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Let A be a ring with unit element. The left dimension (notation : 1. dim AA), 

the left injective dimension (1 inj. dim. AA) and the left weak dimension (w.!. dim 

AA) for left A-modules and the left global dimension (1. gl. dim A) and the global 

weak dimension (w. gl. dim A) of A are those defined in [3]. 

Len A and T' be rings and 'ljF a ring homomorphism of A to l'. Then each left 

r-module A may be regarded as a left A-module, by setting, for ). E A a E A 

À•a = 1/FÀ•a 

If r is A-projective in this sence, the following inequalities are shown in [3]; 

1. dim AA ~ 1. dim rA, w. 1. dim AA ~w. 1. dim rA and 1. inj. dim AA ~ 1. inj. dim rA 

for left r-madules A. 

M. Auslander [1] has shown that 1. gl. dim A= sup 1. dim A/I where r ranges 

over ail left ideals of A and obtained sorne relations among 1. gi. dim A1 , 1. gl. dim 

A2 and 1. gl. dim A1 ® A2 in the special cases where A1 and A2 are algebras over 

a field K. 

If ~l is a two-sided ideal in A, there is in general very little relation between 

1. gl. dim A and 1. gl. dim (A/~0; it was however proved in Elenberg-Nagao-Nakayama 

[6] that if 1. gl. dim A~l and A is semi-primary, then gl. dim (A/Ill)< oo, 

Now, we show in section 1 of the present note that for each left A-module A 

we have 1. dim AA = 1. dim A,A", w.!. dim AA = w.!. dim A,A" and 1. inj. dim AA 

= 1. inj. dim A,A" and conversely, for each left A,-module A, 1. dim AA = 1. dim 

A 11A and so on, where A, is the total matrix ring of order n over A. Hence, as 

the special case of A1 ® A2 we obtain 1. gl. dim A = 1. gl. dim A, and w. gl. dim A 

=w. gl. dim An for any ring A and further if A is an algebra over a commutative 

ring K, we obtain dim A = dim A, . 

In section 2 we show that the analogous theorem to Auslander's is valid for 

w. gl. dim A and sorne characterization of ring A with w. gl. dim A ~ n or 1. gl. dim 

A ~ n (n ~ 1). In section 3, we assume that 'ljF is a ring homomorphism of A to r 
and 1. dim AT'~- 0 or r. dim Al'= 0, then we obtain sorne relations between the dimen

sions of A and r, regarding r-modules A as A-modules. In particular, if two sided 

ideal ~r is equal to Ae or eA (e=e2), we obtain 1. gl. dim A~!. gl. dim (A/~0 and 

w. gl. dim A~ w. gl. dim (A/~l). 
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In section 4 we show that w. gl. dim A = 0 if and only if A is regular, hence we 

obtain an example of the case that 1. gl. dim A >w. gl. dim A. Finally in section 5 

we study sorne relations between the dimensions of A and eAe under sorne assump

tions. The definitions and notions employed in this paper are based on those intro

duced by H. Cartan and S. Eilenberg [3]. 

1 Let A be a ring with unit element and An be the total materix ring of order n 

over A. We assume that each A-module is unitary and that each ring homomorphism 

maps unit upon unit. If two rings A and r and a ring homomorphism 1]r of A to r 
are given, than each left r-module A may be regarded as a left A-module, by setting, 

for a E A, J.. EA 

(1) J..a = 1]F().) a . 

In particular r may be regarded as A-module. 

The following ]emma is an immediate consequence of [3; XVI, Exer. 5] 

LEMMA 1. Let A, r and ,Y be as avove. Then 

if w. l. dim Ar = 0, we have w. l. dim AA ~ w. l. dim rA, 

if l. dim Ar = 0, we have l. dim !\A = l. dim rA, and 

if w. r. dim Ar = 0, we have l. inj. dim AA ~ l. inj. dim rA, for each le ft r -module A. 

Let A be a left A-module and A" and A. be the direct sums of n and n2 A's, 

respectively. The left operations of An over A" and A. are defined, by setting, for 

J.. = ().i 1 ) E A" a= Ca1 ... a.) E A" â= (aij) E A. 

Àa= ( ~J..1j aj, ··· ~)."j a) 
J J 

J..a= ( L;J..ik akj). 
(2) 

k 

A" and A, become left A,-modules under thcse operations. We dcfinc a ring homo

morphism cp of A to A, as follows, 

(3) for ). E A. 

A" and An become left A-modules by ( 1), ( 2 ) and ( 3), and these coïncide with 

natural direct sums of n and n2 A's as A-modules respectively. 

PRoPOSITION 1. If a left A-module A is projectve, then the left A.-module A" so is. 

Proof If A= A, we have An=A" œ ... œ A" as An-module, hence A" is An-projec

tive. Thus by a direct sum argument we have proposition. 

PROPOSITION 2. Each left A11-modele A is A.-isomorphic to Cc11 A)", whcre we 

regard e1.1 A) as left A-module. 

Proof Wh have a decomposition of A as follows, 

A=e11 A+e~1A+ ··· +e,1 A 

and e.1 A is A-isomorphic to e11 A. We obtain a An·isomorphism of A to (en A)" 

by the following correspondenc, for a E A a' E (en A)" 

a=ena1+ez1az+ ··· e,.1a, *-~' a'=e11a1+enaz+ --·+ena,. 
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PRoPOSITION 3. For lelt A-modules A, B and a right A-module C, we have iso
morphism . 

Hom ACA, B)~Hom A (A", B"), C0A ~ Cn® A" 
n A An ' 

Ci) 
Proof We denote an element CO ... Q a 0 .. ·0) by aCiJ. Any element 1 of Hom 

An(A", B") is uniquely decided by the image of the first component of A, for l(aCiJ) 

= 1 Cei1aC1>) = e;ia(il). And since 1 (aCiJ) = 1 (e11aC1J) = e111 CaCiJ), 1 is uniquely de

termined by a element of Hom ACA. B). 

Next we have 

Cci, ... , Cn)0Cai, ... , a.)= L; c<iJ 0aCJJ. 
i·j 

If i "'r j, c; 0a0J = cCiJe1 ;0aUJ = cCiJ 0e;;aUl=O, and cCiJ 0 aCiJ ~~ cC1Jei;0a<iJ =cCiJ0 

e1;aCi) = cCiJ0aC1J, 

bence (ci ... Cn)0Cai ... an)= 2:= c;Cil 0 a;C!J. 
i 

We define an epimorphic mapping ,Y: C0A---+ C"0A" by setting 
A A 

,JrCc0a) =cCil@aCiJ. 

Coversely we define a mapping cp: C" ®A"---+ C0A by setting 
An A 

cp(cCil@aCil) =c@a, 

this mapping is defined inedpendent on the choice of representatives. 

Then cp is epimorphic and 1frocp is the identity mapping. Therefore ,Y is isomorphic 

PROPOSIEION 4. Let A, B and C be as above, then we have isomorphisms ; 

Ext A(A, B)~Ext A,/A", B"), Tor A(C, A)~Tor An(C", A"). 

Proof Let 

be a projective resolution of A. By the natural manner we can extend this sequence 

to a An-projective resolution of A", using proposition 1, as follows 

Passing to homology yields the desired results in virtue of the definitions of Ext 

and Tor. 

CoROLLARY 1. For each lealt A-module A we have l. dim. AA = l. dim A, A", l. inj. dim 

/1A ~ l. inj. dim A11A", and w. l. dim AnA= w. l. dim A,A". 

Proof We have immediately the conclusion for 1. dim A by !emma 1 and the 

consideration in the proof of proposition. Let B be a left A11-module, then we have 

following isomorphisms from propositi.ons 2 and 4. 

Ext A(e,t B, A);;;,;; Ext J,((e11 B)'', A") ~ Ext A,,(B, A"). 

Hence 1. inj. dim AnA" ;:::;; !. inj. dim AA. 

The inverse inequality is obtained from !emma 1, noting that A" is the direct sum 
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of n A' s as A module. 

It is similar for w. 1. dim. 

REMARK 1. From corollary 1 and Theorem 18 of Eilenberg-Nakayama [ 4] we 

can obtain the weil known result that A is quasi-Frobenius if and only if A,. so is. 

CoRORRARY 2. For each left An-module A we have 

l. dim AA = l. dim A11A, l. inj. dim AA = l. inj. dim AnA 

and w.l. dim AA=w.l. dim AnA 

PROOF. Ovserbing that A is the direct sum of n (e11 A)'s as a A-module, we 

have by propositions 1 and 2 

l. dim AA=l. dim An Ce11 A)"=l. dim A e11A=l. dim AA. 

lt is similar for the remainders. 

From the above two corollaries we have 

THEOREM 1. 1. gl. dim A=l. gl. dim An, w. gl. dim A=w. gl. dim An. 

Now, let A be an algebra over a commutatiue ring K. And we have Ae=A®A* 

where A* is the inverse algebra. As for two sided A-modules A, the standard pro

cedure will be to convert them into left modules over A". Further we observe that 

(A,)e=An®A,* is isomrphic to A®A*®Kn2 = (A")n'. 

Hence from corollary 2 we have 1. dim A8 A=l. dim (A)"nA for each two sided An-modul 

A. In partiqular, setting A=An we have 

and 

THEOREM 2. dim A = dim An 

PRoPOSITION 5. The jollowing properties are equivalent, respective/y : 

a) A is left hereditary, 

b) A, is left hereditary, 

a') A is lejt semi-hereditary, 

b') An is left semi-hereditary, 

The first statements are clear from Theormem 1 and [3, VI, 2 · 8]. For the 

proof of the second statements we need the following well Jmow reslut, (cf. [2: 

23 ·15]). 

Let Ï be left ideal of An and m(Î) be the left A-module consisting of the first row 

of elements in I . 
Then the correspondence l +----;. m (Î) gives one ta one correspondence between the left 

ideals of A, and the A-submodule of n-dimensional vector space A" over A. Moreover, 

m (Ï) is finitely generated as a A-module if and only if Ï has finite generators as a 

left ideal. 

Now we assume that A is left semi-hereditary. If Y is a finitely generated left 
ideal of A,, we have from the above remark and corollary 1 of proposition 4 

1. dim AnÏ = 1. dim A,111 (Î)" = 1. dim Am (I) . 

From [3; I, 6 · 2] 1. dim Atn (Î) = 0, hence A, is left semihereditary. Conversely, let 
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An be left semi-hereditary and f be a finitely generated left ideal of A , then we 

have !. dim A f =!. dim An fn and since fn is fini tel y generated as a left ideal of A., 

!. dim Anfn =O. Therefore A is left semi-hereditary. 

2. Now we study here sorne properties of weak dimensions of rings. 

LEMMA 2. Let A be a left A-module and consider an exact sequence 

0-- B-~ P-7- A-- 0 

where w.!. dim AP=O. If w.!. dim AA ='\= 0, then w.!. dùn AB= w.!. dim AA-1, and if 

w.l. dim AA=O, then w.l. dim AB= O. 

lt is clear (cf. [3; VI, 2·3]). 

The following theorem is analogous to Auslander's theorem in the case of left 

dimensions. 

THEOREM 3. 

a) w. gl. di mA= sup w.l.dim AB 

b) =sup w.l.dim A A/f 

where B ranges over al! left A-modules generated by a singule element and l ranges 

over al! left ideals of A. 

If further w. gl. dim A='\= 0 

c) w. gl. dim A= 1 + sup. w. l. dim A f 
PROOF. a)->- b)->- c) is clear from lemma 2. Renee we prove here only the 

statement a) of the theorem. This proof is based on 

LEM MA 3. Let A be a le ft A-module, I a non empty well ordered set and (A;) ;EJ 

a family of su modules of A such that U A;= A and if i E I and i ~ j, then A;~ Aj . 
' iEI 

If w.!. dim A(A;/A/) ~ n for al! iE I where A/= U Aj, A{= (O) (1 is the !east 
j<i 

element of I), then w.l. dim AA ~ n 

Proof If n = 0 the then for all i E I we have w.!. dem AA,/ A,' =0. From the 

exact sequence 

o--A/ --A;--A;/A/ --o 
we have for each right A-module Band n ~ 1 

0= Torj+ 1(B, A;/ A/)-- Tor,1(B, A/)-- Torj(B, A;)-- Tor1 (B, A;/ A() =0. 

Hence Tor1 (B, A() is isomorphic to Tor4 (B, A;), that is, w.!. dim AA;' =w. 1, dim AA;. 

By our assumption we have w. !. dim A (A1/ A{)= w.!. dim AA1 =O. Then we can use 

the transfinite induction. We assume that ail modules Aj such as j < i are those 

with w.!. dim AAj=O. If i is not a limit element, we have A/ =A-1 and by 

the above remark w.!. dim A A;= O. If i is a limit element, than A/ is the direct 

limit of Aj(j<i) and inclusion mappings n/'(j~j'<i) (see [5; VIII, Exer.B]). 

Since Tor commutes with the direct limit, we have Torj (B, A/) = 0 for n > 0. 

Hence by the abve remark we obtain w.!. dim AA; =O. 

For n > 0 we can use the same method as that of proof of [1 ; pr. 3]. The proof 

of a) of theorem is also similar to that of [1; Th. 1]. 
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From lemma 2, Theorem 3 and the analogous properties to them in the case of 

the left dimensions we have the following corollary which is a generalization of 

[3; 1, 5·4]. 

and 

CoROLLARY. The following properties are equivalent for n ~ 1, respective/y; 

a) l. gl. dim A ~ n 

b) For each A-submodule A of a left projective A module we have l. dimAA~n- 1 

a') w. gl. dim A~ n 

b') For each A-submodule A of a left A-module P with w.l. dim AP= 0 we have 

w. l. dim A A ~ n - 1 

3. we now consider sorne relations between dimensions of two ring A and r 
which are connected by a ring homorphism V' of A to r. 

PRoPoSITION 6. Let A, r and '1/1' be as above and we assume that l. dim Ar = 0 

and l. dim rB= 1 implies l. dim AB= 1 for left r-modules B. Then we have l. dim AA 

=l. dim rA for each lejt r-module A with l. dim rA< oo. 

Proof If 1. dim rA = 0, 1. dim AA = 0 by ]emma 1. Now, we assume that the 

proposition is proved for left r-modules A' with l.dimAA' <q. (1<q<oo), and that 

1. dim "A= q. There exsits a r-exact sequence of A with X projective as 

(E) o~Q~x~A~o. 

Sin ce 1. dim rA> 1, we have 1. dim rQ = q -1, hence by the hypothesis of induction 

1. dim AQ = q -l and 1. di rn AX =O. Re garding (E) as A-exact sequence, we have 

Ldim AA = q. 

If there are the same assumptions for week or injective dsmensions, it is ture 

for them. In partiqular if 'fr is epimorphic, the second condition of proposition 

is satisfied (cf. cor of pr. 9). 

PROPOLTION 7. Let A, r and V' be as avove and l be a left ideal of A. We set 

{* = r-te l). If w. r. dim Ar = 0, then l. dim r r Il*~ l. dim A A/l . 

w. l. dim r r /!* ~ w.l. dim A A/l. 

Proof. We obtain the following commutative diagram 

éA 
A----~ A/1 

1 1 

'"'J é t~ 
r !'_> r!t* 

where éA is the natural mapping of A to A/l and él' is that of r to r/1* and ~: 

A/l ~ r /l* is defined as follows, 

for XE A/! eX is a residue class of À mod I) 
<p(:.l) = vO) 0iZ).) is a residue class of vO) mod 1*). 
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W e define a homorphism g of r ® A/I to r /I* as follows; for Y Er, I E A/l g (Y® X) 
A 

=Y~pcA)=f:;j;'ëi). Observe that T®A/!=T@i and the kernel of gis l*®i. For 
A A 

x EI*® 1 we have x=~ Y;1/r (!;) ® 1 = :z=Y;@l; = 0 where Y; Er, l; El Hence g is 

isomorphic. Since by the assumption Tort-Cr, A/0 = 0 for n > 0 we have from the 

mapping theorem [3; VIII, 3 ·1] 

Tor A (A, A/0 ;::::; Tor A (A, r II*)' 

Ext A(A/!, C);::::; Ext A(A/!, C) 

for right r-modules A and left r-modules C. This proves the first half. For the 

second half we have the same thorem as the mapping theorem and we can prove 

the last statements. 

CoROLLARY. Let 1fr be epimorphic and N be its kernel. If w. r. dim A/ N = 0, then 

l. gl. dim A/ N ~ l. gl. dim. A. And if w. r. dim AA/ N = 0 or w· l. dim AA/ N = 0, then 

w. gl. dim AIN~ w. gl. dim A. 

PROPOSITION 8. Let A, r be semi-primaryC1l and a ring homomorphism 1/r of A 

to r be given. And let NA be the radical of A and we assume that Nr = r V' (NA) 

be the redical of r and that r. dim Ar= O. Then we have for each right r-module A 

and le ft r -module B 

r. dim rA = r. dim AA, l. inj. dim rB= l. inj. dim A B. 

Proof From the consideration in proposition 7 we obtain the following isomor

phism, 

Tor A (A, A/NA);::::; TorT(A, T/Nr). 

We have from the analogous properties of [1; pr. 7] such equivalent relations as 

r. dim AA < n <'--> Tor~ (A, A/ NA) =~ 0 <---• Toyf,' (A, r; Nr) = 0 

<0--- r. dim rA < n . 

It is similar for left injective dimension . 

PROPOSITION 9. Let ~1 be a two sided ideal of A and we assume that w. r. dim 

A A/~1 = 0 or w.l. dim A A/~l = 0, then we have for each left A/~1-module B and right 

A/~{-module C Tor A (C, B);::::; Tor AjiJf(C, B). And if l. dim A A/~1 = 0 or r. dim A A/~{ 

~~ 0, we have Ext AjiJf(A, B) for each left A/~l-modules A and B. 

Proof 

It is easily seen that Hom A(Ajln, B) is isomorphic to B. We define a homo

morphism V' of A/~{® A to A/~{ A by setting, for I ®a E A/~1 ® A(i is a residue 

class of 1 mod ~0 

1/r(l ®a) = à (à is a residue class of a mod ~lA). 

Then it is clear that ,Y is isdmorphic. From [3, VI. pr. 4 ·1· 2 · 3 · 4] we obtain iso

morpnisms. 

(1) A ring A is called semi-primary if it cantains a nilpotent two-dided ida! N such that the residue 
ring Al N is semi-simple. It does not coincide with "half primar " of Deuring, Algebren, 
Ergebn. Math. 
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CoROLLARY. If l. dim A A/lli = 0 we have for left A/~1-modules A !. dim AA 
=l. dim Aj'Jl A, w.l. dim AA = w.l. dim Aj'Jl A. If w. r. dim A A/~1=0, then l. inj. dim A A 

= l. inj. dim Aj'Jl A. 

Proof For each left A/~(-module B we have a isomorphism: Ext A CA, B) 

~Ext A/IJT (A, B), hence we obtain 1. m. dim A/'ll A~ 1. dim A A. The inverse inequality 

is obtained from lemma 1. It is similar for the remainders. 

THEOREM 4. If a two-sided ideal ~l of A is generated by an idempotent element 
e as a left ideal or a right, then l. gl. dim A~l. gl. dim A/12l, w. gl. dim A~w. gl dim A/~l. 

REMARK 2. If r is a corossed product over A with a finite complete outer auto
morphisms (5) of A, then ail the assumptions of propositions 7 and 8 are satisfied. 

If r is a commutative semi-primary ring and ® is a finite complete automor

phisms of r and A is the ®-invariant subring of r, then r ahd A satisfy ali assump

tions of propositions 7 and 8. 

PROPOSITION 10. Let r be a crossed jJroduct over A as above, then 

gl. dim A = ,gl. dim r. 
Proof Let A be a left A-module. We defind a r-module p(A) as follows, 

p(A)=L;® V,.A ({Va-lis a base of p(A)) 
uE(,Il 

for x E A, V .,-a E V .,-A 

x( V.,-a) = V(Tx.,-a u, ( V,.a) = VTO"aT".,-a 

where {uT) is a base of r over A and {aT . .,-} is a factor set of r over A. Since 

u1A is a direct sumand of p(A) as left A module we obtain by lemma 1. dim rP(A) 

~1. dim A A. Which proves p1·opotion. 

Observing that we can obtain naturally a r projective resolttion of p(A) from 
A-projective one of A. we have 1. dim A A= 1. dim r p(A). 

If A is semi-primary, from proposition 8 we obtain, 

CoROLLARY 1. If A is semi-primary, then gl. dim A = gl. dim r. 
We obtain a similar result for the second example of remark 2 as follows. 

CoROLLARY 2. Let A and r be the smne as the second example, then 

gl. dim A = gl. dim r . 
4. W e now characterize rings A with w. gl. dim A = 0 

PROPOSITION 11. Let I be a left ideal of A. Then 

w.l. dim A A/1 = 0 if and only if, for each right A-moule 

A and each right A-snbmodule A' of A A' nAI = A'I holds. 

Proof We assume w.!. dim A A/f = 0 and we obtain a exact sequence as follows 

0 ~A'~ A_,_ A/ A'_,_ 0 

From our assumption we obtain the exact sequence; 0 _____,. A®A/1-,. A®A/f 
A A 

~A/ A' ®A If_____,. O. By the isomorphism -.fr in the proof of proposition 9 A' nAI 
A 

= A'l holds. Conversely if A" nA r = A' r we ob tain w. 1. dim AA/f = 0 by the above 
considera ti on 

We cali an element a of a ring A regular if there exists such an element x as 
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axa= a and a left ideal r regular if all elements of r are regular. 

PROMOTION 12 If a left ideal r is regular then 

W. l. dim AA/f = 0 

25 

Proof For a right A-module A and its submodule A' we prove the equality 

A',Af=A'f. For xEA',Af, we have x=~a;y;, a;EA, y;Ef. 

Since f is regular, the left ideal generated by {y;} is generated by an idempotent 

e. Honce x·e = ~a;y,e = ~a;y;xEA'f 

LEM MA 4 For each le ft A-module B we obtain w. l. dem AB~ n if and only if 

Tor~ +1 (x AB) = 0, where x A is a right A-module generated by a single element x. 

Proof The "if part" is trivial. It is sufficient to show Tor1+1 (A, B) = 0 for 

each finitely generated right A-module A, since Tor commutes with the direct limits. 

We assume that it is true for right A-module A' generated by (n-1) elements. 

Let A be generated by x1 •. . x, and A' by x1 ... Xn-1, then we obtain 0-----,'>- A' -----è>

A->A/ A'->0. Then ·->0= Tor1+1(A', B)-----è>- Tor1+1(A, B)----> ToriJ+1(A/ A', B) 

=0----> is exact, that is, ToriJ;-1(A, B) =O. We have the lemma by the incuction. 

CoROLLARY We have for each left A-modul B 

w.l. dim AB~ n if and only if Tor1+1(A/1Ji., B) = 0 

for each right ideal ~l of A. 

PRoPosiTION 13 Let r be a lejt ideal of A. Then w. l. dim A A/f = 0 if and only 

if r,~r =~tl holds for each right ideal~! of A. 

Prooj. If we replace A by A and A' by ~l in proposition 11, we obtain the first 

half. Conversely, we assume r, ~!=~tl. From the exact sequence: 0-----,'>- ~1-----è.>

A----> A/~! ----> 0 , we obtain the following exact one : 0----> Tor1 (A/12!, A/0 ----> 

~10 A/f ->A 0 Af ---->. By our assumption we see that the third arrow is monomor-
A A 

phic and Tod(A/~I, A/f = O. Renee we obtain the proposition by lemma 4. 

CoROLLARY If w.l. dim A A/!= 0, then for any element x of r xf contains x and 

f is idempotent: f2 = f. In particular if l is principal (f = Aa) then w.l. dim A A/f = 0 

if and only if there exists some element x in Aa as a· x = a. 

From propositions 12 and 13 and theorm 3 we obtain 

THEOREM 5 For each ring A, the following conditions are equivalent: 

a) w. gl. dim A = 0 

b) A' ,AI= A'f for each right A module A, each right A-sub-module A' of A 

and each left ideal I of A. 

c) A is regular 

From corollary of proposition 7 and proposition 12 

THEOREM 6 lf ~1 is a regular two-sided ideal of A, then 

l. gl. dim A ~ l. gl. dim. A/IJi. and w. gl. dim A ~ w. gl. dim A/IJi.. 

If Ais regular without minimal conditions, for instance a direct product of infinite 

number of fiels, the w. gl. dim A is smaller then gl. dim A, We note tha,t from 
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theorems 1 and 5 we obtain that A is regular if and only if A 11 so is, which was 

obtained by Neumann [7] and that if A is regullar, then A is semi-hereditary. 

5. We consider now sorne relations between dimensions of A and eAe(e = e2 ) 

under particular assumptions. 

Let A and B be left eAe-modules. 

Since Ae is a direct sum of eAe and (1-e)Ae, 

of Ae ® B. Renee we obtain an isomorphism : 

we may regard B as a sub,module 

Hom A(Ae@ A, Ae@ B) ~Hom 
eAe eAe eAe 

eAe(A, B) by the following mappings !fJ ann .,Y: for f ( E Hom A (Ae ®A, Ae ® B)) 
eAe eAe 

~pf(a) =f(e@a) =e·f(e@a), 1/J'g(J.e@a) = Àe•g(a). 

PRoPOSITION 14 If Tor'1,'(Ae, A) =0 for n > 0 and a left eAe module A, then 

Ext A(Ae ®A, Ae ® B) ~ Ext eAe(A, B) for each left eAe-module B. 
eAe eAe 

Proof. Since Ae is left A-projective, we obtain the proposition by the same 

consideration as that of the change of rings in [3, VI]. 

We can obtain the analogons proposition to the above one for Tor 

PROPOSITION 14a If Tor eje (A, eA) = 0 or Tor'j' (Ae, B) = 0 for n > 0 and a right 

eAe module A and a lejt eAe module B. Then Tor A(A@eA, Ae@B) ~ ToreAe(A, B). 
eAe eAe 

Proof We only note that since eA ® Ae is isomorphic to eAe as a two sided eAe 

module by the mapping: eJ.1 @J.2e~eJ.1J.2e, we obtain (A@eA) ® (Ae@B) ~A®B. 
eAe A eAe 

PROPOSITION 15 If w. r. dim eAeAe = 0, we obtain 

l. dim A Ae ®A = l. dim eAe A w. l. dim AAe ®A = w. l. dim eAe .11 
eAe eAe 

for each left eAe module A. 

Proof. If 1. dim eAe A is infinite, proposition is clear from the above. We prove 

it by induction with respect to the dimensition n of A. It is clear for n = 0 We 

assume the proposition for each module A' with 1. dim eAe A' ~ n -1 . W e take 

an exact sequence of a left eAe module A with 1. dim eAe A= n: 0 ~ Q ~ P~ 

A~ 0, where Pis eAe-projective. By the hypothesis we obtain 1. dim AAe ® Q 
eAe 

= n - 1 and 1. dim A Ae ® P =O. Furthermore we can ob tain the exact sequence of 
eAe 

Ae@A: o~Ae®Q~Ae®P~Ae®A~O from the above one. Renee 
eAe eAe eAe eAe 

we have 1. dim A Ae ®A= n for 1. dim A Ae ®A=\= 0. For the weak dimension we 
eAe eJ1e 

only observe that we can obtain the exact sequence : 0 ~ B ® Ae _,. C ® Ae from 
eAc 

a A-exact one: 0 ~ B _ ____,_ C and further if w. 1. dim eAe A= 0 we have final! y the 

exact one: o~B®Ae®A~C®Ae®A. 
A eAc A eAe 

From the proposition 15 we can obtain 

THEOREM 7 If w. r. dim eAe Ae =0 then we obtain 

l. gl. dim A~ l. gl. dim eAe and w. gl. dim A ~ w. gl. dim eAe 

In order to obtain an analogous theorem to this we need the following !emma 

LEMMA 5 If l. dim eAe eAe = 0, we have for each left A-module A l. dim A A 
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~ l. dim eAe eA. 

Proof Let --3> X 2 --> X1 -3> Xo----> A ----> 0 be a projective resolution of A. 

Then --------> eX2 --------> eX1 -------> eX0 -------> eA -3> 0 is clearly a eAe-projective resolution 

of eA from our assumption. This proves proposition. 

THEOREM 8 If l. dim eAe eA = 0 then 

l. gl. dim A ~ l. gl. dim eAe . 

Proof Let !' be a left ideal of eAe. then ! = Al' is a left ideal of A contained 

in Ae and further A/! is isomorphic to Ae/l ® Ac1-el. From !emma 5 we obtain 

l. dim AA!l = l. dim AAe/l ~ l. dim eAe e(Ae/!) =1. dim eAe eAe/el = l. dim eAeeAe/!'. 

Next we consider algebras over a commutative ring K. 

PROPOSITION 16 If l. dim eAe eA = r. dim eAe Ae = 0' 

then dim A ~ dim eAe 

Proof It is easily seen that (eAe)e is isomorphic to (e ® e*)Ae(e ® e*) and 

l. dim. (eAe)*e* A* is equal to r. dim eAe Ae. Hence from !emma 5 and [3, IX, 2 • 5] 

we obtain l. dim AeA ~ 1. dim (e®e*) (e®e*)A = 1. dim (eAe)e eAe. 

REMARK 3 If we take the total matrix ring of order n over A instead of A and 

eu instead of e, then our hypotheses are satisfied and propositions 14 and 14a 

coïncide with proposition 4. 

We can eaily obtain isomorphisms of propositions 4, 14 and 14a by using the 

formulas (4) and (4a) of [3, XVI, 4]. 
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