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Introduction

Barratt and Hilton [1]* proved the formula
Erig °E1’+1,3 — (___ 1) (p+m)(q+n)Em+1I8°Eq4 1y
for a € 7y,1(S™) and B € 7,.1(S"™), by making use of the reduced join operation
“x”. Then the element
E”aOE"’,@— (—1)(1’+”’>("+”>E’”/90E”a
is in the kernel of the Freudenthal suspension homomorphism E: 7,441 (S"")—s
Tprgr2(S™ %) which is closely related with the Whitehead product.
We prove here the following formula
EraoE?B— (—1) @M@ EmRo Flg = 4 [ tpynss, iminii]o E*Hao E?HfS
under some conditions. This formula will be applied, in the next paper, to prove
the non-existence of mappings: S3 —> S16 of the Hopf invariant 1.

1. Reduced join and preliminaries

In the following, for each space X we fix a base point %€ X. When X is a
cell complex, we take a vertex v, of X as a basepoint, and when X is the unit
sphere

S*={(ty, -, tuD) | B+ - F 124=1}
of dimension » we take a point ¢,=(—1,0,---,0) as the base point.

Consider two spaces X and Y with base points x,€ X and y,€ Y. Let XVY

denote the subspace

XXyoUxeX Y
of Xx Y. A space Z, with a basepoint z,, is called a reduced join of X and Y if
there exists a mapping

b (XXY, XVY) —(Z, z)
which maps XX Y—-XV Y= (X-x,) X (Y—y,) homeomorphically onto Z—z,, and
we denote that

Z=XXY and dx, ) =xXy.

As is easily seen, the spaces (XX Y)%Z and X% (YXZ) are naturally homeo-
morphic, and we denote these spaces by the same symbol X% YXZ.

For two mappings

f1 (X, %) — (X, xp) and g : (Y, yo) — (Y7, 30,

% Numbers in bracket refer to the references at the end of the paper.
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we define their reduced join
fXg: XxY—X'%XY’
by setting
(%) (x%y) = (X8 (b (x, ) =d"(f(x), g())=f(x)xg(y)
for x€ X and y€ Y, where ¢ and ¢ are shrinking maps defining the reduced joins
X%xY and X'xXY" . The following formulas are easily verified :

1-D,D (f%8) Xh=%(gxh),
i) (FfI)%(gg)=(f"%g)(FXQ,
iii) o' (X8 =(gX[f)eo,

whereo: XXY— YXXand ¢": X'X Y’ —> Y'X X’ are homeomorphisms given
by a(x%Xy)=yXx and ¢"(x"Xy") =y Xx".
Denote by V*™ the cube bounded by S? i.e.,
yrit= {(tl y "t ,tn+1) [ t%‘f‘ o+ t;21+1§1}-
Define a mapping
1-2) dy: (S"X V1 S"XeoUeyx V) — (V™ ¢y)
which maps (S"—ey) X (V1—e¢,) homeomorphically onto V**'—¢, by the formula
(1, = tn), ) = ((HD EH+1)/2-1, t(t+1)/2, -, ta(E+1)/2),
(t1, = Jtnsn) €S%, t€ V. The mapping d, shows that V*1=S"x V1
Denote by E#t' and E”t' the upper and lower hemi-spheres of S**, i.e.,
Eft = (g, =, tus2) € " 1,220} and ExF'={(t;, -, tyi2) € S"™ [ 1.2 =0}. Define

a mapping
1.2 dy: (S*X VY S"xXS%Ueyx V1) — (S", ¢p)
by setting
] P+ (dy(x, 1-28)) for 0=st=1,
auw = {0
p_(d,(x, 2t+1)) for —1=¢t=0,

where p.: V"' — E#tl and p_: V*1— E** are the projections (homeomor-
phisms) along the (#+2)-axis. The mapping d, maps (S*—e,) X (V1—S° homeomor-
phically onto S™1—¢,.
Define a mapping

(1+3) Doyt ("X S, 8"V S") —> (S™H, ¢4)
inductively by the formulas

d’m,o(x, 1=z, (l’m,o(x, -1 =¢,

‘]Sm,n(x, dur (9, 1)) =dm+n-—1(¢m,n~~1(xy ¥, 0,
x€S", y€S" !, n=1, te V. Asis easily seen, ¢, , maps S”xS"—S"VS" homeo-
morphically onto $”**—e¢,. Then

m+n Smxsn
with respect to the mapping ¢,,,. From the definition of ¢,, ,, the equality
Pty (DPrym(y ), 3)) =Pttty P, (%, ¥))

is verified directly. Then we have the identification

(S'%XS™)XS"=S"%(S"%S") (=S§"mim),
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Define a homeomorphism
1-4) Omyn s STH— STH7
by setting o, w(Pm, (&, 3)) =Pu,n(y, x), x€S™, y€ 5"

Lemma (1-4)". The degree of o,,n is (—1)"".

Proof. Let E” denote a cube such that E"= {({1,-, 1) | —1=4=1, i=1,---, 7}.
Define a mapping ¢, : E”—> S” inductively by setting ¢1(¢) =do(1, ) and ¢,(, -+,
ty_1, t,) =dy1(@pr-1(ty, -~t,_1), t,), then ¢, shrinks the boundary of E” to a single
point ¢,. Let o :E”"" — E™™ be a homeomorphism given by the permutation
(b, tmy twsts s bmen) = Gmst, s bmin, t1, = , ), then it is well known that
the degree of ¢ is (—1)"". It is calculated directly that

Omyn® Pmtn™ Pm+n°0 .
Then the degree of o, ,is (—1)"" g.e.d.

If f; and g; are homotopies fixing the base points, then f;¥Xg; is a homotopy.
Therefore, if f: (S?, e) —> (X, x,) and g: (S% ey) —> (Y, v,) represent a € 7,(X)
and B€m,(Y) respectively, then fXg: (S™™" ¢,) —> (XX Y, x0Xy,) belongs an
element aXB€ 7, ..(XXY), called the reduced join of @« and S, which depends
only on « and A. From (1-1), we have that

(1-5), 1) (@XB)XT=aX(BXT),
i) (fr)% (e B =(f%g)x(a% ),
iii) or(@XB) = (=1D*(FXa).
The reduced join X% S?! is called a suspension of X, and we denote that
XxSt=FEX.

Let ¢ : XxS'—» X%S'=EX be the mapping which defines the reduced product
X%S*. Define a mapping
(1-+6) dx: (XX VY XXxSUxex VY — (EX, %)
by the formula dx(x, ) =¢(x, dy(1, 1)), then dx maps (X—x;) X (V{—SO) homeo-
morphically onto EX-—x,. Conversely a suspension EX of X is defined by a
shrinking map dx of (1-6). We denote
C.(X)=dx(Xx[0,1] and C_X=dx(Xx[—-1,0]
and identify each point x of X with a point dx(x, 0) of EX. Then C.X and C_X
are contractible to the point x,=x,Xe, and C.XNC_X=X. With respect to the
mapping d,, we have S"*1=ES"=S"%S', Et'=C,S" and E*1=C_S".
For a mapping f: (X, ) — (Y, y,), let
Ef: EX— EY
denote the mapping f%i: and it is called @ suspension of f. The mapping Ef =X,
is also defined by the formula
Ef(dx(x, ) =dy(f(x), 1),
x€ X, te V1. Obviously, Ef(C,X)CC.Y, Ef(C_.X)CC_.Y and Ef|X=f, and con-
versely, a mapping satisfying these three conditions is homotopic to Ef.
We denote that
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X%XS" = E"X.
Since E"X=X%S5"=X%S"%S'=E(Xx%S")=E(E"*X), the space E"X is an #n-
fold suspension of X. Also we denote by E”f the n-fold suspension of f, then
E"f = fXi,
for the indentity 7, of S”. For the class a € 7,(X) of a mapping f: (S?, ¢) —>
(X, xo), the n-fold suspension
E"a€my (E"X)
is the class of E”f. Then
E"a = aX:, (Ex=FEla=aX:)
for the class ¢, of 7,.
The following formula is verifted in [1].
Prorosition (1:7)
aXpB= (-l)p(‘]+”>E”a°E",B= (—1)m(”+”)Em,@oEqa
for a € 1,(S™) and B € m,(S").
Proof. First we remark that (—¢,,.)°e ES7T=—ET for s=1 and for 7 € 7, (S").
Then ¢,%X7 = (=1 64, (T %) = (=1)**PET by (1:5), iii) and (1-4)".
By (1-5), ii), aX B = (acep) X (eno )
= (@Xin) o (2% 0)
— (—1)P<q+”>E”aoEP/9.
Also aXPB = (o)X (Boiy)
= (emX B)o(aXey)
= (=1)™eWE"Ro Eig g.e.d.

Define a homeomorphism
(1-8) Tmyn s (VX V", VX STIUS"EX V) —— (Vin, Smin-t)
by the formula

Ty (B2, o0 tw)y (1,00, 8))=(Aty, -+, My, &Sy, o+, ASy),
where A={Max. (+ = + 5, s+ +D/B+ - + 85+ s§+ 52 )2

For a mapping f: S"xS"—> X, a Hopf construction
f: Smintl | BYX

of f is a mapping which satisfies the following conditions.
F @ity na (VXS CCL X,
(1-9) Femit, ma(S" X V) CC_X,

ﬁ7m+1,n+1 [S"XS" = f

It is easy to see that
(1+9)" mappings which satisfy (1-9) ave homotopic to each other.

Lemma (1-10) Let ¢, . S™"— S™1 pe q Hopf conmstruction of the
mapping b, of (1+3). Then the degree of $, . is (—1)"

Proof. Set FIi={(t1, ,tns2) €S" M t,a=1/1/2} and F™ = {(ty, - ,tpi2) €
St =1/1/72}. 5,,,,0 maps F{*t and F™* into EP*™* and E”** respectively and
the restriction ¢, o | £ INEF" is given by ¢pot, = ytmi, 1/1/ 2 )=/ 2 ty, -,
v 2 twi1,0). Then 5,,,,0 is homotopic to the identity. Now we chose a Hopf
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construction ¢, , of ¢, , such that

Bonyn @it ne1(in (6, 1), 1)) = oD, n (2, 3), (1=1)/2),

Bony 1 (Tt n11 (5, (3 D)= o (Pom, n(x, 3), E=1)/2).

Let ¢: S+ — S+l he a homeomorphism given by o(dusn(@min-1(2, 1), t2))
=dpin(Apin-1(z, t2), 1), then o=1i,.,1%0o1,1 and its degree is —1. Since ET"
=T, it (V"X EZUS" X d, (E2x VY)) and ¢, ,(S"x E?) CET*", we have that (a0
5,,,),,) (EF) Col(dprn(EP™x V) = EFt*, Similarly (do(_ﬁm, n) (EPey C gttt
Since Tmit, n=Tmst,nr1 | V"XV, b ne1= P, |1S™ x S* and since dp-1=d,, |S*x V4,
we have that ¢, ,—1=(3°¢,, ) | S"*". Therefore so¢,, , is homotopic to the sus-
pension Ed,, ,1. If the degree of ¢,,, 4 is (—1)"7, the degree of ¢, , is (=1
Then (1:10) is proved by the induction. g.e. d.’

PropositioN (1-11), 1). Let T be an element of 74,,1(EX) which is repre-
sented by a Hopf construction h: S**' — EX of a mapping h: (S?x S, S?V S%)
—> (X, x0). Let T’ be an element of 7,.,(X) which is represented by a mapping
h': St — X such that h'eps,=h. Then T=(—1)'E7".

ii) For the cace that X=KXL and h(x,y)=f(x)%Xg(y)=b(f(x), g(»)) for
representatives f and g of a€n,(X) and PBEm,(Y) vespectively, we have that
T=(-DE@xp).

Proof. Consider a mapping H=Eh'°¢,,,, then H is a Hopf construction of .

(1-10)"

By (1-9)” and (1-10), we have that 7=(—1,’E7’. In i), T'=aX}. g.e.d.
Define a mapping
(1'12> "pn : (Vﬂ, Sﬂ“l) - (SM, €0>

by the formula
Vo(dy1(x, D) =dpa(x, ), x€S"7, € VY,
then r, maps V*—S"" homeomorphically onto S"—¢,.
To consider homotopy groups 7,(X, A) and 7,(X), we take the orientations
of the anti-images (V7 S*1) and S” such that the mapping <), preserves the
orientations. Then we remark that the following diagram is commutative :

2, (v, 5 O, m (s
(1-12) lﬁ’mk '@5///
zi(sn . ¥
Consider mappings f: (S?, e)) —> (8", ¢,) and g: (S?, ¢y) — (S” ¢,). Define

extensions F: V' — V™ and G: Vi — V™1 of f=F|S? and g=G |S? res-
pectively, by setting

E(d;(x, ) =dn(f(0), ) and G(d;(x, D)) =d,(g(x),1).
We define a join

f* g: Sb+q+1 — Sm+n+1
of f and g by the formula
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(f * 8 (tpet,g41(%, 1)) =Tpat, win (F (x), G(9)),
then, for homotopies f; and g;, the join f; * g; is also a homotopy. Let a € 7,(S™)
and B €7,(S") be the classes of f and g, then the class a* B € 7y 01 (S™™ 1) of
f*g is independent of representatives f and g. This operation “=*” coincides
with that of [9]. We have the formula (¢f. [1])
(1-13) ax B=(=D"E@Xp).
Proof. Tt is easily verified that

Bumyno (5 8) = E(FXE) Py,
for the Hopf constructions ¢, , and ¢, , defined by (1.10)". Then by (1-10),

axf = (=" tmin1oE@XB) o (=17 tpsgua

= (=D E@X). g.e.d.
Combining this to (1:7), we have that
(1.13)° axf = (_1>(p+1)(q+n>En+1aOEp+1/@

— (___1>(m+1)(q+n)Em+1/@oEq+1a
for a € 7,(S™) and B € 7, (SM.
For two mappings f: (5" ¢)) — (X, %) and g’ : (S", e5) —> (X, xo), we
define their W hitehead product
Lf,gl:5""—X

by setting
., I Wmia(x)), (x, ) € VmixSr,
s m+1, n+1 (X, = P .
L% &1 @ty 303 { g Wa(3),  (53) €STX V7,
Let a’€7,.1(X) and B'€r,1(X) be the classes of f” and g’ respectively, then
the class [a’, '€ i1 (X) of [f', g"] is independent of representatives f’ and
g’. From the definition of {4, * and E, we have the formula
LffoEf, g'-Egl=Lf"g"1-(f*g).
Then by (1-13)" (¢f. (3:59) of [9D)
(1-14) [a'cEa, B'oES] = [a’, 8o (a* )
— (,_1)(?+1)<q+n) [a’, /@']OE'M—I‘ZOEP-H/@
— (_1>(m+1)(q+n) [0(', ,@']OE”’H,@DE”lO{,
{X’E 7zm+1(X), /@,E 7rn+1<X>’ aE 7Tp<sm), /GE 7rq<Sn>
A mapping
h : (Sm+1XS”+1, Sm+1vsn+1) — (X, A)
is called to have a type (a, B) if h|S"'xe, and h|eyxS** represent ¢ and @
respectively. Let a mapping
H: (Vm+n+2’ Sm+n+1) s (X, A)
be defined by the formula H (v, na(®, 1)) =2 Wmi1(®), ¥ua(3)). Then we
have easily
(1+15). 87 =L[a, B] for the class T € pnia(X, A) of H. In the case X=A, [a, 8]
=0 if and only if these exists a mapping h: S™* xS — X of type (a, B).
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Next we prove that
(1-16) a mapping fm,a: (V"7 S™1) — (S™7, e5) which is given by the formula
Tonyn oy n (2, 990 =Py n (Y (2), Yra(3)) 1s homotopic to ryn .

Proof. 1t is sufficient to prove that the composition 7., »oVWmk,=Ffm »: S —>
Sm+n is homotopic to the identity. Let p,: S”— S” be a permutation given by
0r(tyy o s bty by tria) = (b1, o+, bty Brany £r), then pyoar, [ V7t =qfr, ;. Since the degree
of p, is —1, the composition (4, %Px) °fm,1°Pm+n is homotopic to fm ». On the other
hand, (,¥X0n)cfmn°Pm:n maps E7™ and E™™ into themselves respectively and
coincides with fm 1 on S™  Therefore (im¥pn) ofm n®Omin = fmn == Efmai.
This is true for n=1 if we regard that f,, is the identity. By the induction,
we have that fo, . is homotopic to the identity. g.e.d.

Finally we prove the following lemma.

Lemma (1-17) Let a€n,(X) be represented by a mapping f: (8", e) —>
(X, x,), and define mappings Fy: S"1 — XX S and F, : S""1 — S"1% X by
setting
FOOXVaa(, () €S"X V",

*oX€o , (x, ) € V"1x 87,
X %o (x, ) €S"X V",
Vi1 () XS () (x, y) € V"% S,

then Fy and F, represent (—1)"(aXtnr1) and — (s,01¥Xa) respectively.
Proof. Define mappings %4 and k» of S™"* on itself by the formula
% Pomy n1 (X, Puia (D), (x, y) €S"X V",
€, (x, ) € V"ixSn,
€, (9, %) €S"X V™,
it m(Praa (), %), (9, 2) € V"X S,
Then Fyi= (fXin1)oky and Fo= (i,,aX f) °ks. Therefore it is sufficient to prove that
(1:17)" the degrees of ki and ks ave (—1)" and —1 respectively.
Let {x,y, ¢} denote a point of S™*"*! such that
(o, ) = { Tmet, na (%, dy (3, 204+1)) for -1=¢=0,
" Twity nea(dm(x, —204+1),9)  for  0st=1,
x€S™ ye S t€ V. Then ki({x, ¥, 1)) =Pun1(x, du(y, 2¢+1)) for —1=¢=0 and
ki({x,y,t)) =€, for 0 =¢=1. It is easy to see that %; is homotopic to a mapping
k" which is given by &'({x, 5, t}) =bum, us1(%, du (9, ) =ppin(Pm,u(x, ¥),8). k' is a
Hopf construction of the mapping ¢, .. Then the degree of 2" is (—1)" by (1-10)
and the degree of k; is (—1)". Also we denote by {y, x,#} a point of Sm+!
such that

Fl(Tm-Lly n+1(x’ y)) = {

FaCenen, mos (2, ) = g

k1 (Tms, ni1 (X, ¥)) =

k2<7n+1,m+1 (y’ x>> = {

Tast, w1 (Y, dm(x, 28+1)) for —1=t=0,
Tty me1(dy (Y, —20+1), %) for 0=st=s1l

Then kg({y, X, t}>=eo for —1 =i=0 and k2<{y, X, t})=¢n+1,m(dn(y, —th}'l), x),

{y’x,t} = {
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for 0=¢=1, and k. is homotopic to a ma'lpping k” which is given by &”({y, x, t})
=1, m(@n(y, —1), %) =0, n11 <¢m,n+1 &, dn (9, =1))) =0, n11 (dmin (Pm,n (2, 30, —1))
=0, 1410 (ny (P, (3, £)), =) = (0, 041°P) (@i (O, m° P, m) (9, %), 1)), Where
p is a reflection giben by p(d,n(2, 1)) =dpin(z,—t). Then poo,y,mok” = Eoy,, moan, m
for a Hopf construc-tion ¢,,,, of ¢n » such that Gu, . ({y, £,t}) =dpin(Pn, w (Y, 2, D.
Then the degree of &7 is (—1)m*+Dminmilo 1 by (1.10), and the degree of k-
is —1. g.e.d.

2. Hopf invariant

In the following we suppose that each complex is finite and has only one
vertex.

According to [3], we define the reduced product complex K, of K which is
canonically imbedded in the loop-space Q(EK) of EK. A point of K, is repre-
sented by the product xy -+ x; for some x4, -, x; € K, and the injection KCQ(EK)
associates with a point ¥ of K a loop I,: V!— EK given by [,(#) =dg(x,t). The
imbedding 7 : K., — 2(EK) induces isomorphisms of the homotopy groups [3][7]
(C23)) i 7 (Keo) ~ 7;(Q(EK)).

For a mapping 7 : (S ¢) —> (EK, u,), we define a mapping 2f : (S, )
—> (Q(EK), uy) by the formula

2f ) @ = fdi(x, 1)),

x€ K, t€ V1. The correspondence f — £f induces an isomorphism

2:2) 2 min(EK) =~ m;(2(EK)).
Then we have that
2-3) E=(0%4,)0i: m:(K) — m:(Ky) ~ 7i1(EK),

that is to say, the suspension homomorphism E is equivalent to the injection homo-

morhism 7 : 7;(K) — 7;(K,). From the exact sequence for the pair (K, K),
we have an exact sequence

@) oK) B (BK) L mi(Ke, K O iy (K) —> -,

where J=j.oiz%o 9 for the injection homomorphism j, : 7;(Kw) —> 7; (Ko, K).

Define a mapping

b Ky K) —> (KX K, X uo)
by setting
h'(xy) = xX,

where Ko={x-y€ Ko |x,y€K}. Let
(2+5) B (K K) — (KX K)o, X 1)
be the combinatorial extension [3] of h'. Then h defines two generalizations of
the Hopf invariant :
(2:6), ) H'=(027" i) ohy : 7:(Keoy K) — 1 (KX K)oo) ~ 71 (E(KX K)) ;

i) H=H'J=(@"i)ohe (5%0): ma(EK) ~x;(Ko)—> m;(KXK) o)~
T (E(KX K)).
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The following proposition is proved without difficulties (¢f. [2]).

Prorosition (2:7) If K is (r—1)-connected (r>1), then H' is an isomorphism
for i = 3r—2 and a homomorphism onto for i=3r—1.

In the case K=S7, we have that

ProrosiTioN (2:8), 1), if 7 is odd, then H' is an isomorphism for all i:

i), if v is even, then H' is an isomorphism of the 2-components for all i.

For the proof, see [5] and [8].

For two mappings f : (S, ¢,) — (K, u,) and g : (SY e,) — (K, u,), define
a mapping

{f, gt : (Vore Sttty s (K, K)
by the formula
{f, 8} (o, e, ) =F (s () e g (P (3)),  (x, ) € VIX VA

Then the homotopy class of {f, g} is an element {a, 8} € 7,.,(Kw, K) such that
(2-9) 0 {a, B} =[a, £]
for the classes ¢ and @ of f and g respectively.

From the exactness of the sequence (2+4), we have that

(2-10) Ela,B]=0.
From (2:3), (2:6) and from the definition of the mappings, we have easily that
(2-11) H' {a, B} = E(@aX 5).

We introduce the following results of James from [4, Theorem (2-17)7].
(2:12) Awn element T of 7y (EK) is represented by a Hopf construction of a
mapping of a type (a, B) if and only if

J7T = {a, B}.

By (2:12) and (2-11),

(2:12)" HY = E(@xp).

In the case K=S’, we have that
(2:13) if i =3r—2, then an element T of 7,.1(S™) is represented by a Hopf
construction of a mapping f: S S"— S” of atype (a, ,) where a is an element
of 7i_,(S7) such that E™"*a=H7. (See [10]).

Proof. Since E™: m;_,(S7) —> m;11(S¥*1) is an isomorphism for i—7 = 2r—2,
there is an element 7 of 7;_,(S") such that E™*'a=H7=E(aX:). By (2:7),
H'{a, ¢,}=E(aX¢,)=HT=H']JT implies that {a, ¢,}=J7. Therefore 7 is repre-
sented by a Hopf construction of a mapping of the type (a, ¢,), by (2+12). q.e.d.

3. Reduced join and Hopf construction

Let K and L be finite cell complexes with only vertices w#,=K° and wv,=L°.
Consider suspensions EK and EL of K and L, and let
dg 1 (KX VY KxSUuyx VY — (EK, uy)
and dr . (LxVY LxS°Upyx V1Y) — (EL, vo)
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be mappings defining the suspensions. Let
EK* = EKUe?*® and EL" = ELU "

be cell complexes with charactevistic maps
3D F: (V2 S#+ly s (EKY, EEK),
G: (V2 Sy — (EL™, EL).
Let

¢ (EK*EL*, EK*VEL*) — (EK* %X EL*, uo X vo)
be a shrinking map defining the reduced join EK™ % EL*, then ¢ defines EK % EL",
EK % EL, KX EL, etc., and we denote that ¢(x, y) =x %y for points x € EK™ and
y€ EL*. Define subspaces M, M., M_ and M, of EK *% EL* as follows :

M,=C.KXEL*UEK*%C.,L, M =C.KXEL"UEK*%C_L,
(3-2) M =M.UM.-=EK% EL*"UEK" X EL,

My=M,NM-=K% EL*UC.K%C_LUC_.K%C.LUEK* % L.

Consider a homeomorphism
o: EKXL—KXEL

given by the formula
(3-3) o(dg(x, ) Xy)=x%d.(y, =), x€K, yeL, te X',
then ¢ is identical on KX L=EKX LONKX EL. Attaching the subcomplex EKX L
of EK*% L to the subcomplex KX EL of K% EL* by the homeomorphism o, we
obtain a complex

(3+3)" N=KXEL*UG(EK*% L)
where ¢ is a homeomorphism into NV such that ¢ | EKX L=o.
Let

(3:4) g : (EK*, EK) — (S ¢p), and vy : (EL¥, EL) — (S**%, )
be mappings such that VxoF=v,., and Y oG=1,s, then g and +r; skrink
EK and EL to a single point ¢,. Define mappings

(3:5) P: N—Kx%xS?? and Py: N— S**2% L
as follows ;
P | KX EL"=igx\r,, Py(a(EK* % L)) =eoX 0o,
Pyoa | EK™ X L="xXir, P(KXEK™) =usXe,,

where ix and ¢; are the identities of K and L.
First we prove the following lemma.
Lemma (3+6). There exists a mapping
X: M, M., M) — (EN, C.N, C.N)
such that X | KX EL*=identity and X|EK" % L= . Such mappings X are homotopic
to each other and homotopy equivalences.

Proof. First consider the case K= L = S° then FEKXEL=S'%S'=ES'=S?
which is divided into four parts C.(E}), C.(EY), C_(EY and C_(EY) by two
circles S'=S'%S° and Si=S°%S'. It is easy to see that S} is a deformation
retract of C,(EY)UC_(E}) and we may chose the retraction such that S* is mapped
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onto S} by the homeomorphism ¢. Since EK X EL is naturally homeomorphic to
K% L% S? such that C,KXC_LUC_KxC,L corresponds to (KX L) X (C_(EHU
C,(EY)), the above deformation gives a deformation (retraction) of C,KXC_LU
C_KxC.,L onto KX EL such that EK% L is mapped by the homeomorphism .
This deformation shows that there exists a mapping of M, onto N carrying
Kx EL*UEK*% L as in (3-6) and such mappings are homotopic to each other.
Next since C;N and C_N are contractible to a single point, the above mapping of
M, onto N is extended over the whole of M such that M, an M_ are mapped into
C.N and C_N respectively, and such extensions are homotopic to each other. It
is easy to see that this mapping induces isomorphisms of the homology groups.
Since M and EN are simply connected, the mapping is an homotopy equivalence
by Theorem 3 of [11]. qg.e.d.
Now suppose that
37 [a,a”]=0 and [B,A"]=0
for o' €xy(K), a” €my(K), B €my(L) and B"€my(L).
By (1-15), there exist mappings
1 (S"%S", egxep) — (K, uo)
and g: (SU%xS”, egxey) —> (L, vo)
of the types (a’, a”) and (B’, B") respectively. Set p=p’+p” and ¢=q"+q”, and
let
37’ f:S*"'—EK and g:S"'— EL
be Hopf constructions of f and g respectively. We construct complexes EK * and
EL” such that
F|S!t=f and G|S?=g
in (3-1).
THEOREM (3+8). Let a €71y (EK) and B € 7,.1(EL) be the classes of f and g
respectively, then there exists a Hopf construction
H : Sﬁ+q+3__,EN
of a mapping
b (Sp’+q'+1><5p"+q”+1, Sp'+q'+1vsp”+q"+1> —s (N, E(Kx L))
of a type ((=1L)7E(@ %xp"), (—=1)"E(a" %X ")) such that the compositions
EPoH : S8 —» E(K% S*?) =K% S*"3=E*2(EK)
and EPyoH : S — E(SP*2 X L) =S X EL
represent  (—1)?"V " ES g and (=127 X B respectively.
Proof. Consider a mapping
Ho A LA Rk pm—— V)
“which is defined by the formula
Ho(tprz,q12(%, ) =XF (2) X G(¥))
for (x,y) € S?*1x Vit2y V#+2x S7+1, Compare the composition EPioX : M—> EN
—> K % 573 and a mapping
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Q1 M—> KX S™=EK%S"?
which is given by setting

QiEK* X EL) = uyX ¢,
and Q| EKXEL" = (ixooy, g+2) © (GEx XrL).
The mappings EP,oX and @ map M, and M_ into C, (K% S?*%) and C_(K % S**%)
respectively and they coincide on M,. Therefore the mappings EP;>X and @, are
homotopic to each other. Then the composition (ix X o1, 4+2) o EPyoH, is homotopic
to a mapping R;: S?*78——> EK % S*** which is given by

RuCe s ona(r ) ={ F@) %X Vpa(y)  for (x,9) €S V¥,
parei o X €y for (x, y) € V2+2x Se+,
By (1-17), Ry represents (—1)?"a X 0= (—1)7"1E"2%a, and EP;oH, represents
Gk X 01, 0+2)%((—=1) T Ea). Since 01,4 is homotopic to a reduced join # % 4 for
a mapping 4: S7%——> S7*2 of the degree (—1)?*% we have from (1-5) that
(ig X 61, 012) x« (D E20) = (g X D) ((=1) 7 X t442)
=(=DMa ) ((=1)7ey2) = —E"a.
Next we compare the composition EP,°X and a mapping

Qo M—> S*2 % EL

which is given by setting
Qe | EK*X EL = g Xigr

and Q. (EKX EL*) = ey X vp.
The mappings EP.oX and @, map M, and M_ into C,(S?*2x L) and C_(S**?*x L)
respectively and they coincide on M,. Therefore the mappings EP.°X and @, are
homotopic to each other. The composition EP,¢H, is homotopic to a mapping R,

which is given by
€0 X Vo for (x,y) € SPx Vg
Ry(tpy2, g42(%, 3)) ={ Vpen () X E(3) for (x,y) € VF2x S,
By (1-17), R, represents — (¢p2 X 6). Therefore EPyo H, represents — (¢p2X/5).
Now define a homeomorphism
é‘ : (VP+¢I+4’ Sﬁ+4+3) —_— (VIH"I'H}, SP'HI-}'S)
by the formula
g(fp'+q'+2, p’/+q’/+2(Tp'+1, q’+1<x” ¥, T " 11, q”+1(x”, 7))
= Tpin,g12(Tpria, p 41 (X", X7), Tgr41,0742(Y", ¥7))
then the degree of & is (—1)@"™@ D We get
H =Ho°§ ’
then EP,oH and EP,oH represent (—1)?"¢+?"+0Et+2g and (—1)2"¢+"+, , %X B
respectively. It is verified directly that H maps tyigris 7 qr4e (VEH+2
X Sy and Ty grin, p74q" 12 (SPTUHX V27H72) into C,N and C_N respectively
Then H is a Hopf construction of a mapping
B S P75 N
which is given by 2(x, ¥) = H(tyrgr41, p” +47+1(x, ¥)). Let hy: S — s E(K% L)
and hy: S?"*"+*' — > E (K% L) be mappings given by
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hi(x) = h(x, tp741,47+1(60,€0))
and ho(¥) = h(rpraa, r11(e0, €0), 3)-
The mapping /yotyi1,e+1a maps V2#1xS” and S”x V¥ into C_(KXL) and
C.(Kx L) respectively and its restriction on S?’xS? is given by &(x’, y") =f(x", €0)
Xg(¥, e). Let p: E(KxL)—> E(K%L) be areflection given by p(dxx1(z, 1))
=dgs.(z, =). Then by (1-11), ii), pohs represents (—1)7E (a”"% B"), and 7k
represents (—1)?7 1 E(a’% ). The mapping hzot,”1,q7:1 maps V?"1x S and
S x V" + into C,(K % L) and C_(K % L) respectively and its restriction on $?” x S¢”
is given by ho(x”, ¥7) =f (e, ") X g(eo, ¥”). By (1-11), ii), h, represents (-DE
(a” % A”). Therefore % is a mapping of the type ((—1)?*E(a’% 8", (=D"E
(@” %X B")).
qg.e.d.

By (1-15),

COROLLARY (3+9) if [a’, a”]1=0 and [A’, S”1=0, then i.[E(@ XA,
E(a”%xB8") 1= 0 for the injection homomorphism i, : Tpiga (E(KXL)) —>
Tpigra(IN).

By (2-12)7,

CorROLLARY (3:10) for the class T € 7yig:3(EN) of the mapping H of (3:8),
we have that HT = (=)™ E(E(@" %X B8) X E (¢” %X 8”)).

4. Whitehead product

Here we consider the case that
K=S8" and L= S"
Then EK* = SmHiett? EL* = S™ye*2,
N=KXEL*Us(EK*% L) = Smi+lyeltr2gn+i+2,
P : N—> KxS?™t=8mte2 P, : N—> SPH2x [ = Sttn+e,
The homeomorphism ¢ : S™"— §™* of (3:3) is given by o (P, 4(dn(x, 1), ¥))
= b, n1(%, du(y, —1)). Then we have that
(4+1) the degree of o is (—1)",
Proof. Let p: S™t—— Smintl he a reflection given by p (dpin(z, 1)) =d,in
(z, =1). It is calculated directly that 6=p°Eoy,, ,,°0,+1,». Then the degree of ¢ is

(— 1)1+mn+(m+1)n_____ (_1)n+1. g.e. d.

Define characteristic maps
et (Vm+q+2, Sm+q+1) —_— (N, Sm+n+1)
and o (Vp+n+2, Sp+n+1) > (N, Sm+n+1)
of e™"72 and e’™** respectively by the formulas
ﬂ](Tm,P+2<xy y)) = \Pm(x) X G(y);
and 22(T pro, n (2", ¥7)) = G(F (%) X (7)),
(4+2) then 1| S™ " and py| S™ represent —i, X B and a X ¢, respectively.
Proof. Since !
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{ 0, for (x, y) € S"tx V72,

U, ()% g(y)  for (x,9)€ VxS,

1| S™H72 represents —¢, X8 by (1-17). Similarly, from (1:17), we have that
o Yoy | S represents (—1)" e X ¢n. By (4+1), po | SP*"1 represents a ¥, q.e.d.

Next we have that
(4:3) the compositions Piopy and Poop, are homotopic t0 ruigrz and Yry a0 ves-
pectively.

Proof. We have that (Piogs) (tm, g2 (%, )) = P, g2 (Yo (1), Yrgi2(y)) and
(Pyo12) (7 pi2, n(x", ¥7)) = Ppio,n(Wpra(x’), ¥u (). Then (4-3) follows from (1-16)
directly. ' g.e.d.

THEOREM (4+4) Let a€7m,1(S™Y) and B € m,1(S"Y) be vepresented by Hopf
constructions of mappings of the types (a’,a”) and (B’, B”) respectively. Then
there exists an element v of Tprgro(N, S™Y) such that

E(P, () = (=)' +eri geity
E(P,, () = (=P, % B)
and v = (=D [E(a"%x 8", E(a” % £")].

Proof. Let +r : (Vrrere Serarty 5 (Spf+q'+1xsp”+q”+1’ Sp'+q'+1vsp"+q"+1> be
a mapping given by setting Y(rpriors1, p7+741(%, ¥)) = (Wprigrsn (%), Yy 147 41(5))
and let » be the class of the composition %o+, where % is the mapping of the
theorem (3:8). Since % has the type ((—1)7*E(a" % 8", (=1)"E(" %XB")), we
have from (1-15) that dv=(—1)"[E(a’ %X 8", E(@”" %X £")]. ’

Consider a mapping A" : S?**? —— §"+42 such that Proki = h"oPprigrit, p74q"+1-
By (1:16), ®prigr41,s”147+1°Y is homotopic to ..z, then A" represents Py, (v).
Since EP;oH is a Hopf construction of Piok, we have from (1-11), i), that EPyoH
represents (—1)?"*"E(P; (»). Then by (3:8) E(py, () =(—1)2"0"+7+/+a7+a"+1
E?rq=(—1)?"7+1E* 2 Similarly we have that E(P, () = (—1)2"7/+27+/+#7+2"+1
tpre X B= (—1)p”q/+q+15p+z X A.

PROPOSITION (4+5). Let @€ 7,1(S™Y) and B € 7,,1(S"™) be the classes of Hopf
constructions of mappings of the types (a', @”) and (B’, B") respectively Suppose
that p = 2m+n—1 and q = m+2n—1, then we have the formula

EracE?p—(—-1) (”“”)(””)EmﬁOEQ(Z
= (=" E [E( % 87, E(a” % 8")]
= (_1>(ﬁ+m)n+1§"+q”[['m+n+1 ’ Lm+n+1]°E2nHa'°EpH/3 .

Proof. First we may suppose that p = m and ¢ = » without the loss of gene-
ralities. Since p = 2m+n—1, we have p+q+2 =2m+n+q+1 <2(m-+q+2)—2
and hence the suspension homomorphism E: 7, ,12(S™ 42 —> 7y, 4(S™T98) s
an isomorphism. Then from (4-4) we have that

P (») = (=1 +eigatiy
Similarly, from the condition ¢ =< m+2n—1 and from (4-:4), we have that
P () = (D) VHHE (1, X )
— (_1)9”q’+q+1E—1((_1>(P+2)(q+n)Ep+ZI@)

ﬂl(fm, q+2(x> y)) =
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= (- 1)ﬁ'/q’+q+1+p(q+n)Ep+1/@ .

Let P : N——> Sm+et2\/Ss+1+2 he a mapping defined by setting P(x) = (P (%),
P,(x)), then P shrinks S™*** to a single point. Since S”***' is (m-+n)-connected
and (N, S™*1) is Min. (m+q+1, p+n+1)-connected, we have from Theorem II
of [2] that the induced homomorphism

P* LT (M Sm+n+1) — T (Sm+q+2 \/ Sp+n+2}
is an isomorphism for i = Min. (m+q, p+n)+m+n-+1. In particular, when i
=p-+qg+2, P, is an isomorphism and the group 7. ,.2(S™"2V S?***2) is isomorphic
tO Tpigra(S™H972) 47,51 412(S?***2). Then the correspondence 7 —> P (V) + P, (1)
induces an isomorphism
Tpigra(N, S™) & 7y 000 (S™HE) 47041 412(SPHTE),

In the diagram

2 1
Tpigra( V702, Smrasty B gr,p (N, S™H41)

|o |7

E
T pyqra(S™HH) — 7fp+q+2(sm+q+2>

the commutativity holds, from (4-3) and from the commutativity of (1-12)".
Then P (v) = E((=1)?"7+ar1 pag) — Py, (p, (071 ((=1)?"+41 F1g))).  Similarly
P, () = Py, (2, (071 ((—=1) 2" 0 4+ 212 E2 5))) Therefore
(=D =y (071 (E@)) + (=1, (971 (E?R)).
From the naturality of the boundary operator 9§, we have that
(=D 89 =5 (g, (0 ET @) + (= 1P 5 (1, (9 B2 £))
= p1, (E'@) + (= 1)? 0y, _(E?B)
=(=twX B o Ela+(—1)? " (a X e))o E? B
=(—1)"’<q+”)+1E”’,30Eqa+ (——1)"(‘””>E”aOE",G ,
by (4-2) and (1-7). Then by (4:4),
EtacE?B—(— 1>(p+m)(q+n)Em/@ oE%=(— 1)p”q’+q+l+p<q+n>ay
=(— 1)1>”q’+1:(q+n) [E(a’ %57, E(@” % 8")].
By (1-14), (1-13), iii) of (1+5), (1+7) and by (2:12)’,
[ECG X8, E@" X B")] = [tminst, tminsrle (@ X L") * (a” %X B"))
= (=D i, iinn]o B2 X B X 2" X B") |
= (=Dt o E(@ X a” X B % B7)
= (=P b e ] E @ X @) e EPPL(BT K B)
— (_ 1)p//q'+p(q+n)+(p+m)n+pl/+qll[Gm_i wrs €m+n+1]°E2”Ha OEPH/B.
Consequently
EtqoE?B—(—=1)mmm pmp, pag
= (- 1)(1)“")“?”“” [f'm+n+1, twinig]e E¥"Hao E?H S .
q.e.d.
THEOREM (4+6). Suppose that p=Min. (n, m—1) +2m—1 and g=Min. (m,
n—1+2n—1 for a € 7,1(S™™) and L€ 7,41(S™Y), then
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E"aoEl’ﬁ_(_1)(P+m>(q+n)EmleoEqa
= Lemintt, tmins1]le E¥HaoE*H B
= ~[tminit, tminss o E*Hao E?H S .

Proof. Since p =3m—2 and ¢ = 3n—2, ¢ and B are represented by Hopf con-
structions of some mappings by (2-13). Then the proposition (4-5) is applied in this
case, and it is sufficient to prove that 2[ ¢, ns1, tminsi o EZ*Hao E?HB = 0. If m is
even, then 2Hax = 0 by Theorem 542 of [9]. Also if » is even, 2HF =0. If m
and » are odd, then m+n+1 is odd and 2[ ¢, ns1, tminia] =0 by the anti-commuta-
tivity of the Whitehead product operation. In all cases 2[tyini1, eminitlo B Hao

E*HB =0. q.e.d.
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