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The chief purpose of this note is to generalize Menger-Nobeling’s theorem?
on imbedding of separable metric spaces of dimension=# in E,,.;. We shall prove
that every z-dimensional metric space with a o-star-countable (finite) basis® can
be imbedded in the topological product N(9) x I,,.s of a generalized Baire’s zero-
dimensional space® N(£2) and 2n+1-dimensional Euclidean cube Iy,,;. Moreover,
from the proof of this theorem we deduce a universal z-dimensional space of such
metric spaces and an analogous theorem to Szpilrajn’s theorem on connections be-
tween dimension and #z-mesure®,

DeriniTION. We call a covering W star-finite (star-countable) if every set of
U intersects finitely (countably) many sets of 1.

An open basis consisting of an enumerable number of star-finite (star-counta-
ble) open coverings is called a o-star-finite (o-stav-countable) open basis®.

ReEMARK. A regular space R has a o-star-finite basis if and only if R has a
g-star-countable basis. Moreover K. Morita has proved the following theorem: A
regular space having o-star-finite (s-star-countable) basis can be imbedded in the
topological product N(2) xI® of a generalized Baire’s 0-dimensional space N (2)
and Hilbert cube I®, and the converse is also true®.

REMARK. A metric space having a o¢-star-finite basis is not needed to have the
star-finite property or the star-countable property?’. For example, N(2) X {x|0<x
<1} has obviously a o¢-star-finite basis, but it has not the star-countable property
if the cardinal number of @ is greater than =,. For if we put S(ay,as -, ap)
= {plp=(ay, as, -+, s, -) € N(2)}, then it is easily seen that the open covering

1) Cf. W. Hurewicz and H. Wallman: Dimension Theorem (1941).

2) Cf. the following definition. In this note we use Lebesque’s dimension.

3) This notion is due to K. Morita: Normal Families and Dimension Theory for Metric
Spaces, Math. Ann. Bd. 128(1954). For any two sequences of elements from an abstract set 2
a=(as, az, ), B=(L1, L2 ), a; B;€ L, we define the metric p(a, B) by P(a, £)
=1/min{k|la,=cB;}, P(a, a)=0. Then the set N(2) of all such sequences turns out to be a
zero-dimensional metric space and is called a generalized Baire’s zero-dimensional space.

4) La dimension et la mesure, Fund- Math. 28 (1937).

5) From now forth we omit the word “open” for breviiy.

6) The proof of this theorem is unpublished. We express our thanks to Prof. Morita,
who wrote us this unpublished theorem.

7) We call R has the star-finite (star-countable) property if and only if every open
covering of R has a star-finite (star-countable) open refinement.
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(N(Q) x {x]1/2<x<1}, S(ay) x {x]1/2<x<1/2+1/22}, -, S(ay, -+, ap) X {#|1/2*1<x
<1/2%+1/2%1) .. |a; € 2(i=1, 2,---)} of this space has no star-countable refinement
and accordingly no star-finite refinement. To see this we assume that U is a

star-countable refinement of this covering. Then ZJIS”( U, ) for an arbitrary
Ucl consists of countably many sets of 1. We can select S(ay, -, an) XISU.
It follows from the connectedness of {x/0<x<1} that anS”(U, H2S(ay, -, ap)
X {x]0<x<1}. Hence nLiIS"( U, ) contains every set of 11 contained in S(ay, -+, «,

@pir) X {x]1/2%2 <0< /2" 1+1/2F2) for some a;.4 € £, which is a contradiction.

TuroreM 1. Suppose R is a regular space having a o-star-finite (o-stav-count-
able) basis and dim R=n. Then R is homeomorphic to a subset of N(Q) X Iz,
wher Iy,.1 1s 2n+1-dimensional Euclidean cube and N(Q) is the generalized Baire's
0-dimensional space for a set @ whose cardinal number is not less than the car-
dinal number of an open basis of R.

Proof. 1. There exists, as is seen from the above Morita’s theorem, a sequence
R >NR>Ns >+ of star-finite open coverings N,, of R such that S(p, N,) (m=1,
2---) is a neighborhood basis of every point p of R. We define an open decom-
position &,, of R by &,,={S®(WV, ®%,)|NeR,}, where S®WN, N,) =nG=O1S”(N’ N,)®.
Let ©€,,={Sula € A} and Sy~ Sg=¢ (a=8), then for every ¢ € 4,, S, is a countable
sum of sets of M, ,i.e. Su="{N|i=1, 2---}, N €N, (i=1, 2---). Since N,, is
locally finite, there exists an open covering P,, of R such that B,={P{|e€ A,,
i=1, 2}, P{PSNE. Next, we difine a sequence of open coverings by U; »
={N{P, Sw~ﬁ§?)[d €A}, UWi=Uy 4, Up=Uy AUg) s AUy, 2, , Wu =g AW, 1 A Wy, 2
A AUy, o Then U >W>Ug>--, and S(p, U,) (m=1, 2---) is a neighbor-
hood basis of each point p of R, and W, is fiinite in every S,(a€ A4,). Let
‘Q=E{4m’ then it is clear that |Q|= the cardinal number of any open basis of R.
We define a continuous mapping c¢(x) of R into N(2) by ¢(x) = (a4, as,-) (x€ Sz,
an€ A, (m=1,2---)) and denote by M(R) the totality of continuous mappings ¢
of R into N(£)XI;,,1 such that ¢(x)=(c(x), $(x)) (x€ R) for a continuous ma-
pping ¢(x) of R into Io,,a.

Moreover we difine the following notions which will be needed later on.
To=c(Sw), Ty={TuXS1n(®)|x€ Izni1} for a€ A,, where we denote by Sy, (x) the
spherical neighborhood of radius 1/m around x in Ilp,,+. We mean by a star-

“ gy ., . . . . . s
decomposition an open decomposition of R consisting of sets contained in U&,, and
m=1

intersecting no one another. Let C: {S,[v€C(E UlAm)} be a star-decomposition,
m=

then for every 7€ C we denote by m(¥) the number such that 7€ Ay
We denote by M(R, m) the totality of mappings of M(R) satisfying f 1(E)

8) Cf. J. W. Tukey: Convergence and uniformity in toplogy (1940).
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={f (DI TeZ,}<U, (veC) for some star-decomposition C: {S,|7€C} of R.
Last we define C-neighborhood Nc(f) of fe M(R) by Nc(f)={glge M(R), sup
{d(zf(x), mg(x))|x€ S,} <1/m(7)} for a star-decomposition C: {S,|r€C}, where
7 and d denote the projection of N () XIy,,; onto I, and the metric of Iy
respectively.

2. First we prove N¢(f) ~M(R, m)=¢ for every f€ M(R), every star-decom-
position C and every positive integer m. Take [(7)=max(6m(7), m) for every
7€C and put D,={3l6€ Aip, T,&T, (or S;&S, as the same)}. Since we can
cover Ip,,1 by a finite subcovering of {Sy;,)(®)|x€ Loni1}, we denote by {Sisu(y
(x)li=1, 2,--,a(?)} such a covering, then T3 ={T; X Siu,(x)li=1,,a(?)} is a
finite subcovering of ,(d€ Aiyy). Since fUEH={fNT)H|T" €Z§} and U,
are, from [(7)=m, finite open coverings of S;, we have an open finite covering
B, of S satisfying order By=n+1, Vi<W, A f1(Z). B=“{BslgeD,, T€C}
is an open covering of R of order =n+1.

Let us consider fixed 7€C and §€ D,, and assume that Vi, ---, V; are all the
members of B,. Then we select vertices x(V;) (G=1--s) in I, for which it is
true that d(zf(Vy), x(V))<1/3m () (=1,--,s), the x(V;) are in general po-
sition in Ey,.4, 7. e. no m+2 of the vertices x(V;) (m=0, 1,---,2n) lie in an m-
dimentional linear subspace of E,,.;. We define a barycentric mapping ¢, of S;

into Ip,.1 by

S

20, VHx(V)
¢3(p> =t

Solp, VO

where we consider x(V;) as a vector and denote by p(p,V{) inf{p(p, q)lg€ V/}°.
Thus we get a continous mapping ¢(p)=¢,(p) (€ S;, 6€ Dy, TEC) of R into
L,,1. We now prove the mapping ¢(p) = (c(p), ¢(p)) € M(R) is contained in the
common part of Nc¢(f) and M(R, m).

To prove @€ Nc(f), we take an arbitrary point p€ S, for T€C, then p€ S;
for some §€D,. Assume the V; are so numbered that { V3, -, V} is the set of
all the V;€%®B, which contain p. Then p(p, Vi) =0 for i>t From o@xf(Vy))
=2/I(M=1/3m() and d@f(V), x(V))<1/3m(T), we get dx(V), nf(p))
<2/3m(7) (i=1, 2,--,t). A foriorti, the center of gravity ¢(p) of the x(V;)
satisfies d(p(p), f (p))<2/3m(T)<1/m(7). Therefore @€ Nc(f).

Next to show ¢€ M(R, m), we fix T€C and € D, and suppose V; -, V;
are all the members of B, containing a given point p of S;. Consider the linear
(t—1) space L,(x) in Iy, spanned by the vertices x(V;), -, x(V;,), then t=n+1
and ¢, (p) € L,(p) are obvious.

Since there are only a finite number of the linear subspaces L (p), there

(pe Sy,

exists a positive number %(§)>0 such that any two of these linear Subspaces

9)  P(?, q) denotes the metric of R. V¢ denotes the complement set of V.
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L;(p) and L;(p’) either meet or else have a distance =2/4(§) from each other.

Putting E;={¢le€ Au), Te=T;} we consider a star-decomposition E:
{Sele€ E5, 6€ Dy, T€CH If o(p), @(p’) € TeXSyuy(x) for p, p’€R, then it
follows that ¢(p), c(p’) € Te and d(p(p), x) <1/h(8), d(Pp(p’), x)<1/h(8) ; hence
b 0 €S:SS,. Therefore d(p(p), $(p))<2/h(3) implies Ly(p)~Ly(p") 5.
If we suppose L;(p’) is spanned by x(V;), "',x(Vju), un=n+1, then since x(V;,),
o, 2(Vi), 2(V;), -+, x(V;) are in general position in FEp.4, it follows that at
least one of x(V;), ---,x(Vju) is also one of x(V;), -, x(V;). Hence p and p’
are contained in a common member V; of B, i.e. p’ € S(p, B;). Since Vz<U,,
it holds @™ (Te X Syu(;(x))SU for some UeMN,. Thus we get ¢™*(T¢) <U,, for
every ¢ € E, proving ¢ € M(R, m).

We prove now that for a given @€ Nc(f) ~M(R, m) there exists a star-
decomposition C’ satisfying N¢/(¢) ENc(f) ~M (R, m). Since ¢€ Nc(f) implies
sup {d@f(p), eI € Sy} =a,<1/m(T) (T €C), we take a positive integer 4 (7)
for 7€C: 1/hy<1/m(7)—ay and define a star-decomposition D by
D: {S,l6€ Dy, TEC) (Dy={0810€ Aty T:ET5}).

Let € Np(y), then taking p€ S;, 6€ D, for a given point p of §,, we get
d(re(p), mir(p))<1/h(T). Therefore sup {d(zf(p), mI(P)IPE Syt=ay+1/h(1)
<1/m(7), proving € Nc(f), i.e. Np(@) SNc(f).

Moreover, since ¢ € M(R, m), it holds ¢ (ZH<U, (L€ B) for some star-
decomposition B, where Tg={TgXSy/m(p>(¥)|x € L5,4} as above mentioned. Put-
ting Dg=1{816€ Aomcp), T5&Tg} for every F€ B, we have a star-decomposition
E: {Sele€eDg, BE€BY. Let € Ng(p), then we see easily that ¢€ Dy implies
Y (Te X Syjompy(@®)) S @ (Tp X Syym(py (1)) for every x€ L,,s. For if we assume the
contrary, then there exists a point p of R such that J(p) € Te X Syamcp(®), 0(p)
& T X S1ym(p>(x). Hence p€ Se, myr(p) € S1jamp) (%) and e (p) & Siym(e) (%), and hence
A (p), me(p))=1/2m(B), which contradicts € Nz(p). Thus it must be 1
(TexS1em(p () S (T XSymp@))S U for some Ue€U,. Therefore ¥ 1(Z;)
<U,(e€ E), proving Y€ M(R, m), i.e. Nplp)SM(R, m). Now C’'=DpE:
{S;~Selé€ D, € E} is obviously a star-decomposition satisfying N¢’ (¢) SNc(f)
~M(R, m).

3. We can select by the consequences of 2 two sequences C;>Co>Cy> -+,
Dy>D,> D3 -+ of star-decompositions and a sequence fi, f2, -+ of elements of M(R)
such that

7€ C, implies m(7)>m,
Ne,(JOEM(R, 1),
Dy: {Ty|6€ D1y, TEC}H (D1y=1{816€ Asncy), T3S T} (TECY),
Ne,(FDEN», () ~M(R, 2),
D, { T3]5€ Dzy, TeCy} (D27= {0l € A2m(‘y)7 ng T‘y} T elCy)),
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NCh<fh>gNDh_1(fh—1>r‘\M(R, n),
" Dy {T516€ Diy, TECH (Diy=1{818€ Azuty), T:S Ty} (TECL),
Then since f,€ Np,(fp) (h=k), it holds d(zfe(p), 7nfu(p))<1/2m(V)<1/k (h=k)
for some 7 € C,, and hence 7zf,(p) (h=1,2---) uniformly converges to a continuous
mapping ¢(p) of R into loyq.

Let us show (c(p), () —=¢($) € NM(R, m). Since fy€ Np,(fi) (hzh), if
we take §€ Dy : p€S; for given 7€C, and p€S,, then d(zf(P), 7f(p))
<1/2m(7); hence d($(p), w(f(p))=1/2m(7)<1/m(T). Therefore ¢(p) € Nc,(fi)
SM(R, k), i.e. p(p) E;roliM(R, m). Thus we get a homeomorphic mapping ¢ of
R into N(Q) X Ip.1.

We now consider a countable number of n-dimensional linear spaces Li, L.

in L,.4. Replacing M(R, m) in this proof with N(R, m)=/{¢|lp€ M(R),
e (Z) <N, 7¢(S,) ~L,=P(T €C) for some star-decomposition C}, we can show
that R is homeomorphic with a subset of N(2) X (Ignﬁ,l—mill,m). Its proof is a
modification of the above proof, and hence it is left to the reader. If L, Lo, -
are all the linear spaces in Iy, of the form x;, =7, -, %,

1 n

1= sty the 7's being
rational, then we get the following

THEOREM 2. In order that a metric space R with a o-star-finite (countable) basis
has dimension =n and has an open basis whose cardinal number is not greater than
m it is necessary and sufficient that R is homeomovphic with a subset of N(Q) x M3, .4,
where Q is a set with |Q|=m, and M3, is the set of points in I, at most n of
whose covdinates ave rational'®.

DeriNiTION. We say that the p-dimensional density of a subset S of a metric
space is zero if and only if for every ¢>0 there exist a decomposition S="“'{4;,
[T€C, i=1,2-} such that §(4;))<e (T€C, i=1,2-), iéi [6(AmTP<e (TEC) and
such that ;’);4W=sy is open in S for every 7€C and Sy ~ Sy =¢ (7==77)1D,

TueoreM 3. If a metric space R has dimention =n and has a o-star-finite
(countable) basis, then it is homeomorphic to a subset of N(Q) X1z of (n+1)-
density zero.

Proof. Replacing M(R, m) in the proof of Theorem 1 with O(R, m)={¢le

€ M(R), for some star-decomposition C ¢ 1(Z,) <U,, and there exist decompositions

10) It is well known that dim M%,.;=#, and hence dim N(Q)xM4%,,,=n from the
general product theorem due to M. Katétov: On the dimension of non-separable spaces I,
Czechoslovak Math. Journ. T. 2 (1952) and K. Morita, loc. cit.

11)  §(A) denotes the diameter of A. We shall agree to set [§(A4)]°=0 if A is empty
and [ § (A)]%=1 otherwise.
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9(R)~Sy=UAwy (TEC) such that 8(Am) <1/m, STa(AnT"1<Um (TEC)), we
get ”ri?(R, m)=2¢, proving Theorem 3. This proof is similar to that of Theorem
1, and it is left to the reader.

THEOREM 4. Every metric space R of (n+1)-density zero has dimension =n.

Proof. Let us show ind dim R=<n *®». We consider an arbitrary pair F, G
of closed sets with p(F, G)>0. Select a positive integer with 1/m<p(F, G), and
let R=“{A4T€C, i=1,2-} be a decomposition of R such that §(A:)<1/m?
iij:é‘(A,'y)]”*l<1/m2 and such that Sy=“{A,li=1,2---} is open for every 7€C.
We put u,y=sup{p(F, x)|x€ A,y}, viy=Inf{p(F, x)|x € A;v}. Then it is easily seen
that u;y—v;y=0(A4,y). We define a non-negative valued function dy(») for every

T€eC by
0 (0=r<v;y or u;y<7r)

oA T wv=r=uy),
dy(r) = Sdn(r).

Since d;y(r)=0, we may interchange integration and summation by Lebesgue’s

diy(r) = {

1 1
theorem, and hence from J;"diy(r)drg[b‘(A,-y)]”+1 it follows that J;ﬂdy(r) dar

1 1
=ji;i;dn (7’)d”=i§ffdiv(7’)d7’§§1[6(z4w)]“+1<1/m2(7'EC). This implies dy(#(7))
<1/m for some »(7) : 0<r(7)=1/m. We denote by S(F, ») the set of all the
points satisfying p(F, x)<r and by S(») the boundary of S(F, 7). Then
[6(Arv~Sr(M))T'=div(r(T)) combining with dy(#(7))<1/m implies t‘i[a(AiyﬁS
rMNT<1/m. “S{Sy~S(F, »(T))|[T €C}="U is obviously an open set of R such
that FSUSGC. Since U—U="{Ay~SF(M)|TEC, i=1,2, -}, the n-dimensional
density of U—U is zero. The above arguement is also valid for #=0. Hence

U—-U=¢ for a space R of 1-dimensional density zero. Consequently ind dim
R=0. Thus we can establish this theorem inductively by Morita’s theorem?®,

12) Ind dim ¢=-1, ind dim R<# if and only if for any pair of a closed set # and an
open set G with FEG there exists an open set U such that FCSUZSG, ind dim (ff— U
=n-1. The equivalence of this dimension with Lebesgue’s dimension was proved by M.
Katétov, loc. cit. and by K. Morita, loc. cit. independently.

13) Loc. cit. Ind dim R=<# if and only if R has a o-locally-finite open basis 8 such that
the boundary of each set of ¥ has ind dimension =<zn—1.



