α'') and (β', β'') respectively. Set p = p' + p'' and q = q' + q'', and let

$$(3\cdot7)' \qquad \qquad \overline{f}: S^{p+1} \longrightarrow EK \quad and \quad \overline{g}: S^{q+1} \longrightarrow EL$$

be *Hopf constructions* of f and g respectively. We construct complexes EK^* and EL^* such that

$$F \mid S^{p+1} = \overline{f}$$
 and $G \mid S^{q+1} = \overline{g}$

in (3·1).

THEOREM (3.8). Let $\alpha \in \pi_{p+1}(EK)$ and $\beta \in \pi_{q+1}(EL)$ be the classes of \overline{f} and \overline{g} respectively, then there exists a Hopf construction

$$H:\,S^{{p+q+3}}{\longrightarrow} EN$$

of a mapping

$$h: (S^{p'+q'+1} \times S^{p'+q''+1}, S^{p'+q'+1} \vee S^{p''+q''+1}) \longrightarrow (N, E(K \otimes L))$$

of a type
$$((-1)^{q'+1}E(\alpha' \otimes \beta'), (-1)^{q''}E(\alpha'' \otimes \beta''))$$
 such that the compositions
 $EP_1 \circ H: S^{p+q+3} \longrightarrow E(K \otimes S^{q+2}) = K \otimes S^{q+3} = E^{q+2}(EK)$

and

$$EP_2 \circ H : S^{p+q+1} \longrightarrow E(S^{p+2} \otimes L) = S^{p+2} \otimes EL$$

represent $(-1)^{p''q'+p''+q'}E^{q+2}\alpha$ and $(-1)^{p''q'+p''+q'}\iota_{p+2} \otimes \beta$ respectively.

Proof. Consider a mapping

$$H_0: S^{p+q+3} \longrightarrow EN$$

which is defined by the formula

$$H_0(\tau_{p+2,q+2}(x,y)) = \chi(F(x) \rtimes G(y))$$

for $(x, y) \in S^{p+1} \times V^{q+2} \cup V^{p+2} \times S^{q+1}$. Compare the composition $EP_1 \circ \chi : M \longrightarrow EN \longrightarrow K \bigotimes S^{q+3}$ and a mapping

Hirosi Toda

 $Q_1: M \longrightarrow K \otimes S^{q+3} = E(K \otimes S^{q+2})$

which is given by setting

and
$$\begin{aligned} Q_1(EK^* \not\otimes EL) &= u_0 \not\otimes e_0 \\ Q_1 \mid EK \not\otimes EL^* &= (i_K \circ \sigma_{1, q+2}) \circ (i_{EK} \not\otimes \psi_L). \end{aligned}$$

The mappings $EP_1 \circ \chi$ and Q_1 map M_+ and M_- into $C_+(K \bigotimes S^{q+2})$ and $C_-(K \bigotimes S^{q+2})$ respectively and they coincide on M_0 . Therefore the mappings $EP_1 \circ \chi$ and Q_1 are homotopic to each other. Then the composition $(i_K \bigotimes \sigma_{1,q+2})^{-1} \circ EP_1 \circ H_0$ is homotopic to a mapping $R_1: S^{p+q+3} \longrightarrow EK \bigotimes S^{q+2}$ which is given by

$$R_{1}(\tau_{p+2,q+2}(x,y)) = \begin{cases} \overline{f}(x) \otimes \psi_{q+2}(y) & \text{for } (x,y) \in S^{p+1} \times V^{q+2}, \\ u_{0} \otimes e_{0} & \text{for } (x,y) \in V^{p+2} \times S^{q+1}. \end{cases}$$

By (1.17), R_1 represents $(-1)^{q+1} \alpha \otimes \iota_{q+2} = (-1)^{q+1} E^{q+2} \alpha$, and $EP_1 \circ H_0$ represents $(i_K \otimes \sigma_{1,q+2})_*((-1)^{q+1} E^{q+2} \alpha)$. Since $\sigma_{1,q+2}$ is homotopic to a reduced join $i_1 \otimes \lambda$ for a mapping $\lambda: S^{q+2} \longrightarrow S^{q+2}$ of the degree $(-1)^{q+2}$, we have from (1.5) that

$$(i_K \otimes \sigma_{1,q+2})_* ((-1)^{q+1} E^{q+2} \alpha) = (i_{EK} \otimes \lambda)_* ((-1)^{q+1} \alpha \otimes \iota_{q+2})$$
$$= (-1)^{q+1} \alpha \otimes ((-1)^{q+2} \iota_{q+2}) = -E^{q+2} \alpha.$$

Next we compare the composition $EP_2 \circ \chi$ and a mapping

 $Q_2: M \longrightarrow S^{p+2} \otimes EL$

which is given by setting

$$Q_2 \mid EK^* \otimes EL = \psi_K \otimes i_{EL}$$
$$Q_2(EK \otimes EL^*) = e_0 \otimes v_0.$$

The mappings $EP_2 \circ \chi$ and Q_2 map M_+ and M_- into $C_+(S^{p+2} \rtimes L)$ and $C_-(S^{p+2} \rtimes L)$ respectively and they coincide on M_0 . Therefore the mappings $EP_2 \circ \chi$ and Q_2 are homotopic to each other. The composition $EP_2 \circ H_0$ is homotopic to a mapping R_2 which is given by

$$R_{2}(\tau_{p+2, q+2}(x, y)) = \begin{cases} e_{0} \otimes v_{0} & \text{for } (x, y) \in S^{p+1} \times V^{q+2}, \\ \psi_{p+2}(x) \otimes \overline{g}(y) & \text{for } (x, y) \in V^{p+2} \times S^{q+1}. \end{cases}$$

By (1.17), R_2 represents $-(\iota_{p+2} \bigotimes \beta)$. Therefore $EP_2 \circ H_0$ represents $-(\iota_{p+2} \bigotimes \beta)$. Now define a homeomorphism

$$\zeta: (V^{p+q+4}, S^{p+q+3}) \longrightarrow (V^{p+q+4}, S^{p+q+3})$$

by the formula

and

$$\begin{split} \zeta \left(\tau_{p'+q'+2, p''+q''+2}(\tau_{p'+1, q'+1}(x', y'), \tau_{p''+1, q''+1}(x'', y'')) \right) \\ &= \tau_{p+2, q+2}(\tau_{p'+1, p''+1}(x', x''), \tau_{q'+1, q''+1}(y', y'')) \\ \text{then the degree of } \zeta \text{ is } (-1)^{(p''+1)(q'+1)}. \quad \text{We set} \\ H = H_0 \circ \zeta, \end{split}$$

then $EP_1 \circ H$ and $EP_2 \circ H$ represent $(-1)^{p''q'+p''+q'}E^{q+2}\alpha$ and $(-1)^{p''q'+p''+q''}\iota_{p+2} \otimes \beta$ respectively. It is verified directly that H maps $\tau_{p'+q'+2}, p''+q''+2}(V^{p'+q'+2} \times S^{p''+q''+1})$ and $\tau_{p'+q'+2}, p''+q''+2}(S^{p'+q'+1} \times V^{p''+q''+2})$ into C_+N and C_-N respectively Then H is a Hopf construction of a mapping

$$h : S^{p'+q'+1} \times S^{p''+q''+1} \longrightarrow N$$

which is given by $h(x, y) = H(\tau_{p'+q'+1}, p''+q''+1}(x, y))$. Let $h_1: S^{p'+q'+1} \longrightarrow E(K \otimes L)$ and $h_2: S^{p''+q''+1} \longrightarrow E(K \otimes L)$ be mappings given by

26

and

$$h_1(x) = h(x, \tau_{p''+1, q''+1}(e_0, e_0))$$

$$h_2(y) = h(\tau_{p'+1, q'+1}(e_0, e_0), y).$$

The mapping $h_1 \circ \tau_{p'+1,q'+1}$ maps $V^{p'+1} \times S^{q'}$ and $S^{p'} \times V^{q'+1}$ into $C_-(K \otimes L)$ and $C_+(K \otimes L)$ respectively and its restriction on $S^{p'} \times S^{q'}$ is given by $h_1(x', y') = f(x', e_0) \otimes g(y', e_0)$. Let $\rho : E(K \otimes L) \longrightarrow E(K \otimes L)$ be a reflection given by $\rho(d_{K \otimes L}(z, t)) = d_{K \otimes L}(z, -t)$. Then by $(1 \cdot 11)$, ii), $\rho \circ h_1$ represents $(-1)^{q'}E(\alpha' \otimes \beta')$, and h_1 represents $(-1)^{q'+1} E(\alpha' \otimes \beta')$. The mapping $h_2 \circ \tau_{q''+1,q''+1}$ maps $V^{p''+1} \times S^{q''}$ and $S^{q''} \times V^{q''+1}$ into $C_+(K \otimes L)$ and $C_-(K \otimes L)$ respectively and its restriction on $S^{p''} \times S^{q''}$ is given by $h_2(x'', y'') = f(e_0, x'') \otimes g(e_0, y'')$. By $(1 \cdot 11)$, ii), h_2 represents $(-1)^{q''}E(\alpha' \otimes \beta')$, $(-1)^{q''}E(\alpha'' \otimes \beta'')$.

By (1.15),

COROLLARY (3.9) if $[\alpha', \alpha''] = 0$ and $[\beta', \beta''] = 0$, then $i_*[E(\alpha' \otimes \beta'), E(\alpha'' \otimes \beta'')] = 0$ for the injection homomorphism $i_*: \pi_{p+q+1}(E(K \otimes L)) \longrightarrow \pi_{p+q+1}(N)$.

By (2·12)',

COROLLARY (3.10) for the class $\Upsilon \in \pi_{p+q+3}(EN)$ of the mapping H of (3.8), we have that $H\Upsilon = (-1)^{q+1}E(E(\alpha' \otimes \beta') \otimes E(\alpha'' \otimes \beta'')).$

4. Whitehead product

Here we consider the case that

Then

 $K = S^{m} \text{ and } L = S^{n}.$ $EK^{*} = S^{m+1} \cup e^{p+2}, \qquad EL^{*} = S^{n+1} \cup e^{q+2},$ $N = K \bigotimes EL^{*} \cup \overline{\sigma}(EK^{*} \bigotimes L) = S^{m+n+1} \cup e^{p+n+2} \cup e^{m+q+2},$ $P_{1}: N \longrightarrow K \bigotimes S^{q+1} = S^{m+q+2}, \quad P_{2}: N \longrightarrow S^{p+2} \bigotimes L = S^{p+n+2}.$

The homeomorphism $\sigma: S^{m+n+1} \longrightarrow S^{m+n+1}$ of (3·3) is given by $\sigma(\phi_{m+1,n}(d_m(x,t), y)) = \phi_{m,n+1}(x, d_n(y, -t))$. Then we have that

(4.1) the degree of σ is $(-1)^{n+1}$.

Proof. Let $\rho: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a reflection given by $\rho(d_{m+n}(z,t)) = d_{m+n}(z, -t)$. It is calculated directly that $\sigma = \rho \circ E \sigma_{n,m} \circ \sigma_{m+1,n}$. Then the degree of σ is $(-1)^{1+mn+(m+1)n} = (-1)^{n+1}$.

Define characteristic maps

and $\mu_{1}: (V^{m+q+2}, S^{m+q+1}) \longrightarrow (N, S^{m+n+1})$ $\mu_{2}: (V^{p+n+2}, S^{p+n+1}) \longrightarrow (N, S^{m+n+1})$

of e^{m+q+2} and e^{p+n+2} respectively by the formulas

$$\mu_1(\tau_{m,\,b+2}(x,\,y)) = \psi_m(x) \otimes G(y),$$

and
$$\mu_2(\tau_{p+2,n}(x',y')) = \overline{\sigma}(F(x') \otimes \psi_n(y'))$$

(4.2) then $\mu_1 | S^{m+q+1}$ and $\mu_2 | S^{p+n+1}$ represent $-\iota_m \otimes \beta$ and $\alpha \otimes \iota_n$ respectively. Proof. Since

q. e. d.

Hirosi Toda

$$\mu_1(\tau_{m,q+2}(x, y)) = \begin{cases} e_0, & \text{for } (x, y) \in S^{m-1} \times V^{q+2}, \\ \psi_m(x) \otimes \bar{g}(y) & \text{for } (x, y) \in V^m \times S^{q+1}, \end{cases}$$

 $\mu_1 | S^{m+q+2}$ represents $-\iota_m \bigotimes \beta$ by (1.17). Similarly, from (1.17), we have that $\overline{\sigma}^{-1} \circ \mu_2 | S^{p+n+1}$ represents $(-1)^{n-1} \alpha \bigotimes \iota_n$. By (4.1), $\mu_2 | S^{p+n+1}$ represents $\alpha \bigotimes \iota_n$. q. e. d. Next we have that

(4.3) the compositions $P_1 \circ \mu_1$ and $P_2 \circ \mu_2$ are homotopic to ψ_{m+q+2} and ψ_{p+n+2} respectively.

Proof. We have that $(P_1 \circ \mu_1) (\tau_{m,q+2}(x, y)) = \phi_{m,q+2}(\psi_m(x), \psi_{q+2}(y))$ and $(P_2 \circ \mu_2)(\tau_{p+2,n}(x', y')) = \phi_{p+2,n}(\psi_{p+2}(x'), \psi_n(y'))$. Then (4.3) follows from (1.16) directly. q. e. d.

THEOREM (4.4) Let $\alpha \in \pi_{p+1}(S^{m+1})$ and $\beta \in \pi_{q+1}(S^{n+1})$ be represented by Hopf constructions of mappings of the types (α', α'') and (β', β'') respectively. Then there exists an element ν of $\pi_{p+q+2}(N, S^{m+n+1})$ such that

$$\begin{split} E\left(P_{1_{*}}(\nu)\right) &= (-1)^{p''q'+q+1}E^{q+2}\alpha, \\ E\left(P_{2_{*}}(\nu)\right) &= (-1)^{p''q'+q+1}(\iota_{p+2} \not\otimes \beta) \\ \partial \nu &= (-1)^{q+1}\left[E(\alpha' \not\otimes \beta'), \ E(\alpha'' \not\otimes \beta'')\right]. \end{split}$$

and

Proof. Let
$$\psi : (V^{p+q+2}, S^{p+q+1}) \longrightarrow (S^{p'+q'+1} \times S^{p''+q''+1}, S^{p''+q''+1} \vee S^{p''+q''+1})$$
 be
a mapping given by setting $\psi(\tau_{p'+q'+1}, p''+q''+1}(x, y)) = (\psi_{p'+q'+1}(x), \psi_{p''+q''+1}(y))$
and let ν be the class of the composition $h \circ \psi$, where h is the mapping of the
theorem (3.8). Since h has the type $((-1)^{q'+1}E(a' \not \approx \beta'), (-1)^{q''}E(a'' \not \approx \beta''))$, we
have from (1.15) that $\partial \nu = (-1)^{q+1}[E(a' \not \approx \beta'), E(a'' \not \approx \beta'')].$

Consider a mapping $h': S^{p+q+2} \longrightarrow S^{m+q+2}$ such that $P_1 \circ h = h' \circ \phi_{p'+q'+1, p''+q''+1}$. By (1.16), $\phi_{p'+q'+1, p''+q''+1} \circ \psi$ is homotopic to ψ_{p+q+2} , then h' represents $P_{1_*}(\nu)$. Since $EP_1 \circ H$ is a Hopf construction of $P_1 \circ h$, we have from (1.11), i), that $EP_1 \circ H$ represents $(-1)^{p''+q''+1}E(P_{1_*}(\nu))$. Then by (3.8) $E(p_{1_*}(\nu)) = (-1)^{p''q'+p''+q'+q''+q''+q''+1}$ $E^{p+2}\alpha = (-1)^{p''q'+q+1}E^{q+2}\alpha$. Similarly we have that $E(P_2^*(\nu)) = (-1)^{p''q'+p''+q''+q''+q''+1}$ $\iota_{p+2} \gg \beta = (-1)^{p''q'+q+1}\iota_{p+2} \gg \beta$.

PROPOSITION (4.5). Let $\alpha \in \pi_{p+1}(S^{m+1})$ and $\beta \in \pi_{q+1}(S^{n+1})$ be the classes of Hopf constructions of mappings of the types (α', α'') and (β', β'') respectively Suppose that $p \leq 2m+n-1$ and $q \leq m+2n-1$, then we have the formula

$$\begin{split} E^{n}\alpha \circ E^{p}\beta - (-1)^{(p+m)(q+n)}E^{m}\beta \circ E^{q}\alpha \\ &= (-1)^{p''q'+p(q+n)}\left[E(\alpha' \otimes \beta'), E(\alpha'' \otimes \beta'')\right] \\ &= (-1)^{(p+m)n+p''+q''}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2n}H\alpha \circ E^{p}H\beta \,. \end{split}$$

Proof. First we may suppose that $p \ge m$ and $q \ge n$ without the loss of generalities. Since $p \le 2m+n-1$, we have $p+q+2 \le 2m+n+q+1 < 2(m+q+2)-2$ and hence the suspension homomorphism $E: \pi_{p+q+2}(S^{m+q+2}) \longrightarrow \pi_{p+q+3}(S^{m+q+3})$ is an isomorphism. Then from (4.4) we have that

$$P_{1_*}(\nu) = (-1)^{p''q'+q+1} E^{q+1} \alpha .$$

Similarly, from the condition $q \leq m+2n-1$ and from (4.4), we have that

$$P_{2_{*}}(\nu) = (-1)^{p''q'+q+1}E^{-1}(\ell_{p+2} \otimes \beta)$$

= $(-1)^{p''q'+q+1}E^{-1}((-1)^{(p+2)(q+n)}E^{p+2}\beta)$

$$= (-1)^{p''q'+q+1+p(q+n)} E^{p+1} \beta$$

Let $P: N \longrightarrow S^{m+q+2} \vee S^{p+n+2}$ be a mapping defined by setting $P(x) = (P_1(x), P_2(x))$, then P shrinks S^{m+n+1} to a single point. Since S^{m+n+1} is (m+n)-connected and (N, S^{m+n+1}) is Min. (m+q+1, p+n+1)-connected, we have from Theorem II of [2] that the induced homomorphism

 $P_*: \pi_i(N, S^{m+n+1}) \longrightarrow \pi_i(S^{m+q+2} \lor S^{p+n+2})$

is an isomorphism for $i \leq \text{Min.}(m+q, p+n) + m+n+1$. In particular, when i = p+q+2, P_* is an isomorphism and the group $\pi_{p+q+2}(S^{m+q+2} \vee S^{p+n+2})$ is isomorphic to $\pi_{p+q+2}(S^{m+q+2}) + \pi_{p+q+2}(S^{p+n+2})$. Then the correspondence $\Upsilon \longrightarrow P_{1_*}(\Upsilon) + P_{2_*}(\Upsilon)$ induces an isomorphism

$$\pi_{p+q+2}(N, S^{m+n+1}) \approx \pi_{p+q+2}(S^{m+q+2}) + \pi_{p+q+2}(S^{p+n+2})$$

In the diagram

$$\pi_{p+q+2}(V^{m+q+2}, S^{m+q+1}) \xrightarrow{\mu_{1*}} \pi_{p+q+2}(N, S^{m+n+1})$$

$$\downarrow \partial \qquad \qquad \qquad \qquad \downarrow P_{1*}$$

$$\pi_{p+q+1}(S^{m+q+1}) \xrightarrow{E} \pi_{p+q+2}(S^{m+q+2})$$

the commutativity holds, from (4·3) and from the commutativity of (1·12)'. Then $P_{1_*}(\nu) = E((-1)^{p''q'+q+1}E^q\alpha) = P_{1_*}(\mu_{1_*}(\partial^{-1}((-1)^{p''q'+q+1}E^q\alpha)))$. Similarly $P_{2_*}(\nu) = P_{2_*}(\mu_{2_*}(\partial^{-1}((-1)^{p''q'+q+1+p(q+n)}E^p\beta)))$. Therefore $(-1)^{p''q'+q+1}\nu = \mu_{1_*}(\partial^{-1}(E^q\alpha)) + (-1)^{p(q+n)}\mu_{2_*}(\partial^{-1}(E^p\beta)).$

From the naturality of the boundary operator ∂ , we have that

$$\begin{split} (-1)^{p''q'+q+1}\partial\nu &= \partial\left(\mu_{1_{\ast}}(\partial^{-1}E^{q}\alpha)\right) + (-1)^{p(q+n)}\partial\left(\mu_{2_{\ast}}(\partial^{-1}E^{p}\beta)\right) \\ &= \mu_{1_{\ast}}(E^{q}\alpha) + (-1)^{p(q+n)}\mu_{2_{\ast}}(E^{p}\beta) \\ &= (-\iota_{m} \bigotimes \beta) \circ E^{q}\alpha + (-1)^{p(q+n)}(\alpha \bigotimes \iota_{n}) \circ E^{p}\beta \\ &= (-1)^{m(q+n)+1}E^{m}\beta \circ E^{q}\alpha + (-1)^{p(q+n)}E^{n}\alpha \circ E^{p}\beta \,, \end{split}$$

by (4·2) and (1·7). Then by (4·4),

$$E^{n} \alpha \circ E^{p} \beta - (-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha = (-1)^{p''q'+q+1+p(q+n)} \partial \nu$$
$$= (-1)^{p''q'+p(q+n)} [E(\alpha' \otimes \beta'), E(\alpha'' \otimes \beta'')].$$

By (1.14), (1.13), iii) of (1.5), (1.7) and by (2.12)',

$$\begin{bmatrix} E(\alpha' \otimes \beta'), E(\alpha'' \otimes \beta'') \end{bmatrix} = [\iota_{m+n+1}, \iota_{m+n+1}] \circ ((\alpha' \otimes \beta') * (\alpha'' \otimes \beta'')) \\ = (-1)^{p''+q''+2n} [\iota_{m+n+1}, \iota_{m+n+1}] \circ E(\alpha' \otimes \beta' \otimes \alpha'' \otimes \beta'') \\ = (-1)^{p''+q''+p''q'+mn} [\iota_{m+n+1}, \iota_{m+n+1}] \circ E(\alpha' \otimes \alpha'' \otimes \beta' \otimes \beta'') \\ = (-1)^{p''+q''+p''q'+mn+p(q+2n)} [\iota_{m+n+1}, \iota_{m+n+1}] E^{n+1} (\alpha' \otimes \alpha'') \circ E^{p+1} (\beta' \otimes \beta'') \\ = (-1)^{p''q'+p(q+n)+(p+m)n+p''+q''} [\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n} H\alpha \circ E^{p} H\beta.$$

Consequently

$$E^{n} \alpha \circ E^{p} \beta - (-1)^{(m+n)(q+n)} E^{m} \beta \circ E^{q} \alpha$$

= $(-1)^{(p+m)n+p''+q''} [\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n} H \alpha \circ E^{p} H \beta.$

q. e. d.

THEOREM (4.6). Suppose that $p \leq Min. (n, m-1) + 2m-1$ and $q \leq Min. (m, n-1) + 2n-1$ for $\alpha \in \pi_{p+1}(S^{m+1})$ and $\beta \in \pi_{q+1}(S^{n+1})$, then

Hirosi TODA

$$E^{n}\alpha \circ E^{p}\beta - (-1)^{(p+m)(q+n)}E^{m}\beta \circ E^{q}\alpha$$

= $[\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n}H\alpha \circ E^{p}H\beta$
= $-[\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n}H\alpha \circ E^{p}H\beta$.

Proof. Since $p \leq 3m-2$ and $q \leq 3n-2$, α and β are represented by Hopf constructions of some mappings by (2.13). Then the proposition (4.5) is applied in this case, and it is sufficient to prove that $2[\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n}H\alpha \circ E^{\beta}H\beta = 0$. If *m* is even, then $2H\alpha = 0$ by Theorem 5.42 of [9]. Also if *n* is even, $2H\beta = 0$. If *m* and *n* are odd, then m+n+1 is odd and $2[\iota_{m+n+1}, \iota_{m+n+1}] = 0$ by the anti-commutativity of the Whitehead product operation. In all cases $2[\iota_{m+n+1}, \iota_{m+n+1}] \circ E^{2n}H\alpha \circ E^{2n}H\beta = 0$.

References

- M. G. Barratt and P. J. Hilton, On join operations in homotopy groups, Proc. London Math. Soc. (3), 3 (1953), 430-445.
- [2] A. L. Blakers and W. S. Massey, The homotopy groups of a triad II, Ann. of Math., 55 (1952), 192-201.
- [3] I. M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
- [4] I. M. James, On the suspension triad, Ann. of Math., 63 (1956), 191-247.
- [5] I. M. James, On the suspension triad of a sphere, Ann. of Math., 63 (1956), 407-429.
- [6] H. Toda, Le produit de Whitehead et l'invariant de Hopf, Comptes rendus, 241 (1955), 849-850.
- [7] H. Toda, Complex of the standard paths and n-ad homotopy groups, this Journal, 6 (1955), \cdot 101-120.
- [8] H. Toda, On the double suspension E^2 , this Jouanal, 7 (1956), 103-145.
- [9] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
- [10] G. W. Whitehead, On the Freudenthal theorems, Ann. of Math., 57 (1953), 209-238.
- [11] J. H. C. Whitehead, Combinatorial homotopy, Bull. Amer. Math. Soc., 55 (1947) 213-245.

30