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Since the publishing of the paper [14] by A. H. Stone locally finite coverings 

have played an increasingly important role in studies of topological spaces. A. H. 

Stone [14], M. Kaû~tov [5], R. H. Bing [2], C. H. Dow ker [3], K. Morita [8], [9], E. 

Michael [6], [7], K. Nagami [11] and the others have established relations between 

locally finite coverings, point-finite coverings, paracompactness, full normality and 

the other normalities. The investigations of metrizability by means of locally 

finite coverings and of similar coverings have been made by Yu. Smirnov [13], R. 
H. Bing [2], K. Morita [10] and the author [12]. 

------The purpose of-this paper is- to study Telations betwœn continmmrlunctions 

and locally finite coverings of topological spaces. Using families of continuous 

functions, we shall give a necessary and sufficient condition for a T2-space to be 

fully normal in an analogous form to Urysohn's !emma and shall give necessary 

and sufficient conditions for metrizability. Furthermore, we shall generalize 

Hausdorff's theorem for continuous functions by using coverings. 

1. Full normality 

LEM MA 1. Let R be a topologie al space and let v"'= {xl fœ (x)> 0} (a< -r ) 1l for 

real valued continuous functions la- on R. If ~= { Vœla <-rl covers R, and if 

p'i.œ!fJ (x) is continuous for every a ~-r, then ~ has a locally finite rejinement.zl 

PROOF. Let V1œ= { xlfœ(x)> ~} and V."'= { xjft,(x)> ~--- ~2 - ... - i• }Cn;;s; 

2), then obviously V;"'~ vi+1a,~ V,(i=1, 2, ... ; a <-r). From these v., we define 

N., by Nn1 = v.1, N., = Vu,- fl <'"' Vn+1p (1 <a < T). Then it is easily seen that 

{N., ln= 1, 2 ... ; a < -r} co vers R. For xE V1 implies xE V. 1 = N 111 for sorne n, and 

xE V,, xEE VfJ (/3 <a), 1 <a< -r imply xE V""' for sorne n and f-'i.œft:Cx) ~0. Since 

ç.'i_,ff. is continuous from the assumption of the proposition, there exists a nbd 

The content of this paper is the detail of our note published in Proc. of Japan Acad., Vol. 31, 
No. 10 (1955). Notions and notations but recent ones in this paper are due chiefly to ]. W. Tukey 
[15]. 
1) a, f3, 'Y, -r denote ordinals in this !emma. 
2) In this note coverings and refinements are open but in the proof of Lemma 2. 

fo'iœfr> denotes the function sup {lf3(x)lf:J<a}(xER). p.':i_,fp(x) denotesthe value of this 
function at x. 
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1 1 1 3 ) 
( = neighbourhood) U(x) of x such that f>~" ff. ( U(x)) < 2 - 22 · ·- - 2,_1_1 and con-

sequently U(x) n Cr-'1:.., Vn+lf3) =cp. Hence xEE ~'~"' Vn+lf3• and hence xE Nnœ. 

Next, we shall show {N."'Ia < d is locally finite for a fixed n. Let V,/ 

= {xl fœ(x) > ~- ~2-- ···- ~·- z.~•+t } , then obviously V"'~ Vn+tœ· If xE V,.,', 

xEE Vil'(fi <a), a ~r, then ~œff3(x) ~ ~- ···- i•- 2.i•+t· Since f3~aff3 is con

tinuous, there exists a nbd V(x) of x such that V(x), V.ç.=cp (fi<a). Moreover, 

xE Vn+lœ and Vn+1anNny=cp (T>a). Hence there exists a nobd of x intersecting 

at most one of N,"' (a< -r). Therefore ft',= œ'::!rNnœ is closed for every n. Put 

V' -{xl/. (x) >_! __ l_ ... _1___~1~} V"= {xl/. (x)>l__l___.,,_l__ 
nO! --- ()) 2 22 2" 3. 2"+l ' ""' " 2 22 2" 

- 3-~"_11 } and put M,t = V~1 , Mnœ = V,;"'-;~, v:~ (1 <a < r), then N,"' ~M""' for 

very n, a< r. N.1~M,,1 is obvious. If n;;;.. 2, xEEM""'' then since R."'~ V,,"'~ v,;,.,, 

d: V' . 1· · d:N- s· -d: u V . 1· u + ( ) 1 1 1 d Xq::: nw Imp leS Xq::: nœ· mee Xq:::f.<ro niJf. lffip leS p.<œJ{3 X ~z- .. ·--.z-n--zn+T an 

consequently r-'::!,Jr.CU(x))~~- ... --i,- 3.i,+t• i.e. U(x),(f'.'::!o:.V;;1)=cp for sorne 

nbd U(x) of x, it holds xEEr-'i"' V~r--· Hence xEE0':;?:-v~; implies xEE~''<'"' V.+ 1 ~N,';, 4 l 

and xEEN~œ· Thus we conclude N,"~Mnœ· 
n-1 

Now we denote W1œ=Mt,, W,a,=M,,-;::;_F; (n;;;..2). Thenjill={W,,In=l,2 .. ·; 

a < -r} is a locally finite refinement of I.E. Firstly, we prove that jill covers R. 

Since u {N., ln= 1, 2 ... ; a < r} ~ R, for every xE R there exists n such that xE N,," 
for sorne a< -r and xEENmf' (m < n, fi< -r). From N,"~M,,"' we get xE M,"' and 

n--1 
xEE 1::;_F1, and hence xE Wnœ· Since jill< I.E is obvious, we show lastly that jill is 

locally finite. If xE Nk"'~Fk, then NkOln Wmf. =cp (m > k; fi< r). Next, we denote 

V"'={xlfa(x)>i-i2 - .. ·-i.- 2.i,i+i:-}Ca<r) for a fixed n~k. If xEV,,' 

and xEE Vr-' (fi< a), a~ -r, then since r-'<'rr.ff.(x) ~ ~- ... - i·- 2 .~•+1 , there exists 

a nbd V(x) of x such that V(x)n v:0 =cp (fi<a). Hence V(x),M,,fl=cp and 

consequently V(x), W,r=1) (fi<a). Moreover, xE V,:'"' and V:;ru,Mny=cp(T>a). 

Therefore there exists a nbd V.(x) of x intersecting at most one of M,la, (a<!'). 
k 

Hence the nbd :;:;1 V,(x) ,-,Nka~ of x intersects only finitely many WnoJ· 

In fact, we have no need to assume that I.E covers R, that is to say 

CoROLLARY 1. Let R be a topologica! spa ce and let V,= : xl.f:, (x) > 0 J (a < -r) 

3) f(U)~k means f(x)~k for every xE U. 

4) We denote by Ne or C(N) the complement of N. 
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for real valued continuous functions frx on R. If f.';!oJf. zs continuous for every 

a~ r, then there exists a locally finite collection ~= { Wir E C} of open sets such 

that W1~ V"' for every Y E C and some a E A, and such that rYe W 1 = œ'{A V,. 

Considering A. H. Stone's theorem5J "full normality and paracompactness are 

equivalent for T2-spaces ", we get the following theorems from this !emma. 

THEOREM 1. In order that a T2·sPace R is jully normal or paracompact it is 

necessary and sufficient that for every open covering {V, la E A}, there exists afami~y 

Ua la E A} of real valued functions on R such that j, (V~)== 0, ,'(A/;,= 1, P'inff. is 

continuous for every B ~ A. 

Proof Sufficiency is directly deduced from the !emma. 

Conversely, if lB= {V, la E A} is an open covering of a fully normal T2-space 

R, then there exist a locally finite refinement ll= { Uplfi} of SB and a covering ~ 

= { Wr-lfi E B} such that Wr-~ Uf' (fiE B). Defining continuons functions gf.(fi E B) 

on R such that gp(Wr.)=l, g1~(U~)=O and 0~/ç.~l, from the locally finiteness 

of lt we see obviously that 1'-{cg1 is continuons for every C ~B. If we put j, 

=u{gf'IUP~V,}, then ,f'A/,=1 from U<l!l, and the continuity of ,'E}J.,f, (A'~A) 
is deduced from the continuity of 1 'Ecg1 . Since laC V~) =0 is obvions, the necessity 

is proved. 

CoROLLARY 2. In arder that a complete/y regular space R is jully normal or 

paracompact it is necessary and sufficient that if {rp,la E A} is a family of real 

valued continuous functions on R such that ,'-{A <Po; is continuous, then for e1Jery E > 0 

there exists a family Ua la E A} of /unctions on R such that f" ~ rp, (a E A), ,'-{Afro 

- "''?/A<Prol ~ E, and r.Ënffl is continuous for every B~A. 

Proof Necessity. If ,7jArp, = rp is continuons on a full y normal Trspace R, 

thenfor a given e>O we put V"'={xlrp,(x)>rp(x)-E) (aEA). Since IB={V, 

la E A} is an open covering of R, we may choose locally finite coverings U= { Uç. 

1 fiE B}, ~= { Wf.lfi E B} of R such that U < 1!5, Wf.~ Ur: (fiE B). Define continuons 

functions gf. for every fiEE such that gç.(x)=rp(x)-E (xE Wf.), gf.(Up=-oo, 

gf.(x) ~rp(x)-E(xER), then gç.~<P"' (Ur:~ V"), f.'i_Bgf.=rp(x)-E, and 1'-(cg1 is obvi

ously continuons for every C~B. f. = u {g/31 Uœ~ V,) (a E A) have ali the necessasry 

properties. 

Sufficiency. Let {V, la E A} is an arbitrary open covering of R, then for every 

xE R there exist V"' 3 x and a continuo us function <Px such that rpx(x) = 1, rpx( V~)== 0, 

0 ~<Px~ 1. 

Since x~<Px = 1, there exists a family Uxlx ER} of continuons functions on R 

such that f,~rp., (xER), 1,'--(R/,-ll~!r, and x'[sfx is continuons for every S~R. 

Hence [/,=(yl/,(y)>OJ~[yi({J,(y)>O}~V"' for some aEA, and {UxlxER} covers 

5) See [14]. 
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R. Since from the !emma { V"'la E Al has a locally finite refinement, we conclude 

the full normality of R. 

Furthermore, we give three already known theorems as direct consequences 

of Theorem 1 and of Lemma 1. 

CoROLLARY 3. (E. Michael) 6 l A regular space R is paracompact if and only if 

every open covering of R has an open re finement m ~= ,'2m,, where each m" is a local

/y finite collection of open sets. 

CoROLLARY 4. (K. Nagami) 7 l Let R be a tapological space and V,= {xlfn(x) 

>O} (n=1, 2, ... ), where j, are real-valued continuous functions on R. If m= { V,ln 
= 1, 2, .. · } covers R, then IJ5 has a local! y finite re finement. 

COROLLARY 5. (A. H. Stone) 5 l Every full y normal T2-space is paracompact. 

2. Metrizability 

THEOREM 2. In arder that a T 1-space R is metrizable it is necessary and suf

ficient that there exists a family Uœla E A) of real valued continuous functions on 

R such that F-'isff'- and flEBiç. are continuous for every B~A, and such that for every 

xER and every nbd U(x) of x there exists !œE {f,laEA}: fm(x)<c and !œCUc(x)) 

;sc for some c> O. 

Proof We shall prove the sufficiency. Let Uœla E Al be a family satisfying 

the condition of this proposition and put V,,,_,={ylfœ(Y)<r'), W,œ={ylfm(y)>r) 

for rational numbers r'>r>O and U,,,(B)=CœE's Vr'œ m{c'csl W,œ) 0 for B~A,8lwhere 

we put œE's V,,œ=R for B=</>, œ{c(sl W,œ=</> for C(B) =</>. Moreover, we define a 

{ r+r' } collection U,,,={Urr,(B)IB~A) of sets. Letting A(x)= al/œ(x)<-2- for a 

definite point x of R, we get œ('A(x)f"'(x)~r~r' and M(x)={YimE'A(x)fœ(Y)<r') 

~œ{:i'cxJ V,'"" N(x) = {YiœEcc'~'cxJJ/"'(y) >r) ~œE:cé1cxJJ W"'" where M(x) = R for A(x) =</>, 

N(x) =R for C(A(x)) =</>. Since '-;jfœ and r;;;J'" are continuous, M(x) and N(x) are 

open nbd of x such that M(x)nN(x)~U,,,(A(x)). Hence {M(x)nNCx)lxER} 

=IJè<Urr'· 

Now we shall show that IJ1 has a locally finite refinement. Obviously it 

holds '-;;fœ (x) <r', if and only if r;;; (r+r'- fœ (x))> r. Therefore M(x) nN(x) 

={yl,€cCAcxJ)/'"(Y)œE~x)Cr+r'-/œ(Y))>r}. To prove the continuity of the function 

u{ n fœ(Y) n (r+r'-fm(y))IB:;;;;;SS)=F(y) for an arbitrary SS~21\ we denote by 
œEC( B) œEB 

a the value of this function at a definite point y of R. For an arbitrary e> 0 there 

exists aEC(B):f,(y)<a+f or aEB:r+r'-j00 (y)<a+~ for every BESS. We 

6) See [6j. 
7) See [11]. 
8) A 0 denotes the interior of A. 
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é 
denote by B' the totality of a such that aEC(B), fru(y)<a+z for sorne BE<;JJ 

é 
and by B" the totality of a such that a EB, r+r'-fru(Y)<a+-z for sorne BE<;JJ. 

Then œ'Esf,(y)~a+ ~, œ'{8,(r+r'-j,(y))~a+ ~, and C(B),.,B'~~ or B,.,B"~~ 

for every BE <;JJ. Renee from the continuity of ru'--{s,fz there exists a nbd U(y) of 

y such that ru'{sfruCU(y))<a+r::. Since oJ'{8 "(r+r'-foJ=r+r'-n !ru and is con-
"'EB11 

tinuous, there exists a nbd V(y) of y such that "'~"(r+r'-fru(V(y)))<a+r::. There-

fore F(U(y)n V(y))~a+r:: from the definition of F(y). Since n f,z n (r+r'-j,) 
œEC(B) œEB 

= n fœn (r+r'- œ'?/sfm) is continuons for every B;;;;; A, there exists a nbd W(y) 
mEC(B) 

of y su ch tha t F( W (y)) > a-r::. Th us from the firstly proved !emma IJè bas a 

locally finite refinement. 

Lastly, let U(x) be a nbd of x, then there exist a positive rational number r' 

and a E A such that xE V,,"';;;;; U(x) from the property of Umla E A}. Taking a 

rational number r>O:j"'(x)<r<r', we obtain S(x,Ur,,);;;;;U(x). 9 l For if xEU,/ 
(B), then since fœ (x)< r and consequent! y xEE W'"" it must be a E B. Hence Urr' 
(B);;;;;Vr'œ;;;;;U(x), and bence S(x,Urr');;;;;U(x). Take a locally finite refinement 

mrr' for each Urr'• then {mrr'lr, r' are rational positive numbers} is an enumerable 
family of locally finite coverings, and the totality of sets contained in sorne mrr' 

makes an open basis of R. Since R is obviously regular, we conclude the metri
zability of R from the theorem by Yu. Smirnov and the author "in order that 

a regular space is metrizable it is necessary and sufficient that there exists an 
open basis which is an enumerable sum of locally finite collections of open sets."10J 

Conversely, if R is metrizable, then {p(x,y) lx ER} satisfies the condition of this 
theorem, where p(x,y) denotes a bounded distance of R. 

We give here only two of various possible corollaries of this theorem. 

CoROLLARY 6. In arder that a TrsPace R is metrizable it is necessary and 
sufficient that we can assign a function q;(x, y) on R x R having non-negative (bounded) 
values such that 1) {ylq;(x,y)<r::} (r::>O) is a nbd basis of x for every xER, 2) 

d(A, x)= sup { q;(y, x) IY E A} and dCA, x)= inj { q;(y, x) IY E A} are continuous june tians 
of x for every subset A of R. 

Prooj. It is obvious. 

From this corollary, we get easily the following 

CoROLLARY 7. In arder that a TrsPace R is metrizable it is 11ecessary and 
sufficient that we can assigna function q;(x, y) on Rx R having non-negative (bounded) 
values such that 1) (ylq;(x,y) <r::} (r::>O) is a nbd basis of x for every xER, 2) 

d(F, X) and rj(F, x) are rontinuvus functions of x for every closed set F of R. 

CoROLL<'\RY 8. lf R is a complete/y regular space, then iJt arder that R is 

9) S(A,UJ=u{UIUnA~<f), UEUi. 
10) See I13J, [12j. 
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metrizable it is necessary and sufficient that there exists a sequence L. (n= 1, 2, ···) 

of families of continuous functions on R such that o;'{Afm and œ'EAfœ are continuous 

for every fœ EL. (a E A) for a dejinite n, and such that for every bounded continuous 

function f and every e > 0 there exist j t> E .'SL. (/3 E B) : 1 n ff3-fi < e. 
f'EB 

Proof. If R is me tric, then L. ={'Pl I'P(x)- Ç?(y) 1 ~ np(x,y) (x, y ER)} satisfies 

the condition of the proposition. Assume that j is an arbitrary bounded continuous 

function of R such that f(x)~A (xER). Let F.={xl ne~f(x)~(n+1)e} (n=,O, 

±1, ±2, ... ) for a given e>O and let m~x) =max{ ~~S,;,(x),F.+2 =cp } 11) for 

xER:ne<f(x)~(n+1)c. Wetakethe integer p(x) such that p(x)-1<m(x)(A-ne) 

~p(x) and put fx(y)=p(x)p(x,y)+ne. Then fxELp(x), fx(x)=ne, and fx(S~im(x) 

(x))~A. SineeyEF. implies (n-l)e~fè:Rfx(Y)~ne, IR,Rfx(Y)-f(y)l~2e (yER). 

Conversely, the sufficiency is easily checked. Assume that Ln (n = 1, 2, .. ·) 

satisfies the conditions of this proposition. W e de fine a continuous function f for 

a given point x of R and nbd U(x) su ch that f(x) = 0, f( uc (x))= 1, O~j ~ 1. Then 
co 

it must be 1 n/r;-/1<~ for sorne ff'-E.':::;_L. (/3EB). Renee there exists /3EB: 
f.EB 

ff> (x)< lx and j f. ( uc (x))> lx. Renee, as is easily seen from the proof of Theorem 

2, R is metrizable. 

We give the following !emma in the form of an extension of Chittenden's theorem. 

LEMMA 2. A T1~space R is metrizable, if and only if a function Ç?(x,y) on 

RxR having non-negative values can be dejined so that 1) {YI'i?(x,y)<e} (e>O) is 

a nbd basis of x for every xE R, 2) for every e > 0 and xE R there exist nbds S1Ce x), 

S2 Ce x), SaCe x) of x: 'i?Cx,y) ~ e and z E SaCe y) imply zEE S1Ce x), zEE S1(é x) and u E 53 
(c x) imply uEESz(ê x). 

Proof. Sinee the necessity is clear, we prove only the sufficiency. The proof 

is analogous to that of Lemma 1. We put S.(x) = { YI'P(x,y) < ~ } , S;!(x) = S1 ( ~ x), 

s;(x) =52 ( ~ x), S~(x) =53 ( ~ x). To prove firstly the full normality of R, we 

take an arbitrary open covering IE={Vœla<-r} of Rand put Vnœ={xiS.(x)~V"'}, 

v:"'=u{S!(x)lxE V."')' V%"=u{S;,(x)JxE Vnœl ;M."=(V%x-f''ia~ v:/'>) 0
, Fn=ro'--:}_rM""'' 

n-1 
W,,"=M."'-;';;;'1F; and ffi5= { W.,ln=l, 2, ... , a<d. Then it is easily proved that 

ffi5 is a locally finite, not neeessarily open refinement of m. ffi5 < m is obvious. To 
prove that ffi5 covers R, we assume xE V"', xEEVf.(f3<a), a<-r for a given xER. 

Sinee xE V"', S.(x)~ V" for sorne n, and henee S~(x)~ V,';',. Since xEE V./3(/3 <a), 

from the property of 'P it hold S~(x), Cr.'<'"' V:, 13 ) =cp C/3 <a). Renee xE M""'' and 

henee {M.aoln=l,2, ... ; a<-r) covers R. Now let xEMna" xEEMmf. Cm<n, /3<-r), 
then xE W""' ; hence ~li covers R. Final! y we show the local! y finiteness of ffi5. 

For every point x of R there exists sorne Mnœ : xE Mn."· Then M,"' is a nbd of x, 

11) S1 ;,(x)={YIP(x, y)<,7;}, where P(x, y) is the distance between x and y. 
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and MnœnWmt>=<f> (m~n+l.ft<-r). For a definite natural number m2.n, 
we assume xE V~,, xEE V~r.Cfi<a), a 2.-r. From the property of <p it hold S~ 

(x)n(t>';!,V~ 1;)=<f> and V~,œnMm1 =<f> (!>a), hence S~(x)nWn?=<f> (fi<a), 

V~,n Wm 1 =4> (Y>a). Therefore the nbd S~(x) n V,;,, of x intersects at most one of 

Wma~Ca<-r). Thus we condude the full normality of R from E. Michael's theorem 
" regular space is fully normal, if and only if every open covering of R has a 
locally fini te not necessarily open refinement "12l combining the regularity of R, 
which is easily to be checked. 

Let U(x) be an arbitrary nbd of xE R, then S.(y) 31x for sorne n and every 

yEfUc(x). Renee S(x,U,)~U(x), where U.={(S.(x)) 0 1xER}. Therefore R 1s 
metrizable from Urysohn's theorem.13l 

From this !emma we get the following extensions of P. Alexandroff and P. 

Urysohn's theorem. 

THEOREM 3. A TrsPace R is metrizable if and only if there exists an enumer

able collection {ll.ln = 1, 2, ··· } of open coverings of R such that 

1) { S(x, U.) ln= 1, 2, ··· } makes a nbd basis of x for every point x of R, 

2) every U, has an open rejinement U.' such that U1, U2, U3 EU,', U1n U~ 

"'r<f>, Uzn Ua"'r<P imply U1 u U2 u Ua~ U for some U E Un. where U,' does not neces

sarily belong to {li, ln= 1, 2, --· } . 

Proof. Since the necessity is obvious, we show only the sufficiency. We define 

the function <p(x,y) on RxR by <p(x,y)=Minh:z-lTiyES(x,U,) }. <p(x,y)=l 

if yEfS(x,U,) (n=-1,2,--·). Since we can assume ll,, 1 <lt,without loss of gener

ality, it is clear that {yl<p(x,y)<;} (n=1,2,--·) makes a nbd basis of x. For 

1 every c > 0 we take n~"E- Then <p(x, y)~ c implies S(x, U.) :\3y and consequent! y 

S2 (x,U,,') .. S(y,lt,')=<f>.14l yEfS2 (x,ltn') implies S(y,lt.')nS(x,lt,')=<f>, and hence 

S1(c,x)=S2 (x,ll,'), S2 (c,x)=S3 (c,x)=S(x,U;) satisfy the condition of the !emma. 

Therefore this theorem is valid. 

The following proposition is a direct consequence of this theorem. 

CoROLLARY 9. A TrsPace R is metrizable, if and only if there exists a col

lection { U,ln = 1, 2, ... } of open coverings such that 

1) { S(x, U.) ln= 1, 2, -- · } makes a nbd basis of x, 

2) every U. has a star-refinement.15 l 

12) See [6]. 
13) Although Michael's theorem is essentially unnecessary in this proof, his theorem has varions 

uses for simplifying pwots of theorems for coverings. 
14) .S2(x, U)- S(S(x, U), U). 
15) We cali iH a star-refinement of U if Q.l* < ll, where Q.~* , •• { S (V, Q.l) 1 V E \!5) . We don't know 

whether "star-retinement" in this proposition may be changed with "delta-refinement." We 
cali Q3 a delta-refinement of ll if Q.l~= {S(x, Q.l)lxERJ<U. 
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3. Extension theorems of continuons functions on uniform spaces 

THEOREM 4. Let R be a jully normal uniform space with the uniform topology 

dejined by the unform coverings {IJJè,,ja' E A'} and Sa uniform space with the uniform 

topology dejined by the uniform coverings {IJi:a~la E A} such that IA'j =JAl =Jn.16) If f 

is a continuous mapping dejined on a closed set F of R and having values in S, 

then S can be imbedded in a uniform space 1 which uniform topology is dejined by 

a system of unijorm coverings with the cardinal number m, such that f can be continu

ously extended to R with values in T, such that the extension is a homeomorphism of 

R-F with T-S, and such that S is a closed sub-uniform space of T. If fis a 

homeomorphism, then the extension is also a homeomorphism. 

Proof- Since, as it is easily seen, IJJ:! < IJi:f' implies U! <Ur-= /-1(1Ji:r:) = {f-1(N) 1 

NEIJi:r:}, we can choose U;,(i=1,2,---) from {lla~laEA} such that U1a~=Ua~, ll1œ 

> Ui," > U2, >ur,> l13œ. > · · · . Putting lE~"'= {CR-F) u U 1 U E llzœ}, we get a covering 

lE1œ='B~'"AIJJC,, of R such that '81"'!\F= {V nFI VE '81,} <llzru, 'BJœ<IJJè"''· Since R is 

fully normal, we can choose further a covering lE2., of R such that 'BzaAF<ll3œ, 

'8{;';,<'81,,. We can obtain successively in the same way a sequence of coverings 

of R IJJ1"',>'81'">'B:,> '82,>'8;~>··· such that 'Bna;i\F< 11,+1'" (n= 1, 2, ···). 

Now we define a sequence of coverings of R from the above sequence by ~'"' 

={lt;,, 'B;,x)={N(U,'B;œ), Vn(R-F)]UEU;œ, VE'B;a;}, where N(U, 'B;a;) denotes 

the open set u{Vjcp"'=VnF~U, VE'B;u;} ofR. Let usshow~;,>~;';.1 "' (i=1,2,-··). 

We denote by x an arbitrary point of R. If S(x, ~;+1 "') nF= cp, then there exists 

V E 'B;œ such that S(x, '13i+b) = S(x, 'Bi+lœ) ~V from l13;'', 1 ,~ < '8,, and the definition 

of ~ilir"· Renee S(x, ~il1œ)~ V n (R-F) E ~;,. If xE R-F and S(x, ~i+1«) nF"rcp, 

then since '8[,1œ< lE;, and 'B;"'AF<U;+lœ, there exist V E '8;," and U0 E Ui+lœ such 

that S(x,'8;+1a)~V, VnF~U0 Elli+1œ· From ll;":-1œ<ll;"' it holds S(U0 , ll;+1œ)~U' 

for sorne U' EU["'. Since V nF"rcp, VE '8;"', V nF~ U', we get S(x, '8;+1aJ ~V 

~N(U', '8;"') E~iro· If xEN(U,'8;+1"') and UEU;,-1"'' then S(x, 'B;.,ü)nFnN(U, 

'8,+1n,) = S(x, '8;,-1aJ nF n U"rcp, and hence Uon U"rcp from S(x, '8;+1œ) nF~ V nF 

~U0• Therefore U~S(Uo, U;+la,)~U' and consequently. N(U,'8;+1œ)~N(U', 'B;œ)

Thus we get S(x, ~i+1a;) ~N( U', '8;"') E ~iœ· In the case that xE F we get S(x, U;+1œ) 

~ U for some U EU;, and consequent! y SC t", ~i+1œ) ~NC U, 'B;oJ E 9,3;"'. Therefore ~;"' 

>~~1"'; is established. 

Putting (R-F) uS= T, we define a mapping f* from R into T by f*(z) 

=z (zER-F), f*(x)=f(x) (xEF). Defining coverings Û;œ of T by /*(~;"')=0;,, 

we see easily O,œ>Di",1a(i=l,2, ... ; aEA). In fact, yE T, f*(P) 3y and PE~i+lal 

imply P3 x for any point x of R such that f*(x) =y. Since S(x, ~r+lœ) ~P' for 

sorne P'E\.lSiœ, it holds S(f* , /*(~lJ.+lœ))= D,+loJ~/*(P') EOiœ- In addition 

16) We denote by lAI the cardinal number of the set A. We denote by a' the image of a by 
a one-to-one mapping from A onto A'. 
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we note that {Ü;œf\SfaEA, i=1,2, ... }={1Jè,[aEA} is obvious from the definition 
of 0;,. 

If y E T- S, then since /*-1(y) =xE R-F and F is closed, we get S2(x, m1,) nF 

~S2 (x, 1JJè,,)nF=cp for sorne a'EA'. Therefore S(x,\]51 ,)nF=1J, and hence S(y, 

D1",) n S =cp. Hence S is a closed subset of T. Furthermore, for every distinct 

points Y1.Y2 of T there exists O;a such that y2EES(y1,D;a). Thus we can define 

a uniform topology in CR-F) uS by the uniform covering system consisting of 

ail the fini te intersection coverings of 0,"' (a E A, i = 1, 2, -·· ) , and obtain the uni

form space T and the extension f* of f satisfying conditions in this theorem. 

The following Hausdorff's theorem is the direct consequence of this theorem 

for 111 = ?< 0• 

Hausdorff's theoremPl If R and Sare metric spaces, Fis a closed set of Rand 

if f is a continuous mapping from F into S, then S can be imbedded isometrically 

in a metric space T such that f can be continuously extended to R with values in T, 

such that the extension is a homeomorphism of R-F with T-S, and such that S is 

a closed sub-space of T. If f is a homeomorphism, then the extension is also a 

homeomorphism. 

Finally, let us discuss extension theorems in the case that Ris not fully normal. 

THEOREM 5. Theorem 4 is valid when R is normal and F satisfies the second 

countability axiom or when R is normal and S satisfies the second countability axiom. 

Proof. W e assume that R is normal and F satisfies the second countability 

axiom and that {IJèafa E A} and {IJJ1a·la' E A'} are uniformities of Sand R respectively. 

If we denote by fa continuous mapping on F having values in S, then f-1(1Jèa) 

=Ua isanormal covering of F.18l We choose a sequence Ua=U1a~>U;,>U2a~>Uta> 

··· of coverings from {/-1 CIJèa) fa E Al in the same way as in the proof of Theorem 

4. Since F satisfies the second countability axiom, there exists a locally finite 

enumerable refinement U= { Unln=1, 2, ··· } of U2a. Let us denote by U0 = { Uonl 

n=1, 2, ···} a covering of F such that Uon~Un (n=1, 2, ···), and consider con

tinuous functions lfJn on R such that cp,(U0.)=1, cp.(F-Un)=O, O~cp.~l. If we 

put Wn= {x[cp.(x) > 0}, then f:i1 Wn= W~F and 12B/\F<U2œ for 12B= { Wnfn=1, 2, ··· }. 

Now we take a continuous function cp0 on R such that c;o0 (Wc)=1, cp0 (F)=O, O~rp0 

~1, and define U0 ={x[f0 (x)>O). Then we have an enumerable covering 12B1a 

= { Uo, U1, Uz, · ·· } of R such that 12B1a = { U0, U1, Uz, · · ·} of R su ch that 12Biro/\F<Uza· 
Since 12B1"' is a normal covering from Corollary 4, we have a normal covering m1"' 

= 12B1œ/\IJJ1"''' of R such that m1œ11F< U2"'. 

17) See [ 4]. R. Arens, [ 1] gives sorne extensions and a brief proof of Hausdorff's theorem by 
a different method from us. 

18) A covering W of R is called normal, when there exists a sequence {W,! i ~ 1, 2, ... } of cover
ings such th at m;~l < m, < m ( i ~ 1, 2, ... ). 
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Next, we take a normal covering 5t2"' of R such that sr;"' <miN and a normal 

covering ~2œ of R such that ~2"' 1\ F> U3 "' in the same way as in the case of 

~tm- Putting m2"' = ~2"' 1\ stz,, we have a normal covering such that m;, < m1"', 

m2"' 1\ F< Uaa~- Repeating such processes, we obtain a sequence of uniform cover

ing mtœ>mt"'>m2"'>m:.,> ---of R such that mtœ<lffi.,,, mi"' /\F<Ui+lx (i=l,2 ... ) 

for every a E A. The remainder of the proof is the same as the proof of Theorem 

4 and is omitted. 

Bibliography 

1. R. Arens, Extension of functions on fully normal space, Pacifie Journ. of Math., VoL 11, No. 1 
(1952). 

2. R. H. Bing, Matrization of topological spa~es, Canadian Journ. of Math., Vol. 3 (1951). 
3. C. H. Dowker, On countably paracompact spaces, Canadian Journ of Math., VoL 3 (1951). 
4. F. Hausdorff, Erweiterung einer stetigen Abbildung, Fun. Math., 30 (1938). 
5. M. Katevtov, On real-valued functions in topological spaces, Fund. Math. 38 (1951). 

6. E. Michael, A note on paracompact spaces, Proc. of Amer. Math. Soc., Vol. 4, No. 3 (1953). 
7. E. Michael, Point-finite and locally finite coverings, Canadian Journ. of Math., Vol. 7 (1955). 
8. K. Morita, Oa spaces having the weak topology with respect to closed coverings, Proc. Japan 

Acad., Vol. 29, No. 10 (1953). 
9. K. Morita, On spaces having the weak topology with respect to closed coverings. II, Proc. 

Japan Acad., Vol. 30, No. 8 (1954). 
10. K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, 

Science Reports of the Tokyo Kyoiku Daigaku Sec. A, Vol. 5, No. 114 (1955). 
11. K. Nagami, Paracompactness and strong screenability, Nagoya Math. Journ., Vol. 8 (1955). 
12. J. Nagata, On a necessary and sufficient condition of matrizability, Journ. of Inst. of Polytechn. 

Osaka City Univ., Ser. A, Vol. 1, No. 2 (1950). 
13. Yu. Smirnov, A necessary and sufficient condition for metrizability of topological space, Doklady 

Akad. Nauk SSSR. N. S. VoL 77 (1951). 
14. A. H. Stone, Paracompactness and product spaces, Bull. Amer Math. Soc., Vol. 54, No. 10 

(1948). 
L5. ]. W. Tu key, Convergence an cl uniformity in topology, (J 940). 


