Reduced join and Whitehead product

By Hirosi Toda

(Received Sept. 30, 1956)

Introduction

Barratt and Hilton [1]* proved the formula

$$
E^{n+1} \alpha \circ E^{p+1} \beta=(-1)^{(p+m)(q+n)} E^{m+1} \beta \circ E^{q+1} \alpha
$$

for $\alpha \in \pi_{p+1}\left(S^{m+1}\right)$ and $\beta \in \pi_{q+1}\left(S^{n+1}\right)$, by making use of the reduced join operation "*". Then the element

$$
E^{n} \alpha \circ E^{p} \beta-(-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha
$$

is in the kernel of the Freudenthal suspension homomorphism $E: \pi_{p+q+1}\left(S^{m+n+1}\right) \longrightarrow$ $\pi_{p+q+2}\left(S^{m+n+2}\right)$ which is closely related with the Whitehead product.

We prove here the following formula

$$
E^{n} \alpha \circ E^{p} \beta-(-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha= \pm\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta
$$

under some conditions. This formula will be applied, in the next paper, to prove the non-existence of mappings: $S^{31} \longrightarrow S^{16}$ of the Hopf invariant 1.

1. Reduced join and preliminaries

In the following, for each space X we fix a base point $x_{0} \in X$. When X is a cell complex, we take a vertex v_{0} of X as a basepoint, and when X is the unit sphere

$$
S^{n}=\left\{\left(t_{1}, \cdots, t_{n+1}\right) \mid t_{1}^{2}+\cdots+t_{n+1}^{2}=1\right\}
$$

of dimension n we take a point $e_{0}=(-1,0, \cdots, 0)$ as the base point.
Consider two spaces X and Y with base points $x_{0} \in X$ and $y_{0} \in Y$. Let $X \vee Y$ denote the subspace

$$
X \times y_{0} \cup x_{0} \times Y
$$

of $X \times Y$. A space Z, with a basepoint z_{0}, is called a reduced join of X and Y if there exists a mapping

$$
\phi:(X \times Y, X \vee Y) \longrightarrow\left(Z, z_{0}\right)
$$

which maps $X \times Y-X \vee Y=\left(X-x_{0}\right) \times\left(Y-y_{0}\right)$ homeomorphically onto $Z-z_{0}$, and we denote that

$$
Z=X \mathbb{*} Y \quad \text { and } \quad \phi(x, y)=x \nVdash y .
$$

As is easily seen, the spaces $(X \nVdash Y) * Z$ and $X \nVdash(Y \nVdash Z)$ are naturally homeomorphic, and we denote these spaces by the same symbol $X \nVdash Y \circledast Z$.

For two mappings

$$
f:\left(X, x_{0}\right) \longrightarrow\left(X^{\prime}, x_{0}^{\prime}\right) \text { and } g:\left(Y, y_{0}\right) \longrightarrow\left(Y^{\prime}, y_{0}^{\prime}\right),
$$

[^0]we define their reduced join
$$
f \nVdash g: X \nVdash Y \longrightarrow X^{\prime} \not \mathbb{*}^{\prime}
$$
by setting
$$
(f \nVdash g)(x \nVdash y)=(f \nVdash g)(\phi(x, y))=\phi^{\prime}(f(x), g(y))=f(x) \nVdash g(y)
$$
for $x \in X$ and $y \in Y$, where ϕ and ϕ^{\prime} are shrinking maps defining the reduced joins $X \nVdash Y$ and $X^{\prime} \nVdash^{\prime}$. The following formulas are easily verified:
$(f \circledast g) \nVdash h=f \circledast(g \nVdash h)$,
ii) $\quad\left(f^{\prime} \circ f\right) \notin\left(g^{\prime} \circ g\right)=\left(f^{\prime} \not \mathbb{K}^{\prime}\right) \circ\left(f \not \mathbb{X}^{\prime}\right)$,
iii) $\quad \sigma^{\prime} \circ(f \nVdash g)=(g \nVdash f) \circ \sigma$,
where $\sigma: X \nVdash Y \longrightarrow Y \nVdash X$ and $\sigma^{\prime}: X^{\prime} \nVdash^{\prime} \longrightarrow Y^{\prime} \not \mathbb{X}^{\prime}$ are homeomorphisms given by $\sigma(x \nVdash y)=y \nVdash x$ and $\sigma^{\prime}\left(x^{\prime} \not y^{\prime}\right)=y^{\prime} \not x^{\prime}$.

Denote by V^{n+1} the cube bounded by S^{n}, i.e.,

$$
V^{n+1}=\left\{\left(t_{1}, \cdots, t_{n+1}\right) \mid t_{1}^{2}+\cdots+t_{n+1}^{2} \leqq 1\right\} .
$$

Define a mapping
(1•2) $\quad d_{n}^{\prime}:\left(S^{n} \times V^{1}, S^{n} \times e_{0} \cup e_{0} \times V^{1}\right) \longrightarrow\left(V^{n+1}, e_{0}\right)$
which maps $\left(\mathrm{S}^{n}-e_{0}\right) \times\left(V^{1}-e_{0}\right)$ homeomorphically onto $V^{n+1}-e_{0}$ by the formula
$d_{n}^{\prime}\left(\left(t_{1}, \cdots, t_{n+1}\right), t\right)=\left(\left(t_{1}+1\right)(t+1) / 2-1, t_{2}(t+1) / 2, \cdots, t_{n+1}(t+1) / 2\right)$,
$\left(t_{1}, \cdots, t_{n+1}\right) \in S^{n}, t \in V^{1}$. The mapping d_{n}^{\prime} shows that $V^{n+1}=S^{n} \nVdash V^{1}$.
Denote by E_{+}^{n+1} and E^{n+1} the upper and lower hemi-spheres of S^{n+1}, i.e., $E_{+}^{n+1}=\left\{\left(t_{1}, \cdots, t_{n+2}\right) \in S^{n+1} \mid t_{n+2} \geqq 0\right\}$ and $E_{-}^{n+1}=\left\{\left(t_{1}, \cdots, t_{n+2}\right) \in S^{n+1} \mid t_{n+2} \leqq 0\right\}$. Define a mapping
$(1 \cdot 2)^{\cdot} \quad d_{n}:\left(S^{n} \times V^{1}, S^{n} \times S^{0} \cup e_{0} \times V^{1}\right) \longrightarrow\left(S^{n+1}, e_{0}\right)$
by setting

$$
d_{n}(x, t)= \begin{cases}p_{+}\left(d_{n}^{\prime}(x, 1-2 t)\right) & \text { for } 0 \leqq t \leqq 1, \\ p_{-}\left(d_{n}^{\prime}(x, 2 t+1)\right) & \text { for }-1 \leqq t \leqq 0,\end{cases}
$$

where $p_{+}: V^{n+1} \longrightarrow E_{+}^{n+1}$ and $p_{-}: V^{n+1} \longrightarrow E_{-}^{n+1}$ are the projections (homeomorphisms) along the ($n+2$)-axis. The mapping d_{n} maps $\left(S^{n}-e_{0}\right) \times\left(V^{1}-S^{0}\right)$ homeomorphically onto $S^{n+1}-e_{0}$.

Define a mapping
(1•3)

$$
\phi_{m, n}:\left(S^{m} \times S^{n}, S^{m} \vee S^{n}\right) \longrightarrow\left(S^{m+n}, e_{0}\right)
$$

inductively by the formulas

$$
\begin{aligned}
& \phi_{m, 0}(x, 1)=x, \quad \phi_{m, 0}(x,-1)=e_{0}, \\
& \phi_{m, n}\left(x, d_{n-1}(y, t)\right)=d_{m+n-1}\left(\phi_{m, n-1}(x, y), t\right),
\end{aligned}
$$

$x \in S^{m}, y \in S^{n-1}, n \geqq 1, t \in V^{1}$. As is easily seen, $\phi_{m, n}$ maps $S^{m} \times S^{n}-S^{m} \vee S^{n}$ homeomorphically onto $S^{m+n}-e_{0}$. Then

$$
S^{m+n}=S^{m} \circledast S^{n}
$$

with respect to the mapping $\phi_{m, n}$. From the definition of $\phi_{m, n}$, the equality

$$
\left.\phi_{l+m, n}\left(\phi_{l, m}(u, x), y\right)\right)=\phi_{l, m+n}\left(u, \phi_{m, n}(x, y)\right)
$$

is verified directly. Then we have the identification

$$
\left.\left(S^{l} \not \mathbb{S}^{m}\right) \nVdash S^{n}=S^{l} \not \mathbb{*}^{\left(S^{m}\right.} \nVdash S^{n}\right) \quad\left(=S^{l+m+n}\right)
$$

Define a homeomorphism

$$
\sigma_{m, n}: S^{m+n} \longrightarrow S^{m+n}
$$

by setting $\sigma_{m, n}\left(\phi_{m, n}(x, y)\right)=\phi_{n, m}(y, x), x \in S^{m}, y \in S^{n}$.
Lemma $(1 \cdot 4)^{\prime}$. The degree of $\sigma_{m, n}$ is $(-1)^{m n}$.
Proof. Let E^{r} denote a cube such that $E^{r}=\left\{\left(t_{1}, \cdots, t_{r}\right) \mid-1 \leqq t_{i} \leqq 1, i=1, \cdots, r\right\}$.
Define a mapping $\varphi_{r}: E^{r} \longrightarrow S^{r}$ inductively by setting $\varphi_{1}(t)=d_{0}(1, t)$ and $\varphi_{r}\left(t_{1}, \cdots\right.$, $\left.t_{r-1}, t_{r}\right)=d_{r-1}\left(\varphi_{r-1}\left(t_{1}, \cdots t_{r-1}\right), t_{r}\right)$, then φ_{r} shrinks the boundary of E^{r} to a single point e_{0}. Let $\sigma: E^{m+n} \longrightarrow E^{m+n}$ be a homeomorphism given by the permutation $\sigma\left(t_{1}, \cdots, t_{m}, t_{m+1}, \cdots, t_{m+n}\right)=\left(t_{m+1}, \cdots, t_{m+n}, t_{1}, \cdots, t_{m}\right)$, then it is well known that the degree of σ is $(-1)^{m n}$. It is calculated directly that

$$
\sigma_{m, n^{\circ}} \varphi_{m+n}=\varphi_{m+n} \circ \sigma .
$$

Then the degree of $\sigma_{m, n}$ is $(-1)^{m n}$.
q. e.d.

If f_{t} and g_{t} are homotopies fixing the base points, then $f_{t} \nVdash g_{t}$ is a homotopy. Therefore, if $f:\left(S^{p}, e_{0}\right) \longrightarrow\left(X, x_{0}\right)$ and $g:\left(S^{q}, e_{0}\right) \longrightarrow\left(Y, y_{0}\right)$ represent $\alpha \in \pi_{p}(X)$ and $\beta \in \pi_{q}(Y)$ respectively, then $f \nVdash g:\left(S^{m+n}, e_{0}\right) \longrightarrow\left(X \nVdash Y, x_{0} \nVdash y_{0}\right)$ belongs an element $\alpha \nVdash \beta \in \pi_{m+n}(X \nVdash Y)$, called the reduced join of α and β, which depends only on α and β. From ($1 \cdot 1$), we have that
$(\alpha * \beta) * \gamma=\alpha \mathbb{*}(\beta * \gamma)$,
ii)
$\left(f_{*}^{\prime} \alpha\right) \not \otimes^{\left(g_{*}^{\prime} \beta\right)=\left(f^{\prime} \not \mathbb{*}^{\prime}\right)_{*}(\alpha \nVdash \beta), ~}$
$\sigma_{*}^{\prime}(\alpha \nVdash \beta)=(-1)^{p q}(\beta \mathbb{*} \alpha)$.
The reduced join $X \nVdash S^{1}$ is called a suspension of X, and we denote that

$$
X \nVdash S^{1}=E X .
$$

Let $\phi: X \times S^{1} \longrightarrow X \nVdash S^{1}=E X$ be the mapping which defines the reduced product $X \nVdash S^{1}$. Define a mapping

$$
d_{X}:\left(X \times V^{1}, X \times S^{0} \cup x_{0} \times V^{1}\right) \longrightarrow\left(E X, x_{0}\right)
$$

by the formula $d_{X}(x, t)=\phi\left(x, d_{0}(1, t)\right)$, then d_{X} maps $\left(X-x_{0}\right) \times\left(V^{i}-S^{0}\right)$ homeomorphically onto $E X-x_{0}$. Conversely a suspension $E X$ of X is defined by a shrinking map d_{X} of $(1 \cdot 6)$. We denote

$$
C_{+}(X)=d_{X}(X \times[0,1]) \quad \text { and } \quad C_{-} X=d_{X}(X \times[-1,0])
$$

and identify each point x of X with a point $d_{X}(x, 0)$ of $E X$. Then $C_{+} X$ and $C_{-} X$ are contractible to the point $x_{0}=x_{0} * e_{0}$ and $C_{+} X \cap C_{-} X=X$. With respect to the mapping d_{n}, we have $S^{n+1}=E S^{n}=S^{n} \nVdash S^{1}, E_{+}^{n+1}=C_{+} S^{n}$ and $E_{-}^{n+1}=C_{-} S^{n}$.

For a mapping $f:\left(X, x_{0}\right) \longrightarrow\left(Y, y_{0}\right)$, let

$$
E f: E X \longrightarrow E Y
$$

denote the mapping $f \nVdash i_{1}$ and it is called a suspension of f. The mapping $E f=f \nVdash i_{1}$ is also defined by the formula

$$
E f\left(d_{X}(x, t)\right)=d_{Y}(f(x), t),
$$

$x \in X, t \in V^{1}$. Obviously, $E f\left(C_{+} X\right) \subset C_{+} Y, E f\left(C_{-} X\right) \subset C_{-} Y$ and $E f \mid X=f$, and conversely, a mapping satisfying these three conditions is homotopic to $E f$.

We denote that

$X \mathbb{*} S^{n}=E^{n} X$.

Since $E^{n} X=X \nVdash S^{n}=X \nVdash S^{n-1} \nVdash S^{1}=E\left(X \nVdash S^{n-1}\right)=E\left(E^{n-1} X\right)$, the space $E^{n} X$ is an n fold suspension of X. Also we denote by $E^{n} f$ the n-fold suspension of f, then

$$
E^{n} f=f \nVdash i_{n}
$$

for the indentity i_{n} of S^{n}. For the class $\alpha \in \pi_{p}(X)$ of a mapping $f:\left(\mathrm{S}^{p}, e_{0}\right) \longrightarrow$ (X, x_{0}), the n-fold suspension

$$
E^{n} \alpha \in \pi_{p+n}\left(E^{n} X\right)
$$

is the class of $E^{n} f$. Then

$$
E^{n} \alpha=\alpha \mathbb{X}_{i_{n}} \quad\left(E \alpha=E^{1} \alpha=\alpha \mathbb{X}_{\prime_{1}}\right)
$$

for the class i_{n} of i_{n}.
The following formula is verified in [1].
Proposition (1-7)

$$
\alpha \mathbb{*} \beta=(-1)^{p(q+n)} E^{n} \alpha \circ E^{p} \beta=(-1)^{m(q+n)} E^{m} \beta \circ E^{q} \alpha
$$

for $\alpha \in \pi_{p}\left(S^{m}\right)$ and $\beta \in \pi_{q}\left(S^{n}\right)$.
Proof. First we remark that $\left(-i_{r+s}\right) \circ E^{s \gamma}=-E^{s \gamma}$ for $s \geqq 1$ and for $\gamma \in \pi_{k}\left(S^{r}\right)$. Then $i_{s} \mathcal{X}=(-1)^{r s} \sigma_{k, s_{*}}\left(\gamma \mathbb{X}_{i s}\right)=(-1)^{s(k+r)} E^{s} \gamma$ by (1.5), iii) and (1.4) .
$\operatorname{By}(1 \cdot 5)$, ii), $\quad \alpha \nVdash \beta=\left(\alpha \circ \dot{i}_{p}\right) \mathbb{*}\left(i_{n} \circ \beta\right)$

$$
\begin{aligned}
& =\left(\alpha \mathbb{\mathbb { W } _ { n }) \circ (i _ { p } \mathbb { X } \beta)}\right. \\
& =(-1)^{p(q+n)} E^{n} \alpha \circ E^{p} \beta .
\end{aligned}
$$

Also

$$
\begin{aligned}
\alpha \mathbb{*} \beta & =\left(i_{m} \circ \alpha\right) \mathbb{*}\left(\beta \circ i_{q}\right) \\
& =\left(i_{m} \mathbb{*} \beta\right) \circ\left(\alpha \mathbb{*} i_{q}\right) \\
& =(-1)^{m(q+n)} E^{m} \beta \circ E^{q} \alpha .
\end{aligned}
$$

q. e. d.

Define a homeomorphism
$(1 \cdot 8) \quad \tau_{m, n}:\left(V^{m} \times V^{n}, V^{m} \times S^{n-1} \cup S^{m-1} \times V^{n}\right) \longrightarrow\left(V^{m+n}, S^{m+n-1}\right)$
by the formula

$$
\tau_{m, n}\left(\left(t_{1}, \cdots, t_{m}\right),\left(s_{1}, \cdots, s_{n}\right)\right)=\left(\lambda t_{1}, \cdots, \lambda t_{m}, \lambda s_{1}, \cdots, \lambda s_{n}\right)
$$

where $\lambda=\left\{\operatorname{Max} .\left(t_{1}^{2}+\cdots+t_{m}^{2}, s_{1}^{2}+\cdots+s_{n}^{2}\right) /\left(t_{1}^{2}+\cdots+t_{m}^{2}+s_{1}^{2}+\cdots s_{n}^{2}\right)\right\}^{\frac{1}{2}}$
For a mapping $f: S^{m} \times S^{n} \longrightarrow X$, a Hopf construction

$$
\bar{f}: S^{m+n+1} \longrightarrow E X
$$

of f is a mapping which satisfies the following conditions.

$$
\begin{align*}
& \bar{f}\left(\tau_{m+1, n+1}\left(V^{m+1} \times S^{n}\right)\right) \subset C_{+} X \\
& \bar{f}\left(\tau_{m+1, n+1}\left(S^{m} \times V^{n+1}\right)\right) \subset C_{-} X \\
& \quad \overline{f \circ} \tau_{m+1, n+1} \mid S^{m} \times S^{n}=f
\end{align*}
$$

It is easy to see that
$(1 \cdot 9)^{\prime}$ mappings which satisfy (1.9) are homotopic to each other.
Lemma (1-10) Let $\bar{\phi}_{m, n}: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a Hopf construction of the mapping $\phi_{m, n}$ of $(1 \cdot 3)$. Then the degree of $\bar{\phi}_{m, n}$ is $(-1)^{n}$.

Proof. Set $F_{+}^{m+1}=\left\{\left(t_{1}, \cdots, t_{m+2}\right) \in S^{m+1} \mid t_{m+2} \geqq 1 / \sqrt{2}\right\}$ and $F_{-}^{m+1}=\left\{\left(t_{1}, \cdots, t_{m+2}\right) \in\right.$ $\left.S^{m+1} \mid t_{m+2} \leqq 1 / \sqrt{2}\right\}$ 。 $\quad \bar{\phi}_{m, 0}$ maps F_{+}^{m+1} and F_{-}^{m+1} into E_{+}^{m+1} and E_{-}^{m+1} respectively and the restriction $\bar{\phi}_{m, 0} \mid F_{+}^{m+1} \cap F_{-}^{m+1}$ is given by $\bar{\phi}_{m, 0}\left(t_{1}, \cdots, t_{m+1}, 1 / \sqrt{2}\right)=\left(\sqrt{2} t_{1}, \cdots\right.$, $\imath^{\prime} \overline{2} t_{m+1}, 0$). Then $\bar{\phi}_{m, 0}$ is homotopic to the identity. Now we chose a Hopf
construction $\bar{\phi}_{m, n}$ of $\phi_{m, n}$ such that

$$
\begin{align*}
& \bar{\phi}_{m, n}\left(\tau_{m+1, n+1}\left(d_{m}^{\prime}(x, t), y\right)\right)=d_{m+n}\left(\phi_{m, n}(x, y),(1-t) / 2\right), \\
& \bar{\phi}_{m, n}\left(\tau_{m+1, n+1}\left(x, d_{n}^{\prime}(y, t)\right)\right)=d_{m+n}\left(\phi_{m, n}(x, y),(t-1) / 2\right) .
\end{align*}
$$

Let $\sigma: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a homeomorphism given by $\sigma\left(d_{m+n}\left(d_{m+n-1}\left(z, t_{1}\right), t_{2}\right)\right)$ $=d_{m+n}\left(d_{m+n-1}\left(z, t_{2}\right), t_{1}\right)$, then $\sigma=i_{m+n-1} \mathbb{X} \sigma_{1,1}$ and its degree is -1 . Since E_{+}^{m+n+1} $=\tau_{m+1, n+1}\left(V^{m+1} \times E_{+}^{n} \cup S^{m} \times d_{n}^{\prime}\left(E_{+}^{n} \times V^{1}\right)\right)$ and $\phi_{m, n}\left(S^{m} \times E_{+}^{n}\right) \subset E_{+}^{m+n}$, we have that ($\sigma \circ$ $\left.\bar{\phi}_{m, n}\right)\left(E_{+}^{m+n+1}\right) \subset \sigma\left(d_{m+n}\left(E_{+}^{m+n} \times V^{1}\right)\right)=E_{+}^{m+n+1}$. Similarly $\left(\sigma \circ \bar{\phi}_{m, n}\right)\left(E_{-}^{m+n+1}\right) \subset E_{-}^{m+n+1}$. Since $\tau_{m+1, n}=\tau_{m+1, n+1}\left|V^{m+1} \times V^{n}, \phi_{m, n-1}=\phi_{m, n}\right| S^{m} \times S^{n-1}$ and since $d_{n-1}^{\prime}=d_{n}^{\prime} \mid S^{n-1} \times V^{1}$, we have that $\bar{\phi}_{m, n-1}=\left(\sigma \circ \bar{\phi}_{m, n}\right) \mid S^{m+n}$. Therefore $\sigma \circ \bar{\phi}_{m, n}$ is homotopic to the suspension $E \bar{\phi}_{m, n-1}$. If the degree of $\bar{\phi}_{m, n-1}$ is $(-1)^{n-1}$, the degree of $\bar{\phi}_{m, n}$ is $(-1)^{n}$. Then $(1 \cdot 10)$ is proved by the induction.
q. e.d.

Proposition (1-11), i). Let $\bar{\gamma}$ be an element of $\pi_{p+q+1}(E X)$ which is represented by a Hopf construction $\bar{h}: S^{p+q+1} \longrightarrow E X$ of a mapping $h:\left(S^{p} \times S^{q}, S^{p} \vee S^{q}\right)$ $\longrightarrow\left(X, x_{0}\right)$. Let γ^{\prime} be an element of $\pi_{p+q}(X)$ which is represented by a mapping $h^{\prime}: S^{p+q} \longrightarrow X$ such that $h^{\prime} \circ \phi_{p, q}=h$. Then $\bar{\gamma}=(-1)^{q} E \gamma^{\prime}$.
ii) For the cace that $X=K \circledast L$ and $h(x, y)=f(x) \nVdash g(y)=\phi(f(x), g(y))$ for representatives f and g of $\alpha \in \pi_{p}(X)$ and $\beta \in \pi_{q}(Y)$ respectively, we have that $\bar{\gamma}=(-1)^{q} E(\alpha \nless \beta)$.

Proof. Consider a mapping $H=E h^{\circ} \circ \bar{\phi}_{p, q}$, then H is a Hopf construction of h. By $(1 \cdot 9)^{\prime}$ and (1•10), we have that $\bar{\gamma}=(-1)^{q} E \gamma^{\prime}$. In ii), $\gamma^{\prime}=\alpha \nVdash \beta$. q.e.d.

Define a mapping

$$
\psi_{n}:\left(V^{n}, S^{n-1}\right) \longrightarrow\left(S^{n}, e_{0}\right)
$$

by the formula

$$
\psi_{n}\left(d_{n-1}^{\prime}(x, t)\right)=d_{n-1}(x, t), \quad x \in S^{n-1}, t \in V^{1}
$$

then ψ_{n} maps $V^{n}-S^{n-1}$ homeomorphically onto $S^{n}-e_{0}$.
To consider homotopy groups $\pi_{n}(X, A)$ and $\pi_{n}(X)$, we take the orientations of the anti-images (V^{n}, S^{n-1}) and S^{n} such that the mapping ψ_{n} preserves the orientations. Then we remark that the following diagram is commutative:
$(1 \cdot 12)^{\prime}$

Consider mappings $f:\left(S^{p}, e_{0}\right) \longrightarrow\left(S^{m}, e_{0}\right)$ and $g:\left(S^{p}, e_{0}\right) \longrightarrow\left(S^{n}, e_{0}\right)$. Define extensions $F: V^{p+1} \longrightarrow V^{m+1}$ and $G: V^{q+1} \longrightarrow V^{n+1}$ of $f=F \mid S^{p}$ and $g=G \mid S^{q}$ respectively, by setting

$$
E\left(d_{p}^{\prime}(x, t)\right)=d_{m}^{\prime}(f(x), t) \quad \text { and } \quad G\left(d_{q}^{\prime}(x, t)\right)=d_{n}^{\prime}(g(x), t) .
$$

We define a join

$$
f * g: \quad S^{p+q+1} \longrightarrow S^{m+n+1}
$$

of f and g by the formula

$$
(f * g)\left(\tau_{p+1, q+1}(x, y)\right)=\tau_{m+1, n+1}(F(x), G(y)),
$$

then, for homotopies f_{t} and g_{t}, the join $f_{t} * g_{t}$ is also a homotopy. Let $\alpha \in \pi_{p}\left(S^{m}\right)$ and $\beta \in \pi_{q}\left(S^{n}\right)$ be the classes of f and g, then the class $\alpha * \beta \in \pi_{p+q+1}\left(S^{m+n+1}\right)$ of $f * g$ is independent of representatives f and g. This operation "*" coincides with that of [9]. We have the formula (cf. [1])

$$
\alpha * \beta=(-1)^{q+n} E(\alpha * \beta) .
$$

Proof. It is easily verified that

$$
\bar{\phi}_{m, n^{\circ}}(f * g)=E(f \nVdash g) \circ \bar{\phi}_{p, q}
$$

for the Hopf constructions $\bar{\phi}_{m, n}$ and $\bar{\phi}_{p, q}$ defined by (1.10)'. Then by ($1 \cdot 10$),

$$
\begin{align*}
\alpha * \beta & =(-1)^{n} i_{m+n+1} \circ E(\alpha \mathbb{*} \beta) \circ(-1)^{q}{ }^{\prime} \cdot p+q+1 \\
& =(-1)^{q+n} E(\alpha \mathbb{*} \beta) .
\end{align*}
$$

Combining this to $(1 \cdot 7)$, we have that

$$
\begin{align*}
\alpha * \beta & =(-1)^{(p+1)(q+n)} E^{n+1} \alpha \circ E^{p+1} \beta \\
& =(-1)^{(m+1)(q+n)} E^{m+1} \beta \circ E^{q+1} \alpha
\end{align*}
$$

for $\alpha \in \pi_{p}\left(S^{m}\right)$ and $\beta \in \pi_{q}\left(S^{n}\right)$.
For two mappings $f^{\prime}:\left(S^{m+1}, e_{0}\right) \longrightarrow\left(X, x_{0}\right)$ and $g^{\prime}:\left(S^{n+1}, e_{0}\right) \longrightarrow\left(X, x_{0}\right)$, we define their Whitehead product

$$
\left[f^{\prime}, g^{\prime}\right]: S^{m+n+1} \longrightarrow X
$$

by setting

$$
\left[f^{\prime}, g^{\prime}\right]\left(\tau_{m+1, n+1}(x, y)\right)= \begin{cases}f^{\prime}\left(\psi_{m+1}(x)\right), & (x, y) \in V^{m+1} \times S^{n}, \\ g^{\prime}\left(\psi_{n+1}(y)\right), & (x, y) \in S^{m} \times V^{n+1}\end{cases}
$$

Let $\alpha^{\prime} \in \pi_{m+1}(X)$ and $\beta^{\prime} \in \pi_{n+1}(X)$ be the classes of f^{\prime} and g^{\prime} respectively, then the class $\left[\alpha^{\prime}, \beta^{\prime}\right] \in \pi_{m+n+1}(X)$ of $\left[f^{\prime}, g^{\prime}\right]$ is independent of representatives f^{\prime} and g^{\prime}. From the definition of $\psi_{r+1}, *$ and E, we have the formula

$$
\left[f^{\prime} \circ E f, g^{\prime} \circ E g\right]=\left[f^{\prime}, g^{\prime}\right] \circ(f * g) .
$$

Then by $(1 \cdot 13)^{\prime}(c f .(3 \cdot 59)$ of [9])

$$
\begin{align*}
& {\left[\alpha^{\prime} \circ E \alpha, \beta^{\prime} \circ E \beta\right]=\left[\alpha^{\prime}, \beta^{\prime}\right] \circ(\alpha * \beta)} \\
& \quad=(-1)^{(p+1)((q+n)}\left[\alpha^{\prime}, \beta^{\prime}\right] \circ E^{n+1} \alpha \circ E^{p+1} \beta \\
& \quad=(-1)^{(m+1)(q+n)}\left[\alpha^{\prime}, \beta^{\prime}\right] \circ E^{m+1} \beta \circ E^{q+1} \alpha,
\end{align*}
$$

$$
\alpha^{\prime} \in \pi_{m+1}(X), \beta^{\prime} \in \pi_{n+1}(X), \alpha \in \pi_{p}\left(S^{m}\right), \beta \in \pi_{q}\left(S^{n}\right)
$$

A mapping

$$
h:\left(S^{m+1} \times S^{n+1}, S^{m+1} \vee S^{n+1}\right) \longrightarrow(X, A)
$$

is called to have a type (α, β) if $h \mid S^{m+1} \times e_{0}$ and $h \mid e_{0} \times S^{n+1}$ represent α and β respectively. Let a mapping

$$
H:\left(V^{m+n+2}, S^{m+n+1}\right) \longrightarrow(X, A)
$$

be defined by the formula $H\left(\tau_{m+1, n+1}(x, y)\right)=h\left(\psi_{m+1}(x), \psi_{n+1}(y)\right)$. Then we have easily
(1-15). $\partial \gamma=[\alpha, \beta]$ for the class $\gamma \in \pi_{m+n+2}(X, A)$ of H. In the case $X=A,[\alpha, \beta]$ $=0$ if and only if these exists a mapping $h: S^{m+1} \times S^{n+1} \longrightarrow X$ of type (α, β).

Next we prove that
(1•16) a mapping $f_{m, n}:\left(V^{m+n}, S^{m+n-1}\right) \longrightarrow\left(S^{m+n}, e_{0}\right)$ which is given by the formula $f_{m, n}\left(\tau_{m, n}(x, y)\right)=\phi_{m, n}\left(\psi_{m}(x), \psi_{n}(y)\right)$ is homotopic to ψ_{m+n}.

Proof. It is sufficient to prove that the composition $f_{m, n^{\circ}} \psi_{m+n}^{-1}=f_{m, n}^{\prime}: S^{m+n} \longrightarrow$ S^{m+n} is homotopic to the identity. Let $\rho_{r}: S^{r} \longrightarrow S^{r}$ be a permutation given by $\rho_{r}\left(t_{1}, \cdots, t_{r-1}, t_{r}, t_{r+1}\right)=\left(t_{1}, \cdots, t_{r-1}, t_{r+1}, t_{r}\right)$, then $\rho_{r} \circ \psi_{r} \mid V^{r-1}=\psi_{r-1}$. Since the degree of ρ_{r} is -1 , the composition $\left(i_{m} \mathbb{X} \rho_{n}\right) \circ f_{m, n}^{\prime} \circ \rho_{m+n}$ is homotopic to $f_{m, n}^{\prime}$. On the other hand, $\left(i_{m} \mathbb{*} \rho_{n}\right) \circ f_{m, n}^{\prime} \circ \rho_{m+n}$ maps E_{+}^{m+n} and E_{-}^{m+n} into themselves respectively and coincides with $f_{m, n-1}^{\prime}$ on S^{m+n-1}. Therefore $\left(i_{m} \mathbb{X} \rho_{n}\right) \circ f_{m, n}^{\prime} \circ \rho_{m+n} \simeq f_{m, n}^{\prime} \simeq E f_{m, n-1}^{\prime}$. This is true for $n=1$ if we regard that $f_{m, 0}^{\prime}$ is the identity. By the induction, we have that $f_{m, n}^{\prime}$ is homotopic to the identity.
q.e.d.

Finally we prove the following lemma.
Lemma (1•17) Let $\alpha \in \tau_{m}(X)$ be represented by a mapping $f:\left(S^{m}, e_{0}\right) \longrightarrow$ $\left(X, x_{0}\right)$, and define mappings $F_{1}: S^{m+n+1} \longrightarrow X \nVdash S^{n+1}$ and $F_{2}: S^{m+n+1} \longrightarrow S^{n+1} \nVdash X$ by setting

$$
\begin{aligned}
& F_{1}\left(\tau_{m+1}, n+1\right. \\
& (x, y))= \begin{cases}f(x) * \psi_{n+1}(y), & (x, y) \in S^{m} \times V^{n+1}, \\
x_{0} \not e_{0}, & (x, y) \in V^{m+1} \times S^{n},\end{cases} \\
& F_{2}\left(\tau_{n+1, m+1}(x, y)\right)= \begin{cases}e_{0} \not x_{0}, & (x, y) \in S^{n} \times V^{m+1}, \\
\psi_{n+1}(x) \nVdash f(y) & (x, y) \in V^{n+1} \times S^{m},\end{cases}
\end{aligned}
$$

then F_{1} and F_{2} represent $(-1)^{n}\left(\alpha \mathbb{*}_{n+1}\right)$ and $-\left(\iota_{n+1} \mathbb{*} \alpha\right)$ respectively.
Proof. Define mappings k_{1} and k_{2} of S^{m+n+1} on itself by the formula

$$
\begin{aligned}
& k_{1}\left(\tau_{m+1, n+1}(x, y)\right)= \begin{cases}\phi_{m, n+1}\left(x, \psi_{n+1}(y)\right), & (x, y) \in S^{m} \times V^{n+1}, \\
e_{0}, & (x, y) \in V^{m+1} \times S^{n},\end{cases} \\
& k_{2}\left(\tau_{n+1, m+1}(y, x)\right)= \begin{cases}e_{0}, & y, x) \in S^{n} \times V^{m+1}, \\
\phi_{n+1, m}\left(\psi_{n+1}(y), x\right), & (y, x) \in V^{n+1} \times S^{m} .\end{cases}
\end{aligned}
$$

Then $F_{1}=\left(f \circledast i_{n+1}\right) \circ k_{1}$ and $F_{2}=\left(i_{n+1} \mathbb{*} f\right) \circ k_{2}$. Therefore it is sufficient to prove that $(1 \cdot 17)^{\prime}$ the degrees of k_{1} and k_{2} are $(-1)^{n}$ and -1 respectively.
Let $\{x, y, t\}$ denote a point of S^{m+n+1} such that

$$
\{x, y, t\}=\left\{\begin{array}{llr}
\tau_{m+1, n+1}\left(x, d_{n}^{\prime}(y, 2 t+1)\right) & \text { for } & -1 \leqq t \leqq 0 \\
\tau_{m+1, n+1}\left(d_{m}^{\prime}(x,-2 t+1), y\right) & \text { for } & 0 \leqq t \leqq 1
\end{array}\right.
$$

$x \in S^{m}, y \in S^{n}, t \in V^{1}$. Then $k_{1}(\{x, y, t\})=\phi_{m, n+1}\left(x, d_{n}(y, 2 t+1)\right)$ for $-1 \leqq t \leqq 0$ and $k_{1}(\{x, y, t\})=e_{0}$ for $0 \leqq t \leqq 1$. It is easy to see that k_{1} is homotopic to a mapping k^{\prime} which is given by $k^{\prime}(\{x, y, t\})=\phi_{m, n+1}\left(x, d_{n}(y, t)\right)=d_{m+n}\left(\phi_{m, n}(x, y), t\right) . k^{\prime}$ is a Hopf construction of the mapping $\phi_{m, n}$. Then the degree of k^{\prime} is $(-1)^{n}$ by ($1 \cdot 10$) and the degree of k_{1} is $(-1)^{n}$. Also we denote by $\{y, x, t\}$ a point of S^{m+n+1} such that

$$
\{y, x, t\}=\left\{\begin{array}{llr}
\tau_{n+1}, m+1 \\
\tau_{n+1}\left(y, d_{m}\left(d_{n}^{\prime}(x, 2 t+1)\right)\right. & \text { for } & -1 \leqq t \leqq 0 \\
\left.\tau_{n}^{\prime}(y,-2 t+1), x\right) & \text { for } & 0 \leqq t \leqq 1
\end{array}\right.
$$

Then $k_{2}(\{y, x, t\})=e_{0}$ for $-1 \leqq t \leqq 0$ and $k_{2}(\{y, x, t\})=\phi_{n+1, m}\left(d_{n}(y,-2 t+1), x\right)$,
for $0 \leqq t \leqq 1$, and k_{2} is homotopic to a mapping $k^{\prime \prime}$ which is given by $k^{\prime \prime}(\{y, x, t\})$ $=\phi_{n+1, m}\left(d_{n}(y,-t), x\right)=\sigma_{m, n+1}\left(\phi_{m, n+1}\left(x, d_{n}(y,-t)\right)\right)=\sigma_{m, n+1}\left(d_{m+n}\left(\phi_{m, n}(x, y),-t\right)\right)$ $=\sigma_{m, n+1}\left(d_{m+n}\left(\sigma_{n, m}\left(\phi_{n, m}(y, x)\right),-t\right)\right)=\left(\sigma_{m, n+1} \rho\right)\left(d_{m+n}\left(\left(\sigma_{n, m} \circ \phi_{n, m}\right)(y, x), t\right)\right)$, where ρ is a reflection giben by $\rho\left(d_{m+n}(z, t)\right)=d_{m+n}(z,-t)$. Then $\rho \circ \sigma_{n+1, m^{\circ}} \circ k^{\prime \prime}=E \sigma_{n, m} \circ \bar{\phi}_{n, m}$ for a Hopf construc-tion $\bar{\phi}_{n, m}$ of $\phi_{n, m}$ such that $\bar{\phi}_{n, m}(\{y, x, t\})=d_{m+n}\left(\phi_{n, m}(y, x), t\right)$. Then the degree of $k^{\prime \prime}$ is $(-1)^{m+(n+1) m+n m+1}=-1$ by $(1 \cdot 10)$, and the degree of k_{2} is -1 .
q. e. d.

2. Hopf invariant

In the following we suppose that each complex is finite and has only one vertex.

According to [3], we define the reduced product complex K_{∞} of K which is canonically imbedded in the loop-space $\Omega(E K)$ of $E K$. A point of K_{∞} is represented by the product $x_{1} \cdots x_{k}$ for some $x_{1}, \cdots, x_{k} \in K$, and the injection $K \subset \Omega(E K)$ associates with a point x of K a loop $l_{x}: V^{1} \longrightarrow E K$ given by $l_{x}(t)=d_{K}(x, t)$. The imbedding $\tilde{i}: K_{\infty} \longrightarrow \Omega(E K)$ induces isomorphisms of the homotopy groups [3] [7] (2•1) $\quad \tilde{i}_{*}: \pi_{i}\left(K_{\infty}\right) \approx \pi_{i}(\Omega(E K))$.

For a mapping $f:\left(S^{i+1}, e_{0}\right) \longrightarrow\left(E K, u_{0}\right)$, we define a mapping $\Omega f:\left(S^{i}, e_{0}\right)$ $\longrightarrow\left(\Omega(E K), u_{0}\right)$ by the formula

$$
\Omega f(x)(t)=f\left(d_{i}(x, t)\right),
$$

$x \in K, t \in V^{1}$. The correspondence $f \longrightarrow \Omega f$ induces an isomorphism

$$
\Omega: \pi_{i+1}(E K) \approx \pi_{i}(\Omega(E K))
$$

Then we have that

$$
E=\left(\Omega^{-1} \circ \tilde{i}_{*}\right) \circ i_{*}: \pi_{i}(K) \longrightarrow \pi_{i}\left(K_{\infty}\right) \approx \pi_{i+1}(E K)
$$

that is to say, the suspension homomorphism E is equivalent to the injection homomorhism $i_{*}: \pi_{i}(K) \longrightarrow \pi_{i}\left(K_{\infty}\right)$. From the exact sequence for the pair (K_{∞}, K), we have an exact sequence

$$
\cdots \longrightarrow \pi_{i}(K) \xrightarrow{E} \pi_{i+1}(E K) \xrightarrow{J} \pi_{i}\left(K_{\infty}, K\right) \xrightarrow{\partial} \pi_{i-1}(K) \longrightarrow \cdots,
$$

where $J=j_{*} \circ \tilde{i}_{*}^{-1} \circ \Omega$ for the injection homomorphism $j_{*}: \pi_{i}\left(K_{\infty}\right) \longrightarrow \pi_{i}\left(K_{\infty}, K\right)$.
Define a mapping

$$
h^{\prime}:\left(K_{2}, K\right) \longrightarrow\left(K \nVdash K, u_{0} \nVdash_{u_{0}}\right)
$$

by setting

$$
h^{\prime}(x \cdot y)=x \nVdash y,
$$

where $K_{2}=\left\{x \cdot y \in K_{\infty} \mid x, y \in K\right\}$. Let
$(2 \cdot 5) \quad h:\left(K_{\infty}, K\right) \longrightarrow\left((K \nVdash K)_{\infty}, u_{0} \nVdash u_{0}\right)$
be the combinatorial extension [3] of h^{\prime}. Then h defines two generalizations of the Hopf invariant :
(2•6), i) $H^{\prime}=\left(\Omega^{-1} \circ \tilde{i}_{*}\right) \circ h_{*}: \pi_{i}\left(K_{\infty}, K\right) \longrightarrow \pi_{i}\left((K \nVdash K)_{\infty}\right) \approx \pi_{i+1}(E(K \nVdash K))$;
ii) $H=H^{\prime} \circ J=\left(\Omega^{-1} \circ \tilde{i}_{*}\right) \circ h_{*} \circ\left(\tilde{i}_{*}^{-1} \circ \Omega\right): \pi_{i+1}(E K) \approx \pi_{i}\left(K_{\infty}\right) \longrightarrow \pi_{i}\left((K \circledast K)_{\infty}\right) \approx$ $\pi_{i+1}(E(K \nVdash K))$.

The following proposition is proved without difficulties (cf. [2]).
Proposition (2•7) If K is ($r-1$)-connected ($r>1$), then H^{\prime} is an isomorphism for $i \leqq 3 r-2$ and a homomorphism onto for $i=3 r-1$.

In the case $K=S^{r}$, we have that
Proposition (2.8), i), if r is odd, then H^{\prime} is an isomorphism for all i :
ii), if r is even, then H^{\prime} is an isomorphism of the 2-components for all i.

For the proof, see [5] and [8].
For two mappings $f:\left(S^{\dagger}, e_{0}\right) \longrightarrow\left(K, u_{0}\right)$ and $g:\left(S^{q}, e_{0}\right) \longrightarrow\left(K, u_{0}\right)$, define a mapping

$$
\{f, g\}:\left(V^{p+q}, S^{p+q+1}\right) \longrightarrow\left(K_{\infty}, K\right)
$$

by the formula

$$
\{f, g\}\left(\tau_{p, q}(x, y)\right)=f\left(\psi_{p}(x)\right) \cdot g\left(\psi_{q}(y)\right), \quad(x, y) \in V^{p} \times V^{q}
$$

Then the homotopy class of $\{f, g\}$ is an element $\{\alpha, \beta\} \in \pi_{p+q}\left(K_{\infty}, K\right)$ such that (2•9)

$$
\partial\{\alpha, \beta\}=[\alpha, \beta]
$$

for the classes α and β of f and g respectively.
From the exactness of the sequence $(2 \cdot 4)$, we have that

$$
E[\alpha, \beta]=0 .
$$

From (2•3), (2•6) and from the definition of the mappings, we have easily that (2•11)

$$
H^{\prime}\{\alpha, \beta\}=E(\alpha \nVdash \beta)
$$

We introduce the following results of James from [4, Theorem (2•17)].
(2•12) An element γ of $\pi_{p+q+1}(E K)$ is represented by a Hopf construction of a mapping of a type (α, β) if and only if

$$
J \Upsilon=\{\alpha, \beta\} .
$$

By (2•12) and (2•11),
$(2 \cdot 12)^{\prime} \quad H \gamma=E(\alpha * \beta)$.
In the case $K=S^{r}$, we have that
(2•13) if $i \leqq 3 r-2$, then an element γ of $\pi_{t+1}\left(S^{r+1}\right)$ is represented by a Hopf construction of a mapping $f: S^{i-r} \times S^{r} \longrightarrow S^{r}$ of a type (α, ι_{r}) where α is an element of $\pi_{i-r}\left(S^{r}\right)$ such that $E^{r+1} \alpha=H \gamma$. (See [10]).

Proof. Since $E^{r+1}: \pi_{i-r}\left(S^{r}\right) \longrightarrow \pi_{i+1}\left(S^{2 r+1}\right)$ is an isomorphism for $i-r \leqq 2 r-2$, there is an element γ of $\pi_{i-r}\left(S^{r}\right)$ such that $E^{r+1} \alpha=H \gamma=E\left(\alpha \mathbb{*} i_{r}\right)$. By (2•7), $H^{\prime}\left\{\alpha, i_{r}\right\}=E\left(\alpha \not \otimes_{i_{r}}\right)=H \gamma=H^{\prime} J \gamma$ implies that $\left\{\alpha, c_{r}\right\}=J \gamma$. Therefore γ is represented by a Hopf construction of a mapping of the type $\left(\alpha, \iota_{r}\right)$, by $(2 \cdot 12)$. q.e.d.

3. Reduced join and Hopf construction

Let K and L be finite cell complexes with only vertices $u_{0}=K^{0}$ and $v_{0}=L^{0}$. Consider suspensions $E K$ and $E L$ of K and L, and let
and

$$
\begin{aligned}
d_{K}: & \left(K \times V^{1}, K \times S^{0} \cup u_{0} \times V^{1}\right) \longrightarrow\left(E K, u_{0}\right) \\
d_{L}: & \left(L \times V^{1}, L \times S^{0} \cup v_{0} \times V^{1}\right) \longrightarrow\left(E L, v_{0}\right)
\end{aligned}
$$

be mappings defining the suspensions. Let

$$
E K^{*}=E K \cup e^{p+2} \text { and } E L^{*}=E L \cup e^{q+2}
$$

be cell complexes with characteristic maps

$$
\begin{align*}
& F:\left(V^{p+2}, S^{p+1}\right) \longrightarrow\left(E K^{*}, E K\right), \\
& G:\left(V^{q+2}, S^{q+1}\right) \longrightarrow\left(E L^{*}, E L\right) .
\end{align*}
$$

Let

$$
\phi:\left(E K^{*} \times E L^{*}, E K^{*} \vee E L^{*}\right) \longrightarrow\left(E K^{*} \nVdash E L^{*}, u_{0} \not \otimes_{0}\right)
$$

be a shrinking map defining the reduced join $E K^{*} * E L^{*}$, then ϕ defines $E K \notin E L^{*}$, $E K \notin E L, K \nVdash E L$, etc., and we denote that $\phi(x, y)=x \nVdash y$ for points $x \in E K^{*}$ and $y \in E L^{*}$. Define subspaces M, M_{+}, M_{-}and M_{0} of $E K^{*} \notin E L^{*}$ as follows :

$$
M_{+}=C_{+} K * E L^{*} \cup E K^{*} * C_{+} L, \quad M_{-}=C_{-} K * E L^{*} \cup E K^{*} \nVdash_{--} L
$$

$$
\begin{align*}
& M=M_{+} \cup M_{-}=E K \nVdash E L^{*} \cup E K^{*} \nVdash E L, \\
& M_{0}=M_{+} \cap M_{-}=K \nVdash E L^{*} \cup C_{+} K \nVdash C_{-} L \cup C_{-} K \nVdash C_{+} L \cup E K^{*} \not{ }^{*} .
\end{align*}
$$

Consider a homeomorphism

$$
\sigma: E K \nVdash L \longrightarrow K \nVdash E L
$$

given by the formula
(3•3) $\quad \sigma\left(d_{K}(x, t) \not \mathbb{X}^{2}\right)=x \not d_{L}(y,-t), \quad x \in K, y \in L, t \in X^{1}$,
then σ is identical on $K \nVdash L=E K \nsim L \cap K \notin E L$. Attaching the subcomplex $E K \nVdash L$ of $E K^{*} \not{ }^{*} L$ to the subcomplex $K * E L$ of $K \notin E L^{*}$ by the homeomorphism σ, we obtain a complex
(3•3)'

$$
N=K \nVdash E L^{*} \cup \bar{\sigma}\left(E K^{*} \nVdash L\right)
$$

where $\bar{\sigma}$ is a homeomorphism into N such that $\bar{\sigma} \mid E K \nVdash L=\sigma$.
Let
$(3 \cdot 4) \cdot \psi_{K}:\left(E K^{*}, E K\right) \longrightarrow\left(S^{p+2}, e_{0}\right)$, and $\psi_{L}:\left(E L^{*}, E L\right) \longrightarrow\left(S^{q+2}, e_{0}\right)$
be mappings such that $\psi_{K} \circ F=\psi_{p+2}$ and $\psi_{L} \circ G=\psi_{q+2}$, then ψ_{K} and ψ_{L} skrink $E K$ and $E L$ to a single point e_{0}. Define mappings

$$
P_{1}: N \longrightarrow K \nVdash S^{q+2} \text { and } P_{2}: N \longrightarrow S^{p+2} \nVdash L
$$

as follows;

$$
\begin{array}{rr}
P_{1} \mid K \mathbb{*} E L^{*}=i_{K} \mathbb{*} \psi_{L}, & P_{1}\left(\bar{\sigma}\left(E K^{*} \mathbb{*} L\right)\right)=e_{0} \mathbb{*} v_{0} \\
P_{2} \circ \bar{\sigma} \mid E K^{*} \mathbb{*} L=\psi_{K} \not i_{L}, & P_{2}\left(K \nVdash E K^{*}\right)=u_{0} \nVdash e_{0},
\end{array}
$$

where i_{K} and i_{L} are the identities of K and L.
First we prove the following lemma.
Lemma (3•6). There exists a mapping

$$
\chi:\left(M, M_{+}, M_{-}\right) \longrightarrow\left(E N, C_{+} N, C_{-} N\right)
$$

such that $\chi \mid K \notin E L^{*}=$ identity and $\chi \mid E K^{*} \nVdash L=\bar{\sigma}$. Such mappings χ are homotopic to each other and homotopy equivalences.

Proof. First consider the case $K=L=S^{0}$, then $E K \nVdash E L=S^{1} \not S^{1}=E S^{1}=S^{2}$ which is divided into four parts $C_{+}\left(E_{+}^{1}\right), C_{+}\left(E_{-}^{1}\right), C_{-}\left(E_{+}^{1}\right)$ and $C_{-}\left(E_{-}^{1}\right)$ by two circles $S^{1}=S^{1} \circledast S^{0}$ and $S_{0}^{1}=S^{0} * S^{1}$. It is easy to see that S_{0}^{1} is a deformation retract of $C_{+}\left(E_{-}^{1}\right) \cup C_{-}\left(E_{+}^{1}\right)$ and we may chose the retraction such that S^{1} is mapped
onto S_{0}^{1} by the homeomorphism σ. Since $E K \otimes E L$ is naturally homeomorphic to $K \mathbb{*} L \mathbb{*} S^{2}$ such that $C_{+} K \mathbb{*} C_{-} L \cup C_{-} K \mathbb{*} C_{+} L$ corresponds to $(K \mathbb{*} L) \mathbb{*}\left(C_{-}\left(E_{+}^{1}\right) \cup\right.$ $C_{+}\left(E_{-1}^{1}\right)$), the above deformation gives a deformation (retraction) of $C_{+} K \not{ }_{*} C_{-} L \cup$ $C_{-} K \not{ }^{*} C_{+} L$ onto $K \nVdash E L$ such that $E K \mathbb{*} L$ is mapped by the homeomorphism σ. This deformation shows that there exists a mapping of M_{0} onto N carrying $K * E L^{*} \cup E K^{*} * L$ as in (3•6) and such mappings are homotopic to each other. Next since $C_{+} N$ and $C_{-} N$ are contractible to a single point, the above mapping of M_{0} onto N is extended over the whole of M such that M_{+}an M_{-}are mapped into $C_{+} N$ and $C_{-} N$ respectively, and such extensions are homotopic to each other. It is easy to see that this mapping induces isomorphisms of the homology groups. Since M and $E N$ are simply connected, the mapping is an homotopy equivalence by Theorem 3 of [11].
q. e.d.

Now suppose that
(3.7)

$$
\left[\alpha^{\prime}, \alpha^{\prime \prime}\right]=0 \quad \text { and } \quad\left[\beta^{\prime}, \beta^{\prime \prime}\right]=0
$$

for $\alpha^{\prime} \in \pi_{p^{\prime}}(K), \alpha^{\prime \prime} \in \pi_{p^{\prime \prime}}(K), \beta^{\prime} \in \pi_{q^{\prime}}(L) \quad$ and $\quad \beta^{\prime \prime} \in \pi_{q^{\prime \prime}}(L)$.
By (1-15), there exist mappings

$$
f:\left(S^{p^{\prime}} \times S^{p^{\prime \prime}}, e_{0} \times e_{0}\right) \longrightarrow\left(K, u_{0}\right)
$$

and

$$
g:\left(S^{q^{\prime}} \times S^{q^{\prime \prime}}, e_{0} \times e_{0}\right) \longrightarrow\left(L, v_{0}\right)
$$

of the types $\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)$ and $\left(\beta^{\prime}, \beta^{\prime \prime}\right)$ respectively. Set $p=p^{\prime}+p^{\prime \prime}$ and $q=q^{\prime}+q^{\prime \prime}$, and let
$(3 \cdot 7)^{\prime} \quad \bar{f}: S^{p+1} \longrightarrow E K$ and $\bar{g}: S^{q+1} \longrightarrow E L$
be Hopf constructions of f and g respectively. We construct complexes $E K^{*}$ and $E L^{*}$ such that

$$
F \mid S^{p+1}=\bar{f} \quad \text { and } \quad G \mid S^{q+1}=\bar{g}
$$

in (3.1).
ThEOREM (3.8). Let $\alpha \in \pi_{p+1}(E K)$ and $\beta \in \pi_{q+1}(E L)$ be the classes of \bar{f} and \bar{g} respectively, then there exists a Hopf construction

$$
H: S^{p+q+3} \longrightarrow E N
$$

of a mapping

$$
h:\left(S^{p^{\prime}+q^{\prime}+1} \times S^{p^{\prime}+q^{\prime \prime}+1}, S^{p^{\prime}+q^{\prime}+1} \vee S^{p^{\prime \prime}+q^{\prime \prime}+1}\right) \longrightarrow(N, E(K \nVdash L))
$$

of a type $\quad\left((-1)^{q^{\prime}+1} E\left(\alpha^{\prime} \not \beta^{\prime}\right),(-1)^{q^{\prime \prime}} E\left(\alpha^{\prime \prime} \not \beta^{\prime \prime}\right)\right)$ such that the compositions

$$
E P_{1} \circ H: S^{p+q+3} \longrightarrow E\left(K \not \mathbb{X}^{q+2}\right)=K \not \mathbb{X}^{q+3}=E^{q+2}(E K)
$$

and $E P_{2} \circ H: S^{p+q+1} \longrightarrow E\left(S^{p+2} \nless L\right)=S^{p+2} \nVdash E L$
represent. $(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}} E^{q+2} \alpha$ and $(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}} i_{p+2} \nVdash \beta$ respectively.
Proof. Consider a mapping

$$
H_{0}: S^{p+q+3} \longrightarrow E N
$$

which is defined by the formula

$$
H_{0}\left(\tau_{p+2, q+2}(x, y)\right)=\chi(F(x) \mathbb{*} G(y))
$$

for $(x, y) \in S^{p+1} \times V^{q+2} \cup V^{p+2} \times S^{q+1}$. Compare the composition $E P_{1} \circ \chi: M \longrightarrow E N$ $\longrightarrow K \mathbb{S}^{q+3}$ and a mapping

$$
Q_{1}: M \longrightarrow K \nVdash S^{q+3}=E\left(K \nVdash^{q+2}\right)
$$

which is given by setting

$$
\begin{aligned}
& Q_{1}\left(E K^{*} E L\right)=u_{0} \not e_{0} \\
& Q_{1} \mid E K * E L^{*}=\left(i_{K}^{\circ} \sigma_{1, q+2}\right) \circ\left(i_{E K} \mathbb{*} \psi_{L}\right) .
\end{aligned}
$$

The mappings $E P_{1} \circ \chi$ and Q_{1} map M_{+}and M_{-}into $C_{+}\left(K \nVdash S^{q+2}\right)$ and $C_{-}\left(K \nVdash^{q+2}\right)$ respectively and they coincide on M_{0}. Therefore the mappings $E P_{1} \circ \chi$ and Q_{1} are homotopic to each other. Then the composition $\left(i_{K} \not \otimes_{1, q+2}\right)^{-1} \circ E P_{1} \circ H_{0}$ is homotopic to a mapping $R_{1}: S^{p+q+3} \longrightarrow E K \nVdash S^{q+2}$ which is given by

$$
R_{1}\left(\tau_{p+2, q+2}(x, y)\right)= \begin{cases}\bar{f}(x) \not *_{q+2}(y) & \text { for }(x, y) \in S^{p+1} \times V^{q+2} \\ u_{0} \not e_{0} & \text { for }(x, y) \in V^{p+2} \times S^{q+1}\end{cases}
$$

By ($1 \cdot 17$), R_{1} represents $(-1)^{q+1} \alpha \mathbb{*}_{i_{q+2}}=(-1)^{q+1} E^{q+2} \alpha$, and $E P_{1} \circ H_{0}$ represents $\left(i_{K} * \sigma_{1, q+2}\right)_{*}\left((-1)^{q+1} E^{q+2} \alpha\right)$. Since $\sigma_{1, q+2}$ is homotopic to a reduced join $i_{1} * \lambda$ for a mapping $\lambda: S^{q+2} \longrightarrow S^{q+2}$ of the degree $(-1)^{q+2}$, we have from (1•5) that

$$
\begin{gathered}
\left(i_{K} \not \sigma_{1, q+2}\right)_{*}\left((-1)^{q+1} E^{q+2} \alpha\right)=\left(i_{E K} \nless \lambda\right)_{*}\left((-1)^{q+1} \alpha \Vdash_{i_{q+2}}\right) \\
\quad=(-1)^{q+1} \alpha \nVdash\left((-1)^{q+2} \iota_{\iota_{q+2}}\right)=-E^{q+2} \alpha .
\end{gathered}
$$

Next we compare the composition $E P_{2} \circ \chi$ and a mapping

$$
Q_{2}: M \longrightarrow S^{p+2} \mathbb{*} E L
$$

which is given by setting
and

$$
\begin{aligned}
& Q_{2} \mid E K^{*} \mathbb{*} E L=\psi_{K} \mathbb{*}_{E L} \\
& Q_{2}\left(E K * E L^{*}\right)=e_{0} \not \otimes_{0} .
\end{aligned}
$$

The mappings $E P_{2} \circ \chi$ and Q_{2} map M_{+}and M_{-}into $C_{+}\left(S^{p+2} * L\right)$ and $C_{-}\left(S^{p+2} * L\right)$ respectively and they coincide on M_{0}. Therefore the mappings $E P_{2} \circ \chi$ and Q_{2} are homotopic to each other. The composition $E P_{2} \circ H_{0}$ is homotopic to a mapping R_{2} which is given by

$$
R_{2}\left(\tau_{p+2, q+2}(x, y)\right)= \begin{cases}e_{0} \not v_{0} & \text { for } \quad(x, y) \in S^{p+1} \times V^{q+2}, \\ \psi_{p+2}(x) *(y) & \text { for } \quad(x, y) \in V^{p+2} \times S^{q+1} .\end{cases}
$$

By ($1 \cdot 17$), $\quad R_{2}$ represents $-\left(i_{p+2} \mathbb{*} \beta\right)$. Therefore $E P_{2} \circ H_{0}$ represents $-\left(i_{p+2} \mathbb{*} \beta\right)$. Now define a homeomorphism

$$
\zeta:\left(V^{p+q+4}, S^{p+q+3}\right) \longrightarrow\left(V^{p+q+4}, S^{p+q+3}\right)
$$

by the formula

$$
\begin{gathered}
\zeta\left(\tau_{p^{\prime}+q^{\prime}+2, p^{\prime \prime}+q^{\prime \prime}+2}\left(\tau_{p^{\prime}+1, q^{\prime}+1}\left(x^{\prime}, y^{\prime}\right), \tau_{p^{\prime \prime}+1, q^{\prime \prime}+1}\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)\right) \\
=\tau_{p+2, q+2}\left(\tau_{p^{\prime}+1, p^{\prime \prime}+1}\left(x^{\prime}, x^{\prime \prime}\right), \tau_{q^{\prime}+1, q^{\prime \prime}+1}\left(y^{\prime}, y^{\prime \prime}\right)\right)
\end{gathered}
$$

then the degree of ζ is $(-1)^{\left(p^{\prime \prime}+1\right)\left(q^{\prime}+1\right)}$. We set

$$
H=H_{0} \circ \zeta,
$$

then $E P_{1} \circ H$ and $E P_{2} \circ H$ represent $(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}} E^{q+2} \alpha$ and $(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}}{ }_{(p+2} \nless \beta$ respectively. It is verified directly that H maps $\tau_{p^{\prime}+q^{\prime}+2, p^{\prime \prime}+q^{\prime \prime}+2}\left(V^{p^{\prime}+q^{\prime}+2}\right.$ $\left.\times S^{p^{\prime \prime}+q^{\prime \prime+1}}\right)$ and $\tau_{p^{\prime}+q^{\prime}+2, p^{\prime \prime}+q^{\prime \prime}+2}\left(S^{p^{\prime}+q^{\prime}+1} \times V^{p^{\prime \prime}+q^{\prime \prime}+2}\right)$ into $C_{+} N$ and $C_{-} N$ respectively Then H is a Hopf construction of a mapping

$$
h: S^{p^{\prime}+q^{\prime}+1} \times S^{p^{\prime \prime}+q^{\prime \prime}+1} \longrightarrow N
$$

which is given by $h(x, y)=H\left(\tau_{p^{\prime}+q^{\prime}+1, p^{\prime \prime}+q^{\prime \prime}+1}(x, y)\right)$. Let $h_{1}: S^{p^{\prime}+q^{\prime}+1} \longrightarrow E(K \nVdash L)$ and $h_{2}: S^{p^{\prime \prime}+q^{\prime \prime}+1} \longrightarrow E(K \circledast L)$ be mappings given by
and

$$
h_{1}(x)=h\left(x, \tau_{p^{\prime \prime}+1, q^{\prime \prime}+1}\left(e_{0}, e_{0}\right)\right)
$$

The mapping $h_{1}{ }^{\circ} \tau_{p^{\prime}+1, q^{\prime}+1}$ maps $V^{p^{\prime}+1} \times S^{q^{\prime}}$ and $S^{p^{\prime}} \times V^{q^{\prime}+1}$ into $C_{-}(K \times L)$ and $C_{+}(K \nVdash L)$ respectively and its restriction on $S^{p^{\prime}} \times S^{q^{\prime}}$ is given by $h_{1}\left(x^{\prime}, y^{\prime}\right)=f\left(x^{\prime}, e_{0}\right)$ $\not \otimes g\left(y^{\prime}, e_{0}\right)$. Let $\rho: E(K \nVdash L) \longrightarrow E(K \nVdash L)$ be a reflection given by $\rho\left(d_{K * L L}(z, t)\right)$ $=d_{K \star L}(z,-t)$. Then by $(1 \cdot 11)$, ii), $\rho \circ h_{1}$ represents $(-1)^{q^{\prime}} E\left(\alpha^{\prime} * \beta^{\prime}\right)$, and h_{1} represents $(-1)^{q^{\prime}+1} E\left(\alpha^{\prime} \not \beta^{\prime}\right)$. The mapping $h_{2}{ }^{\circ} \tau_{q^{\prime \prime}+1, q^{\prime \prime}+1}$ maps $V^{p^{\prime \prime}+1} \times S^{q^{\prime \prime}}$ and $S^{q^{\prime \prime}} \times V^{q^{\prime \prime}+1}$ into $C_{+}(K \nVdash L)$ and $C_{-}(K \circledast L)$ respectively and its restriction on $S^{p^{\prime \prime}} \times S^{q^{\prime \prime}}$ is given by $h_{2}\left(x^{\prime \prime}, y^{\prime \prime}\right)=f\left(e_{0}, x^{\prime \prime}\right) \nVdash g\left(e_{0}, y^{\prime \prime}\right)$. By (1•11), ii), h_{2} represents $(-1)^{q^{\prime \prime}} E$ $\left(\alpha^{\prime \prime} \otimes^{\prime \prime}\right)$. Therefore h is a mapping of the type $\left((-1)^{q^{\prime}+1} E\left(\alpha^{\prime} \not \mathcal{B}^{\prime}\right),(-1)^{q^{\prime \prime}} E\right.$ $\left(\alpha^{\prime \prime} * \beta^{\prime \prime}\right)$).
q. e. d.

By (1•15),
Corollary (3.9) if $\left[\alpha^{\prime}, \alpha^{\prime \prime}\right]=0$ and $\left[\beta^{\prime}, \beta^{\prime \prime}\right]=0$, then $i_{*}\left[E\left(\alpha^{\prime} \mathbb{*} \beta^{\prime}\right)\right.$, $\left.E\left(\alpha^{\prime \prime} \mathbb{*}^{\prime \prime}\right)\right]=0$ for the injection homomorphism $i_{*}: \pi_{p+q+1}(E(K \notin L)) \longrightarrow$ $\pi_{p+q+1}(N)$.

By (2•12)',
Corollary (3•10) for the class $\gamma \in \pi_{p+q+3}(E N)$ of the mapping H of (3•8), we have that $H \gamma=(-1)^{q+1} E\left(E\left(\alpha^{\prime} * \beta^{\prime}\right) * E\left(\alpha^{\prime \prime} * \beta^{\prime \prime}\right)\right)$.

4. Whitehead product

Here we consider the case that

$$
K=S^{m} \quad \text { and } \quad L=S^{n}
$$

Then

$$
\begin{aligned}
& E K^{*}=S^{m+1} \cup e^{p+2}, \quad E L^{*}=S^{n+1} \cup e^{q+2}, \\
& N=K \circledast E L^{*} \cup \bar{\sigma}\left(E K^{*} \nVdash L\right)=S^{m+n+1} \cup e^{p+n+2} \cup e^{m+q+2} \\
& P_{1}: N \longrightarrow K \nVdash S^{q+1}=S^{m+q+2}, \quad P_{2}: N \longrightarrow S^{p+2} \circledast L=S^{p+n+ц}
\end{aligned}
$$

The homeomorphism $\sigma: S^{m+n+1} \longrightarrow S^{m+n+1}$ of (3•3) is given by $\sigma\left(\phi_{m+1, n}\left(d_{m}(x, t), y\right)\right)$ $=\phi_{m, n+1}\left(x, d_{n}(y,-t)\right)$. Then we have that
$(4 \cdot 1)$ the degree of σ is $(-1)^{n+1}$.
Proof. Let $\rho: S^{m+n+1} \longrightarrow S^{m+n+1}$ be a reflection given by $\rho\left(d_{m+n}(z, t)\right)=d_{m+n}$ ($z,-t$). It is calculated directly that $\sigma=\rho \circ E \sigma_{n, m}{ }^{\circ} \sigma_{m+1, n}$. Then the degree of σ is $(-1)^{1+m n+(m+1) n}=(-1)^{n+1}$.
q. e. d.

Define characteristic maps

$$
\mu_{1}:\left(V^{m+q+2}, S^{m+q+1}\right) \longrightarrow\left(N, S^{m+n+1}\right)
$$

and $\quad \mu_{2}:\left(V^{p+n+2}, S^{p+n+1}\right) \longrightarrow\left(N, S^{m+n+1}\right)$
of e^{m+q+2} and e^{p+n+2} respectively by the formulas

$$
\mu_{1}\left(\tau_{m, p+2}(x, y)\right)=\psi_{m}(x) \nVdash G(y)
$$

and

$$
\mu_{2}\left(\tau_{p+2, n}\left(x^{\prime}, y^{\prime}\right)\right)=\bar{\sigma}\left(F\left(x^{\prime}\right) \nVdash \psi_{n}\left(y^{\prime}\right)\right)
$$

(4•2) then $\mu_{1} \mid S^{m+q+1}$ and $\mu_{2} \mid S^{p+n+1}$ represent $-\iota_{m} \mathbb{*} \beta$ and $\alpha \mathbb{*} \iota_{n}$ respectively.
Proof. Since

$$
\mu_{1}\left(\tau_{m, q+2}(x, y)\right)= \begin{cases}e_{0}, & \text { for }(x, y) \in S^{m-1} \times V^{q+2} \\ \psi_{m}(x) \notin \bar{g}(y) & \text { for }(x, y) \in V^{m} \times S^{q+1}\end{cases}
$$

$\mu_{1} \mid S^{m+q+2}$ represents $-\iota_{m} * \beta$ by (1-17). Similarly, from (1•17), we have that $\bar{\sigma}^{-1} \circ \mu_{2} \mid S^{p+n+1}$ represents $(-1)^{n-1} \alpha \nVdash_{i_{n}}$. By (4•1), $\mu_{2} \mid S^{p+n+1}$ represents $\alpha \nVdash_{\iota_{n}}$. q.e.d.

Next we have that
(4•3) the compositions $P_{1} \circ \mu_{1}$ and $P_{2} \circ \mu_{2}$ are homotopic to ψ_{m+q+2} and ψ_{p+n+2} respectively.

Proof. We have that $\left(P_{1} \circ \mu_{1}\right)\left(\tau_{m, q+2}(x, y)\right)=\phi_{m, q+2}\left(\psi_{m}(x), \psi_{q+2}(y)\right)$ and $\left(P_{2} \circ \mu_{2}\right)\left(\tau_{p+2, n}\left(x^{\prime}, y^{\prime}\right)\right)=\phi_{p+2, n}\left(\psi_{p+2}\left(x^{\prime}\right), \psi_{n}\left(y^{\prime}\right)\right)$. Then (4•3) follows from (1•16) directly.
q. e.d.

Theorem (4•4) Let $\alpha \in \pi_{p+1}\left(S^{m+1}\right)$ and $\beta \in \pi_{q+1}\left(S^{n+1}\right)$ be represented by Hopf constructions of mappings of the types ($\alpha^{\prime}, \alpha^{\prime \prime}$) and ($\beta^{\prime}, \beta^{\prime \prime}$) respectively. Then there exists an element ν of $\pi_{p+q+2}\left(N, S^{m+n+1}\right)$ such that

$$
\begin{aligned}
& E\left(P_{1_{*}}(\nu)\right)=(-1)^{p^{\prime \prime} q^{\prime}+q+1} E^{q+2} \alpha, \\
& E\left(P_{2_{*}}(\nu)\right)=(-1)^{p^{\prime \prime} q^{\prime+q+1}\left(\iota_{p+2} \mathbb{K}^{2} \beta\right)}
\end{aligned}
$$

and

$$
\partial \nu=(-1)^{q+1}\left[E\left(\alpha^{\prime} \not \otimes^{\prime}\right), E\left(\alpha^{\prime \prime} \not \otimes^{\prime \prime}\right)\right] .
$$

Proof. Let $\psi:\left(V^{p+q+2}, S^{p+q+1}\right) \longrightarrow\left(S^{p^{\prime}+q^{\prime}+1} \times S^{p^{\prime \prime}+q^{\prime \prime}+1}, S^{p^{\prime+}+q^{\prime}+1} \vee S^{p^{\prime \prime}+q^{\prime \prime}+1}\right)$ be a mapping given by setting $\psi\left(\tau_{p^{\prime}+q^{\prime}+1, p^{\prime \prime}+q^{\prime \prime}+1}(x, y)\right)=\left(\psi_{p^{\prime}+q^{\prime}+1}(x), \psi_{p^{\prime \prime}+q^{\prime \prime}+1}(y)\right)$ and let ν be the class of the composition $h \circ \psi$, where h is the mapping of the theorem (3•8). Since h has the type $\left((-1)^{q^{\prime+1}} E\left(\alpha^{\prime} * \beta^{\prime}\right),(-1)^{q^{\prime \prime}} E\left(\alpha^{\prime \prime} \not \mathbb{*}^{\prime \prime}\right)\right)$, we have from $(1 \cdot 15)$ that $\partial \nu=(-1)^{q+1}\left[E\left(\alpha^{\prime} * \beta^{\prime}\right), E\left(\alpha^{\prime \prime} \not \mathcal{*}^{\prime \prime}\right)\right]$.

Consider a mapping $h^{\prime}: S^{p+q+2} \longrightarrow S^{m+q+2}$ such that $P_{1^{\circ}} \circ h=h^{\prime} \circ \phi_{p^{\prime}+q^{\prime}+1, p^{\prime \prime}+q^{\prime \prime}+1}$. By ($(1 \cdot 16), \phi_{p^{\prime}+q^{\prime}+1, p^{\prime \prime}+q^{\prime \prime}+1^{\circ} \psi}$ is homotopic to ψ_{p+q+2}, then h^{\prime} represents $P_{1_{*}}(\nu)$. Since $E P_{1} \circ H$ is a Hopf construction of $P_{1} \circ h$, we have from (1•11), i), that $E P_{1} \circ H$ represents $(-1)^{p^{\prime \prime}+q^{\prime \prime}+1} E\left(P_{1_{*}}(\nu)\right)$. Then by (3-8) $E\left(p_{1_{*}}(\nu)\right)=(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}+q^{\prime \prime}+q^{\prime \prime}+1}$ $E^{p+2} \alpha=(-1)^{b^{\prime \prime} q^{\prime}+q+1} E^{q+2} \alpha$. Similarly we have that $E\left(P_{2}^{*}(\nu)\right)=(-1)^{p^{\prime \prime} q^{\prime}+p^{\prime \prime}+q^{\prime}+p^{\prime \prime}+q^{\prime \prime}+1}$ $\iota_{p+2} \nVdash \beta=(-1)^{p^{\prime \prime} q^{\prime}+q+1} \iota_{p+2} \nVdash \beta$.

Proposition (4•5). Let $\alpha \in \pi_{p+1}\left(S^{m+1}\right)$ and $\beta \in \pi_{q+1}\left(S^{n+1}\right)$ be the classes of Hopf constructions of mappings of the types ($\alpha^{\prime}, \alpha^{\prime \prime}$) and ($\beta^{\prime}, \beta^{\prime \prime}$) respectively Suppose that $p \leqq 2 m+n-1$ and $q \leqq m+2 n-1$, then we have the formula

$$
\begin{aligned}
& E^{n} \alpha \circ E^{p} \beta-(-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha \\
&=(-1)^{p^{\prime \prime} q^{\prime}+p(q+n)}\left[E\left(\alpha^{\prime} \not \mathbb{R}^{\prime}\right), E\left(\alpha^{\prime \prime} \not \mathbb{*}^{\prime \prime}\right)\right] \\
&=(-1)^{(p+m) n+p^{\prime \prime}+q^{\prime \prime}}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta .
\end{aligned}
$$

Proof. First we may suppose that $p \geqq m$ and $q \geqq n$ without the loss of generalities. Since $p \leqq 2 m+n-1$, we have $p+q+2 \leqq 2 m+n+q+1<2(m+q+2)-2$ and hence the suspension homomorphism $E: \pi_{p+q+2}\left(S^{m+q+2}\right) \longrightarrow \pi_{p+q+3}\left(S^{m+q+3}\right)$ is an isomorphism. Then from (4•4) we have that

$$
P_{1_{*}}(\nu)=(-1)^{p^{\prime \prime} q^{\prime}+q+1} E^{q+1} \alpha .
$$

Similarly, from the condition $q \leqq m+2 n-1$ and from (4•4), we have that

$$
\begin{aligned}
P_{2_{*}}(\nu) & =(-1)^{p^{\prime \prime} q^{\prime}+q+1} E^{-1}\left(\iota_{p+2} \nVdash \beta\right) \\
& =(-1)^{p^{\prime} q^{\prime}+q+1} E^{-1}\left((-1)^{(p+2)(q+n)} E^{p+2} \beta\right)
\end{aligned}
$$

$$
=(-1)^{p^{\prime \prime} q^{\prime}+q+1+p(q+n)} E^{p+1} \beta
$$

Let $P: N \longrightarrow S^{m+q+2} \vee S^{p+n+2}$ be a mapping defined by setting $P(x)=\left(P_{1}(x)\right.$, $P_{2}(x)$), then P shrinks S^{m+n+1} to a single point. Since S^{m+n+1} is $(m+n)$-connected and (N, S^{m+n+1}) is Min. $(m+q+1, p+n+1)$-connected, we have from Theorem II of [2] that the induced homomorphism

$$
P_{*}: \pi_{i}\left(N, S^{m+n+1}\right) \longrightarrow \pi_{i}\left(S^{m+q+2} \vee S^{p+n+2}\right)
$$

is an isomorphism for $i \leqq \operatorname{Min} .(m+q, p+n)+m+n+1$. In particular, when i $=p+q+2, P_{*}$ is an isomorphism and the group $\pi_{p+q+2}\left(S^{m+q+2} \vee S^{p+n+2}\right)$ is isomorphic to $\pi_{p+q+2}\left(S^{m+q+2}\right)+\pi_{p+q+2}\left(S^{p+n+2}\right)$. Then the correspondence $\gamma \longrightarrow P_{1_{*}}(\gamma)+P_{2_{*}}(\gamma)$ induces an isomorphism

$$
\pi_{p+q+2}\left(N, S^{m+n+1}\right) \approx \pi_{p+q+2}\left(S^{m+q+2}\right)+\pi_{p+q+2}\left(S^{p+n+2}\right)
$$

In the diagram

the commutativity holds, from (4•3) and from the commutativity of $(1 \cdot 12)^{\prime}$. Then $P_{1_{*}}(\nu)=E\left((-1)^{p^{\prime \prime} q^{\prime}+q+1} E^{q} \alpha\right)=P_{1_{*}}\left(\mu_{1_{*}}\left(\partial^{-1}\left((-1)^{p^{\prime \prime} q^{\prime}+q+1} E^{q} \alpha\right)\right)\right)$. Similarly $P_{2_{*}}(\nu)=P_{2_{*}}\left(\mu_{2_{*}}\left(\partial^{-1}\left((-1)^{p^{\prime \prime} q^{\prime}+q+1+p(q+n)} E^{\phi} \beta\right)\right)\right)$. Therefore

$$
(-1)^{p^{\prime \prime} q^{\prime}+q+1} \nu=\mu_{1_{*}}\left(\partial^{-1}\left(E^{q} \alpha\right)\right)+(-1)^{p(q+n)} \mu_{2_{*}}\left(\partial^{-1}\left(E^{p} \beta\right)\right) .
$$

From the naturality of the boundary operator ∂, we have that

$$
\begin{aligned}
(-1)^{p^{\prime \prime} q^{\prime}+q+1} \partial \nu & =\partial\left(\mu_{1_{*}}\left(\partial^{-1} E^{q} \alpha\right)\right)+(-1)^{p(q+n)} \partial\left(\mu_{2_{*}}\left(\partial^{-1} E^{p} \beta\right)\right) \\
& =\mu_{1_{*}}\left(E^{q} \alpha\right)+(-1)^{p(q+n)} \mu_{2_{*}}\left(E^{p} \beta\right) \\
& =\left(-\iota_{m} \mathbb{*} \beta\right) \circ E^{q} \alpha+(-1)^{p(q+n)}\left(\alpha \not{ }^{i_{n}}\right) \circ E^{p} \beta \\
& =(-1)^{m(q+n)+1} E^{m} \beta \circ E^{q} \alpha+(-1)^{p(q+n)} E^{n} \alpha \circ E^{p} \beta,
\end{aligned}
$$

by $(4 \cdot 2)$ and $(1 \cdot 7)$. Then by $(4 \cdot 4)$,

$$
\begin{gathered}
E^{n} \alpha \circ E^{p} \beta-(-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha=(-1)^{p^{\prime \prime} q^{\prime}+q+1+p(q+n)} \partial \nu \\
=(-1)^{p^{\prime \prime} q^{\prime}+p(q+n)}\left[E\left(\alpha^{\prime} \nVdash \beta^{\prime}\right), E\left(\alpha^{\prime \prime} * \beta^{\prime \prime}\right)\right] .
\end{gathered}
$$

By $(1 \cdot 14),(1 \cdot 13)$, iii) of $(1 \cdot 5),(1 \cdot 7)$ and by $(2 \cdot 12)^{\prime}$,
$\left[E\left(\alpha^{\prime} \not \beta^{\prime}\right), E\left(\alpha^{\prime \prime} \mathbb{*}^{\prime \prime}\right)\right]=\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ\left(\left(\alpha^{\prime} \not{ }^{*} \beta^{\prime}\right) *\left(\alpha^{\prime \prime} \not \mathbb{*}^{\prime \prime}\right)\right)$
$=(-1)^{p^{\prime \prime}+q^{\prime \prime}+2 n}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E\left(\alpha^{\prime} \mathbb{*} \beta^{\prime} \mathbb{*} \alpha^{\prime \prime} \mathbb{*} \beta^{\prime \prime}\right)$
$=(-1)^{p^{\prime \prime}+q^{\prime \prime}+p^{\prime \prime} q^{\prime}+m n}\left[i_{m+n+1}, \iota_{m+n+1}\right] \circ E\left(\alpha^{\prime} \mathbb{*} \alpha^{\prime \prime} \mathbb{*} \beta^{\prime} \not \mathbb{*}^{\prime \prime}\right)$
$=(-1)^{p^{\prime \prime}+q^{\prime \prime}+p^{\prime \prime} q^{\prime}+m n+p(q+2 n)}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] E^{n+1}\left(\alpha^{\prime} * \alpha^{\prime \prime}\right) \circ E^{p+1}\left(\beta^{\prime} * \beta^{\prime \prime}\right)$
$=(-1)^{p^{\prime \prime} q^{\prime}+p(q+n)+(p+m) n+p^{\prime \prime}+q^{\prime \prime}}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta$.
Consequently

$$
\begin{aligned}
E^{n} \alpha \circ E^{p} \beta & -(-1)^{(m+n)(q+n)} E^{m} \beta \circ E^{q} \alpha \\
& =(-1)^{(p+m) n+p^{\prime \prime}+q^{\prime \prime}}\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta
\end{aligned}
$$

q. e. d.

Theorem (4•6). Suppose that $p \leqq \operatorname{Min} .(n, m-1)+2 m-1$ and $q \leqq \operatorname{Min} .(m$, $n-1)+2 n-1$ for $\alpha \in \pi_{p+1}\left(S^{m+1}\right)$ and $\beta \in \pi_{q+1}\left(S^{n+1}\right)$, then

$$
\begin{aligned}
E^{n} \alpha \circ E^{p} \beta & -(-1)^{(p+m)(q+n)} E^{m} \beta \circ E^{q} \alpha \\
& =\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta \\
& =-\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta
\end{aligned}
$$

Proof. Since $p \leqq 3 m-2$ and $q \leqq 3 n-2, \alpha$ and β are represented by Hopf constructions of some mappings by (2•13). Then the proposition (4.5) is applied in this case, and it is sufficient to prove that $2\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ E^{p} H \beta=0$. If m is even, then $2 H \alpha=0$ by Theorem 5.42 of [9]. Also if n is even, $2 H \beta=0$. If m and n are odd, then $m+n+1$ is odd and $2\left[\iota_{m+n+1}, \iota_{m+n+1}\right]=0$ by the anti-commutativity of the Whitehead product operation. In all cases $2\left[\iota_{m+n+1}, \iota_{m+n+1}\right] \circ E^{2 n} H \alpha \circ$ $E^{2 n} H \beta=0$.
q. e. d.

References

[1] M. G. Barratt and P. J. Hilton, On join operations in homotopy groups, Proc. London Math. Soc. (3), 3 (1953), 430-445.
[2] A. L. Blakers and W. S. Massey, The homotopy groups of a triad II, Ann. of Math., 55 (1952), 192-201.
[3] I. M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
[4] I. M. James, On the suspension triad, Ann. of Math., 63 (1956), 191-247.
[5] I. M. James, On the suspension triad of a sphere, Ann. of Math., 63 (1956), 407-429.
[6] H. Toda, Le produit de Whitehead et l'invariant de Hopf, Comptes rendus, 241 (1955), 849-850.
[7] H. Toda, Complex of the standard paths and n-ad homotopy groups, this Journal, 6 (1955), 101-120.
[8] H. Toda, On the double suspension E^{2}, this Jouanal, 7 (1956), 103-145.
[9] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
[10] G. W. Whitehead, On the Freudenthal theorems, Ann. of Math., 57 (1953), 209-238.
[11] J. H. C. Whitehead, Combinatorial homotopy, Bull. Amer. Math. Soc., 55 (1947) 213-245.

[^0]: * Numbers in bracket refer to the references at the end of the paper.

