Homotopy of two-fold symmetric products of spheres

By Minoru NAKAOKA

(Received March 11, 1955)

Homological structure of the 2-fold symmetric products $S^n * S^n$ of an *n*-sphere S^n is well known. (See R. Bott [2], S. K. Stein [12] and the recent paper [5] of S. D. Liao.)¹⁾ In the present note, we shall calculate some homotopy groups of $S^n * S^n$ by making use of the results on homology. If we denote by π_i the (stable) homotopy group $\pi_i(S^n * S^n)$ for $i \leq 2n-2$, our results are as follows:

(A)
$$\begin{aligned} \pi_{n+1} &= 0, & \pi_{n+2} &= 0, & \pi_{n+3} \approx Z_3, \\ \pi_{n+4} &= 0, & \pi_{n+5} \approx Z_2, & \pi_{n+6} &= 0, \\ \pi_{n+7} &\approx Z_{15}, & \pi_{n+8} \approx Z_2, & \pi_{n+9} \approx Z_2.^2 \end{aligned}$$

Two different methods are explained. One of these is the method employed by J-P. Serre in [10] for calculation of homotopy groups of spheres.³⁾ The other starts with a construction of a reduced complex of the same (n+6)-homotopy type as $S^n * S^n$, in which the homotopy boundaries in dimensions $\leq n+7$ are well defined.

In the last section, we state some results on the following: i) homotopy of $S^n * S^n$ for $n \leq 5$, ii) the homotopy groups of the *p*-fold cyclic product of a sphere, iii) the homology and homotopy of the 2-fold symmetric product of the suspended projective plane.

1. Homological properties

We shall first recall some homological properties of $S^n * S^n$ (see [2], [5], [12]). The *i*-dimensional homology group $H_i = H_i(S^n * S^n; Z)^{(2)}$ is as follows:

$$\begin{array}{ll} H_0 \approx Z, & H_i = 0 \quad for \ 0 < i < n, & H_n \approx Z, \\ H_{n+j} = 0 & for \ 1 \leq j < n \ with \ odd \ j, \\ (1.1) & \approx Z_2 & for \ 1 \leq j < n \ with \ even \ j, \\ H_{2n} = 0 & for \ odd \ n, \\ \approx Z & for \ even \ n, \\ H_i = 0 & for \ i > 2n \ . \end{array}$$

Thus the *i*-dimensional cohomology group $H^i(S^n * S^n; Z_2)$ is Z_2 for i=0, n and $n+2 \leq i \leq 2n$, and is zero for other *i*.

¹⁾ Numbers in brackets refer to the bibliography at the end of this paper.

²⁾ We denote by Z and Z_p the additive groups of integers, of integers mod p respectively.

³⁾ The author is indebted to Prof. H. Toda for pointing out the use of this method.

As for the Steenrod square $Sq^i: H^{n+j}(S^n * S^n; Z_2) \longrightarrow H^{n+i+j}(S^n * S^n; Z_2)$, we have

(1.2)
$$\begin{aligned} Sq^{i} H^{n}(S^{n} * S^{n}; Z_{2}) &= H^{n+i}(S^{n} * S^{n}; Z_{2}), \\ Sq^{i} H^{n+j+1}(S^{n} * S^{n}; Z_{2}) &= \binom{j}{i} H^{n+i+j+1}(S^{n} * S^{n}; Z_{2}) \quad (j \ge 0) \end{aligned}$$

where $\begin{pmatrix} j \\ i \end{pmatrix}$ is the binomial coefficient with the usual conventions.

Let $K(\pi, n)$ be an Eilenberg-MacLane complex with the only non-vanishing homotopy group $\pi_n(K(\pi, n)) \approx \pi$, where π is an abelian group. Denote by u the generator of the *n*-dimensional cohomology group $H^n(Z, n; Z_2)$ or $H^n(Z_2, n; Z_2)^{(4)}$. Then it is well known [10] that

(1.3) $H^{n+j}(Z, n; Z_2)$ (resp. $H^{n+j}(Z_2, n; Z_2)$) for j < n is a vector space having as a base the all iterated Steenrod squares $Sq^{i_r}Sq^{i_{r-1}}\cdots Sq^{i_1}u$ which satisfy the following conditions i), ii) and iii) (resp. i) and ii)).

i) $i_1+i_2+\cdots+i_r=j$, ii) $i_{k+1} \ge 2i_k$ for $k=1, 2, \cdots, r-1$, iii) $i_1 > 1$.

The following relations (1.4) among the iterated Steenrod squares, which are found by J. Adem [1], are very useful in later part.

(1.4)
$$Sq^{2t} Sq^{s} = \sum_{j=0}^{t} {s-t+j-1 \choose 2j} Sq^{t+s+j} Sq^{t-j}.$$

2. Some general properties

Let K_n be a cellular decomposition of $S^n * S^n$ given by Steenrod, and let $E(S^n * S^n)$ be the suspended space of $S^n * S^n$. Then $E(S^n * S^n)$ is imbedded in $S^{n+1} * S^{n+1}$ naturally, and forms the (2n+1)-skelton of K_{n+1} [5]. Thus we have

$$i_{\#}: \ \pi_{i+1}(E(S^{n}*S^{n})) \approx \pi_{i+1}(S^{n+1}*S^{n+1})$$

for $i \leq 2n-1$, where $i: E(S^n * S^n) \subset S^{n+1} * S^{n+1}$ is the inclusion. Let

$$E: \quad \pi_i(S^n * S^n) \longrightarrow \pi_{i+1}(E(S^n * S^n))$$

be the suspension homomorphism. Since $S^n * S^n$ is (n-1)-connected from (1.1), E is isomorphic for $i \leq 2n-2$, and is onto for $i \leq 2n-1$ [13]. Therefore we have

(2.1) The homomorphism

 $i_{\#} \circ E \colon \pi_i(S^n * S^n) \longrightarrow \pi_{i+1}(S^{n+1} * S^{n+1})$

is isomorphic for $i \leq 2n-2$, and onto for $i \leq 2n-1$.

Since $S^n * S^n$ is (n-1)-connected and $H_n(S^n * S^n; Z) \approx Z$ from (1.1), the Hurewicz theorem implies $\pi_n(S^n * S^n) \approx Z$. Let $f: S^n \longrightarrow S^n * S^n$ be a map which represents

⁴⁾ As usual, we denote $H^{i}(K(\pi, n); G)$ by $H^{i}(\pi, n; G)$ simply.

a generator of $\pi_n(S^n * S^n)$, and let k[p] be a field of characteristic p. Then, for the homomorphism $f_*: H_i(S^n; k[p]) \longrightarrow H_i(S^n * S^n; k[p])$, we have from (1.1) that i) if n is odd, f_* is isomorphic onto for any i and any p = 2, ii) if n is even, f_* is isomorphic onto for any p = 2. Thus the following result is obvious from the generalized J. H. C. Whitehead theorem due to J-P. Serre [9]. (See also [6].)⁵)

(2.2) If n is odd, then $\pi_i(S^n * S^n)$ is finite for any $i \neq n$, and $C(\pi_i(S^n * S^n), p) \approx C(\pi_i(S^n), p)$ for any odd prime p, where $C(\pi, p)$ denotes the p-primary subgroup. If n is even, the same properties are true for $i \leq 2n-2$.

Let $p: S^n \times S^n \longrightarrow S^n * S^n$ be the projection (i.e. the identification map), and let $f: S^n \longrightarrow S^n * S^n$ be a map defined by

$$f(\mathbf{y}) = p(\mathbf{y} \times \mathbf{y}_0) = p(\mathbf{y}_0 \times \mathbf{y}), \quad \mathbf{y} \in \mathbf{S}^n,$$

where $y_0 \in S^n$ is a base point. Since it is obvious that $f_*: H_n(S^n; Z) \approx H_n(S^n * S^n; Z)$, we see that f represents a generator ι'_n of $\pi_n(S^n * S^n)$. Thus p is a map of type (ι'_n, ι'_n) . Therefore it follows from the well known theorem [13] that the Whitehead product $[\iota'_n, \iota'_n]$ is zero. Thus we have

(2.3)
$$[\alpha, \beta] = 0 \quad for \ \alpha, \ \beta \in \pi_n(S^n * S^n)$$

3. Proof of (\mathbf{A})

Let $(S^n * S^n, n+j)$ $(j=0, 1, 2, \cdots)$ be the Cartan-Serre sequence of the space $S^n * S^n$ [4]. Then, by the definition, $\pi_{n+i}(S^n * S^n, n+j) = 0$ for i < j and $\pi_{n+i}(S^n * S^n) \approx \pi_{n+i}(S^n * S^n, n+j)$ for $i \ge j$. Moreover there exists a fiber space for each j such that i) the total space is of the same homotopy type as $(S^n * S^n, n+j)$, ii) the base space is an Eilenberg-MacLane complex $K(\pi_{n+j}(S^n * S^n), n+j)$, and the fiber is $(S^n * S^n, n+j+1)$. (For brevity of the notation, we use $(S^n * S^n, n+j)$ to denote the total space of the above fiber space.) Thus we have for $i \le n+2j$ the exact sequence [8]:

$$(3.1) \qquad \cdots \xrightarrow{i^{*}} H^{n+i-1}(S^{n} \ast S^{n}, n+j+1; Z_{2}) \xrightarrow{\tau} H^{n+i}(\pi_{n+j}(S^{n} \ast S^{n}), n+j; Z_{2})$$
$$\xrightarrow{\underline{p^{*}}} H^{n+i}(S^{n} \ast S^{n}, n+j; Z_{2}) \xrightarrow{i^{*}} H^{n+i}(S^{n} \ast S^{n}, n+j+1; Z_{2}),$$

where p^* , i^* are the homomorphisms induced by the projection and the inclusion respectively, and τ is the transgression.

Throughout this section, we assume that n is sufficiently large (for example $n \ge 13$).

I) Let j=0 in (3.1), and consider the homomorphism $p^*: H^{n+i}(\pi_n(S^n * S^n), n; Z_2) \longrightarrow H^{n+i}(S^n * S^n, n; Z_2)$. Since $\pi_n(S^n * S^n) \approx Z$, if we denote by u the generator

⁵⁾ We assume throughout this paper that $n \ge 2$.

of $H^n(\pi_n(S^n * S^n), n; Z_2)$, then we see from (1.3) that $H^*(\pi_n(S^n * S^n), n; Z_2)$ has a base

(3.2)
$$\begin{array}{c} u, \; Sq^2u, \; Sq^3u, \; \cdots, \; Sq^6u, \; Sq^4Sq^2u, \; \cdots, \\ Sq^{13}u, \; Sq^{11}Sq^2u, \; Sq^{10}Sq^3u, \; Sq^9Sq^4u \; , \end{array}$$

in dimensions $\leq n+13$. On the other hand, since $(S^n * S^n, n) = S^n * S^n$, we see from (1.2) that $H^*(S^n * S^n, n; Z_2)$ has a base

in dimensions $\leq n+13$, where v is the generator of $H^n(S^n*S^n, n; Z_2)$. Furthermore, since $H^n(S^n*S^n, n+1; Z_2) = 0$, p^* is onto in dimension n, and so we have $p^*u = v$. Thus we see from (3.2) and (3.3) by making use of the naturality of Sq^i that

$$(3.4)_1$$
 p^* is isomorphic onto for $i \leq 5$, and

 $(3.4)_2 p^* \text{ is onto for } i \leq 13.$

Then it follows from $(3.4)_1$ by the generalized Whitehead theorem that $p_{\#}$: $C(\pi_{n+i}(S^n*S^n), 2) \longrightarrow C(\pi_{n+i}(K(\pi_n(S^n*S^n), n)), 2)$ is isomorphic onto for $i \leq 4$, and so we have

(3.5)
$$C(\pi_{n+i}(S^n * S^n), 2) = 0 \text{ for } 1 \leq i \leq 4.$$

Let N_0 be the kernel of p^* , then (3,1) and $(3,4)_2$ imply that $\tau: H^{n+i-1}(S^n*S^n, n+1; Z_2) \longrightarrow N_0$ is isomorphic onto for $i \leq 13$. Furthermore we see from (1,2) and (1,4) that N_0 has a base

$$\begin{aligned} & Sq^4Sq^2u, \quad Sq^5Sq^2u = Sq^1Sq^4Sq^2u, \quad Sq^6Sq^2u = Sq^2Sq^4Sq^2u, \\ & Sq^7Sq^2u = Sq^3Sq^4Sq^2u, \quad Sq^6Sq^3u = Sq^2Sq^1Sq^4Sq^2u, \\ & Sq^8Sq^2u, \quad Sq^7Sq^3u = Sq^3Sq^1Sq^4Sq^2u, \quad Sq^9Sq^2u = Sq^1Sq^8Sq^2u, \\ & (3.6) \qquad Sq^8Sq^3u = Sq^9Sq^2u + Sq^4Sq^1Sq^4Sq^2u, \\ & Sq^{10}Sq^2u = Sq^2Sq^8Sq^2u + Sq^5Sq^1Sq^4Sq^2u, \quad Sq^9Sq^3u = Sq^5Sq^1Sq^4Sq^2u \\ & Sq^8Sq^4u, \quad Sq^{11}Sq^2u = Sq^3Sq^8Sq^2u, \quad Sq^{10}Sq^3u = Sq^2Sq^1Sq^8Sq^2u, \\ & Sq^9Sq^4u = Sq^1Sq^8Sq^4u. \end{aligned}$$

Let $a \pmod{a=n+5}$, $b \pmod{b=n+9}$ and $c \pmod{c=n+11}$ be the elements such that

$$\tau a = Sq^4Sq^2u$$
, $\tau b = Sq^8Sq^2u$, $\tau c = Sq^8Sq^4u$

respectively. Then, since $\tau Sq^i = Sq^i\tau$, it follows from (3.1) and (3.6) that $H^*(S^n * S^n, n+1; \mathbb{Z}_2)$ has a base

$$(3.7) \qquad \begin{array}{l} a, \ Sq^{1}a, \ Sq^{2}a, \ Sq^{3}a, \ Sq^{2}Sq^{1}a, \\ b, \ Sq^{3}Sq^{1}a, \ Sq^{1}b, \ Sq^{1}b + Sq^{4}Sb^{1}a, \\ Sq^{2}b + Sq^{5}Sq^{1}a, \ Sq^{5}Sq^{1}a, \ c, \ Sq^{3}b, \ Sq^{2}Sq^{1}b, \ Sq^{1}c \\ \end{array}$$

in dimensions $\leq n+12$.

We have from (3.5) that $H^*(\pi_{n+j}(S^n*S^n), n+j; Z_2) = 0$ for $1 \le j \le 4$. Therefore it follows from (3.1) for j = 1, 2, 3 and 4 that

$$H^*(S^n * S^n, n+5; Z_2) \approx H^*(S^n * S^n, n+1; Z_2)$$

in dimensions $\leq n+12$, under the composition of the inclusions and homotopy equivalences. Thus we may consider (3.7) as a base of $H^*(S^n * S^n, n+5; Z_2)$ in dimensions $\leq n+12$. Especially we see that $H^{n+5}(S^n * S^n, n+5; Z_2) \approx \text{Hom}(H_{n+5}(S^n * S^n, n+5), Z_2) \approx Z_2$, and so we have $C(H_{n+5}(S^n * S^n, n+5), 2) \approx Z_{2r}$ for some $r \geq 1$. However, since $Sq^1a \neq 0$, r must be =1. Thus we obtain by the generalized Hurewicz isomorphism [9] that $C(\pi_{n+5}(S^n * S^n, n+5), 2) \approx C(H_{n+5}(S^n * S^n, n+5), 2) \approx Z_2$. Namely we have

(3.8)
$$C(\pi_{n+5}(S^n * S^n), 2) \approx Z_2.$$

II) Let j = 5 in (3.1), and consider the homomorphism $p^* : H^{n+i}(\pi_{n+5}(S^n * S^n), n+5; Z_2) \longrightarrow H^{n+i}(S^n * S^n, n+5; Z_2)$. Then it follows from (3.8) that $H^{n+i}(\pi_{n+5}(S^n * S^n), n+5; Z_2) \approx H^{n+i}(Z_2, n+5; Z_2)$. Therefore if we denote by α the generator of $H^{n+5}(\pi_{n+5}(S^n * S^n), n+5; Z_2)$, we see from (1.3) that $H^*(\pi_{n+5}(S^n * S^n), n+5; Z_2)$ has a base

$$(3.9) \qquad \begin{array}{l} \alpha, \quad Sq^{1}\alpha, \quad Sq^{2}\alpha, \quad Sq^{3}\alpha, \quad Sq^{2}Sq^{1}\alpha, \quad Sq^{4}\alpha, \quad Sq^{3}Sq^{1}\alpha, \\ Sq^{5}\alpha, \quad Sq^{4}Sq^{1}\alpha, \quad Sq^{6}\alpha, \quad Sq^{5}Sq^{1}\alpha, \quad Sq^{4}Sq^{2}\alpha, \quad Sq^{7}\alpha, \quad Sq^{6}Sq^{1}\alpha, \\ Sq^{5}Sq^{2}\alpha, \quad Sq^{4}Sq^{2}Sq^{1}\alpha. \end{array}$$

in dimensions $\leq n+12$. Since p^* is onto in dimension n+5, we see $p^*\alpha = a$, and so p^* is isomorphic onto for $i \leq n+8$. Thus, by the similar arguments as in the proof of (3.5), we obtain

(3.10)
$$C(\pi_{n+i}(S^n * S^n), 2) = 0 \text{ for } i = 6 \text{ and } 7$$

We have by (1.4)

$$\begin{split} \tau p^* Sq^4 \alpha &= Sq^4 Sq^2 a = Sq^3 Sq^1 Sq^4 Sq^2 u = \tau Sq^3 Sq^1 a , \\ \tau p^* Sq^5 \alpha &= Sq^5 Sq^4 Sq^2 u = Sq^1 Sq^7 Sq^3 u = 0 , \\ \tau p^* Sq^6 \alpha &= Sq^6 Sq^4 Sq^2 u = Sq^7 Sq^1 Sq^3 Sq^1 u = 0 , \\ \tau p^* Sq^4 Sq^2 \alpha &= Sq^4 Sq^2 Sq^4 Sq^2 u = Sq^5 Sq^1 Sq^4 Sq^2 u + Sq^2 Sq^8 Sq^2 u = \tau (Sq^5 Sq^1 a + Sq^2 b) , \\ \tau p^* Sq^7 \alpha &= Sq^7 Sq^4 Sq^2 u = Sq^2 Sq^6 Sq^4 Sq^2 u = 0 , \\ \tau p^* Sq^6 Sq^1 \alpha &= Sq^6 Sq^1 Sq^4 Sq^2 u = Sq^2 Sq^5 Sq^4 Sq^2 u = 0 , \\ \tau p^* Sq^5 Sq^2 \alpha &= Sq^5 Sq^2 Sq^4 Sq^2 u = Sq^3 Sq^8 Sq^2 u = \tau Sq^3 b , \\ \tau p^* Sq^4 Sq^2 Sq^1 \alpha &= Sq^4 Sq^2 Sq^1 Sq^4 Sq^2 u = Sq^1 Sq^8 Sq^4 u + Sq^2 Sq^1 Sq^8 Sq^2 u = \tau (Sq^2 Sq^1 b + Sq^1 c) , \\ \tau p^* Sq^4 Sq^2 Sq^1 \alpha &= Sq^4 Sq^2 Sq^1 Sq^4 Sq^2 u = Sq^1 Sq^8 Sq^4 u + Sq^2 Sq^1 Sq^8 Sq^2 u = \tau (Sq^2 Sq^1 b + Sq^1 c) , \\ \end{split}$$

and τ is isomorphic into by $(3, 4)_1$. Therefore it follows from (3, 7) and (3, 9) that the kernel N_5 of p^* has a base

$$Sq^4\alpha + Sq^3Sq^1\alpha$$
, $Sq^5\alpha$, $Sq^6\alpha$, $Sq^7\alpha$, $Sq^6Sq^1\alpha$

in dimensions $\leq n+12$. Since p^* is onto in dimension n+8, we see that $\tau: H^{n+8}(S^n * S^n, S^n)$

n+6; $Z_2 \approx N_5$. Let γ be the element such that

$$\tau \gamma = Sq^4 \alpha + Sq^3 Sq^1 \alpha .$$

Then, since we have by (1.4)

$$au Sq^{1}\gamma = Sq^{1}Sq^{4}lpha + Sq^{1}Sq^{3}Sq^{1}lpha = Sq^{5}lpha \ ,$$

 $au Sq^{2}\gamma = Sq^{2}Sq^{4}lpha + Sq^{2}Sq^{3}Sq^{1}lpha = Sq^{6}lpha \ ,$
 $au Sq^{3}\gamma = Sq^{1} au Sq^{2}\gamma = Sq^{7}lpha \ ,$
 $au Sq^{2}Sq^{1}\gamma = Sq^{2} au Sq^{5}lpha = Sq^{6}Sq^{1}lpha \ ,$

it follows from (3.7) and (3.9) that $H^*(S^n * S^n, n+6; Z_2)$ has a base

(3.11)
$$\gamma$$
, $Sq^{1}\gamma$, b' , $Sq^{2}\gamma$, $Sq^{1}b'$, $Sq^{2}\gamma$, $Sq^{2}Sq^{1}\gamma$, $Sq^{1}c' = Sq^{2}Sq^{1}b'$

in dimensions $\leq n+11$, where $b'=i^*(b)$ and $c'=i^*(c)$. We have from (3.10) that $H^*(\pi_{n+j}(S^n*S^n), n+j; \mathbb{Z}_2)=0$ for j=6 and 7. Therefore if we consider (3.1) for j=6 and 7, we have under a natural map

$$H^*(S^n * S^n, n+8; Z_2) \approx H^*(S^n * S^n, n+6; Z_2).$$

Thus we may consider (3.11) as a base of $H^*(S^n * S^n, n+8; Z_2)$ in dimensions $\leq n+11$. Especially $H^{n+8}(S^n * S^n, n+8; Z_2) \approx Z_2$ and $Sq^1 \gamma \neq 0$, and so we have

(3.12)
$$C(\pi_{n+8}(S^n * S^n), 2) \approx Z_2$$

by the similar arguments as in the proof of (3.8).

III) Let j = 8 in (3.1), and consider $p^* : H^i(\pi_{n+8}(S^n * S^n), n+8; Z_2) \longrightarrow H^i(S^n * S^n, n+8; Z_2)$. Then it follows from (1.3) and (3.12) that $H^*(\pi_{n+8}(S^n * S^n), n+8; Z_2)$ has a base

$$(3.13) \qquad \qquad \nu, \quad Sq^{1}\nu, \quad Sq^{2}\nu, \quad Sq^{3}\nu, \quad Sq^{2}Sq^{1}\nu$$

in dimensions $\leq n+11$, where ν is the generator of $H^{n+8}(\pi_{n+8}(S^n*S^n), n+8; Z_2)$. Since p^* is onto in dimensions n+8, we have $p^*\nu = \gamma$, and so it follows from (3.11) and (3.13) that p^* is isomorphic onto in dimensions $\leq n+8$, and is isomorphic into in dimensions $\leq n+11$. Thus we see from (3.1) that $H^*(S^n*S^n, n+9; Z_2)$ has a base

 $b'', Sq^{1}b''$

in dimensions $\leq n+10$, where $b''=i^*(b') \in H^{n+9}(S^n*S^n, n+9; Z_2)$. Then we have by the same arguments in the proof of (3.8) that

(3.14)
$$C(\pi_{n+9}(S^n * S^n), Z_2) \approx Z_2.$$

Since $C(\pi_{n+i}(S^n), p) \approx Z_3$ for i=3, 7 and p=3, $\approx Z_5$ for i=7 and p=5, and is zero otherwise for $i \leq 9$ and any odd prime p [13, 14], our main result (A) follows from (2.1), (2.2), (3.5), (3.8), (3.10), (3.12) and (3.14).

24

4. Reduced complex M'_n

Let $e_i^{r_i}$ (i=1, 2, ..., s) be s disjoint r_i -cells, and let $f_i: (\dot{e}_i^{r_i}, y_i) \longrightarrow (X, x_0)$ be s maps of the boundary $\dot{e}_i^{r_i}$ in a 1-connected space X, where $y_i \in \dot{e}_i^{r_i}$ and $x_0 \in X$ are base points. Then we shall denote by $\{X \cup e_1^{r_1} \cup \cdots \cup e_s^{r_s}; f_1, ..., f_s\}$ a space obtained by identifying each point $y \in \dot{e}_i^{r_i}$ to $f_i(y) \in X$ in the union $X \cup e_1^{r_1} \cup \cdots \cup e_s^{r_s}$. Let E^r be the r-cube in the Cartesian space, and let $g_i: (E^r, \dot{E}^r, z_0) \longrightarrow (e_i^{r_i}, \dot{e}_i^{r_i}, y_i)$ $(i=1, 2, ..., t \leq s)$ be maps such that $\sum_{i=1}^t f_i \circ (g_i | \dot{E}^r)$ is null-homotopic, where $z_0 = (0, 0, ..., 0)$ and \sum denotes the addition used in the usual definition of homotopy group $\pi_r(X, x_0)$. Then we can construct a map h of an r-sphere $\dot{E}^{r+1} = S^r$ in $\{X \cup e_1^{r_1} \cup \cdots \cup e_s^{r_s}; f_1, ..., f_s\}$ as follows:

Let $\mathcal{E}_i^r (i=1, 2, \dots, t)$ be t disjoint r-cells in S^r which have a single point z_0 in common, and which are oriented in agreement with the orientation of S^r . Define first h in \mathcal{E}_i^r by $h|\mathcal{E}_i^r = g_i \circ \hat{\xi}_i (i=1, 2, \dots, t)$, where $\hat{\xi}_i : (\mathcal{E}_i^r, \dot{\mathcal{E}}_i^r) \longrightarrow (\mathcal{E}^r, \dot{\mathcal{E}}^r)$ is a homeomorphism of degree 1 Then it follows from our assumption that $h|\bigcup_{i=1}^t \hat{\mathcal{E}}_i^r$ of a singular (r-1)-sphere $\bigcup_{i=1}^t \hat{\mathcal{E}}_i^r$ in X is null-homotopic in X. Choose now such a null-homotopy arbitrarily, and define h in $S^r - \bigcup_{i=1}^t \operatorname{Int} \mathcal{E}_i^r$ by this null-homotopy. This completes the definition of h.

In the following, a map obtained by such a construction from g_1, g_2, \dots, g_t will be denoted by $\langle g_1, g_2, \dots, g_t | X \rangle$.

As for spherical maps, we use the following notations: ι_r ; $S^r \longrightarrow S^r (r \ge 1)$ is the identity; $\eta_r: S^{r+1} \longrightarrow S^r (r \ge 2)$ and $\nu_r: S^{r+3} \longrightarrow S^r (r \ge 4)$ are the iterated suspensions of the Hopf fiber maps η_2 and ν_4 respectively. Let $\partial_n: \pi_{n+1}(e^{r+1}, \dot{e}^{r+1})$ $\approx \pi_n(\dot{e}^{r+1})$ be the homotopy boundary, then we refer to maps in the homotopy classes $\partial_r^{-1}\{\iota_r\}, \ \partial_{r+1}^{-1}\{\eta_r\}$ and $\partial_{r+3}^{-1}\{\nu_r\}$ as $\bar{\iota}_{r+1}, \ \bar{\eta}_{r+1}$ and $\bar{\nu}_{r+1}$ respectively.⁶

Until the end of this section, we assume that $n \ge 7$. Consider the following (n+k)-dimensional cell complexes $M_n^k(k=1, 2, \dots, 7)$ defined inductively by

$$\begin{split} M_n^1 &= S^n \,, \\ M_n^2 &= \{ M_n^1 \cup e^{n+2} \;;\;\; \eta_n \} \;, \\ M_n^3 &= \{ M_n^2 \cup e^{n+3} \;;\;\; < 2\bar{\iota}_{n+2} | S^n > \} \;, \\ M_n^4 &= \{ M_n^3 \cup e^{n+4} \;;\;\; 3\nu_n \} \;, \\ M_n^5 &= \{ M_n^4 \cup e^{n+5} \;;\;\; < 2\bar{\iota}_{n+4} \;,\; \bar{\eta}_{n+3} | M_n^2 > \} \;, \\ M_n^6 &= \{ M_n^5 \cup e^{n+6} \;;\;\; < \bar{\eta}_{n+4} | S^n > \} \;, \\ M_n^7 &= \{ M_n^6 \cup e^{n+7} \;;\;\; < 2\bar{\iota}_{n+6} | N_n^4 > \} \;, \end{split}$$

where N_n^4 is the subcomplex $\{S^n \cup e^{n+4}; \exists \nu_n\}$ of M_n^4 . The justification of above definitions follows from

⁶⁾ Let $f: S^r \to X$, then $\{f\}$ denotes the element of $\pi_r(X)$ containing f.

⁷⁾ It can be easily seen that the homotopy type of M_n^i does not depend on the choice of null-homotopy in the definition of identification map.

In fact, i), ii) and iii) are well known (See [13]). In the notation of H. Toda, we have $\langle 2\iota_{n+2}|S^n \rangle \circ \eta_{n+2} \in \{\eta_n, 2\iota_{n+2}, \eta_{n+2}\}$.) iv) is obtained as follows: Consider the homotopy exact sequence of pair (N_n^4, S^n) , then it follows from $\pi_{n+4}(S^n) \approx \pi_{n+5}(S^n) = 0$ that $\pi_{n+5}(N_n^4) = \pi_{n+5}(N_n^4, S^n)$ under the inclusion map. This and $\pi_{n+5}(N_n^4, S^n) \approx \mathbb{Z}_2$ imply iv).

Let M'_n be a 2*n*-dimensional cell complex such that i) the (n+7)-skelton of M'_n is M^7_n , ii) $\pi_i(M'_n) = 0$ for $n+7 \leq i < 2n$ (Such a complex does exist). Then we have

(4.2)
$$\pi_n(M'_n) \approx Z$$
, $\pi_{n+1}(M'_n) = 0$, $\pi_{n+2}(M'_n) = 0$, $\pi_{n+3}(M'_n) \approx Z_3$, $\pi_{n+4}(M'_n) = 0$, $\pi_{n+5}(M'_n) \approx Z_2$, $\pi_{n+6}(M'_n) = 0$.

(4.3) Let $\iota: S^n \longrightarrow M_n^1$ be the identity map, then $\pi_{n+3}(M'_n)$ is generated by $\{\iota \circ \nu_n\}$. $\pi_{n+5}(M'_n)$ is generated by $\{\langle \overline{\nu}_{n+2} | S^n \rangle\}$.

(4.4) $\pi_{n+5}(M_n^5) \approx Z_2 + Z_2$ and is generated by $\{\langle \bar{\nu}_{n+2} | S^n \rangle\}$ and $\{\langle \bar{\eta}_{n+4} | S^n \rangle\}$.

These can be proved by the similar arguments used in the proof of (8.4) in [7]. Therefore we will note here only the principle and basic tools used, and omit to record the complete calculation.

Since $\pi_{n+i}(S^n)$ $(i \leq 6)$ is well known (see ii) below), starting with $\pi_{n+i}(M_n^1)$, we determine $\pi_{n+i}(M_n^j)$ inductively with respect to *i* and *j* by making use of the homotopy sequence of pair (M_n^j, M_n^{j-1}) . In this consideration, the following i) and ii) play essential rôles: i) Let $f: (E^{n+j}, \dot{E}^{n+j}) \longrightarrow (M_n^j, M_n^{j-1})$ be the characteristic map of the cell e^{n+j} , then $f_{\#}$ is isomorphic onto for $i \leq n+j-3$ in the commutative diagram

$$\begin{aligned} \pi_{n+i}(E^{n+j}, \dot{E}^{n+j}) & \xrightarrow{\partial} \pi_{n+i-1}(\dot{E}^{n+j}) \\ & \downarrow f_{\sharp\sharp} & \downarrow (f|\dot{E}^{n+j})_{\sharp\sharp} \\ \pi_{n+i}(M_n^j, M_n^{j-1}) & \xrightarrow{\partial} \pi_{n+i-1}(M_n^{j-1}) \end{aligned}$$

[7]. ii) $\pi_{n+1}(S^n) \approx Z_2, \pi_{n+2}(S^n) \approx Z_2, \pi_{n+3}(S^n) \approx Z_{24}, \pi_{n+6}(S^n) \approx Z_2$; they are generated by $\{\eta_n\}, \{\eta_n \circ \eta_{n+1}\}, \{\nu_n\}$ and $\{\nu_n \circ \nu_{n+3}\}$ respectively; $\pi_{n+4}(S^n) \approx \pi_{n+5}(S^n) = 0$. [13].

If we take in consideration that the homotopy boundary of any (n+8)-cell of M'_n is in M^6_n , the following can be easily proved [7].

(4.5) $H^i(M'_n; Z) \approx Z$ for i=n, $\approx Z_2$ for n+3, n+5 and n+7, and vanishes for other $i \leq n+7$

(4.6) Let $\{e^n\} \in H^n(M'_n; Z)$ and $\{e^{n+j}\} \in H^{n+j}(M'_n; Z)$ (j = 3, 5 and 7) be generators, then we have

$$Sq^{j}\{e^{n}\} = \{e^{n+j}\}$$
 $(j = 3, 5, 7),$

(We may consider Sq^{j} with respect to the integer coefficient, because j is odd [11].)

Let K be any cellular decomposition of $S^n * S^n$, and K^{n+j} its (n+j)-skelton. Take a map $f: K^{n+1} \longrightarrow M_n^6$ such that

(4.7)
$$f^*\{\bar{e}^n\} = \{\bar{u}\},\$$

where $\{\bar{u}\} \in H^n(K; \pi_n(M_n^6))$ and $\{\bar{e}^n\} \in H^n(M_n^6; \pi_n(M_u^6))$ are generators. It is well known that such a map exist. Then we have

(4.8) f can be extended to a map $\tilde{f}: K^{n+7} \longrightarrow M_n^7$.

This is proved as follows: Since $\pi_{n+1}(M_n^6)$, $\pi_{n+2}(M_n^6)$ and $\pi_{n+4}(M_n^6)$ are trivial from (4.2), and since $H^{n+4}(K; \pi_{n+3}(M_n^6)) \approx \text{Hom}(H_{n+4}(K; Z), Z_3) + \text{Ext}(H_{n+3}(K; Z), Z_3) = 0$ from (4.2) and (1.1), it follows from the classical obstruction theory [11] that f can be extended to a map $\tilde{f}: K^{n+5} \longrightarrow M_n^6$. Consider now a new cell complex

$$L = \{M_n^6 \cup e'^{n+6}; \ < \overline{\nu}_{n+2} | S^n > \}.$$

Then we have $\pi_{n+5}(L) = 0$ from (4.4), and so \overline{f} has an extension $f': K^{n+6} \longrightarrow L$. Thus, for the obstruction $\{c^{n+6}(\overline{f})\} \in H^{n+6}(K, \pi_{n+5}(M_n^6))$, we have [11]

(4.9)
$$\{c^{n+6}(\bar{f})\} = f'^*\{c^{n+6}(k)\},\$$

where $k: L^{n+5} \longrightarrow M_n^6$ is the inclusion. It is obvious from the definition that $\{c^{n+6}(k)\}$ is represented by a cocycle which takes 0 on e^{n+6} and takes $\{\langle \overline{\nu}_{n+2} | S^n \rangle\}$ on e'^{n+6} . Therefore if we define

$$Sq^4Sq^2$$
: $H^n(X; \pi_n(M_n^6)) \longrightarrow H^{n+6}(X; \pi_{n+5}(M_n^6))$

(X = L or K) using the unique non-trivial homomorphism of $\pi_n(M_n^6)$ to $\pi_{n+5}(M_n^6)$, then we have

(4.10)
$$\{c^{n+6}(k)\} = Sq^4 Sq^2\{\bar{e}^n\}.$$

Thus it follows from (4.9), (4.10) and (4.7) that

$$\{c^{n+6}(\bar{f})\} = Sq^4Sq^2\{\bar{u}\}.$$

However it is seen from (1.2) that $Sq^4Sq^2\{\bar{u}\}=0$ in K. Therefore we have $\{c^{n+6}(\bar{f})\}=0$, and so f has an extension $\overline{\bar{f}}: K^{n+6} \longrightarrow M_n^7$. Since $\pi_{n+6}(M_n^7)=0$ from (4.2), $\overline{\bar{f}}$ has also an extension $\tilde{f}: K^{n+7} \longrightarrow M_n^7$. This completes the proof of (4.8).

Since $\pi_i(M'_n) = 0$ for $n+7 \leq i < 2n$ by the definition, and K is 2n-dimensional, \tilde{f} can be extended to a map $g: K \longrightarrow M'_n$. Let $u \in H^n(K; Z)$ be the generator, then it is obvious from (4.7) that $g^* \{e^n\} = f^* \{e^n\} = u$. Therefore it follows from (1.2) and (4.6) by the naturality of Sq^i that $g^*: H^i(M'_n; Z) \longrightarrow H^i(K; Z)$ is isomorphic onto for i = n, n+3, n+5 and n+7. Furthermore, since $H^i(M'_n; Z) = H^i(K; Z)$ for i < n and for i = n+1, n+2, n+4 and n+6, we conclude that $g^*: H^i(M'_n; Z) \longrightarrow H^i(K; Z)$ is isomorphic onto for $i \leq n+7$. Thus, in virtue of the well known theorem [15], we have

(4.11) $S^n * S^n$ and M'_n is of the same (n+6)-homotopy type. Especially we have $\pi_i(S^n * S^n) \approx \pi_i(M'_n)$ for $i \leq n+6$.

This together with (4.2) proves (A) for $i \leq n+6$.

5. Supplementary remark

1) (5.1) $S^n * S^n (2 \le n \le 5)$ is of the same homotopy type as a reduced complex M_n defined as follows: $L_2 = \{S^2 \cup e^4; \eta_3\}, L_3 = \{EL_2 \cup e^6; \langle 2\overline{\iota}_5|S^3 \rangle\}, L_4 = \{EL_3 \cup e^8; \nu_4 + \omega_4\}, L_5 = \{EL_4 \cup e^{10}; \langle 2\overline{\iota}_5, \eta_8| \{S^5 \cup e^7; \eta_5\} \rangle\},$ where EL_i is the suspended space of L_i , and ω_4 is the suspension of a map $S^6 \longrightarrow S^3$ introduced by Blaker-Massey.

In fact, since $S^2 * S^2$ is the complex projective plane, i) and ii) are a direct consequence of the cellular decomposition of $S^n * S^n$ due to Steenrod. Thus $S^4 * S^4$ is of the same homotopy type as $\{EL_3 \cup e^8; g\}$ with a suitable map g. However, since $\pi_7(EL_3) \approx Z + Z_3$ and is generated by $\{\nu_4\}$ and $\{\omega_4\}$ [13], we may assume that

$$\{g\} = l_1\{\nu_4\} + l_2\{\omega_4\}$$

with some integer l_1 and some integer $l_2 \mod 3$. We saw in (2.3) that $[\iota_4, \iota_4] = 0$ for the inclusion map $\iota_4: S^4 \longrightarrow S^4 * S^4$, and know [10] that $[\iota_4, \iota_4] = 2\{\nu_4\} - \{\omega_4\}$. Therefore we must have

$$2\{\nu_4\} - \{\omega_4\} = k(l_1\{\nu_4\} + l_2\{\omega_4\})$$

with some integer k, and this implies that $\{g\} = \pm (\{\nu_4\} + \{\omega_4\})$ or $\pm (2\{\nu_4\} - \{\omega_4\})$. If the latter holds, we have the cup product of the generator of $H^4(S^4 * S^4; Z)$ with itself is $2v^8$, where $v^8 \in H^8(S^4 * S^4; Z)$ is a generator. This contradicts (1.2). Thus we may take $\nu_4 + \omega_4$ in place of g. This proves iii). iv) is obvious. (Note that $E(\{\nu_4\} + \{\omega_4\}) = 3\{\nu_5\}$).

The homotopy group of $S^n * S^n (2 \le n \le 5)$ can be calculated by making use of L_n . For example, we have easily

$$(5.2) \qquad \qquad \pi_7(S^4 * S^4) \approx Z_3$$

II) Recently H. Cartan [3] has given the structure of $H^*(Z, n; Z_p)$ and $H^*(Z_p, n; Z_p)$ for any odd prime p by making use of the reduced cyclic power and the Bockstein homomorphism. On the other hand, S. D. Liao explained the cohomology structure of the p-fold cylic product ϑ_{np} of an n-sphere (See especially (5.4) and (9.7) in [5]). If we apply these results, we can obtain the results with respect to the homotopy of ϑ_{np} by the arguments similar to those in above sections. For example, we have

(5.3) Let p be an odd prime, and let $n \ge 2p+2$. Then $C(\pi_i(\vartheta_{np}), p) \approx Z_p$ for i=n+2j $(j=1, 2, \dots, p-2)$ and n+2(p-1)+1, and vanishes for other $i \le n+2(p-1)$.

III) Let Y be the (n-1)-fold suspended space of the real projective plane.

Namely Y is a cell complex $S^n \cup e^{n+1}$ such that e^{n+1} is attached to S^n by a map of degree 2. Then the Stein's formulas [12, p. 582] give the integral homology groups of the symmetric product Y * Y as follows:

(5.4) $H_0(Y * Y; Z) \approx Z; H^{n+i}(Y * Y; Z) \approx Z_2$ for i=0, n+1 and $2 \leq i \leq n-1;$ $H_{2n}(Y * Y; Z) \approx Z_4$ for even $n, \approx Z_2$ for odd $n; H_i(Y * Y; Z) = 0$ for other i.

Thus the cohomology group $H^{n+i}(Y * Y; Z_2)$ is Z_2 for i = 0, 1, 2 and n+2, and is $Z_2 + Z_2$ for $3 \leq i \leq n+1$. Let *a* be the generator of $H^n(Y * Y; Z_2)$. Then we have (5.5) We can take as a base of $H^*(Y * Y; Z_2)$ the following: $Sq^ia(0 \leq i \leq n)$, $Sq^iSq^ia(2 \leq i \leq n+1)$ and $a \cup Sq^i$ a. Furthermore we have the relations:

$$Sq^iSq^{j+1}a = {j \choose i}Sq^{i+j+1}a + {j-1 \choose i-2}Sq^{i+j}Sq^1a,$$

 $Sq^iSq^{j+1}Sq^1a = {j \choose i}Sq^{i+j+1}Sq^1a, \qquad (j \ge 1).$

Applying the methods similar to those by which R. Bott [2] gives a proof of (1.2) in this paper, (5.5) can be proved easily. (The basic tools of this method are the Smith-Richardson sequence and the Theorem 2 in [2]).

Now we can calculate the (stable) homotopy groups $\pi_i(Y * Y)$ for $i \leq 2n-2$ by the method explained in § 3. The results are as follows:

(5.6) $\pi_i(Y * Y) = 0 \text{ for } 0 \leq i < n, n+1 \leq i \leq n+4 \text{ and } n+7.$ $\pi_i(Y * Y) \approx Z_2 \text{ for } i = n, n+5, n+6 \text{ and } n+8, \text{ and } \pi_{n+9}(Y * Y) \text{ is not cyclic.}$

References

- J. Adem: The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 720-726.
- [2] R. Bott: On symmetric products and the Steenrod squares, Ann. of Math., 57 (1953), 579–590.
- [3] H. Cartan: Sur les groupes d'Eilenberg-MacLane II, Proc. Nat. Acad. Sci. U. S. A., 40 (1954), 704-707.
- H. Cartan and J-P. Serre, Espaces fibres et groups d'homotopie. I. C. R. Acad. Sci. Paris, 234 (1952), 288-290; II, ibid., 393-395.
- S. D. Liao: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.
- [6] J. C. Moore: Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325–350.
- M. Nakaoka: Classification of mappings of a complex into a special kind of complex, J. of the Inst. Polytech, Osaka City Univ., 3 (1952), 101-143.
- [8] J-P. Serre: Homologie singuliere des espaces flbres, Ann. of Math., 54 (1951), 425-505.
- [9] J-P. Serre: Groupes d'homotopie et classes de groupes abeliens, Ann. of Math., 58 (1953), 325-350.
- [10] J-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232.
- [11] N. E. Steenrod: Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.

Minoru NAKAOKA

- [12] S. K. Stein: Homology of the two-fold symmetric product, Ann. of Math., 59 (1954), 570-583.
- [13] H. Toda: Generalized Whitehead products and homotopy groups of spheres, J. of the Inst. Polytech., Osaka City Univ., 3 (1952), 43-82.
- [14] H. Toda: Calcul de groupes d'homotopie des spheres, C. R. Acad. Sci. Paris, 240 (1955), 147-149.
- [15] J. H. C. Whitehead: Combinatorial homotopy, I, Bull. Amer. Math. Soc., 55 (1949), 213– 213–245.

30