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Homological structure of the 2-fold symmetric products sn*sn of an n-sphere 

sn is well known. (See R. Bott [2], S. K. Stein [12] and the recent paper [5] of S. 

D. Liao.) 1) In the present note, we shall calculate sorne homotopy groups of sn*sn 

by making use of the results on homology. If we denote by n; the (stable) homotopy 

group n;(Sn*sn) for i<2n-2, our results are as follows: 

lTn+l == 0, lTn+z == 0, i'Tn-+s ~ Zs, 

(A) 1rn+4 == 0, ï!n+s ~ Z2, 7':n+6 == 0, 

1Tn+7 ~ zl5' lTn+s ""=' Zz, lTn+g ""=' Zz. 2) 

Two different methods are explained. One of these is the method employed by 

J-P. Serre in [10] for calculation of homotopy groups of spheres.3) The other starts 

with a construction of a reduced complex of the same (n+6)-homotopy type as sn*sn, 

in w hi ch the homotopy boundaries in dimensions < n + 7 are well defined. 

In the last section, we state sorne results on the following: i) homotopy of sn*sn 

for n ~ 5, ii) the homotopy groups of the p-fold cyclic product of a sphere, iii) the 

homology and homotopy of the 2-fold symmetric product of the suspended projective 

plane. 

1. Homological properties 

We shall first recall sorne homological properties of sn*sn (see [2], [5], [12]). 

The i-dimensional homology group H;==H;(Sn*sn: Z) 2) is as follows: 

Ho""='Z, H; == 0 for 0 < i < n, Hn=Z, 

Hn+j = 0 for 1 :Ç: j < n with odd j, 

(1. 1) = Z2 for 1 ::=; j < n with even j, 

Hzn == 0 for odd n, 

= Z for even n, 

H; = 0 for i > 2n . 

Thus the i-dimensional cohomology group Hi(Sn*sn; Z2 ) is Z 2 for i ==0, n and 

n + 2 < i::; 2n, and is zero for other i. 

1) Numbers in brackets refer to the bibliography at the end of this paper. 
2) We denote by Z and Zp the additive groups of integers, of integers mod p respectively. 
3) The author is indebted to Prof. H. Toda for pointing out the use of this method. 
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As for the Steenrod square Sqi: Hn+3(Sn*sn; Z2)~Hn+i+J(Sn*sn; Z2), we 

have 

Sqi Hncsn*sn; Z2) = HnH(Sn*sn; Z2), 
(1. 2) 

Sqi Hn+J+1(Sn*sn; Z2) = (;) Hn+ï+J+l(S"*Sn; Z2) (j 2: O) 

where (1) is the binomial coefficient with the usual conventions. 

Let K(n, n) be an Eilenberg-MacLane complex with the only non-vanishing 

homotopy group nn(K(n, n))~n, where n is an abelian group. Denote by u the 

generator of the n-dimensional cohomology group Hn(z, n ; Z2) or Hn(Z2, n ; Z2)4). 

Then it is well known [10] that 

(1. 3) Hn+j(Z, n; Z2) (resp. Hn+j(Zz, n; Z2)) for i<n is a vector space having 

as a base the all iterated Steenrod squares SqirSqir-1-··Sqil u which satisfy the follow

ing cotÙJitiiJns i), ii) and iii) (res p. i) and ii)). 

The following relations (1. 4) among the iterated Steenrod squares, which are 

found by J. Adem [1], are very useful in later part. 

(1. 4) 

2. Sorne general properties 

Let Kn be a cellular decomposition of sn* sn given by Steenrod, and let E(Sn*sn) 

be the suspended space of sn*sn. Then E(Sn*sn) is imbedded in Sn+1 *sn+l natural

ly, and forms the (2n+1)-skelton of Kn+t [5]. Thus we have 

be the suspension homomorphism. Since sn*sn is (n-1)-connected from (1. 1), E is 

isomorphic for i::0::2n-2, and is onto for i<2n-1 [13]. Therefore we have 

(2. 1) The homomorphism. 

(fi a E: n;(Sn * sn)~n;+t(Sn+t * sn+t) 

is isomorphic for i<2n-2, and onto for i<2n-1. 

Since sn*sn is (n-1)-connected and Hn(Sn*sn; Z) ~z from (1.1), the Hure

wicz theorem implies nn(Sn*sn) ~z. Let f: sn~ sn*sn be a map which represents 

4) As usual, we denote H•(K(n:, n); G) by Hi(n:, n; G) simply. 
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a generator of nn(Sn*sn), and let k[p] be a field of characteristic p. Then, for the 

homomorphism f*: H;(Sn; k[p])~H;(Sn*sn; k[p]), we have from (1.1) that 

i) if n is odd, h is isomorphic onto for any i and any p ='F2, ii) if n is even, f* is 

isomorphic onto for any i <2n and any P='F2. Thus the following result is obvious 

from the generalized J. H. C. Whitehead theorem due to J-P. Serre [9]. (See also 

[6].)5) 

(2.2) If n is odd, then n;(Sn*sn) is finite for any i='Fn, and C(n;(Sn*sn), P)""" 

C(rr;(Sn), p) for any odd prime p, where C(rr, p) denotes the p-primary subgroup. 

If n is even, the same properties are true for i~2n--2. 

Let p: snxsn~sn*sn be the projection (i.e. the identification map), and let 

f: sn~sn*sn be a map defined by 

where Yo E sn is a base point. Since it is obvious that f*: Hn(Sn; Z) """Hn(Sn*sn; Z), 

we see that f represents a genera tor e' n of nn(Sn *Sn). Th us p is a map of type (e' n, e' n). 

Therefore it follows from the well known theorem [13] that the Whitehead product 

[e' n, ln'] is zero. Thus we have 

(2.3) [a, J3] = 0 

3. Proof of (A) 

Let (Sn*sn, n+j) (j=O, 1, 2, ···) be the Cartan-Serre sequence of the space 

sn*sn [4]. Then, by the definition, Trn+;(Sn*sn, n+j) =0 for ï<i and nn+ï(Sn*sn) 

"""Trn+ï(Sn*sn, n+j) for i'2.f. Moreover there exists a fiber space for each j such 

that i) the total space is of the same homotopy type as csn*sn, n-tj), ii) the base 

space is an Eilenberg-MacLane complex K(nn+j(Sn*sn), n+j), and the fiber is 

(Sn*sn, n-tj+l). (For brevity of the notation, we use (Sn*sn, n+j) to denote the 

total space of the above fi ber space.) Th us we have for i :=; n + 2j the exact sequence 

[8]: 

(3. 1) 
~ r 

··-~ H"+i-l(Sn*sn, n-tj -tl; Z 2 ) ~Hn+i(nn+j(Sn*sn),n+j; Z 2 ) 

P* i* 
~Hn+i(Sn*sn, n+j; Zz)~Hn+i(Sn*sn, n-tj+l; Zz), 

where P"', i* are the homomorphisms induced by the projection and the inclusion 

respectively, and r is the transgression. 

Throughout this section, we assume that n is sufficiently large (for example 
n~l3). 

I) Let j = 0 in (3. 1), and consider the homomorphism p*: fln+i(nn (Sn* sn), 

n; Zz) -~ fln+i(Sn*sn, n; Z 2). Since nn(Sn*sn) """Z, if we denote by u the generator 

5) We assume throughout this paper that n;;;;;2. 
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of Hn(nn(Sn*sn), n; Z 2 ), then we see from (1. 3) that H*(nn(Sn*sn), n; Z 2 ) has 

a base 

(3.2) 
u, Sq2u, Sq3u, .. · , Sq6u, Sq'Sq2u, .. · , 

Sq13u, Sq11Sq2u, Sq10Sq3u, Sq9Sq4u, 

in dimensions ;;;;;n+13. On the other hand, since (Sn*sn, n) =Sn*sn, we see from 

(1. 2) that H*(Sn*sn, n; Z 2 ) has a base 

(3.3) 

in dimensions <n+13, where v is the generator of Hn(sn*sn, n; Z2 ). Furthermore, 

since Hncsn*sn, n + 1; Z2 ) = 0, P* is onto in dimension n, and so we have p*u =v. 

Thus we see from (3. 2) and (3. 3) by making use of the naturality of Sqi that 

(3.4\ 

(3. 4). 

p* is isomorphic onto for i < 5, and 

P* is onto for i ~13. 

Then it follows from (3. 4) 1 by the generalized Whitehead theorem that P# : 
C(nn+i(Sn*sn), 2) ~ C(nn+;(K(nn(Sn*sn), n)), 2) is isomorphic onto for i<4, and 

so we have 

(3.5) 

Let No be the kernel of p*, then (3. 1) and (3. 4) 2 imply that -r: Hn+i-1(Sn*sn, 

n + 1; Z 2 ) ~No is isomorphic onto for i::;: 13. Furthermore we see from (1. 2) and 

(1. 4) that N 0 bas a base 

Sq4Sq"u, Sq5Sq"u = Sq1Sq'Sq"u, Sq6Sq2u = Sq"Sq4Sq"u, 

Sq7Sq2u = Sq3Sq4Sq2u, Sq6Sq3u = Sq2Sq1Sq4Sq2u, 

Sq8Sq"u, Sq7Sq3u = Sq3Sq1Sq'Sq2u, Sq9Sq2u = Sq1Sq8Sq2u, 

(3. 6) Sq8Sq3u = Sq9Sq2u+Sq4Sq1Sq'Sq2u, 

Sq10Sq2u = Sq2Sq8Sq"u+Sq5Sq1Sq4Sq2u, Sq9Sq3u = Sq5Sq1Sq4Sq2u 

Sq8Sq•u, Sq11Sq"u = Sq3Sq8Sq2u, Sq10Sq3u = Sq2Sq1Sq8Sq2u, 

Sq9Sq4u = Sq1Sq8Sq4u. 

Let a (dim a=n+5), b (dim b=n+9) and c (dim c=n+ll) be the elements 

such that 

respectively. Then, since -rSq' = Sqi-r, it follows from (3.1) and (3. 6) that H*(Sn*sn, 

n+1; Z2 ) bas a base 

a , Sq1a , Sq2a , Sq3a , Sq2Sq1a , 

(3.7) b, Sq3Sq1a, Sq1b, Sq1b+Sq'Sb1a, 

Sq2b + Sq5Sq1a, Sq5Sq1a, c,. Sq3b , Sq2Sq1b, Sq1c 

in dimensions < n + 12. 
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We have from (3. 5) that H*(nn+j(Sn*sn), n + j; Z,) = 0 for 1-::;j :Ç_4. Therefore 

it follows from (3. 1) for j = 1, 2, 3 and 4 that 

H*(Sn*sn, n+5; Z2 ) ""'=' Hi'(Sn*sn, n+1; Z 2 ) 

in dimensions ;;;;, n + 12, un der the composition of the inclusions and homotopy equi

valences. Thus we may consider (3. 7) as a base of H*(Sn*sn, n+5; Z2) in dimen

sions :::=.n+12. Especially we see that Hn+ 5 (Sn*sn, n+5; Z 2 ) =Hom (Hn+5(Sn*sn, 

n+5), Z,) =Z,, and so we have C(Hn+s (Sn* sn, n+5), 2) =Z2r for sorne r 21. 

However, since Sq1a~l- 0, r must be= 1. Thus we obtain by the generalized Hurewicz 

isomorphism [9] that C(nn+5 (Sn*sn, n+5), 2)=C(Hn+sCSn*sn, n+5), 2)""='Z,. 

Namely we have 

(3.8) 

II) Let j = 5 in (3. 1), and consider the homomorphism p*: ffn+i(nn+ 5(Sn*sn), 

n+5; Z2)---'>-Hn+~csn*sn, n+5; Z 2). Then it follows from (3.8) that Hn+i(nn+ 5(Sn*sn), 

n+5; Z 2) = Hn+i(Z2 , n+5; Z2). Therefore if we denote by œ the generator of 

Hn+"Cnn+ 5(Sn*sn), n+5; Z 2), we see from (1. 3) that H*Cnn+5csn*sn), n+5; Z 2) has 

a base 

(3.9) 

œ, Sq1œ, Sq2œ, Sq3œ, Sq2Sq1œ, Sq'œ, Sq3Sq1œ, 

Sq5œ, Sq'Sq\:x, Sq6œ, Sq5Sq1œ, Sq4Sq2œ, Sq7œ, Sq6Sq1œ, 

Sq5Sq2œ, Sq'Sq2Sq1œ. 

in dimensions < n + 12. Since p* is onto in dimension n + 5, we see p*œ =a, and so 

p* is isomorphic onto for i ;;;=;n+8. Thus, by the similar arguments as in the proof 

of (3. 5), we obtain 

(3. 10) 

We have by (1.4) 

rp*Sq'œ = Sq'Sq'Sq2u = Sq3Sq1Sq4Sq2u = rSq3Sq1a, 

rp*Sq5œ = Sq5Sq'Sq2u = Sq1Sq7Sq'u::::: 0, 

rp*Sq6œ = Sq6Sq'Sq2u::::: Sq7Sq1Sq3Sq1u::::: 0, 

rp*Sq'Sq2œ = 5q4Sq2Sq'Sq2u = Sq5Sq1Sq'Sq2u+Sq2Sq8Sq2u::::: r(Sq5Sq1a+ 5q2b), 

rp*Sq7œ = Sq7Sq'Sq2u::::: Sq1Sq6Sq'Sq2u::::: 0, 

rp*Sq6Sq1œ = Sq6Sq1Sq'Sq2u = Sq2Sq5Sq'Sq2u = 0, 

rp*Sq5Sq2œ = Sq5Sq2Sq'Sq2u::::: Sq3Sq8Sq2u::::: rSq3b, 

rp*Sq4Sq2Sq1œ = Sq4Sq2Sr/Sq'Sq2u::::: Sq1Sq8Sq'u+Sq2Sq1Sq8Sq2u=r(Sq2Sq1b+Sq1c), 

and r is isomorphic into by (3. 4) 1 • Therefore it follows from (3. 7) and (3. 9) that 

the kernel N 5 of P* has a base 

in dimensions ~n+12, Since P* is onto in dimension n+8, we see that r: Hn+8(Sn*Sn1 
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n + 6 ; Z 2) = N 5 • Let ï be the element such that 

q = Sq4a+Sq'Sq1a. 

Then, since we have by (1. 4) 

,Sq1ï = Sq1Sq4a+Sq1Sq'Sq1a = Sq5a, 

,Sq2ï = Sq2Sq4a+Sq2Sq'Sq 1a = Sq6a, 

,sq'r = Sq1-rSq2ï = Sq7a, 

-rSq2<)q1ï = Sq2-rSq1ï = Sq2Sq5a =Sq"Sq1a, 

it follows from (3. 7) and (3. 9) that H*(Sn*sn, n+6; Z 2) has a base 

(3. 11) ï, Sq1(, b', Sq2ï, Sq1b', Sq2(, Sq~Sq1ï, Sq1c' = Sq2Sq'b' 

in dimensions <n+ll, where b'=i*(b) and c'=i*(c). We have from (3.10) that 

H*Cnn+Ïcsn*sn), n+j; Z 2)=0 for j=6 and 7. Therefore if we consider (3.1) for 

j =6 and 7, we have under a natural map 

Thus we may consider (3.11) as a base of H*(Sn* sn, n+8; Z 2 ) in dimensions 

<n+11. Especially Hn+B(Sn*sn, n+8; Z2)=Z2 and Sq1ï=FO, and so we have 

(3.12) 

by the similar arguments as in the proof of (3. 8). 

III) Let j =8 in (3.1), and consider p*: Hi(nn+sCSn*sn), n+8; Z2)~ 

Hi(Sn*sn, n +8; Z2 ). Then it follows from (1. 3) and (3. 12) that H*Cnn+sCSn*sn), 

n+8; Z 2) has a base 

(3. 13) v, Sq1v, Sq2v, Sq'v, Sq2Sq1v 

in dimensions ~n+ 11, where v is the generator of Hn+8 (n,+8 (Sn*sn), n+8; Z 2 ). 

Sin ce p* is onto in dimensions n +8, we have P*v = r. and so it follows from (3. 11) 

and (3.13) that P* is isomorphic onto in dimensions <n+8, and is isomorphic into 

in dimensions <n+ll. Thus we see from (3.1) that H*CSn*sn, n+9; Z 2) has a 

base 

b", Sq1b" 

in dimensions <n+lO, where b"=i*(b')EHnH(Sn*sn, n+9; Z2). Then we haveby 

the same arguments in the proof of (3. 8) that 

(3.14) 

Since C(n,+i(Sn), P)=Z, for i=3, 7 and P=3, =Z5 for i=7 and P=5, and 

is zero otherwise for i < 9 and any odd prime P [13, 14], our main result (A) follows 

from (2. 1), (2. 2), (3. 5), (3. 8), (3.10), (3. 12) and (3. 14). 
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4. Reduced complex M ~ 

Let e~i Ci= 1, 2, ... , s) be s disjoint r;-cells, and let f;: Cè~i, y;)~ (X, x0 ) be 

s maps of the boundary è~i in a 1-connected space X, where y; E ë;' and x0 EX are 

base points. Th en we shall denote by {X U ei 1 U · · · U e~8 ; ( 1 , • • • , fs} a space 

obtained by identifying each point y E ë~i to /;(y) E X in the union X U ei' U · · · U e~•. 
Let Er be the r-cube in the Cartesian space, and let g;: (Er, Ër, Z0)·-~ (e;i, ë;', y;) 

Ci= 1, 2, ···, t < s) be maps such that 2Jî=di o Cg; 1Er) is null-homotopic, where 

Z0 = (0, 0, ···, 0) and Lj denotes the addition used in the usual definition of homotopy 

group rrr(X, x0 ). Then we can construct a map h of an r-sphere ër+l =sr in 

{XU ei' U ··· U e~•; (1 , · ··, fs} as follows: 

Let éi Ci= 1, 2, ... ' t) be t disjoint r-eelis in sr which have a single point Zo 

in common, and which are oriented in agreement with the orientation of sr. Define 

first hih é'i by hléi=g;o~;(i=1, 2, ···, t), where ~;: Céi. ÊD---?(E', Ë;r) is 

a homeomorphism of degree 1 Then it follows from our assumption that h\ UI=1Ê~ 
of a singular (r-1)-sphere UI=1Ér in X is null-homotopic in X. Choose now such 

a null-homotopy arbitrarily, and define h in S'- U~=l Int éi by this null-homotopy. 

This completes the definition of h. 

In the following, a map obtained by such a construction from g,, g 2 , • • ·, gt will 

be denoted by <g,, g 2 , • ··, gt 1 X>. 
As for spherical maps, we use the following notations: Ir; sr ~sr (r;?l) is 

the identity; 1Jr: sr+l ~sr Cr:;:::; 2) and Yr: sr+3 ~S'Cr;;:.;: 4) are the iterated 

suspensions of the Hopf fiber maps r;2 and Y4 respectively. Let Ôn: 77:n+r Ce'+', it+') 

= 77:n (ër+ 1 ) be the homotopy boundary, then we refer to maps in the homotopy classes 

â;:-1{1r}, â;:-Jdr;r} and â;:-}g{Yr} as Cr+l, nr+l and Vr+l respectively.61 

Until the end of this section, we assume that n'? 7. Consider the following 

(n + k)-dimensional cell complexes M~ (k = 1, 2, · ··, 7) defined inductively by 

M* =Sn, 

M~ = {M~ U en+z 

M~ = {M~ U en+3 

M~ = {M~ U en+• 

M~ = {M~ U enl5 

M~ = {M~ U en+G 

M~ = {M~ U en+'l 

1Jn} ' 

< 21 n+zl sn >} ' 

3vn} , 

<2cn+4• 'l)n+31M~>}, 
< 'lJnHI S" >} , 

<21-n+GIN~>} ,7l 

where N~ is the subcomplex {Sn U enH; 3vn} of M~. The justificatian of above 

definitions follows from 

ti) Let f: sr _,_X, then { f} denotes the element of n:,.(X) containing f. 

7) It can be easily seen that the homotopy type of M~ does not depend on the choice of 

null-homotopy in the definition of identification map. 
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(4.1) i) 2{~n}==O zn sn, ii) {<2ïn+zlSn>o~n+z}==±6{vn} in M~, iii) 

{(3vn) o~n+J ==0 in sn, iv) {<'lln+<lN~>o2cn+s} ==0 inN~. 

In fact, i), ii) and iii) are well known (See [13]). ln the notation of H. Toda, 

we have <2c.n+zlSn>o~n+zE{~,,2cn+z,~n+z}.) iv) is obtained as follows: Consider 

the homotopy exact sequence of pair CN~, sn), then it follows from rrn+4 (S") 

= rrn+s(Sn) == 0 that rrn+s(N~) == rrn+sCN~, sn) un der the inclusion ma p. This and 

rrn+sCN~, sn) =Z2 imply iv). 

Let M~ be a 2n-dimensional cell complex such that i) the (n+7)-skelton of M~ 

is M~, ii) rr;(M~) ==0 for n+7~i<2n (Such a complex does exist). Then we have 

(4. 2) rrnCM~) = Z, rr,+ 1 (M~) == 0, rrn+zCM;,) == 0, rrn+3(M~) = Z3, rrn+4(MÇ,) == 0, 

rrn+sCM~) = Zz, rrn+6CM~) ==O. 

( 4. 3) Let (: sn-----* M~ be the identity map, then 1rn+sCM;,) i s generated by {c 0 Vn}. 

7rn+sCM;,) is generated by { <vn+zlSn> }. 

These cau be proved by the similar arguments used in the proof of (8. 4) in [7]. 

Therefore we will note here only the principle and basic tools used, and omit to 

record the complete calculation. 

Since rrn+iCSn) (i;;::;.,6) is well known (see ii) below), starting with rr,+i(MA), 

we determine rr,HCMD inductively with respect toi and j by making use of the homo

topy sequence of pair (Mt M~-1). In this consideration, the following i) and ii) play 

essential rôles: i) Let f: (E"+ J, Jin+J)------* (M ~, M ~-l) be the characteristic map of 

the cell en+l, then /t'fis isomorphic onto for i:~n+j-3 in the commutative diagram 

If we take in consideration that the homotopy boundary of any (n+S)-cell of 

M~ is in M~, the following can be easily proved [7]. 

(4.5) Hi(M~; z)=Zfor i==n, =Z2 for n+3, n+5 and n+7, and vanishes for 

other i<n+7 

(4. 6) Let {en} E Hn(M~; Z) and {e"+J} E Hn+1(M~; Z) (j == 3, 5 and 7) be generators, 

then we have 

Sqj { e"} == { e"+ 1} Cj =3, 5, 7), 
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(We may consider Sqi with respect to the integer coefficient, because j is odd [11].) 

Let K be any cellular decomposition of sn*sn, and Kn+J its (n+j)-skelton. 

Take a map f: K"H~M~ such that 

(4.7) 

where {il} E Hn(K; n-nCM~)) and {e"} E H"(M~; n-nCM~)) are generators. It is well 

known that such a map exist. Then we have 

(4.8) f can be extended to a map 1: K"H--- MJ. 
This is proved as follows: Since 7rn+1 (M~), 7rn+zCM~) and 7rn+4 (M~) are trivial 

from (4. 2), and since H"+4 (K; ITn+aCM~)) ~Hom CHn+4 (K; Z), Z3) + Ext 

(Hn+sCK; Z), Z 3 ) = 0 from ( 4. 2) and (1. 1), it follows from the classical obstruction 

theory [11] that f can be extended to a map 1: K"+S---i>M~. Consider now a 

new cell complex 

L = {M~ U em+s; < :ïin+ziSn >}. 
Then we have 7rn+5(L) =0 from (4.4), and so 1 hasan extension f': Kn+B---i>L. 

Thus, for the obstruction { c"+B( 1)} E H"+B(K, ITn+sCM~) ), we have [11] 

(4.9) 

where k: Ln+S ~ M~ is the inclusion. It is obvious from the definition that {c"+B(k)} 

is represented by a cocycle which takes 0 on e"+s and takes {<vn+ziS">} on em+s. 

Therefore if we define 

(X= L or K) using the unique non-trivial homomorphism of n-n(M~) to 7rn+5(M~). 

then we have 

(4. 10) 

Th us it follows from ( 4. 9), ( 4. 10) and ( 4. 7) that 

{cn+scJ )} = Sq4Sq2 {u}. 

However it is seen from (1.2) that Sq4Sq2{u}=O in K. Therefore we have {c"+B(Ï)}=O, 

and so f has an extension f: K"+B--- M~. Since ITn+sCMD =0 from (4. 2), 1 has 

also an extension 1: K"+7--- M~. This completes the proof of ( 4. 8). 

Since n-;(M~) =0 for n+7~i<2n by the definition, and K is 2n-dimensional, 1 
can be extended to a map g: K ~ M~. Let u E H"(K; Z) be the generator, then 

it is obvious from ( 4. 7) that g *{e"} = f*{e"} ==u. Therefore it follows from (1. 2) 

and ( 4. 6) by the naturality of Sqi that g*: Hi(M~; Z) ~ Hi(K; Z) is isomor

phic onto for i =n, n+3, n+5 and n+7. Furthermore, since Hi(M~; Z) = fli(K; Z) 

for i<n and for i=n+1, n+2, n+4 and n+6, we conclude that g*: Hi(M~; Z) 

~ Hi(K; Z) is isomorphic onto for i S.n+7. Thus, in virtue of the well known 

theorem [15], we have 
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(4.11) sn*sn and M~ is of the same Cn+6)-homotopy type. Especially we have 

rc;(Sn*sn)r=::::::rc;(M~) for i<n+6. 

This together with ( 4. 2) proves (A) for i < n + 6. 

5. Supplementary remark 

n (5.1) sn*sn(2<n~5) is of the same homotopy type as a reduced complex 

Mn defined as follows: L 2 ={S2 Ue'; r;3}, L3 ={EL2 Ue6 ; <2rsiS3 >}, L.={EL3Ue8 ; 

v4 + w4}, L 5 = {EL4 U e10 ; <2r5 , 1Jsl {55 U é; r;5 } >}, where EL; is the suspended space 

of L;, and w4 is the suspension of a map S6 ----o>S3 introduced by Blaker-Massey. 

In fact, since S2 *S2 is the complex projective plane, i) and ii) are a direct con

sequence of the cellular decomposition of sn*sn due to Steenrod. Thus S4 *S4 is of 

the same homotopy type as {EL3 U e8 ; g} with a sui table map g. However, since 

rc7 (ELJr:::::::Z+Z3 and is generated by {v4} and {w4} [13], we may assume that 

with sorne integer !1 and sorne integer 12 mod 3. We saw in (2. 3) that [14 , 14] =0 

for the inclusion map 14 :S4----o>S4*S4, and know [10] that [14 , 14]=2{v4}-{w4}. 

Therefore we must have 

2{v4}-{w4} =k(l,{v4}+l2{w4}) 

with sorne integer k, and this implies that {g} = ± ( {v4 } + {w4}) or ±(2{v4}- {w4 } ). 

If the latter holds, we have the eup product of the generator of H 4 (S4 *S4 ; Z) with 

itself is 2v8, where v8 E H 8 (S4 *S4 ; Z) is a generator. This contradicts (1. 2). Thus 

we may take v4 +w4 in place of g. This proves iii). iv) is obvions. (Note that 

E( {v.}+ {w.})= 3{v5} ). 

The homotopy group of sn*sn(2~n<5) can be calculated by making use of Ln. 

For example, we have easily 

(5.2) 

II) Recently H. Cartan [3] has given the structure of H*(Z, n; Zp) and 

H*(Zp, n; Zp) for any odd prime p by making use of the reduced cyclic power and 

the Bockstein homomûïphism. On the other hand, S. D. Liao explained the cohomology 

structure of the P-fold cylic product ?Jnp of an n-sphere (See especially (5. 4) and 

(9. 7) in [5]). If we apply these results, we can obtain the results with respect to 

the homotopy of ?J,.p by the arguments similar to those in above sections. For 

example, we have 

(5.3) Let P be an odd prime, and let n?':2P+2. Then C(rc;(fJnp), p)r:::::::Zp for 

i=n + 2j (j = 1, 2, · · ·, p-2) and n+2(p-1) + 1, and vanishes for other i < n+2(P --1). 

III) Let Y be the (n-1)-fold suspended space of the real projective plane. 
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Namely Y is a cell complex sn U en+r such that en+r is attached to sn by a map of 

degree 2. Then the Stein's formulas [12, p. 582] give the integral homology group~ 

of the symmetric product Y* Y as follows : 

(5.4) H0(Y*Y; Z)=Z; Hn+i(Y*Y; Z)=Z2 for i=O, n+l and 2<i<n--l; 

H2n( Y* Y; Z) =Z4 for even n, =Z2 for odd n; H;( Y* Y; Z) = 0 for other i. 

Thus the cohomology group Hn+i( Y* Y; Z2 ) is Z 2 for i = 0, 1, 2 and n + 2, and 

is Z 2 + Z 2 for 3 < i,;;;;; n + 1. Let a be the generator of Hn( Y* Y; Z2 ). Then we have 

(5.5) We can take as a base of H*(Y*Y; Z2 ) the following: Sqia(O~i~n), 

SqiSq1a(2 < i < n + 1) and aU Sq1 a. Furthermore we have the relations: 

(j ?_ 1). 

Applying the methods similar to those by which R. Bott [2] gives a proof of 

(1. 2) in this paper, (5. 5) can be proved easily. (The basic tools of this method 

are the Smith-Richardson sequence and the Theorem 2 in [2]). 

Now we can calculate the (stable) homotopy groups n-;(Y*Y) for i<2n-2 by 

the method explained in \'3 3. The results are as follows : 

(5. 6) n-;(Y* Y)= 0 for 0 ::=:::i < n, n+1 ;?:i ::=:::n+4 and n+7. 

n-;(Y* Y)=Z2 for i =n, n+5, n+6 and n+S, and 7l"n-1-lY* Y) is not cyclic. 
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