Note on the dimension of modules and algebras

By Manabu Harada

(Received March 10, 1956)

Let A be a ring with unit element. The left dimension (notation: $1 . \operatorname{dim} \Lambda A$), the left injective dimension ($1 \mathrm{inj} . \operatorname{dim} . \Lambda A$) and the left weak dimension (w. l. dim ΔA) for left A-modules and the left global dimension (1.gl. $\operatorname{dim} A$) and the global weak dimension (w.gl. $\operatorname{dim} \Lambda$) of Λ are those defined in [3].

Len Λ and I^{\prime} be rings and ψ^{r} a ring homomorphism of Λ to I^{\prime}. Then each left Γ-module A may be regarded as a left Λ-module, by setting, for $\lambda \in \Lambda \quad a \in A$

$$
\lambda \cdot a=\psi \lambda \cdot a
$$

If Γ is A-projective in this sence, the following inequalities are shown in [3]; 1. $\operatorname{dim} \Lambda A \leqq 1 . \operatorname{dim}{ }_{\Gamma} A$, w. 1. $\operatorname{dim} \Lambda A \leqq \mathrm{w} .1 . \operatorname{dim}{ }_{r} A$ and $1 . \operatorname{inj} \cdot \operatorname{dim} A A \leqq 1 . \operatorname{inj} \cdot \operatorname{dim} \Gamma A$ for left Γ-madules A.
M. Auslander [1] has shown that $1 . g 1 . \operatorname{dim} \Lambda=\sup 1 . \operatorname{dim} \Lambda / \mathfrak{l}$ where \mathfrak{l} ranges over all left ideals of Λ and obtained some relations among 1. gi. dim Λ_{1}, 1. gl. dim Λ_{2} and l.gl. $\operatorname{dim} \Lambda_{1} \otimes \Lambda_{2}$ in the special cases where Λ_{1} and Λ_{2} are algebras over a field K.

If \mathfrak{A} is a two-sided ideal in Λ, there is in general very little relation between 1. gl. $\operatorname{dim} \Lambda$ and l.gl. $\operatorname{dim}(\Lambda / \mathfrak{R})$; it was however proved in Elenberg-Nagao-Nakayama [6] that if $1 . g \mathrm{gl} . \operatorname{dim} \Lambda \leqq 1$ and Λ is semi-primary, then $\operatorname{gl} \operatorname{dim}(\Lambda / \mathfrak{A})<\infty$.

Now, we show in section 1 of the present note that for each left Λ-module A we have $1 . \operatorname{dim} \Lambda A=1 . \operatorname{dim} \Lambda_{n} A^{n}$, w. 1. $\operatorname{dim} \Lambda A=$ w. 1. $\operatorname{dim} \Lambda_{n} A^{n}$ and $1 . \operatorname{inj} . \operatorname{dim} \Lambda A$ $=1 . \mathrm{inj} . \operatorname{dim} \Lambda_{n} A^{n}$ and conversely, for each left Λ_{n}-module $A, 1 . \operatorname{dim} \Lambda A=1 . \operatorname{dim}$ $\Lambda_{n} A$ and so on, where Λ_{n} is the total matrix ring of order n over Λ. Hence, as the special case of $\Lambda_{1} \otimes \Lambda_{2}$ we obtain 1.gl. $\operatorname{dim} \Lambda=1 . \mathrm{gl} . \operatorname{dim} \Lambda_{n}$ and $\mathrm{w} . \mathrm{gl} . \operatorname{dim} \Lambda$ $=\mathrm{w}$. gl. $\operatorname{dim} \Lambda_{n}$ for any ring Λ and further if Λ is an algebra over a commutative ring K, we obtain $\operatorname{dim} \Lambda=\operatorname{dim} \Lambda_{n}$.

In section 2 we show that the analogous theorem to Auslander's is valid for w. gl. $\operatorname{dim} \Lambda$ and some characterization of ring Λ with w. gl. $\operatorname{dim} \Lambda \leqq n$ or $1 . \operatorname{gl} . \operatorname{dim}$ $\Lambda \leqq n(n \geqq 1)$. In section 3 , we assume that ψ is a ring homomorphism of Λ to Γ and $1 . \operatorname{dim} A \Gamma=0$ or $\mathrm{r} . \operatorname{dim} A \Gamma=0$, then we obtain some relations between the dimensions of A and Γ, regarding Γ-modules A as A-modules. In particular, if two sided ideal \mathfrak{A} is equal to $A e$ or $e \Lambda\left(e=e^{2}\right)$, we obtain 1.gl. $\operatorname{dim} A \geqq 1$. gl. $\operatorname{dim}(\Lambda / \mathfrak{t})$ and w. gl. $\operatorname{dim} A \geqq \mathrm{w} . \mathrm{gl} . \operatorname{dim}(A / \mathfrak{R})$.

In section 4 we show that w.gl. $\operatorname{dim} \Lambda=0$ if and only if Λ is regular, hence we obtain an example of the case that $1 . \mathrm{gl} . \operatorname{dim} \Lambda>\mathrm{w} . \mathrm{gl} . \operatorname{dim} \Lambda$. Finally in section 5 we study some relations between the dimensions of Λ and $e A e$ under some assumptions. The definitions and notions employed in this paper are based on those introduced by H. Cartan and S. Eilenberg [3].

1 Let A be a ring with unit element and A_{n} be the total materix ring of order n over A. We assume that each Λ-module is unitary and that each ring homomorphism maps unit upon unit. If two rings A and Γ and a ring homomorphism ψ of A to I are given, than each left Γ-module A may be regarded as a left A-module, by setting, for $a \in A, \lambda \in A$

$$
\begin{equation*}
\lambda a=\psi(\lambda) a . \tag{1}
\end{equation*}
$$

In particular Γ may be regarded as Λ-module.
The following lemma is an immediate consequence of [3; XVI, Exer. 5]
Lemma 1. Let Λ, Γ and ψ be as avove. Then if $w . l . \operatorname{dim} A \Gamma=0$, we have w.l. $\operatorname{dim}_{A} A \leqq w . l^{\prime} \operatorname{dim}_{\Gamma} A$, if l. $\operatorname{dim} \Lambda \Gamma^{\prime}=0$, we have $l . \operatorname{dim}_{\wedge} A=l \cdot \operatorname{dim} \Gamma A$, and if $w . r . \operatorname{dim} \Delta \Gamma=0$, we have l.inj. $\operatorname{dim} \Lambda A \leqq l$.inj. $\operatorname{dim} \Gamma A$, for each left Γ-module A.

Let A be a left A-module and A^{n} and A_{n} be the direct sums of n and $n^{2} A^{\prime} s$, respectively. The left operations of A_{n} over A^{n} and A_{n} are defined, by setting, for $\lambda=\left(\lambda_{i},\right) \in \Lambda_{n} \quad a=\left(a_{1} \ldots a_{n}\right) \in A^{n} \quad \tilde{a}=\left(a_{i j}\right) \in A_{n}$

$$
\begin{align*}
& \lambda a=\left(\sum_{j} \lambda_{1 j} a_{j}, \cdots \sum_{j} \lambda_{n j} a_{j}\right) \tag{2}\\
& \lambda a=\left(\sum_{k} \lambda_{i k} a_{k j}\right) .
\end{align*}
$$

A^{n} and A_{n} become left Λ_{n}-modules under these operations. We define a ring homomorphism φ of Λ to Λ_{n} as follows,

$$
\varphi(\lambda)=\left(\begin{array}{ll}
\lambda & 0 \tag{3}\\
0 & \lambda
\end{array}\right)
$$

for $\lambda \in \Lambda$.
A^{n} and A_{n} become left Λ-modules by (1), (2) and (3), and these coincide with natural direct sums of n and $n^{2} A^{\prime} s$ as A-modules respectively.

Proposition 1. If a left 1 -module A is projectve, then the left Λ_{n}-module A^{n} so is.
Proof. If $A=\Lambda$, we have $\Lambda_{n}=\Lambda^{n} \oplus \cdots \oplus \Lambda^{n}$ as Λ_{n}-module, hence Λ^{n} is Λ_{n}-projective. Thus by a direct sum argument we have proposition.

Proposition 2. Each left Λ_{n}-modele A is Λ_{n}-isomorphic to $\left(e_{11} A\right)^{n}$, where we regard $e_{1 \cdot 1} A$) as left 1 -module.

Proof. Wh have a decomposition of A as follows,

$$
A=e_{11} A+e_{21} A+\cdots+e_{n 1} A
$$

and $e_{i 1} A$ is A-isomorphic to $e_{11} A$. We obtain a Λ_{n}-isomorphism of A to $\left(e_{11} A\right)^{n}$ by the following correspondenc, for $\mathrm{a} \in A \quad a^{\prime} \in\left(e_{11} A\right)^{n}$

$$
a=e_{11} a_{1}+e_{21} a_{2}+\cdots e_{n \cdot 1} a_{n} \longleftrightarrow a^{\prime}=e_{11} a_{1}+e_{11} a_{2}+\cdots+e_{11} a_{n} .
$$

Proposition 3. For left A-modules A, B and a right 1-module C, we have isomorphism.

$$
\operatorname{Hom} A(A, B) \approx \operatorname{Hom}_{\Lambda_{n}}\left(A^{n}, B^{n}\right), C_{A}^{\otimes} A \approx C_{A n}^{\otimes} A^{n} .
$$

Proof. We denote an element ($0 \cdots 0{ }_{a}^{(i)} 0 \cdots 0$) by $a^{(i)}$. Any element f of Hom $\Lambda_{n}\left(A^{n}, B^{n}\right)$ is uniquely decided by the image of the first component of A, for $f\left(a^{(i)}\right)$ $\left.=f\left(e_{i 1} a^{(1)}\right)=e_{i 1} a^{(1)}\right)$. And since $f\left(a^{(1)}\right)=f\left(e_{11} a^{(1)}\right)=e_{11} f\left(a^{(1)}\right), f$ is uniquely determined by a element of $\operatorname{Hom} \Lambda(A . B)$.
Next we have

$$
\left(c_{1}, \ldots, c_{n}\right) \otimes\left(a_{1}, \ldots, a_{n}\right)=\sum_{i \cdot j}^{\prime} c^{(i)} \otimes a^{(i)}
$$

If $i \neq j, c^{i} \otimes a^{(j)}=c^{(i)} e_{i i} \otimes a^{(j)}=c^{(i)} \otimes e_{i i} a^{(j)}=0, \quad$ and $\quad c^{(i)} \otimes a^{(i)}=c^{(1)} e_{1 i} \otimes a^{(i)}=c^{(1)} \otimes$ $e_{1 i} a^{(i)}=c^{(1)} \otimes a^{(1)}$,
hence $\left(c_{1} \ldots c_{n}\right) \otimes\left(a_{1} \ldots a_{n}\right)=\sum_{i} c_{i}{ }^{(1)} \otimes a_{i}{ }^{(1)}$.
We define an epimorphic mapping $\psi: C \otimes_{A} A \longrightarrow C^{n} \otimes_{A} A^{n}$ by setting

$$
\psi(c \otimes a)=c^{(1)} \otimes a^{(1)}
$$

Coversely we define a mapping $\varphi: C^{n} \bigotimes_{A n} A^{n} \longrightarrow C \bigotimes_{A} A$ by setting

$$
\varphi\left(c^{(1)} \otimes a^{(1)}\right)=c \otimes a
$$

this mapping is defined inedpendent on the choice of representatives.
Then φ is epimorphic and $\psi \circ \varphi$ is the identity mapping. Therefore ψ is isomorphic
Proposieion 4. Let A, B and C be as above, then we have isomorphisms;
$\operatorname{Ext} A(A, B) \approx E \bar{x} t \Lambda_{n}\left(A^{n}, B^{n}\right), \operatorname{Tor}^{4}(C, A) \approx$ Tor $A^{n}\left(C^{n}, A^{n}\right)$.
Proof. Let

$$
X_{m} \xrightarrow{d_{m}} X_{m-1} \xrightarrow{d_{m-1}}-\longrightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} A \longrightarrow 0
$$

be a projective resolution of A. By the natural manner we can extend this sequence to a Λ_{n}-projective resolution of A^{n}, using proposition 1 , as follows

$$
\longrightarrow X_{m}^{n} \xrightarrow{d_{m}^{n}} X_{m-1}^{n} \xrightarrow{d_{m-1}^{n}} \ldots \longrightarrow X_{1}{ }^{n} \xrightarrow{d_{1}{ }^{n}} X_{0}{ }^{n} \xrightarrow{d_{0}{ }^{n}} A^{n} \longrightarrow 0
$$

Passing to homology yields the desired results in virtue of the definitions of Ext and Tor.

Corollary 1. For each leaft 1 -module A we have l. $\operatorname{dim} . \wedge A=l . \operatorname{dim} A_{n} A^{n}$, l. inj. dim $\Lambda A=l . \operatorname{inj} . \operatorname{dim} A_{n} A^{n}$, and w.l. $\operatorname{dim} \Lambda_{n} A=w . \operatorname{l.} \operatorname{dim} \Lambda_{n} A^{n}$.

Proof. We have immediately the conclusion for $1 . \operatorname{dim} A$ by lemma 1 and the consideration in the proof of proposition. Let B be a left Λ_{n}-module, then we have following isomorphisms from propositions 2 and 4.

$$
\operatorname{Ext} A\left(e_{11} B, A\right) \approx \operatorname{Ext} A_{n}\left(\left(e_{11} B\right)^{n}, A^{n}\right) \approx \operatorname{Ext} A_{n}\left(B, A^{n}\right)
$$

Hence $1 . \operatorname{inj} . \operatorname{dim} A_{n} A^{n} \geqq 1 . \operatorname{inj} . \operatorname{dim} A A$.
The inverse inequality is obtained from lemma 1 , noting that A^{n} is the direct sum
of $n A^{\prime} s$ as Λ module.
It is similar for w. l. dim.
Remark 1. From corollary 1 and Theorem 18 of Eilenberg-Nakayama [4] we can obtain the well known result that Λ is quasi-Frobenius if and only if Λ_{n} so is.

Cororrary 2. For each left Λ_{n}-module A we have
l. $\operatorname{dim} \Lambda A=l . \operatorname{dim} \Lambda_{n} A, l . \operatorname{inj} . \operatorname{dim} \Lambda A=l . \operatorname{inj} . \operatorname{dim} \Lambda_{n} A$ and w.l. $\operatorname{dim} A A=w . l . \operatorname{dim} A_{n} A$
Proof. Ovserbing that A is the direct sum of $n\left(e_{11} A\right)$'s as a Λ-module, we have by propositions 1 and 2

$$
\text { l. } \operatorname{dim} \Lambda A=l . \operatorname{dim} \Lambda_{n}\left(e_{11} A\right)^{n}=l . \operatorname{dim} \Lambda e_{11} A=l . \operatorname{dim} \Lambda A
$$

It is similar for the remainders.
From the above two corollaries we have
Theorem 1. 1. gl. $\operatorname{dim} \Lambda=1 . \mathrm{gl} . \operatorname{dim} \Lambda_{n}$, w. gl. $\operatorname{dim} \Lambda=\mathrm{w} . \mathrm{gl} . \operatorname{dim} \Lambda_{n}$.
Now, let Λ be an algebra over a commutatiue ring K. And we have $\Lambda^{e}=\Lambda \otimes \Lambda^{*}$ where Λ^{*} is the inverse algebra. As for two sided Λ-modules A, the standard procedure will be to convert them into left modules over Λ^{e}. Further we observe that $\left(\Lambda_{n}\right)^{e}=\Lambda_{n} \otimes \Lambda_{n}^{*}$ is isomrphic to $\Lambda \otimes \Lambda^{*} \otimes K_{n^{2}}=\left(\Lambda^{e}\right)_{n^{2}}$.
Hence from corollary 2 we have $1 . \operatorname{dim} \Lambda^{e} A=1 . \operatorname{dim}(\Lambda)^{e}{ }_{n} A$ for each two sided Λ_{n}-modul A. In partiqular, setting $A=\Lambda_{n}$ we have

Theorem 2. $\operatorname{dim} \Lambda=\operatorname{dim} \Lambda_{n}$
Proposition 5. The following properties are equivalent, respectively:
a) Λ is left hereditary,
b) Λ_{n} is left hereditary,
and
a') Λ is left semi-hereditary,
$\left.\mathrm{b}^{\prime}\right) \Lambda_{n}$ is left semi-hereditary,
The first statements are clear from Theormem 1 and [3, VI, 2•8]. For the proof of the second statements we need the following well know reslut, (cf. [2: $23 \cdot 15]$).

Let $\tilde{\mathfrak{I}}$ be left ideal of Λ_{n} and $\mathfrak{m}(\tilde{\mathfrak{l}})$ be the left Λ-module consisting of the first row of elements in $\tilde{1}$.
Then the correspondence $l \longleftrightarrow \mathfrak{m}$ ($\mathfrak{\mathfrak { l })}$ gives one to one correspondence between the left ideals of Λ_{n} and the Λ-submodule of n-dimensional vector space Λ^{n} over Λ. Moreover, \mathfrak{m} (\mathfrak{l}) is finitely generated as a 1 -module if and only if $\tilde{\mathfrak{l}}$ has finite generators as a left ideal.

Now we assume that Λ is left semi-hereditary. If \tilde{l} is a finitely generated left ideal of Λ_{n}, we have from the above remark and corollary 1 of proposition 4

$$
\text { 1. } \operatorname{dim} \Lambda_{n} \tilde{\mathfrak{l}}=1 \cdot \operatorname{dim} \Lambda_{n} \mathfrak{m l}(\tilde{\mathfrak{l}})^{n}=1 \cdot \operatorname{dim} A \mathfrak{m}(\tilde{\mathfrak{l}})
$$

From $[3 ; 1,6 \cdot 2]$ l. $\operatorname{dim} 1 \mathrm{~m}(\tilde{\mathfrak{l}})=0$, hence Λ_{n} is left semihereditary. Conversely, let
Λ_{n} be left semi-hereditary and \mathfrak{l} be a finitely generated left ideal of Λ, then we have $1 \cdot \operatorname{dim} A^{\Upsilon}=1 . \operatorname{dim} \Lambda_{n} \Upsilon_{n}$ and since Υ_{n} is finitely generated as a left ideal of Λ_{n}, 1. $\operatorname{dim} A_{n}^{\Upsilon} n=0$. Therefore A is left semi-hereditary.
2. Now we study here some properties of weak dimensions of rings.

Lemma 2. Let A be a left 1 -module and consider an exact sequence

$$
0 \longrightarrow B \longrightarrow P \longrightarrow A \longrightarrow 0
$$

where w.l. $\operatorname{dim} \Lambda P=0$. If w.l. $\operatorname{dim} \Lambda A \neq 0$, then $w . l . \operatorname{dim} \Lambda B=w . l . \operatorname{dim} \Lambda A-1$, and if w.l. $\operatorname{dim} \Lambda A=0$, then $w . \operatorname{l.} \operatorname{dim} \Lambda B=0$.

It is clear (cf. [3; VI, $2 \cdot 3]$).
The following theorem is analogous to Auslander's theorem in the case of left dimensions.

Theorem 3.

a) w.gl. $\operatorname{dim} A=s u p$ w.1.dim $A B$
b) $\quad=$ sup w.1. $\operatorname{dim} A A / \square$
where B ranges over all left 1 -modules generated by a singule element and \mathfrak{r} ranges over all left ideals of Λ.

If further w. gl. dim $\Lambda \neq 0$
c) w.gl.dim $\Lambda=1+$ sup.w.l.dim 1 l

Proof. a) $\rightarrow \mathrm{b}) \rightarrow \mathrm{c}$) is clear from lemma 2. Hence we prove here only the statement a) of the theorem. This proof is based on

Lemma 3. Let A be a left A-module, I a non empty well ordered set and $\left(A_{i}\right)_{i \in I}$ a family of sumodules of A such that $\cup A_{i \in I}=A$ and if $i \in I$ and $i \geqq j$, then $A_{i} \geqq A_{j}$.

If w. l. $\operatorname{dim} \Lambda\left(A_{i} / A_{i}^{\prime}\right) \leqq n$ for all $i \in I$ where $A_{i}^{\prime}=\bigcup_{j<i} A_{j}, A_{1}^{\prime}=(0)$ (1 is the least element of I), then w.l. $\operatorname{dim} \wedge A \leqq n$

Proof. If $n=0$ the then for all $i \in I$ we have w. 1. dem $\Lambda A_{i} / A_{i}^{\prime}=0$. From the exact sequence

$$
0 \longrightarrow A_{i}^{\prime} \longrightarrow A_{i} \longrightarrow A_{i} / A_{i}^{\prime} \longrightarrow 0
$$

we have for each right Λ-module B and $n \geqq 1$

$$
0=\operatorname{Tor}_{n+1}^{1}\left(B, A_{i} / A_{i}^{\prime}\right) \longrightarrow \operatorname{Tor}_{n}^{A}\left(B, A_{i}^{\prime}\right) \longrightarrow \operatorname{Tor}_{n}^{4}\left(B, A_{i}\right) \longrightarrow \operatorname{Tor}_{n}^{A}\left(B, A_{i} / A_{i}^{\prime}\right)=0 .
$$

Hence $\operatorname{Tor}_{n}^{4}\left(B, A_{i}^{\prime}\right)$ is isomorphic to $\operatorname{Tor}_{n}^{4}\left(B, A_{i}\right)$, that is, w. 1. $\operatorname{dim} \wedge A_{i}{ }^{\prime}=\mathrm{w} .1, \operatorname{dim} \Lambda A_{i}$. By our assumption we have w. $1 . \operatorname{dim} \Lambda\left(A_{1} / A_{1}^{\prime}\right)=\mathrm{w} .1$. $\operatorname{dim} \Lambda A_{1}=0$. Then we can use the transfinite induction. We assume that all modules A_{j} such as $j<i$ are those with w.l. $\operatorname{dim} A_{j}=0$. If i is not a limit element, we have $A_{i}^{\prime}=A_{i-1}$ and by the above remark w.l. $\operatorname{dim} \Lambda A_{i}=0$. If i is a limit element, than A_{i}^{\prime} is the direct limit of $A_{j}(j<i)$ and inclusion mappings $\pi_{j}{ }^{\prime}\left(j \leqq j^{\prime}<i\right)$ (see [5; VIII, Exer. B]). Since Tor commutes with the direct limit, we have $\operatorname{Tor}_{n}^{4}\left(B, A_{i}{ }^{\prime}\right)=0$ for $n>0$. Hence by the abve remark we obtain w.l. $\operatorname{dim} \Lambda A_{i}=0$.

For $n>0$ we can use the same method as that of proof of [1; pr. 3]. The proof of a) of theorem is also similar to that of [1; Th. 1].

From lemma 2, Theorem 3 and the analogous properties to them in the case of the left dimensions we have the following corollary which is a generalization of [3; I, 5•4].

Corollary. The following properties are equivalent for $n \geqq 1$, respectively;
a) l.gl. $\operatorname{dim} \Lambda \leqq n$
b) For each Λ-submodule A of a left projective 1 module we have l. $\operatorname{dim} A A \leqq n-1$ and
a') w.gl. $\operatorname{dim} \Lambda \leqq n$
b^{\prime}) For each 1 -submodule A of a left A-module P with $w . l . \operatorname{dim}{ }_{\wedge} P=0$ we have w. l. $\operatorname{dim} A A \leqq n-1$
3. we now consider some relations between dimensions of two ring Λ and Γ which are connected by a ring homorphism ψ of Λ to Γ.

Proposition 6. Let Λ, Γ and ψ be as above and we assume that l. $\operatorname{dim}{ }_{\Delta} \Gamma=0$ and l. $\operatorname{dim}{ }_{\wedge} B=1$ implies l. $\operatorname{dim}{ }_{\wedge} B=1$ for left Γ-modules B. Then we have l. $\operatorname{dim} \wedge A$ $=l . \operatorname{dim}{ }_{\mathrm{r}} A$ for each left Γ-module A with $l . \operatorname{dim}{ }_{\mathrm{r}} A<\infty$.

Proof If $1 . \operatorname{dim}{ }_{\mathrm{r}} A=0,1 . \operatorname{dim} \wedge A=0$ by lemma 1. Now, we assume that the proposition is proved for left Γ-modules A^{\prime} with $1 . \operatorname{dim} \Lambda A^{\prime}<q .(1<q<\infty)$, and that 1. $\operatorname{dim} \mathrm{r} A=q$. There exsits a Γ-exact sequence of A with X projective as
(E)

$$
0 \longrightarrow Q \longrightarrow X \longrightarrow A \longrightarrow 0
$$

Since $1 . \operatorname{dim} г A>1$, we have $1 \cdot \operatorname{dim} г Q=q-1$, hence by the hypothesis of induction 1. $\operatorname{dim} \wedge Q=q-1$ and $1 . \operatorname{dim} \wedge X=0$. Regarding (E) as A-exact sequence, we have 1. $\operatorname{dim} \wedge A=q$.

If there are the same assumptions for week or injective dsmensions, it is ture for them. In partiqular if ψ is epimorphic, the second condition of proposition is satisfied (cf. cor of pr. 9).

Propoltion 7. Let Λ, Γ and ψ be as avove and \mathfrak{r} be a left ideal of Λ. We set ${l^{*}}^{*}=\Gamma^{\top} \psi(l)$. If $w . r . \operatorname{dim} A \Gamma^{\prime}=0$, then $l . \operatorname{dim}_{\mathrm{V}} \Gamma / I^{*} \leqq l . \operatorname{dim} A \Lambda / \mathrm{I}$.

$$
\text { w. l. } \operatorname{dim}_{\Gamma} \Gamma / \Omega^{*} \leqq w . \operatorname{l.dim}_{\Lambda} \Lambda / \mathfrak{l} .
$$

Proof. We obtain the following commutative diagram

where ε_{Λ} is the natural mapping of Λ to Λ / Ω and ε_{V} is that of Γ to Γ / Λ^{*} and φ : $\Lambda / \downarrow \longrightarrow \Gamma / \Omega^{*}$ is defined as follows, for $\bar{\lambda} \in \Lambda / 1(\bar{\lambda}$ is a residue class of $\lambda \bmod \mathfrak{l})$

$$
\varphi(\lambda)=\overparen{\psi(\lambda)} \overparen{\psi(\lambda)} \text { is a residue class of } \psi(\lambda) \bmod {\left.r^{*}\right)}^{\psi}
$$

We define a homorphism g of $\Gamma \otimes A / \mathfrak{A}$ to Γ / Υ^{*} as follows; for $\gamma \in \Gamma, \bar{\lambda} \in \Lambda / l g(\gamma \otimes \bar{\lambda})$ $=\gamma \varphi(\bar{\lambda})=\gamma \overline{\psi(\lambda)}$. Observe that $\Gamma \otimes \Lambda / \mathcal{L}=\Gamma \otimes_{\Lambda}^{1}$ and the kernel of g is $l^{*} \otimes \bar{i}$. For $x \in Y^{*} \otimes \overline{1}$ we have $x=\sum \gamma_{i} \psi\left(l_{i}\right) \otimes \overline{1}=\sum \Upsilon_{i} \otimes \bar{l}_{i}=0$ where $\gamma_{i} \in \Gamma, l_{i} \in \mathcal{Y}$ Hence g is isomorphic. Since by the assumption $\operatorname{Tor}_{n}^{A}(\Gamma, \Lambda / l)=0$ for $n>0$ we have from the mapping theorem [3; VIII, $3 \cdot 1$]

$$
\begin{aligned}
& \operatorname{Tor} \Lambda(A, \Lambda / l) \approx \operatorname{Tor}^{\Lambda}\left(A, \Gamma / \Omega^{*}\right), \\
& \operatorname{Ext} \Lambda(\Lambda / \mathfrak{l}, C) \approx \operatorname{Ext} \Lambda(\Lambda / \Omega, C)
\end{aligned}
$$

for right Γ-modules A and left Γ-modules C. This proves the first half. For the second half we have the same thorem as the mapping theorem and we can prove the last statements.

Corollary. Let ψ be epimorphic and N be its kernel. If w.r. $\operatorname{dim} \Lambda / N=0$, then l.gl. $\operatorname{dim} \Lambda / N \leqq l$.gl. dim. Λ. And if $w . r . \operatorname{dim} \Lambda \Lambda / N=0$ or $w \cdot l . \operatorname{dim} \Lambda \Lambda / N=0$, then w.gl. $\operatorname{dim} \Lambda / N \leqq w . g l . \operatorname{dim} \Lambda$.

Proposition 8. Let Λ, Γ be semi-primary ${ }^{(1)}$ and a ring homomorphism ψ of Λ to Γ be given. And let N_{A} be the radical of Λ and we assume that $N_{\Gamma}=\Gamma \psi\left(N_{A}\right)$ be the redical of Γ and that r. $\operatorname{dim} \Lambda \Gamma=0$. Then we have for each right Γ-module A and left Γ-module B

$$
r . \operatorname{dim}_{\Gamma} A=r \cdot \operatorname{dim} \wedge A, \quad l \cdot i n j . \operatorname{dim}_{\Gamma} B=l . \operatorname{inj} . \operatorname{dim}_{A} B .
$$

Proof. From the consideration in proposition 7 we obtain the following isomorphism,

$$
\operatorname{Tor} \Lambda(A, A / N A) \approx \operatorname{Tor}^{\Gamma}\left(A, \Gamma / N_{r}\right)
$$

We have from the analogous properties of [1; pr.7] such equivalent relations as

$$
\begin{aligned}
r \cdot \operatorname{dim} A A<n & \longleftrightarrow \operatorname{Tor}_{n}^{A}(A, A / N A)=0 \leftrightarrow \operatorname{Tor}_{n}^{\Gamma}\left(A, \Gamma / N_{\Gamma}\right)=0 \\
& \longleftrightarrow r \cdot \operatorname{dim}_{\Gamma} A<n .
\end{aligned}
$$

It is similar for left injective dimension.
Proposition 9. Let \mathfrak{A} be a two sided ideal of 4 and we assume that w.r.dim $\Lambda \Lambda / \mathfrak{A}=0$ or w.l. $\operatorname{dim} A \Lambda / \mathfrak{A}=0$, then we have for each left $\Lambda / \mathfrak{A}-$ module B and right
 $=0$, we have Ext $_{1 / \mathfrak{H}}(A, B)$ for each left A / \mathfrak{H}-modules A and B.

Proof.
It is easily seen that $\operatorname{Hom} \Lambda(\Lambda / \mathfrak{R}, B)$ is isomorphic to B. We define a homomorphism ψ of $\Lambda / \mathfrak{\Re} \otimes A$ to $A / \mathfrak{H} A$ by setting, for $\overline{1} \otimes a \in \Lambda / \mathfrak{\vartheta} \otimes A(\overline{1}$ is a residue class of $1 \bmod \mathfrak{i l}$

$$
\psi(\overline{1} \otimes a)=\tilde{a} \quad(\tilde{a} \text { is a residue class of a } \bmod \mathfrak{N} A) .
$$

Then it is clear that ψ is isdmorphic. From [3, VI. pr. $4 \cdot 1 \cdot 2 \cdot 3 \cdot 4$] we obtain isomorpnisms.
(1) A ring Λ is called semi-primary if it cantains a nilpotent two-dided idal N such that the residue ring Λ / N is semi-simple. It does not coincide with "half primar" of Deuring, Algebren, Ergebn. Math.

Corollary. If l. $\operatorname{dim} \Lambda A / \mathfrak{A}=0$ we have for left Λ / \mathfrak{N}-modules A l.dim A $=$ l. $\operatorname{dim}_{\Lambda / \mathfrak{A}} A$, w.l. $\operatorname{dim} \Lambda A=w . l . \operatorname{dim}_{\Lambda / \mathfrak{A}} A$. If w.r. $\operatorname{dim} A \Lambda / \mathfrak{A}=0$, then l.inj. $\operatorname{dim} A A$ $=l$. inj. $\operatorname{dim}_{A / \mathfrak{R}} A$.

Proof. For each left $\Lambda / श$-module B we have a isomorphism: Ext $A(A, B)$ $\approx E x t_{A / \mathfrak{A}}(A, B)$, hence we obtain $1 . \mathrm{m} . \operatorname{dim}_{A / \mathfrak{A}} A \leqq 1 \cdot \operatorname{dim} \Lambda A$. The inverse inequality is obtained from lemma 1. It is similar for the remainders.

Theorem 4. If a two-sided ideal श of A is generated by an idempotent element e as a left ideal or a right, then l. gl. $\operatorname{dim} \Lambda \geqq l$. gl. $\operatorname{dim} \Lambda / \mathfrak{A}, w . g l . \operatorname{dim} \Lambda \geqq w . g l \operatorname{dim} \Lambda / \mathfrak{A l}$.

Remark 2. If Γ is a corossed product over Λ with a finite complete outer automorphisms (8 of Λ, then all the assumptions of propositions 7 and 8 are satisfied.

If Γ is a commutative semi-primary ring and \mathscr{F} is a finite complete automorphisms of Γ and Λ is the $(\mathbb{G}$-invariant subring of Γ, then Γ ahd Λ satisfy all assumptions of propositions 7 and 8 .

Proposition 10. Let Γ be a crossed product over Λ as above, then $g l . \operatorname{dim} \Lambda=g l . \operatorname{dim} \Gamma$.
Proof. Let A be a left A-module. We defind a Γ-module $p(A)$ as follows,

$$
p(A)=\sum_{\sigma \in \Theta} \otimes V_{\sigma} A \quad\left(\left\{V_{\sigma}\right\} \text { is a base of } p(A)\right)
$$

for $x \in \Lambda, V_{\sigma} a \in V_{\sigma} A$

$$
x\left(V_{\sigma} a\right)=V_{\sigma} x^{\sigma} a \quad u_{\tau}\left(V_{\sigma} a\right)=V_{\tau \sigma} a_{\tau \cdot \sigma} a
$$

where $\left\{u_{\tau}\right\}$ is a base of Γ over Λ and $\left\{a_{\tau \cdot \sigma}\right\}$ is a factor set of Γ over Λ. Since $u_{1} A$ is a direct sumand of $p(A)$ as left Λ module we obtain by lemma $1 . \operatorname{dim}{ }_{г} p(A)$ $\geqq 1$. $\operatorname{dim} \wedge A$. Which proves propotion.

Observing that we can obtain naturally a Γ projective resolttion of $p(A)$ from Λ-projective one of A. we have $1 . \operatorname{dim} \Lambda A=1 . \operatorname{dim} \Gamma p(A)$.

If A is semi-primary, from proposition 8 we obtain,
Corollary 1. If Λ is semi-primary, then gl. $\operatorname{dim} \Lambda=g l \operatorname{dim} \Gamma$.
We obtain a similar result for the second example of remark 2 as follows.
Corollary 2. Let A and Γ be the same as the second example, then gl. $\operatorname{dim} \Lambda=g l . \operatorname{dim} \Gamma$.
4. We now characterize rings Λ with w. gl. $\operatorname{dim} \Lambda=0$

Proposition 11. Let Υ be a left ideal of 1 . Then
w.l. dim $\wedge A / \mathcal{L}=0 \quad$ if and only if, for each right A-moule A and each right Λ-snbmodule A^{\prime} of $A \quad A^{\prime} \cap A \mathfrak{r}=A^{\prime} \mathfrak{y}$ holds.

Proof. We assume w.l. $\operatorname{dim} A \Lambda / I=0$ and we obtain a exact sequence as follows

$$
0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A / A^{\prime} \longrightarrow 0
$$

From our assumption we obtain the exact sequence; $0 \longrightarrow A \otimes_{A} A / \mathfrak{l} \longrightarrow A \otimes_{A} A / \mathfrak{\nwarrow}$ $\longrightarrow A / A^{\prime} \otimes_{A} A \Re \longrightarrow 0$. By the isomorphism ψ in the proof of proposition $9 A^{A} \cap A \mathfrak{r}$ $=A^{\prime} \mathfrak{Y}$ holds. Conversely if $A^{\prime} \cap A \mathfrak{l}=A^{\prime} \mathfrak{l}$ we obtain $\mathrm{w} .1 . \operatorname{dim} \Lambda A / \mathfrak{l}=0$ by the above consideration

We call an element a of a ring A regular if there exists such an element x as
$a x a=a$ and a left ideal \mathfrak{l} regular if all elements of \mathfrak{l} are regular.
Promotion 12 If a left ideal \mathfrak{r} is regular then

$$
\text { w.l. } \operatorname{dim} \wedge \Lambda / l=0
$$

Proof. For a right A-module A and its submodule A^{\prime} we prove the equality $A^{\prime} \cap A \mathfrak{l}=A^{\prime} \mathfrak{Y}$. For $x \in A^{\prime} \cap A \mathfrak{l}$, we have $x=\sum a_{i} y_{i}, a_{i} \in A, y_{i} \in \mathfrak{l}$.

Since \mathfrak{r} is regular, the left ideal generated by $\left\{y_{i}\right\}$ is generated by an idempotent e. Honce $x \cdot e=\sum a_{i} y_{i} e=\sum a_{i} y_{i} x \in A^{\prime} \Upsilon$

Lemma 4 For each left 1 -module B we obtain w.l.dem ${ }_{\Lambda} B \leqq n$ if and only if $\operatorname{Tor}_{n+1}^{A}(x A B)=0$, where $x A$ is a right A-module generated by a single element x.

Proof. The "if part" is trivial. It is sufficient to show $\operatorname{Tor}_{n+1}^{A}(A, B)=0$ for each finitely generated right A-module A, since Tor commutes with the direct limits. We assume that it is true for right A-module A^{\prime} generated by ($n-1$) elements. Let A be generated by $x_{1} \ldots x_{n}$ and A^{\prime} by $x_{1} \ldots x_{n-1}$, then we obtain $0 \longrightarrow A^{\prime} \longrightarrow$ $A \longrightarrow A / A^{\prime} \longrightarrow 0$. Then $\longrightarrow 0=\operatorname{Tor}_{n+1}^{A}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Tor}_{n+1}^{A}(A, B) \longrightarrow \operatorname{Tor}_{n+1}^{A}\left(A / A^{\prime}, B\right)$ $=0 \longrightarrow$ is exact, that is, $\operatorname{Tor}_{n+1}^{\lambda}(A, B)=0$. We have the lemma by the incuction.

Corollary We have for each left 1 -modul B

$$
\text { w. l. } \operatorname{dim} \Lambda B \leqq n \quad \text { if and only if } \operatorname{Tor}_{n+1}^{A}(\Lambda / \mathfrak{A}, B)=0
$$

for each right ideal शl of Λ.
Proposition 13 Let \mathfrak{l} be a left ideal of Λ. Then w.l.dim $1 \Lambda / \mathfrak{l}=0$ if and only if $\mathfrak{Y} \cap \mathfrak{H}=\mathfrak{N l}$ holds for each right ideal \mathfrak{H} of Λ.

Proof. If we replace A by A and A^{\prime} by $\mathfrak{\vartheta}$ in proposition 11, we obtain the first half. Conversely, we assume $\mathfrak{r}_{\cap} \mathfrak{A}=\mathfrak{N Y}$. From the exact sequence: $0 \longrightarrow \mathfrak{N} \longrightarrow$ $\Lambda \longrightarrow \Lambda / \mathfrak{A} \longrightarrow 0$, we obtain the following exact one: $0 \longrightarrow \operatorname{Tor}_{1}^{1}(\Lambda / \mathfrak{A}, \Lambda / \mathfrak{l}) \longrightarrow$ $\mathfrak{A} \otimes_{\Lambda} A / \mathfrak{l} \longrightarrow \Lambda \otimes_{\Lambda} A \mathfrak{l} \longrightarrow$. By our assumption we see that the third arrow is monomorphic and $\operatorname{Tor}_{1}^{\wedge}(\Lambda / \mathfrak{Y}, \Lambda / \mathfrak{l}=0$. Hence we obtain the proposition by lemma 4.

Corollary If w.l. dim $A \Lambda / \downarrow=0$, then for any element x of $\mathfrak{l x}$ contains x and \mathfrak{l} is idempotent: $\mathfrak{l}^{2}=\mathfrak{l}$. In particular if \mathfrak{l} is principal $(\mathfrak{r}=\Lambda a)$ then w.l. $\operatorname{dim} \mathrm{A} \Lambda / \mathfrak{l}=0$ if and only if there exists some element x in Λa as $a \cdot x=a$.

From propositions 12 and 13 and theorm 3 we obtain
Theorem 5 For each ring 1 , the following conditions are equivalent:
a) w.gl. $\operatorname{dim} \Lambda=0$
b) $A^{\prime} \cap A \mathfrak{I}=A^{\prime} \mathfrak{Y}$ for each right 1 module A, each right Λ-sub-module A^{\prime} of A and each left ideal \mathfrak{I} of Λ.
c) Λ is regular

From corollary of proposition 7 and proposition 12
Theorem 6 If \mathfrak{A} is a regular two-sided ideal of Λ, then
l. gl. $\operatorname{dim} \Lambda \geqq l . g l . \operatorname{dim} . \Lambda / \mathfrak{A}$ and w.gl. $\operatorname{dim} \Lambda \geqq w . g l . \operatorname{dim} \Lambda / \mathfrak{A}$.

If Λ is regular without minimal conditions, for instance a direct product of infinite number of fiels, the w.gl. $\operatorname{dim} \Lambda$ is smaller then $\operatorname{gl} \operatorname{dim} \Lambda$, We note that from
theorems 1 and 5 we obtain that Λ is regular if and only if Λ_{n} so is, which was obtained by Neumann [7] and that if Λ is regullar, then Λ is semi-hereditary.
5. We consider now some relations between dimensions of Λ and $e \operatorname{Ae}\left(e=e^{2}\right)$ under particular assumptions.

Let A and B be left $e \Lambda e$-modules.
Since Λe is a direct sum of $e \Lambda e$ and (1-e) $A e$, we may regard B as a sub-module of $\Lambda e \otimes_{e^{1 e}} B$. Hence we obtain an isomorphism: $\operatorname{Hom} \Lambda\left(\Lambda e \otimes_{e \Lambda e} A, \Lambda e \bigotimes_{e A e} B\right) \approx H o m$

$$
\varphi f(a)=f(e \otimes a)=e \cdot f(e \otimes a), \quad \psi g(\lambda e \otimes a)=\lambda e \cdot g(a)
$$

Proposition 14 If Tor ${ }_{n}^{e A_{e}}(\Lambda e, A)=0$ for $n>0$ and a left eAe module A, then

Proof. ${ }^{e A_{e}}$ Since ${ }^{e A_{e}}$ ie is left A-projective, we obtain the proposition by the same consideration as that of the change of rings in [3, VI].

We can obtain the analogous proposition to the above one for Tor
Proposition 14a If Tore ${ }_{n}^{\operatorname{Ae}}(A, e \Lambda)=0$ or $\operatorname{Tor}_{n}^{e A e}(A e, B)=0$ for $n>0$ and a right
 Proof We only note that since $e \Lambda \otimes \Lambda e$ is isomorphic to $e \Lambda e$ as a two sided $e A e$ module by the mapping: $\quad e \lambda_{1} \otimes \lambda_{2} e \longrightarrow e \lambda_{1} \lambda_{2} e$, we obtain $\left(A \otimes_{e \Lambda e}^{\otimes e \Lambda)} \underset{A}{\otimes}\left(\lambda e \bigotimes_{e A e} B\right) \approx A \otimes B\right.$.

Proposition 15 If w.r.dim eneAe $=0$, we obtain
for each left ene module A.
Proof. If $1 . \operatorname{dim}_{\text {ele }} A$ is infinite, proposition is clear from the above. We prove it by induction with respect to the dimensition n of A. It is clear for $n=0$ We assume the proposition for each module A^{\prime} with $1 . \operatorname{dim}_{\text {e1e }} A^{\prime} \leqq n-1$. We take an exact sequence of a left eAe module A with $1 . \operatorname{dim}_{e \lambda e} A=n: 0 \longrightarrow Q \longrightarrow P \longrightarrow$ $A \longrightarrow 0$, where P is $e \Lambda e$-projective. By the hypothesis we obtain $1 . \operatorname{dim} \Lambda \Lambda e \bigotimes_{e_{A} \ell}^{\otimes} Q$ $=n-1$ and $1 . \operatorname{dim} \Lambda A e \otimes P=0$. Furthermore we can obtain the exact sequence of $\Lambda e \bigotimes_{e, A e} A: 0 \longrightarrow \Lambda e \otimes_{e \Lambda e} Q \xrightarrow{e e^{e}} \Lambda e \underset{e \Delta e}{ } P \longrightarrow \Lambda e \otimes_{e \Delta e} A \longrightarrow 0$ from the above one. Hence we have $1 . \operatorname{dim}_{\wedge} \Lambda e e_{e \Lambda^{e}}^{e \ell} A=n$ for $1 . \operatorname{dim} \wedge \Lambda e e_{e \Lambda_{e}}^{\ell} A \neq 0$. For the weak dimension we only observe that we can obtain the exact sequence : $0 \longrightarrow B \otimes_{e_{A c}} \Lambda e \longrightarrow C \otimes \Lambda e$ from a A-exact one $: 0 \longrightarrow B \longrightarrow C$ and further if w. 1. $\operatorname{dim} e A e ~ A \stackrel{e d c}{=} 0$ we have finally the exact one : $0 \longrightarrow B \otimes_{\Lambda} A e \underset{e \Delta e}{\otimes} A \longrightarrow C \bigotimes_{A} A e \bigotimes_{e \Lambda e} A$.

From the proposition ${ }^{\boldsymbol{e}{ }^{A E}} 15$ we can obtain
Theorem 7 If w.r. dim ene $\operatorname{de}=0$ then we obtain
l.gl. $\operatorname{dim} \Lambda \geqq l . g l . \operatorname{dim}$ eAe and w.gl. dim $\Lambda \geqq w . g l . \operatorname{dim}$ e Λe

In order to obtain an analogous theorem to this we need the following lemma
Lemma 5 If l.dimese ede $=0$, we have for each left A-module A l.dim a A
$\geqq l . \operatorname{dim}_{e A e} e A$.
Proof Let $\longrightarrow X_{2} \longrightarrow X_{1} \longrightarrow X_{0} \longrightarrow A \longrightarrow 0$ be a projective resolution of A. Then $\longrightarrow e X_{2} \longrightarrow e X_{1} \longrightarrow e X_{0} \longrightarrow e A \longrightarrow 0$ is clearly a $e A e$-projective resolution of $e A$ from our assumption. This proves proposition.

Theorem 8 If l. dim ese e $A=0$ then
l.gl. $\operatorname{dim} \Lambda \geqq l . g l . \operatorname{dim}$ e $A e$.

Proof Let \mathfrak{r}^{\prime} be a left ideal of $e \Lambda e$. then $\mathfrak{r}=A \mathfrak{l}^{\prime}$ is a left ideal of Λ contained in Λe and further Λ / Ω is isomorphic to $\Lambda e / \mathfrak{l} \otimes \Lambda_{(1-e)}$. From lemma 5 we obtain 1. $\operatorname{dim}_{\Lambda} \Lambda / \mathfrak{l}=1 . \operatorname{dim}_{\Lambda} \Lambda e / l \geqq 1 . \operatorname{dim}_{e \Lambda e} e(\Lambda e / l)=1 . \operatorname{dim}_{e \Lambda e} e \Lambda e / e l=1 . \operatorname{dim}_{\text {eлe }} e \Lambda e / l^{\prime}$.

Next we consider algebras over a commutative ring K.
Proposition 16 If $l . \operatorname{dim}_{e \Lambda e} e \Lambda=r . \operatorname{dim}_{e A e} A e=0$, then
$\operatorname{dim} \Lambda \geqq \operatorname{dim} e \Lambda e$
Proof It is easily seen that (eAe $)^{e}$ is isomorphic to $\left(e \otimes e^{*}\right) \Lambda^{e}\left(e \otimes e^{*}\right)$ and 1. dim. (eAe) ${ }^{*} e^{*} \Lambda^{*}$ is equal to r. $\operatorname{dim}_{e \Lambda e}$ ie. Hence from lemma 5 and [3, IX, 2•5] we obtain 1. $\operatorname{dim}_{\Lambda^{e}} \Lambda \geqq 1 . \operatorname{dim}\left(e \otimes e^{*}\right)\left(e \otimes e^{*}\right) \Lambda=1 . \operatorname{dim}_{\left(e \Lambda_{e) e} e\right.} e \Lambda e$.

Remark 3 If we take the total matrix ring of order n over A instead of A and e_{11} instead of e, then our hypotheses are satisfied and propositions 14 and 14a coincide with proposition 4.

We can eaily obtain isomorphisms of propositions 4, 14 and 14a by using the formulas (4) and (4a) of [3, XVI, 4].

Bibliography

[1] M. Auslander, On the Dimension of modules and algebras III. Nagoya Math. J. vol. 9 (1955) $67-78$.
[2] G. Azumaya and T. Nakayama, Algebra II. Press in Japan (1954).
[3] H. Cartan and and S. Eilenberg, Homological Algebras, Princeton Univ. press (1955).
[4] S. Eilenberg, and T. Nakayama, On the Dimension of modules and algebras II, Nagoya Math. J. vol. 9 (1955) 1-16.
[5] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, (1952).
[6] S. Eilenberg, H. Nagao and T. Nakayama, On the Dimension of modules and algebras IV, Nagoya Math. J. vol. 10 (1956) 87-95.
$17\rceil$ Neumann, J. von, On regular rings, Proc. Nat. Acad. Sci 22 (1936).

