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The chief purpose of this note is to generahze Menger-Nobehng's theorem^) 
on imbedding of separable metric spaces of dimension in We shall prove
that every /^-dimensional metric space with a (7-star-countable (finite) basis )̂ can 
be imbedded in the topological product A^(j?)x/2„+i of a generalized Baire's zero
dimensional space^) iV(j?) and 2;^+1-dimensional Euclidean cube hn î> Moreover, 
from the proof of this theorem we deduce a universal ^-dimensional space of such 
metric spaces and an analogous theorem to Szpilrajn's theorem on connections be
tween dimension and ^-mesure^).

D e f i n i t i o n . We call a covering U star-finite (star-countable) if every set of 
U intersects finitely (countably) many sets of U.

An open basis consisting of an enumerable number of star-finite (star-counta
ble) open coverings is called a a-star f̂inite (a-star-countahle) open basis^\

R e m a r k . A regular space R has a <7-star-finite basis if and only if R has a 
(7-star-countable basis. Moreover K. Morita has proved the following theorem: A 
regular space having <;-star-finite (fT-star-countable) basis can be imbedded in the 
topological product NCS2)xI'^ of a generalized Baire's 0-dimensional space N  (12) 
and Hilbert cube and the converse is also true®\

R e m a r k . A metric space having a c;-star-finite basis is not needed to have the 
star-finite property or the star-countable p r o p e r t y F o r  example, N(I]) x {x\0<x 
< 1} has obviously a (7-star-finite basis, but it has not the star-countable property 
if the cardinal number of is greater than • For if we put S(ai,a2," ‘, ak) 
= {p\p= (at, a2, ‘"y(Xky"')  ̂N(S2)}, then it is easily seen that the open covering

1 )  Cf. W. Hurewicz and H. W allm an: Dimension Theorem (1941).
2 )  Cf. the follov^ing definition. In this note we use Lebesque’s dimension.
3 ) This notion is due to K. M orita: Normal Families and Dimension Theory for Metric 

Spaces, Math. Ann. Bd. 128(1954). For any two sequences of elements from an abstract set S? 
a = ^ ( a i , a 2 , " ‘),  j3 =  ( j8i ,  /32, "■), ai, P Q,  we define the metric P ( a ,  / ? )  by p ( a ,  /9 )  
=  l/mixi{k\ak^Pk}y P(ô y a ) = 0 .  Thenthe set N(S2)  of all such sequences turns out to be a 
zero-dimensional metric space and is called a generalized Baire’s zero-dimensional space.

4 )  La dimension et la mesure, Fund- Math. 28 (1937).
5 )  From now forth we omit the word “ open” for breviiy.
6 )  The proof of this theorem is unpublished. We express our thanks to Prof. Morita, 

who wrote us this unpublished theorem.
7 )  We call R has the star-finite (star-countable) property if and only if every open 

covering of R has a star-finite (star-countable) open refinement.



{ N { 2 ) x { x \ 1 / 2 < x < 1 } ,  S f e )  X { x \ l / 2 ^ < x < l / 2 + \ / 2 ^ ) r " . S { a t r " . ^ k ) ' x { x \ l / 2 ^ ^ ^ < x  

<l/2^+l/2^'^i}, ••• J20’= l, 2,---)} of this space has no star-countable refinement 
and accordingly no star-finite refinement. To see this we assume that IX is a 

star-countable refinement of this covering. Then US'̂ CC/, IX) for an arbitrary
n = l

t/^U consists of countably many sets of IX. We can select SC î, •••, â )̂ x / g  t/.
OO

It follows from the connectedness of {:r|0<:\:<l} that IX) •••, â )̂
OO

X {ji:|0<:r<l}. Hence IX) contains every set of IX contained in S(ai,
n = l

au+id'X{x\l/2^^'^<x<l/2^^^'{-l/2^^^} for some ak+i^ Q, which is a contradiction.
T h eo r em  I. Suppose R is a regular space having a a-star-finite (a-star-count

able) basis and dim R^n. Then R is homeomorphic to a subset o f  N{^2)xhn^i, 
wher l 2mi is 2n+l-dimensional Euclidean cube and N(S2) is the generalized Baire's 
0-dimensional space fo r  a set Q whose cardinal number is not less than the car
dinal number o f  an open basis o f  R.

Proof. I. There exists, as is seen from the above Morita's theorem, a sequence 
5^i>5^2>^3>”' of star-finite open coverings 5̂  ̂ of R such that S{p, "̂ nt) (m = l, 
2--0 is a neighborhood basis of every point p oi R. We define an open decom

position of R  by where S^QN, = U S«(iV,«=i
Let = [Soo\oî  Am) and Sar^S ,̂ = (jy {a^/3), then for every a  ̂Am S  ̂ is R countable 
sum of sets of , i .e.  S^=^ {N̂ T̂ \ i= l, 2---}, e^ m (i= l, 2---). Since is 
locally .finite, there exists an open covering of R  such that ^
Z = I, 2---}, Pa^^QN^f .̂ Next, we difine a sequence of open coverings by IX/, m
= { N i l \ S . - n T \ ^ ^ A J ,  Ui==Ui, I, U^=Ui A U2, 1 A Ui, 2, -  , U^==U^_1 A U .,  I A U ._ 1 , 2

A " ' A ^ i , m y  •••• Then Ui>U2>U3>--», and S(A ^m ) (m = l, 2 ---) is a neighbor

hood basis of each point p of R, and is fiinite in every S  ̂(a G A^). Let
00

j?= \JA^, then it is clear that |j2l  ̂ the cardinal number of any open basis of R.
m = l

We define a continuous mapping c{x) of R into iV(j?) by c{x) = («i, a2,-*0 S 
a^^Am (m = l, 2--0) and denote by M{R) the totality of continuous mappings cp 
of R  into N {Q )x l2n+i such that <p(x) = (c(x),  ̂<j>(x)) (x^ R ) for a continuous ma
pping cj)(x) of R  into 2̂w+l.

Moreover we difine the following notions which will be needed later on. 
Tc = c(Sc)y %c6=={TcXSyrn{x)\x^l2n+i) for  ̂6 where WC denote by 5i/^(x) the 
spherical neighborhood of radius l/m  around in hm i. We mean by a star-

CO

decomposition an open decomposition of R  consisting of sets contained in and
OO

intersecting no one another. Let C: {5̂ |'7 6 C (g  U^^)} be a star-decomposition,
W = I

then for every 7 6 C we denote by m(y) the number such that 7eA„(y).
We denote by m) the totality of mappings of M (K) satisfying f~'^(Xy)
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8 )  Cf. J. W. T u k ey : Convergence and uniformity in toplogy (1 9 4 0 ).



== {/"^(T)| T(E <U;„ (7 G C) for some star-decomposition C: {Sy\7^C} of R. 
Last we define C~neighborhood N d f )  of /6 M (i?) by N c { f )  =  {g\g^M{R)y  sup 
{dinfix) ,  ng{x))\x^ Sy}<l/m(7)}  for a star-decomposition C: {5^|7^C}, where 

Tl and d denote the projection of N(Q)Xhn^-I onto /2«+! and the metric of /2«+! 

respectively.
2. First we prove N d f )  nsM{R, m)^(p  for every /6 M (R ) ,  every star-decom

position C and every positive integer m. Take 1( 7 ) = max (6m ( 7 ), m) for every 

7 ^C and put G A(y), T^QTy (or S^^Sy as the same)}. Since we can

cover l 2n+i by a finite subcovering of {Syj(y)(x)\x^ Izn+i), we denote by 
(x^)\i=l, 2 , " - ,a (7 ) }  such a covering, then = { Tg x Si//(-y;(:JC/)|z = l,-*-, a (7 )} is a 

finite subcovering of Since f~ ^ (^ i )  =  {f~'^(T' ))\T'  and
are, from I ( T )^ m ,  finite open coverings of Ŝ , we have an open finite covering 

SSg of Sg satisfying order 5Sg^n+l, a / 'K ^ s )-  55= ^  {S5g|^6 T € C}

is an open covering of R  of order ^ n + l .
Let us consider fixed T€C  and d^Dy, and assume that Fi, •••, are all the 

members of 55g. Then we select vertices x(V i )  (z = l-**5) in /2̂ +1 for which it is 

true that (i(;7/ (F ), ( F ) X l/3m(T) (f = l , t h e  x ( F )  are in general po

sition in E 2n+i, i-e. no m + 2 of the vertices x(V i )  (w  = 0, I, •••,2/z) lie in an m- 
dimentional linear subspace of £'2«+!. We define a barycentric mapping ^g of Sg 

into /2̂ +1 by

i ]p (A  T^/)^(F,)
-----------------( p e s , ) ,

I lP(P,  V I )  
i=l

where we consider x ( V i )  as a vector and denote by p(p,VO inf{p(p, q)\q^

Thus we get a continous mapping (j (̂p) = (ĴqCP) (P^ 3  ̂Dy, T f^C) oi R  into 

hn+i‘ We now prove the mapping (p(p) = (c{p), (j)(p))  ̂M ( R )  is contained in the 
common part of N c ( f )  and M(R,  m).

To prove <p^Nc( f ) ,  we take an arbitrary point p^ Sy for T € C, then p^ 5g 
for some Dy. Assume the F  are so numbered that { Fi, ••*, F }̂ is the set of 

all the F-^55g which contain/?. Then p(p, F/) =O for i> t.  From dQrcf(Vi)) 

^2//(T)^l/3m (T) and d (n f (V d ,  x ( V i ) X  I /3m(T),  we get d(x (Vd,  Ttf (p) )  
<2/3m(T) ( i  = l, 2, " ' , t ) .  A  foriorti, the center of gravity ( j ) (p)  of the x(V i )  

satisfies d(4>(p), n f ( p ) ) < 2 / 3 m (7 )< l/ m (7 ) .  Therefore cp^Nc ( f ) .
Next to show M (R ,  m), we fix T 6 C and Dy and suppose , ••*, F^ 

are all the members of 35g containing a given point p oi Ŝ . Consider the linear 

( t - 1 )  space L^(x)  in l 2n,-i spanned by the vertices :r (F^), •••, .r (F^), then 
and ^^(P)   ̂L^(P)  are obvious.

Since there are only a finite number of the linear subspaces L^(p), there 

exists a positive number h(d )>0  such that any two of these linear subspaces
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9 )  P (P ,  q) denotes the metric oi R. denotes the complement set of V.



L^ip) and L^(p') either meet or else have a distance ^2/h(S) from each other.

Putting £ j=  {e|£g yl/Kj), Tg} we consider a star-decomposition E:

{Ss\s^Eg, 8^0.^, T^C}. If (p(p), ¥>(/>')€ 7";= XSi/*(5 )(^) for p, p '^R , then it 

follows that c{p), c{p') 6  and d(4>(p), xXl/hCd), d(4>(P')-, x)<l/h(8) ; hence 

p, P'  ̂Ss&Sg. Therefore d(4>(p), 4>(p'))<2/k(d) implies L^(p)r^L^(p')^4>. 

If we suppose L^(p') is spanned by mSm+1 , then since a:(F, )̂,

xiVj^),-'-,x(,Vj^ are in general position in i?2«+i, it follows that at 

least one of x(,Vj^),-",XiVj^ is also one of x(,Vi^,---,x{Vif). Hence p and p' 

are contained in a common member Vi of S3j, i.e. p' € S{p, SSj). Since SSt<11™, 

it holds for some f/€U„. Thus we get for

every s^E, proving q>^M{R, m).

We prove now that for a given (p̂  N d f)  r^M{R, m) there exists a star- 

decomposition C' satisfying Nc'iv^SNcif)r^M(R, m). Since <piNc(f) implies 

sup {d(7tfip), ;r^(/)))|^€ S^}=«7 < 1 /»«(T) (J^C ), we take a positive integer h(T) 

for Ts C: llhy< l/m (J) ~0 y and define a star-decomposition D by 

D: {S,\8eDy,reQ (Dy^{8\8^A,(y„ T.QTy}}.

Let then taking P^ S ,̂ 8 ̂  Dy for a given point p of Sy, we get

d(7t(pip), 7t^ir{p'))<l/h(J'). Therefore s\xp {d(7tf<ip'), n̂ lr{p')')\p̂  Sy}Say + l/h{7) 

<\lm(J'), proving -^^Ncif), i.e. Ni,((p)QNc(f).

Moreover, since cp^M(R, m), it holds  ̂B) for some star-

decomposition B, where Sp={rpXSi/„(|3)(:v)|x€/2„+i} as above mentioned. Put

ting Dp= {Si 56 ^ 2»,(|5 ), TgSTp} for every ^   ̂B, we have a star-decomposition 

E: {Sg|£6 £)p, y?65}. Let if^NE((p), then we see easily that fC-Dp implies 

'<Ir- (̂TexSy2m(i^ (̂x))S<p'~'̂ (.T^xSy„,(^}(x)) for every a:6 / 2„+i. For if we assume the 

contrary, then there exists a point p of R such that ir(p) g TexSyim{s;.){x), <p(p) 

$ Tp xSi/„(p;(;«:). Hence Sg, Tr̂P-(P) 6  Sŷ mif-̂ ix) and $Si/„(p)(A;), and hence

d(7t ĵr(p), 7t(fi(p))^l/2m(^), which contradicts Thus it must be

(TgXSi/2«(p)(:»:))Siz’"^(TpXSi/„(p)(:»:))£t/ for some U^U„. Thereiore 

<]X„(,e^E), proving '>jr£M(R,m), i.e. Ne(<p)SM(R, m). Now C' =D  /\E: 

{S r̂^Se\8QD, e^E] is obviously a star-decomposition satisfying Ne'(<p)QNc(f) 
r,M(R, m).

3. We can select by the consequences of 2  two sequences Cj>C2 >C 3 > , 

D{>Dz>Dz "-of star-decompositions and a sequence ft, / 2 , ••• of elements of M{R) 

such that

T€C„ implies m(J)>m,

NcSfi)^M iR , I),

A :  {Tj|5€Av, T 6 C1 } {Dty={8\8^A2„,iy), TgST,}(TeCj)), 

Nc,if2)^No,{fi)r.M(^R, 2),

A :  {Tglse A „  T 6 C2 } (Av={5|5€^2,»(y), TgST,}(r€C 2)),
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N c^ ifk )^ N D ,_S h-t)r^ M {R , h ),

Dh'> {T^\d  ̂Dhyy T ^Ch) {Dhy= {d\8̂  A2miy'), T̂ } (T€ C )̂),

Then since fh^ No^Cfk) (h ^ k ),  it holds d(7T.fk(p), n fh { p ) ) < l /2 m ( J ) < l /k  (h ^ k )  
for some T^ Ck, and hence Ttfh(P) (h = l ,2 " 0  uniformly converges to a continuous 

mapping (j)(p) of R  into ^2n+l-

L e t U S  show (c ip ) , (Jy(P)) = (PiP) £ n M (R , m ). S in ce/*6 iVo^CA) (h ^ k ), if 

we take d  ̂Dky-. />€5g for given TSC* and P^ Sy, then d(rtf^(p), Ttfk(P)) 

<l/2w (T); hence ^(/*(i>))Sl/2w (T)<l/»z(T). Therefore <p(p)  ̂Nck(ft)
CO

^ M (R , k), i. e. (p(p)  ̂ r\M(R, m ). Thuswe get a homeomorphic mapping cp of
m = l

R  in to  N(Q) X l 2n+i.
We now consider a countable number of n-dimensional linear spaces Li, L 2. 

••• in /2„+i. Replacing M(R, m) in this proof with N(R, m) = {(p\(p̂  M (R ),

(p '^ C ^ y X % n , Ttcp(Sy) r^ L m = -4^(7  ^C) for some star-decomposition C}, we can show
00

that R  is homeomorphic with a subset of N(Q) x (hn+i ~  U L ^ ) . Its proof is am=i
modification of the above proof, and hence it is left to the reader. If Lt, L 2, ••• 
are all the linear spaces in /2̂ +1 of the form = =  the r's being
rational, then we get the following

T h e o r e m  2. In order that a metric space R with a a-star-finite (countable) basis 
has dimension ^ n  and has an open basis whose cardinal number is not greater than 
m it is necessary and sufficient that R is homeomorphic with a subset o f N(Q) xMg^+i, 
where Q is a set with \Q\=m, and Ml̂ -̂ -i is the set o f  points in hn+i at most n o f  
whose cordinates are rationaP^ .̂

D e f in it io n . We say that the p-dimensional density of a subset 5  of a metric 
space is zero if and only if for every <s>0 there exist a decomposition 

|T€C, / = 1 ,2 - }  such that B(Aiy)Ke (T e C , / = 1 , 2 - ) ,  T lL d (A n )Y K e  (T e C )  and
/=1

such that U A -7 =  S7 is open in S for every 7 6  C and S y o  S y '= 4 )  (T=¥T')“ -̂

T h e o r e m  3. I f  a metric space R has dimention ^ n  and has a a-star-finite 

(countable) basis, then it is homeomorphic to a subset o f N (Q )X^n+! o f (n + l)~  

density zero.
P roof Replacing M (R , m) in the proof of Theorem I with 0 (R , m) = {(p\<p 

e M (R ), for some star-decomposition C and there exist decompositions

10) It is well known that dim =  and hence dim N{ Q) x M^ 2.n+t'=̂ 'f̂  from the 
general product theorem due to M. K atetov: On the dimension of non-separable spaces I, 
Czechoslovak Math. Journ. T. 2 (1952) and K. Morita, loc. cit.

11) ^ ( ^ )  denotes the diameter of A. We shall agree to set [^ (t4 )]o = = 0 if A is empty 
and [ ^ ( A ) ] o  =  1 otherwise.
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<p{R)r,S,= yjA,y (TeC) such that S iAnX lfm , I][5(Ar)]'‘"'i<l/w (TSC)}, we
i=l m=l

CO

get nO(i?, proving Theorem 3. This proof is similar to that of Theorem

I, and it is left to the reader.

T h e o r e m  4. Every metric space R of {n+1)-density zero has dimension ^n. 

Proof Let us show ind dim R ^n  We consider an arbitrary pair F, G 

of closed sets with p(F, G)>0. Select a positive integer with l/m<p(F, GX and 

let R = ^  {Aiy\T eC, i=l,2'-} be a decomposition of R  such that d(Aiy)<l/m^,
CO

2[5(A-i')]'''^^<1/ot2 and such that 57='-̂ {yl,Yl? = l,2-"} is open for every TeC.
i~'.
We put Uty = sup{p(F, x^lxeAa), Viy=inf{p(F, x)\xeAiy}. Then it is easily seen 

that Uiy--Viy^^(A^y'). We define a non-negative valued function dy(r) for every 

r e c  by

(0 (0^r<V iy  or Uiy<r)

 ̂[5(A y) T (Viy^r^Uiy),

dy(r) = Ydiy(T). 
t=l

Since diy (r)^0 , we may interchange integration and summation by Lebesgue's

theorem, and hence from '^diy(r)dr^Ld(Aiy')y'^'^ it follows that "^dy^r^dr
Jo Jo

1_ I
r m  CO CO r j i f  CO

= Ed.y ir)dr^Z l d,-yir)drSi;[3iA,r)7^^<l/mHr € C). This implies Jy(r(T)) 
J O <=1 i=lJ O 1=1

<l/m  for some r(T) : 0<r(T)Sl/m. We denote by SiF, f) the set of all the

points satisfying piF, x)<r and by Sir) the boundary of SiF, r). Then

\_8iAar\SiriT)))~\"SdairiT)) combining with dyir(J))<\!m implies 2J[5(AYr-,S

(KT)))T<l/m. ^{5yr^5(F, r(T))|T6 C} = t/ is obviously an open set of R such

that Fq Uq G .̂ Since U— [Aiyr^S(T(T))IT e C, /=1,2, •••}, the /^-dimensional

density of U-U  is zero. The above arguement is also valid for n = 0. Hence

U—U=<p for a space R  of 1-dimensional density zero. Consequently ind dim

R^O. Thus we can establish this theorem inductively by Morita's theorem^ )̂.

12) Ind dim ind dim R ^n  if and only if for any pair of a closed set F and an 

open set G with F ^ G  there exists an open set U such that F ^  U ^G , ind dim* (U-U) 

^ n - I .  The equivalence of this dimension with Lebesgue’s dimension was proved by M. 

Katetov, loc. cit. and by K. Morita, loc. cit. independently.

13) Loc. cit. Ind dim R ^n  if and only if R has a tr-locally-finite open basis SS such that 

the boundary of each set of ^  has ind dimension <n — l.


