Homotopy of two-fold symmetric products of spheres

By Minoru Nakaoka

(Received March 11, 1955)

Homological structure of the 2 -fold symmetric products $S^{n} * S^{n}$ of an n-sphere S^{n} is well known. (See R. Bott [2], S. K. Stein [12] and the recent paper [5] of S. D. Liao. $)^{1)}$ In the present note, we shall calculate some homotopy groups of $S^{n} * S^{n}$ by making use of the results on homology. If we denote by π_{i} the (stable) homotopy group $\pi_{i}\left(S^{n} * S^{n}\right)$ for $i \leqq 2 n-2$, our results are as follows:
(A)

$$
\begin{array}{lll}
\pi_{n+1}=0, & \pi_{n+2}=0, & \pi_{n+3} \approx Z_{3} \\
\pi_{n+4}=0, & \pi_{n+5} \approx Z_{2}, & \pi_{n+6}=0 \\
\pi_{n+7} \approx Z_{15}, & \pi_{n+8} \approx Z_{2}, & \pi_{n+9} \approx Z_{2}
\end{array}
$$

Two different methods are explained. One of these is the method employed by J-P. Serre in [10] for calculation of homotopy groups of spheres. ${ }^{3)}$ The other starts with a construction of a reduced complex of the same $(n+6)$-homotopy type as $S^{n} * S^{n}$, in which the homotopy boundaries in dimensions $\leqq n+7$ are well defined.

In the last section, we state some results on the following : i) homotopy of $S^{n} * S^{n}$ for $n \leqq 5$, ii) the homotopy groups of the p-fold cyclic product of a sphere, iii) the homology and homotopy of the 2 -fold symmetric product of the suspended projective plane.

1. Homological properties

We shall first recall some homological properties of $S^{n} * S^{n}$ (see [2], [5], [12]). The i-dimensional homology group $H_{i}=H_{i}\left(S^{n} * S^{n} ; Z\right)^{2)}$ is as follows:

$$
\begin{array}{rlr}
H_{0} & \approx Z, & \quad H_{i}=0 \quad \text { for } 0<i<n, \\
H_{n+j} & =0 & \\
& \text { for } 1 \leqq i<n \text { with odd } j \tag{1.1}\\
& \approx Z_{2} & \\
H_{2 n} & \text { for } 1 \leqq j<n \text { with even } j \\
& \approx Z & \\
& \text { for odd } n \\
H_{i} & =0 & \\
\text { for even } n \\
\text { for } i>2 n
\end{array}
$$

Thus the i-dimensional cohomology group $H^{i}\left(S^{n} * S^{n} ; Z_{2}\right)$ is Z_{2} for $i=0, n$ and $n+2 \leqq i \leqq 2 n$, and is zero for other i.

[^0]As for the Steenrod square $S q^{i}: H^{n+j}\left(S^{n} * S^{n} ; Z_{2}\right) \longrightarrow H^{n+i+j}\left(S^{n} * S^{n} ; Z_{2}\right)$, we have

$$
\begin{align*}
& S q^{i} H^{n}\left(S^{n} * S^{n} ; Z_{2}\right)=H^{n+i}\left(S^{n} * S^{n} ; Z_{2}\right) \\
& S q^{i} H^{n+j+1}\left(S^{n} * S^{n} ; Z_{2}\right)=\binom{i}{i} H^{n+i+j+1}\left(S^{n} * S^{n} ; Z_{2}\right) \quad(j \geqq 0) \tag{1.2}
\end{align*}
$$

where $\binom{j}{i}$ is the binomial coefficient with the usual conventions.
Let $K(\pi, n)$ be an Eilenberg-MacLane complex with the only non-vanishing homotopy group $\pi_{n}(K(\pi, n)) \approx \pi$, where π is an abelian group. Denote by u the generator of the n-dimensional cohomology group $H^{n}\left(Z, n ; Z_{2}\right)$ or $H^{n}\left(Z_{2}, n ; Z_{2}\right)^{4}$. Then it is well known [10] that
(1.3) $H^{n+j}\left(Z, n ; Z_{2}\right)\left(\right.$ resp. $\left.H^{n+j}\left(Z_{2}, n ; Z_{2}\right)\right)$ for $j<n$ is a vector space having as a base the all iterated Steenrod squares $S q^{i_{r}}{ }^{S} q^{i_{r-1}} \cdots S q^{i_{1}} u$ which satisfy the following conditions i), ii) and iii) (resp. i) and ii)).

$$
\text { i) } i_{1}+i_{2}+\cdots+i_{r}=j \text {, ii) } i_{k+1} \geqq 2 i_{k} \text { for } k=1,2, \cdots, r-1, \text { iii) } i_{1}>1
$$

The following relations (1.4) among the iterated Steenrod squares, which are found by J. Adem [1], are very useful in later part.

$$
\begin{equation*}
S q^{2 t} S q^{s}=\sum_{j=0}^{t}\binom{s-t+j-1}{2 j} S q^{t+s+j} S q^{t-j} \tag{1.4}
\end{equation*}
$$

2. Some general properties

Let K_{n} be a cellular decomposition of $S^{n} * S^{n}$ given by Steenrod, and let $E\left(S^{n} * S^{n}\right)$ be the suspended space of $S^{n} * S^{n}$. Then $E\left(S^{n} * S^{n}\right)$ is imbedded in $S^{n+1} * S^{n+1}$ naturally, and forms the $(2 n+1)$-skelton of K_{n+1} [5]. Thus we have

$$
i_{\#}: \quad \pi_{i+1}\left(E\left(S^{n} * S^{n}\right)\right) \approx \pi_{i+1}\left(S^{n+1} * S^{n+1}\right)
$$

for $i \leqq 2 n-1$, where $i: E\left(S^{n} * S^{n}\right) \subset S^{n+1} * S^{n+1}$ is the inclusion. Let

$$
E: \quad \pi_{i}\left(S^{n} * S^{n}\right) \longrightarrow \pi_{i+1}\left(E\left(S^{n} * S^{n}\right)\right)
$$

be the suspension homomorphism. Since $S^{n} * S^{n}$ is ($n-1$)-connected from (1.1), E is isomorphic for $i \leqq 2 n-2$, and is onto for $i \leqq 2 n-1$ [13]. Therefore we have

(2.1) The homomorphism.

$$
i_{\#} \circ E: \pi_{i}\left(S^{n} * S^{n}\right) \longrightarrow \pi_{i+1}\left(S^{n+1} * S^{n+1}\right)
$$

is isomorphic for $i \leqq 2 n-2$, and onto for $i \leqq 2 n-1$.
Since $S^{n} * S^{n}$ is ($n-1$)-connected and $H_{n}\left(S^{n} * S^{n} ; Z\right) \approx Z$ from (1.1), the Hurewicz theorem implies $\pi_{n}\left(S^{n} * S^{n}\right) \approx Z$. Let $f: S^{n} \longrightarrow S^{n} * S^{n}$ be a map which represents

[^1]a generator of $\pi_{n}\left(S^{n} * S^{n}\right)$, and let $k[p]$ be a field of characteristic p. Then, for the homomorphism $f_{*}: H_{i}\left(S^{n} ; k[p]\right) \longrightarrow H_{i}\left(S^{n} * S^{n} ; k[p]\right)$, we have from (1.1) that i) if n is odd, f_{*} is isomorphic onto for any i and any $p \neq 2$, ii) if n is even, f_{*} is isomorphic onto for any $i<2 n$ and any $p \neq 2$. Thus the following result is obvious from the generalized J. H. C. Whitehead theorem due to J-P. Serre [9]. (See also [6]. ${ }^{5)}$
(2.2) If n is odd, then $\pi_{i}\left(S^{n} * S^{n}\right)$ is finite for any $i \neq n$, and $C\left(\pi_{i}\left(S^{n} * S^{n}\right), p\right) \approx$ $C\left(\pi_{i}\left(S^{n}\right), p\right)$ for any odd prime p, where $C(\pi, p)$ denotes the p-primary subgroup. If n is even, the same properties are true for $i \leqq 2 n-2$.

Let $p: S^{n} \times S^{n} \longrightarrow S^{n} * S^{n}$ be the projection (i.e. the identification map), and let $f: S^{n} \longrightarrow S^{n} * S^{n}$ be a map defined by

$$
f(y)=p\left(y \times y_{0}\right)=p\left(y_{0} \times y\right), \quad y \in S^{n}
$$

where $y_{0} \in S^{n}$ is a base point. Since it is obvious that $f_{*}: H_{n}\left(S^{n} ; Z\right) \approx H_{n}\left(S^{n} * S^{n} ; Z\right)$, we see that f represents a generator ι_{n}^{\prime} of $\pi_{n}\left(S^{n} * S^{n}\right)$. Thus p is a map of type ($\iota_{n}^{\prime}, \iota_{n}$). Therefore it follows from the well known theorem [13] that the Whitehead product [$\epsilon_{n}^{\prime}, \iota_{n}^{\prime}$] is zero. Thus we have

$$
\begin{equation*}
[\alpha, \beta]=0 \quad \text { for } \alpha, \beta \in \pi_{n}\left(S^{n} * S^{n}\right) \tag{2.3}
\end{equation*}
$$

3. Proof of (A)

Let $\left(S^{n} * S^{n}, n+j\right)(j=0,1,2, \cdots)$ be the Cartan-Serre sequence of the space $S^{n} * S^{n}$ [4]. Then, by the definition, $\pi_{n+i}\left(S^{n} * S^{n}, n+j\right)=0$ for $i<i$ and $\pi_{n+i}\left(S^{n} * S^{n}\right)$ $\approx \pi_{n+i}\left(S^{n} * S^{n}, n+j\right)$ for $i \geqq i$. Moreover there exists a fiber space for each j such that i) the total space is of the same homotopy type as $\left(S^{n} * S^{n}, n+j\right)$, ii) the base space is an Eilenberg-MacLane complex $K\left(\pi_{n+j}\left(S^{n} * S^{n}\right), n+j\right)$, and the fiber is ($S^{n} * S^{n}, n+j+1$). (For brevity of the notation, we use $\left(S^{n} * S^{n}, n+j\right)$ to denote the total space of the above fiber space.) Thus we have for $i \leqq n+2 j$ the exact sequence [8]:

$$
\begin{align*}
\cdots \xrightarrow{i^{*}} H^{n+i-1}\left(S^{n} * S^{n}, n+j+1 ; Z_{2}\right) \xrightarrow{\tau} H^{n+i}\left(\pi_{n+j}\left(S^{n} * S^{n}\right), n+j ; Z_{2}\right) \tag{3.1}\\
\xrightarrow{p^{*}} H^{n+i}\left(S^{n} * S^{n}, n+j ; Z_{2}\right) \xrightarrow{i^{*}} H^{n+i}\left(S^{n} * S^{n}, n+j+1 ; Z_{2}\right)
\end{align*}
$$

where p^{*}, i^{*} are the homomorphisms induced by the projection and the inclusion respectively, and τ is the transgression.

Throughout this section, we assume that n is sufficiently large (for example $n \geqq 13$).
I) Let $j=0$ in (3.1), and consider the homomorphism $p^{*}: H^{n+i}\left(\pi_{n}\left(S^{n} * S^{n}\right)\right.$, $\left.n ; Z_{2}\right) \longrightarrow H^{n+i}\left(S^{n} * S^{n}, n ; Z_{2}\right)$. Since $\pi_{n}\left(S^{n} * S^{n}\right) \approx Z$, if we denote by u the generator

[^2]of $H^{n}\left(\pi_{n}\left(S^{n} * S^{n}\right), n ; Z_{2}\right)$, then we see from (1.3) that $H^{*}\left(\pi_{n}\left(S^{n} * S^{n}\right), n ; Z_{2}\right)$ has a base
\[

$$
\begin{align*}
& u, S q^{2} u, S q^{3} u, \cdots, S q^{6} u, S q^{4} S q^{2} u, \cdots, \\
& S q^{13} u, S q^{11} S q^{2} u, S q^{10} S q^{3} u, S q^{9} S q^{4} u \tag{3.2}
\end{align*}
$$
\]

in dimensions $\leqq n+13$. On the other hand, since $\left(S^{n} * S^{n}, n\right)=S^{n} * S^{n}$, we see from (1.2) that $H^{*}\left(S^{n} * S^{n}, n ; Z_{2}\right)$ has a base

$$
\begin{equation*}
v, S q^{2} v, S q^{3} v, \cdots, S q^{12} v, S q^{13} v \tag{3.3}
\end{equation*}
$$

in dimensions $\leqq n+13$, where v is the generator of $H^{n}\left(S^{n} * S^{n}, n ; Z_{2}\right)$. Furthermore, since $H^{n}\left(S^{n} * S^{n}, n+1 ; Z_{2}\right)=0, p^{*}$ is onto in dimension n, and so we have $p^{*} u=v$. Thus we see from (3.2) and (3.3) by making use of the naturality of $S q^{i}$ that
$(3.4)_{1} \quad p^{*}$ is isomorphic onto for $i \leqq 5$, and
p^{*} is onto for $i \leqq 13$.
Then it follows from (3.4) by the generalized Whitehead theorem that $p_{\text {\# }}$: $C\left(\pi_{n+i}\left(S^{n} * S^{n}\right), 2\right) \longrightarrow C\left(\pi_{n+i}\left(K\left(\pi_{n}\left(S^{n} * S^{n}\right), n\right)\right), 2\right)$ is isomorphic onto for $i \leqq 4$, and so we have

$$
\begin{equation*}
C\left(\pi_{n+i}\left(S^{n} * S^{n}\right), 2\right)=0 \quad \text { for } \quad 1 \leqq i \leqq 4 \tag{3.5}
\end{equation*}
$$

Let N_{0} be the kernel of p^{*}, then (3.1) and (3.4) imply that $\tau: H^{n+i-1}\left(S^{n} * S^{n}\right.$, $\left.n+1 ; Z_{2}\right) \longrightarrow N_{0}$ is isomorphic onto for $i \leqq 13$. Furthermore we see from (1.2) and (1.4) that N_{0} has a base

$$
\begin{align*}
& S q^{4} S q^{2} u, \quad S q^{5} S q^{2} u=S q^{1} S q^{4} S q^{2} u, \quad S q^{6} S q^{2} u=S q^{2} S q^{4} S q^{2} u \\
& S q^{7} S q^{2} u=S q^{3} S q^{4} S q^{2} u, \quad S q^{6} S q^{3} u=S q^{2} S q^{1} S q^{4} S q^{2} u \\
& S q^{8} S q^{2} u, \quad S q^{7} S q^{3} u=S q^{3} S q^{1} S q^{4} S q^{2} u, \quad S q^{9} S q^{2} u=S q^{1} S q^{8} S q^{2} u, \\
& S q^{8} S q^{3} u=S q^{9} S q^{2} u+S q^{4} S q^{1} S q^{4} S q^{2} u, \tag{3.6}\\
& S q^{10} S q^{2} u=S q^{2} S q^{8} S q^{2} u+S q^{5} S q^{1} S q^{4} S q^{2} u, \quad S q^{9} S q^{3} u=S q^{5} S q^{1} S q^{4} S q^{2} u \\
& S q^{8} S q^{4} u, \quad S q^{11} S q^{2} u=S q^{3} S q^{8} S q^{2} u, \quad S q^{10} S q^{3} u=S q^{2} S q^{1} S q^{8} S q^{2} u, \\
& S q^{9} S q^{4} u=S q^{1} S q^{8} S q^{4} u .
\end{align*}
$$

Let $a(\operatorname{dim} a=n+5), b(\operatorname{dim} b=n+9)$ and $c(\operatorname{dim} c=n+11)$ be the elements such that

$$
\tau a=S q^{4} S q^{2} u, \quad \tau b=S q^{8} S q^{2} u, \quad \tau c=S q^{8} S q^{4} u
$$

respectively. Then, since $\tau S q^{i}=S q^{i} \tau$, it follows from (3.1) and (3.6) that $H^{*}\left(S^{n} * S^{n}\right.$, $n+1 ; Z_{2}$) has a base

$$
\begin{align*}
& a, \quad S q^{1} a, \quad S q^{2} a, \quad S q^{3} a, \quad S q^{2} S q^{1} a \\
& b, \quad S q^{3} S q^{1} a, \quad S q^{1} b, \quad S q^{1} b+S q^{4} S b^{1} a \tag{3.7}\\
& S q^{2} b+S q^{5} S q^{1} a, \quad S q^{5} S q^{1} a, \quad c, \quad S q^{3} b, \quad S q^{2} S q^{1} b, \quad S q^{1} c
\end{align*}
$$

in dimensions $\leqq n+12$.

We have from (3.5) that $H^{*}\left(\pi_{n+j}\left(S^{n} * S^{n}\right), n+j ; Z_{2}\right)=0$ for $1 \leqq j \leqq 4$. Therefore it follows from (3.1) for $j=1,2,3$ and 4 that

$$
H^{*}\left(S^{n} * S^{n}, n+5 ; Z_{2}\right) \approx H^{*}\left(S^{n} * S^{n}, n+1 ; Z_{2}\right)
$$

in dimensions $\leqq n+12$, under the composition of the inclusions and homotopy equivalences. Thus we may consider (3.7) as a base of $H^{*}\left(S^{n} * S^{n}, n+5 ; Z_{2}\right)$ in dimensions $\leqq n+12$. Especially we see that $H^{n+5}\left(S^{n} * S^{n}, n+5 ; Z_{2}\right) \approx \operatorname{Hom}\left(H_{n+5}\left(S^{n} * S^{n}\right.\right.$, $\left.n+5), Z_{2}\right) \approx Z_{2}$, and so we have $C\left(H_{n+5}\left(S^{n} * S^{n}, n+5\right), 2\right) \approx Z_{2 r}$ for some $r \geq 1$. However, since $S q^{1} a \neq 0, r$ must be $=1$. Thus we obtain by the generalized Hurewicz isomorphism [9] that $C\left(\pi_{n+5}\left(S^{n} * S^{n}, n+5\right), 2\right) \approx C\left(H_{n+5}\left(S^{n} * S^{n}, n+5\right), 2\right) \approx Z_{2}$. Namely we have

$$
\begin{equation*}
C\left(\pi_{n+5}\left(S^{n} * S^{n}\right), 2\right) \approx Z_{2} \tag{3.8}
\end{equation*}
$$

II) Let $j=5$ in (3.1), and consider the homomorphism $p^{*}: H^{n+i}\left(\pi_{n+5}\left(S^{n} * S^{n}\right)\right.$, $\left.n+5 ; Z_{2}\right) \longrightarrow H^{n+i}\left(S^{n} * S^{n}, n+5 ; Z_{2}\right)$. Then it follows from (3.8) that $H^{n+i}\left(\pi_{n+5}\left(S^{n} * S^{n}\right)\right.$, $\left.n+5 ; Z_{2}\right) \approx H^{n+i}\left(Z_{2}, n+5 ; Z_{2}\right)$. Therefore if we denote by α the generator of $H^{n+5}\left(\pi_{n+5}\left(S^{n} * S^{n}\right), n+5 ; Z_{2}\right)$, we see from (1.3) that $H^{*}\left(\pi_{n+5}\left(S^{n} * S^{n}\right), n+5 ; Z_{2}\right)$ has a base
$\alpha, \quad S q^{1} \alpha, \quad S q^{2} \alpha, \quad S q^{3} \alpha, \quad S q^{2} S q^{1} \alpha, \quad S q^{4} \alpha, \quad S q^{3} S q^{1} \alpha$
$S q^{5} \alpha, \quad S q^{4} S q^{1} \alpha, \quad S q^{6} \alpha, \quad S q^{5} S q^{1} \alpha, \quad S q^{4} S q^{2} \alpha, \quad S q^{7} \alpha, \quad S q^{6} S q^{1} \alpha$
$S q^{5} S q^{2} \alpha, \quad S q^{4} S q^{2} S q^{1} \alpha$
in dimensions $\leqq n+12$. Since p^{*} is onto in dimension $n+5$, we see $p^{*} \alpha=a$, and so p^{*} is isomorphic onto for $i \leqq n+8$. Thus, by the similar arguments as in the proof of (3.5), we obtain

$$
\begin{equation*}
C\left(\pi_{n+i}\left(S^{n} * S^{n}\right), 2\right)=0 \quad \text { for } \quad i=6 \text { and } 7 \tag{3.10}
\end{equation*}
$$

We have by (1.4)

$$
\begin{aligned}
\tau p^{*} S q^{4} \alpha & =S q^{4} S q^{4} S q^{2} u=S q^{3} S q^{1} S q^{4} S q^{2} u=\tau S q^{3} S q^{1} a \\
\tau p^{*} S q^{5} \alpha & =S q^{5} S q^{4} S q^{2} u=S q^{1} S q^{7} S q^{3} u=0 \\
\tau p^{*} S q^{6} \alpha & =S q^{6} S q^{4} S q^{2} u=S q^{7} S q^{1} S q^{3} S q^{1} u=0 \\
\tau p^{*} S q^{4} S q^{2} \alpha & =S q^{4} S q^{2} S q^{4} S q^{2} u=S q^{5} S q^{1} S q^{4} S q^{2} u+S q^{2} S q^{8} S q^{2} u=\tau\left(S q^{5} S q^{1} a+S q^{2} b\right) \\
\tau p^{*} S q^{7} \alpha & =S q^{7} S q^{4} S q^{2} u=S q^{1} S q^{6} S q^{4} S q^{2} u=0 \\
\tau p^{*} S q^{6} S q^{1} \alpha & =S q^{6} S q^{1} S q^{4} S q^{2} u=S q^{2} S q^{5} S q^{4} S q^{2} u=0 \\
\tau p^{*} S q^{5} S q^{2} \alpha & =S q^{5} S q^{2} S q^{4} S q^{2} u=S q^{3} S q^{8} S q^{2} u=\tau S q^{3} b \\
\tau p^{*} S q^{4} S q^{2} S q^{1} \alpha & =S q^{4} S q^{2} S q^{1} S q^{4} S q^{2} u=S q^{1} S q^{8} S q^{4} u+S q^{2} S q^{1} S q^{8} S q^{2} u=\tau\left(S q^{2} S q^{1} b+S q^{1} c\right)
\end{aligned}
$$

and τ is isomorphic into by (3.4) ${ }_{1}$. Therefore it follows from (3.7) and (3.9) that the kernel N_{5} of p^{*} has a base

$$
S q^{4} \alpha+S q^{3} S q^{1} \alpha, \quad S q^{5} \alpha, \quad S q^{6} \alpha, \quad S q^{7} \alpha, \quad S q^{6} S q^{1} \alpha
$$

in dimensions $\leqq n+12$. Since p^{*} is onto in dimension $n+8$, we see that $\tau: H^{n+8}\left(S^{n} * S^{n}\right.$,
$\left.n+6 ; Z_{2}\right) \approx N_{5}$. Let γ be the element such that

$$
\tau \gamma=S q^{4} \alpha+S q^{3} S q^{1} \alpha .
$$

Then, since we have by (1.4)

$$
\begin{aligned}
\tau S q^{1} \psi & =S q^{1} S q^{4} \alpha+S q^{1} S q^{3} S q^{1} \alpha=S q^{5} \alpha, \\
\tau S q^{2} \zeta & =S q^{2} S q^{4} \alpha+S q^{2} S q^{3} S q^{1} \alpha=S q^{6} \alpha, \\
\tau S q^{3} \zeta & =S q^{1} \tau S q^{2} \zeta=S q^{7} \alpha, \\
\tau S q^{2} S q^{1} \psi & =S q^{2} \tau S q^{1} \psi=S q^{2} S q^{5} \alpha=S q^{5} S q^{1} \alpha,
\end{aligned}
$$

it follows from (3.7) and (3.9) that $H^{*}\left(S^{n} * S^{n}, n+6 ; Z_{2}\right)$ has a base
(3.11) $\quad r, S q^{1} r, \quad b^{\prime}, S q^{2} r, \quad S q^{1} b^{\prime}, \quad S q^{2} \gamma, \quad S q^{2} S q^{1} \gamma, \quad S q^{1} c^{\prime}=S q^{2} S q^{1} b^{\prime}$
in dimensions $\leqq n+11$, where $b^{\prime}=i^{*}(b)$ and $c^{\prime}=i^{*}(c)$. We have from (3.10) that $H^{*}\left(\pi_{n+j}\left(S^{n} * S^{n}\right), n+j ; Z_{2}\right)=0$ for $j=6$ and 7 . Therefore if we consider (3.1) for $j=6$ and 7 , we have under a natural map

$$
H^{*}\left(S^{n} * S^{n}, n+8 ; Z_{2}\right) \approx H^{*}\left(S^{n} * S^{n}, n+6 ; Z_{2}\right)
$$

Thus we may consider (3.11) as a base of $H^{*}\left(S^{n} * S^{n}, n+8 ; Z_{2}\right)$ in dimensions $\leqq n+11$. Especially $H^{n+8}\left(S^{n} * S^{n}, n+8 ; Z_{2}\right) \approx Z_{2}$ and $S q^{1} \gamma \neq 0$, and so we have

$$
\begin{equation*}
C\left(\pi_{n+8}\left(S^{n} * S^{n}\right), 2\right) \approx Z_{2} \tag{3.12}
\end{equation*}
$$

by the similar arguments as in the proof of (3.8).
III) Let $j=8$ in (3.1), and consider $p^{*}: H^{i}\left(\pi_{n+8}\left(S^{n} * S^{n}\right), n+8 ; Z_{2}\right) \longrightarrow$ $H^{i}\left(S^{n} * S^{n}, n+8 ; Z_{2}\right)$. Then it follows from (1.3) and (3.12) that $H^{*}\left(\pi_{n+8}\left(S^{n} * S^{n}\right)\right.$, $n+8 ; Z_{2}$) has a base

$$
\begin{equation*}
\nu, \quad S q^{1} \nu, \quad S q^{2} \nu, \quad S q^{3} \nu, \quad S q^{2} S q^{1} \nu \tag{3.13}
\end{equation*}
$$

in dimensions $\leqq n+11$, where ν is the generator of $H^{n+8}\left(\pi_{n+8}\left(S^{n} * S^{n}\right), n+8 ; Z_{2}\right)$. Since p^{*} is onto in dimensions $n+8$, we have $p^{*} \nu=\gamma$, and so it follows from (3.11) and (3.13) that p^{*} is isomorphic onto in dimensions $\leqq n+8$, and is isomorphic into in dimensions $\leqq n+11$. Thus we see from (3.1) that $H^{*}\left(S^{n} * S^{n}, n+9 ; Z_{2}\right)$ has a base

$$
b^{\prime \prime}, S q^{1} b^{\prime \prime}
$$

in dimensions $\leqq n+10$, where $b^{\prime \prime}=i^{*}\left(b^{\prime}\right) \in H^{n+9}\left(S^{n} * S^{n}, n+9 ; Z_{2}\right)$. Then we have by the same arguments in the proof of (3.8) that

$$
\begin{equation*}
C\left(\pi_{n+9}\left(S^{n} * S^{n}\right), Z_{2}\right) \approx Z_{2} \tag{3.14}
\end{equation*}
$$

Since $C\left(\pi_{n+i}\left(S^{n}\right), p\right) \approx Z_{3}$ for $i=3,7$ and $p=3, \approx Z_{5}$ for $i=7$ and $p=5$, and is zero otherwise for $i \leqq 9$ and any odd prime p [13, 14], our main result (A) follows from (2.1), (2.2), (3.5), (3.8), (3.10), (3.12) and (3.14).

4. Reduced complex M_{n}^{\prime}

Let $e_{i}^{r_{i}}(i=1,2, \cdots, s)$ be s disjoint r_{i}-cells, and let $f_{i}:\left(\dot{e}_{i}^{r_{i}}, y_{i}\right) \longrightarrow\left(X, x_{0}\right)$ be s maps of the boundary $\dot{e}_{i}^{r_{i}}$ in a 1 -connected space X, where $y_{i} \in \dot{e}_{i}^{r_{i}}$ and $x_{0} \in X$ are base points. Then we shall denote by $\left\{X \cup e_{1}^{r_{1}} \cup \cdots \cup e_{s}^{r_{s}} ; f_{1}, \cdots, f_{s}\right\}$ a space obtained by identifying each point $y \in \dot{e}_{i}^{r_{i}}$ to $f_{i}(y) \in X$ in the union $X \cup e_{1}^{r_{1}} \cup \cdots \cup e_{s}^{r_{s}}$. Let E^{r} be the r-cube in the Cartesian space, and let $g_{i}:\left(E^{r}, \dot{E}^{r}, z_{0}\right) \longrightarrow\left(e_{i}^{r_{i}}, \dot{e}_{i}^{r_{2}}, y_{i}\right)$ $(i=1,2, \cdots, t \leqq s)$ be maps such that $\sum_{i=1}^{t} f_{i} \circ\left(g_{i} \mid \dot{E}^{r}\right)$ is null-homotopic, where $z_{0}=(0,0, \cdots, 0)$ and \sum denotes the addition used in the usual definition of homotopy group $\pi_{r}\left(X, x_{0}\right)$. Then we can construct a map h of an r-sphere $\dot{E}^{r+1}=S^{r}$ in $\left\{X \cup e_{1}^{r_{1}} \cup \cdots \cup e_{s}^{r_{s}} ; f_{1}, \cdots, f_{s}\right\}$ as follows:

Let $\varepsilon_{i}^{r}(i=1,2, \cdots, t)$ be t disjoint r-cells in S^{r} which have a single point z_{0} in common, and which are oriented in agreement with the orientation of S^{r}. Define first h in ε_{i}^{r} by $h \mid \varepsilon_{i}^{r}=g_{i} \circ \xi_{i}(i=1,2, \cdots, t)$, where $\xi_{i}:\left(\varepsilon_{i}^{r}, \dot{\varepsilon}_{i}^{r}\right) \longrightarrow\left(E^{r}, \dot{E}^{r}\right)$ is a homeomorphism of degree 1 Then it follows from our assumption that $h \mid \cup_{i=1}^{t} \dot{\varepsilon}_{i}^{r}$ of a singular $(r-1)$-sphere $\bigcup_{i=1}^{t} \dot{\varepsilon}_{i}^{r}$ in X is null-homotopic in X. Choose now such a null-homotopy arbitrarily, and define h in $S^{r}-\cup_{i=1}^{t}$ Int ε_{i}^{r} by this null-homotopy. This completes the definition of h.

In the following, a map obtained by such a construction from $g_{1}, g_{2}, \cdots, g_{t}$ will be denoted by $<g_{1}, g_{2}, \cdots, g_{t} \mid X>$.

As for spherical maps, we use the following notations: $\iota_{r} ; S^{r} \longrightarrow S^{r}(r \geq 1)$ is the identity ; $\eta_{r}: S^{r+1} \longrightarrow S^{r}(r \geqq 2)$ and $\nu_{r}: S^{r+3} \longrightarrow S^{r}(r \geqq 4)$ are the iterated suspensions of the Hopf fiber maps η_{2} and ν_{4} respectively. Let $\partial_{n}: \pi_{n+1}\left(e^{r+1}, \dot{e}^{r+1}\right)$ $\approx \pi_{n}\left(\dot{e}^{r+1}\right)$ be the homotopy boundary, then we refer to maps in the homotopy classes $\partial_{r}^{-1}\left\{\iota_{r}\right\}, \partial_{r+1}^{-1}\left\{\eta_{r}\right\}$ and $\partial_{r+3}^{-1}\left\{\nu_{r}\right\}$ as $\bar{\iota}_{r+1}, \bar{\eta}_{r+1}$ and $\bar{\nu}_{r+1}$ respectively. ${ }^{6)}$

Until the end of this section, we assume that $n \geqq 7$. Consider the following ($n+k$)-dimensional cell complexes $M_{n}^{k}(k=1,2, \cdots, 7)$ defined inductively by

$$
\begin{aligned}
& M_{n}^{1}=S^{n} \\
& M_{n}^{2}=\left\{M_{n}^{1} \cup e^{n+2} ; \eta_{n}\right\}, \\
& M_{n}^{3}=\left\{M_{n}^{2} \cup e^{n+3} ;<2 \bar{\imath}_{n+2} \mid S^{n}>\right\} \\
& M_{n}^{4}=\left\{M_{n n}^{3} \cup e^{n+4} ; 3 \nu_{n}\right\}, \\
& M_{n}^{5}=\left\{M_{n}^{4} \cup e^{n+5} ;<2 \bar{\imath}_{n+4}, \bar{\eta}_{n+3} \mid M_{n}^{2}>\right\}, \\
& M_{n}^{6}=\left\{M_{n}^{5} \cup e^{n+6} ;<\bar{\eta}_{n+4} \mid S^{n}>\right\} \\
& M_{n}^{7}=\left\{M_{n}^{6} \cup e^{n+7} ;<2 \bar{\iota}_{n+6} \mid N_{n}^{4}>\right\},,^{7)}
\end{aligned}
$$

where N_{n}^{4} is the subcomplex $\left\{S^{n} \cup e^{n+4} ; 3 \nu_{n}\right\}$ of M_{n}^{4}. The justificatian of above definitions follows from
6) Let $f: S^{r} \rightarrow X$, then $\{f\}$ denotes the element of $\pi_{r}(X)$ containing f.
7) It can be easily seen that the homotopy type of M_{n}^{i} does not depend on the choice of null-homotopy in the definition of identification map.
(4.1) i) $2\left\{\eta_{n}\right\}=0$ in S^{n}, ii) $\left\{<2 \bar{\epsilon}_{n+2} \mid S^{n}>\circ \eta_{n+2}\right\}= \pm 6\left\{\nu_{n}\right\}$ in M_{n}^{2}, iii) $\left\{\left(3 \nu_{n}\right) \circ \eta_{n+3}\right\}=0$ in S^{n}, iv) $\left\{<\bar{\eta}_{n+4} \mid N_{n}^{4}>\circ 2 \ell_{n+5}\right\}=0$ in N_{n}^{4}.

In fact, i), ii) and iii) are well known (See [13]). In the notation of H. Toda, we have $<2 \iota_{n+2} \mid S^{n}>\circ \eta_{n+2} \in\left\{\eta_{n}, 2 \iota_{n+2}, \eta_{n+2}\right\}$.) iv) is obtained as follows: Consider the homotopy exact sequence of pair $\left(N_{n}^{4}, S^{n}\right)$, then it follows from $\pi_{n+4}\left(S^{n}\right)$ $\approx \pi_{n+5}\left(S^{n}\right)=0$ that $\pi_{n+5}\left(N_{n}^{4}\right)=\pi_{n+5}\left(N_{n}^{4}, S^{n}\right)$ under the inclusion map. This and $\pi_{n+5}\left(N_{n}^{4}, S^{n}\right) \approx Z_{2}$ imply iv) .

Let M_{n}^{\prime} be a $2 n$-dimensional cell complex such that i) the ($n+7$)-skelton of M_{n}^{\prime} is M_{n}^{7}, ii) $\pi_{i}\left(M_{n}^{\prime}\right)=0$ for $n+7 \leqq i<2 n$ (Such a complex does exist). Then we have (4.2) $\quad \pi_{n}\left(M_{n}^{\prime}\right) \approx Z, \quad \pi_{n+1}\left(M_{n}^{\prime}\right)=0, \quad \pi_{n+2}\left(M_{n}^{\prime}\right)=0, \quad \pi_{n+3}\left(M_{n}^{\prime}\right) \approx Z_{3}, \quad \pi_{n+4}\left(M_{n}^{\prime}\right)=0$, $\pi_{n+5}\left(M_{n}^{\prime}\right) \approx Z_{2}, \pi_{n+6}\left(M_{n}^{\prime}\right)=0$.
(4.3) Let $\mathrm{c}: \mathrm{S}^{n} \longrightarrow M_{n}^{1}$ be the identity map, then $\pi_{n+3}\left(M_{n}^{\prime}\right)$ is generated by $\left\{\propto \circ \nu_{n}\right\}$. $\pi_{n+5}\left(M_{n}^{\prime}\right)$ is generated by $\left\{<\bar{\nu}_{n+2}\left|S^{n}\right\rangle\right\}$.
(4.4) $\pi_{n+5}\left(M_{n}^{5}\right) \approx Z_{2}+Z_{2}$ and is generated by $\left\{<\bar{\nu}_{n+2} \mid S^{n}>\right\}$ and $\left\{<\bar{\eta}_{n+4} \mid S^{n}>\right\}$.

These can be proved by the similar arguments used in the proof of (8.4) in [7]. Therefore we will note here only the principle and basic tools used, and omit to record the complete calculation.

Since $\pi_{n+i}\left(S^{n}\right)(i \leqq 6)$ is well known (see ii) below), starting with $\pi_{n+i}\left(M_{n}^{1}\right)$, we determine $\pi_{n+i}\left(M_{n}^{j}\right)$ inductively with respect to i and j by making use of the homotopy sequence of pair (M_{n}^{j}, M_{n}^{j-1}). In this consideration, the following i) and ii) play essential rôles: i) Let $f:\left(E^{n+j}, \dot{E}^{n+j}\right) \longrightarrow\left(M_{n}^{j}, M_{n}^{j-1}\right)$ be the characteristic map of the cell e^{n+j}, then $f_{\#}$ is isomorphic onto for $i \leqq n+j-3$ in the commutative diagram

$$
\begin{aligned}
\pi_{n+i}\left(E^{n+j}, \dot{E}^{n+j}\right) & \stackrel{\partial}{\longrightarrow} \pi_{n+i-1}\left(\dot{E}^{n+j}\right) \\
\downarrow f_{\#} & \downarrow\left(f \mid \dot{E}^{n+j}\right) \# \\
\pi_{n+i}\left(M_{n}^{j}, M_{n}^{j-1}\right) & \xrightarrow{\partial} \pi_{n+i-1}\left(M_{n}^{j-1}\right)
\end{aligned}
$$

[7]. ii) $\pi_{n+1}\left(S^{n}\right) \approx Z_{2}, \pi_{n+2}\left(S^{n}\right) \approx Z_{2}, \pi_{n+3}\left(S^{n}\right) \approx Z_{24}, \pi_{n+6}\left(S^{n}\right) \approx Z_{2}$; they are generated by $\left\{\eta_{n}\right\},\left\{\eta_{n} \circ \eta_{n+1}\right\},\left\{\nu_{n}\right\}$ and $\left\{\nu_{n} \circ \nu_{n+3}\right\}$ respectively ; $\pi_{n+4}\left(S^{n}\right) \approx \pi_{n+5}\left(S^{n}\right)=0$. [13].

If we take in consideration that the homotopy boundary of any $(n+8)$-cell of M_{n}^{\prime} is in M_{n}^{6}, the following can be easily proved [7].
(4.5) $H^{i}\left(M_{n}^{\prime} ; Z\right) \approx Z$ for $i=n, \approx Z_{2}$ for $n+3, n+5$ and $n+7$, and vanishes for other $i \leqq n+7$
(4.6) Let $\left\{e^{n}\right\} \in H^{n}\left(M_{n}^{\prime} ; Z\right)$ and $\left\{e^{n+j}\right\} \in H^{n+j}\left(M_{n}^{\prime} ; Z\right)(j=3,5$ and 7$)$ be generators, then we have

$$
S q^{j}\left\{e^{n}\right\}=\left\{e^{n+j}\right\} \quad(j=3,5,7)
$$

(We may consider $S q^{j}$ with respect to the integer coefficient, because j is odd [11].)
Let K be any cellular decomposition of $S^{n} * S^{n}$, and K^{n+j} its ($n+j$)-skelton. Take a $\operatorname{map} f: K^{n+1} \longrightarrow M_{n}^{6}$ such that

$$
\begin{equation*}
f^{*}\left\{\bar{e}^{n}\right\}=\{\bar{u}\}, \tag{4.7}
\end{equation*}
$$

where $\{\bar{u}\} \in H^{n}\left(K ; \pi_{n}\left(M_{n}^{6}\right)\right)$ and $\left\{\bar{e}^{n}\right\} \in H^{n}\left(M_{n}^{6} ; \pi_{n}\left(M_{u t}^{6}\right)\right)$ are generators. It is well known that such a map exist. Then we have
(4.8) f can be extended to a map $\tilde{f}: K^{n+7} \longrightarrow M_{n}^{7}$.

This is proved as follows: Since $\pi_{n+1}\left(M_{n}^{6}\right), \pi_{n+2}\left(M_{n}^{6}\right)$ and $\pi_{n+4}\left(M_{n}^{6}\right)$ are trivial from (4.2), and since $H^{n+4}\left(K ; \quad \pi_{n+3}\left(M_{n}^{6}\right)\right) \approx \operatorname{Hom}\left(H_{n+4}(K ; Z), Z_{3}\right)+\mathrm{Ext}$ $\left(H_{n+3}(K ; Z), Z_{3}\right)=0$ from (4.2) and (1.1), it follows from the classical obstruction theory [11] that f can be extended to a map $\bar{f}: K^{n+5} \longrightarrow M_{n}^{6}$. Consider now a new cell complex

$$
L=\left\{M_{n}^{6} \cup e^{\prime n+6} ;<\bar{\nu}_{n+2} \mid S^{n}>\right\}
$$

Then we have $\pi_{n+5}(L)=0$ from (4.4), and so \bar{f} has an extension $f^{\prime}: K^{n+6} \longrightarrow L$. Thus, for the obstruction $\left\{c^{n+6}(\bar{f})\right\} \in H^{n+6}\left(K, \pi_{n+5}\left(M_{n}^{6}\right)\right)$, we have [11]

$$
\begin{equation*}
\left\{c^{n+6}(\bar{f})\right\}=f^{\prime} *\left\{c^{n+6}(k)\right\} \tag{4.9}
\end{equation*}
$$

where $k: L^{n+5} \longrightarrow M_{n}^{6}$ is the inclusion. It is obvious from the definition that $\left\{c^{n+6}(k)\right\}$ is represented by a cocycle which takes 0 on e^{n+6} and takes $\left\{<\bar{\nu}_{n+2}\left|S^{n}\right\rangle\right\}$ on $e^{\prime n+6}$. Therefore if we define

$$
S q^{4} S q^{2}: \quad H^{n}\left(X ; \pi_{n}\left(M_{n}^{6}\right)\right) \longrightarrow H^{n+6}\left(X ; \pi_{n+5}\left(M_{n}^{6}\right)\right)
$$

($X=L$ or K) using the unique non-trivial homomorphism of $\pi_{n}\left(M_{n}^{6}\right)$ to $\pi_{n+5}\left(M_{n}^{6}\right)$, then we have

$$
\begin{equation*}
\left\{c^{n+6}(k)\right\}=S q^{4} S q^{2}\left\{\bar{e}^{n}\right\} \tag{4.10}
\end{equation*}
$$

Thus it follows from (4.9), (4.10) and (4.7) that

$$
\left\{c^{n+6}(\bar{f})\right\}=S q^{4} S q^{2}\{\bar{u}\}
$$

However it is seen from (1.2) that $S q^{4} S q^{2}\{\bar{u}\}=0$ in K. Therefore we have $\left\{c^{n+6}(\bar{f})\right\}=0$, and so f has an extension $\overline{\bar{f}}: K^{n+6} \longrightarrow M_{n}^{7}$. Since $\pi_{n+6}\left(M_{n}^{7}\right)=0$ from (4.2), $\overline{\bar{f}}$ has also an extension $\tilde{f}: K^{n+7} \longrightarrow M_{n}^{7}$. This completes the proof of (4.8).

Since $\pi_{i}\left(M_{n}^{\prime}\right)=0$ for $n+7 \leqq i<2 n$ by the definition, and K is $2 n$-dimensional, \tilde{f} can be extended to a map $g: K \longrightarrow M_{n}^{\prime}$. Let $u \in H^{n}(K ; Z)$ be the generator, then it is obvious from (4.7) that $g^{*}\left\{e^{n}\right\}=f^{*}\left\{e^{n}\right\}=u$. Therefore it follows from (1.2) and (4.6) by the naturality of $S q^{i}$ that $g^{*}: H^{i}\left(M_{n}^{\prime} ; Z\right) \longrightarrow H^{i}(K ; Z)$ is isomorphic onto for $i=n, n+3, n+5$ and $n+7$. Furthermore, since $H^{i}\left(M_{n}^{\prime} ; Z\right)=H^{i}(K ; Z)$ for $i<n$ and for $i=n+1, n+2, n+4$ and $n+6$, we conclude that $g^{*}: H^{i}\left(M_{n}^{\prime} ; Z\right)$ $\longrightarrow H^{i}(K ; Z)$ is isomorphic onto for $i \leqq n+7$. Thus, in virtue of the well known theorem [15], we have
(4.11) $S^{n} * S^{n}$ and M_{n}^{\prime} is of the same ($n+6$)-homotopy type. Especially we have $\pi_{i}\left(S^{n} * S^{n}\right) \approx \pi_{i}\left(M_{n}^{\prime}\right)$ for $i \leqq n+6$.

This together with (4.2) proves (A) for $i \leqq n+6$.

5. Supplementary remark

I) (5.1) $S^{n} * S^{n}(2 \leqq n \leqq 5)$ is of the same homotopy type as a reduced complex M_{n} defined as follows: $L_{2}=\left\{S^{2} \cup e^{4} ; \eta_{3}\right\}, L_{3}=\left\{E L_{2} \cup e^{6} ;<2 \bar{\iota}_{5} \mid S^{3}>\right\}, L_{4}=\left\{E L_{3} \cup e^{8}\right.$; $\left.\nu_{4}+\omega_{4}\right\}, L_{5}=\left\{E L_{4} \cup e^{10} ;\left\langle 2 \bar{\imath}_{5}, \eta_{8} \mid\left\{S^{5} \cup e^{7} ; \eta_{5}\right\}\right\rangle\right\}$, where $E L_{i}$ is the suspended space of L_{i}, and ω_{4} is the suspension of a map $S^{6} \longrightarrow S^{3}$ introduced by Blaker-Massey.

In fact, since $S^{2} * S^{2}$ is the complex projective plane, i) and ii) are a direct consequence of the cellular decomposition of $S^{n} * S^{n}$ due to Steenrod. Thus $S^{4} * S^{4}$ is of the same homotopy type as $\left\{E L_{3} \cup e^{8} ; g\right\}$ with a suitable map g. However, since $\pi_{7}\left(E L_{3}\right) \approx Z+Z_{3}$ and is generated by $\left\{\nu_{4}\right\}$ and $\left\{\omega_{4}\right\}$ [13], we may assume that

$$
\{g\}=l_{1}\left\{\nu_{4}\right\}+l_{2}\left\{\omega_{4}\right\}
$$

with some integer l_{1} and some integer $l_{2} \bmod 3$. We saw in (2.3) that $\left[c_{4}, c_{4}\right]=0$ for the inclusion map $\iota_{4}: S^{4} \longrightarrow S^{4} * S^{4}$, and know $[10]$ that $\left[\iota_{4}, \iota_{4}\right]=2\left\{\nu_{4}\right\}-\left\{\omega_{4}\right\}$. Therefore we must have

$$
2\left\{\nu_{4}\right\}-\left\{\omega_{4}\right\}=k\left(l_{1}\left\{\nu_{4}\right\}+l_{2}\left\{\omega_{4}\right\}\right)
$$

with some integer k, and this implies that $\{g\}= \pm\left(\left\{\nu_{4}\right\}+\left\{\omega_{4}\right\}\right)$ or $\pm\left(2\left\{\nu_{4}\right\}-\left\{\omega_{4}\right\}\right)$. If the latter holds, we have the cup product of the generator of $H^{4}\left(S^{4} * S^{4} ; Z\right)$ with itself is $2 v^{8}$, where $v^{8} \in H^{8}\left(S^{4} * S^{4} ; Z\right)$ is a generator. This contradicts (1.2). Thus we may take $\nu_{4}+\omega_{4}$ in place of g. This proves iii). iv) is obvious. (Note that $\left.E\left(\left\{\nu_{4}\right\}+\left\{\omega_{4}\right\}\right)=3\left\{\nu_{5}\right\}\right)$.

The homotopy group of $S^{n} * S^{n}(2 \leqq n \leqq 5)$ can be calculated by making use of L_{n}. For example, we have easily

$$
\begin{equation*}
\pi_{7}\left(S^{4} * S^{4}\right) \approx Z_{3} \tag{5.2}
\end{equation*}
$$

II) Recently H. Cartan [3] has given the structure of $H^{*}\left(Z, n ; Z_{p}\right)$ and $H^{*}\left(Z_{p}, n ; Z_{p}\right)$ for any odd prime p by making use of the reduced cyclic power and the Bockstein homomorphism. On the other hand, S. D. Liao explained the cohomology structure of the p-fold cylic product $\vartheta_{n p}$ of an n-sphere (See especially (5.4) and (9.7) in [5]). If we apply these results, we can obtain the results with respect to the homotopy of $\vartheta_{n p}$ by the arguments similar to those in above sections. For example, we have
(5.3) Let p be an odd prime, and let $n \geq 2 p+2$. Then $C\left(\pi_{i}\left(\vartheta_{n p}\right), p\right) \approx Z_{p}$ for $i=n+2 j(j=1,2, \cdots, p-2)$ and $n+2(p-1)+1$, and vanishes for other $i \leqq n+2(p-1)$.
III) Let Y be the $(n-1)$-fold suspended space of the real projective plane.

Namely Y is a cell complex $S^{n} \cup e^{n+1}$ such that e^{n+1} is attached to S^{n} by a map of degree 2. Then the Stein's formulas [12, p. 582] give the integral homology groups of the symmetric product $Y * Y$ as follows:
(5.4) $H_{0}(Y * Y ; Z) \approx Z ; H^{n+i}(Y * Y ; Z) \approx Z_{2}$ for $i=0, n+1$ and $2 \leqq i \leqq n-1$; $H_{2 n}(Y * Y ; Z) \approx Z_{4}$ for even $n, \approx Z_{2}$ for odd $n ; H_{i}(Y * Y ; Z)=0$ for other i.

Thus the cohomology group $H^{n+i}\left(Y * Y ; Z_{2}\right)$ is Z_{2} for $i=0,1,2$ and $n+2$, and is $Z_{2}+Z_{2}$ for $3 \leqq i \leqq n+1$. Let a be the generator of $H^{n}\left(Y * Y ; Z_{2}\right)$. Then we have
(5.5) We can take as a base of $H^{*}\left(Y * Y ; Z_{2}\right)$ the following: $S q^{i} a(0 \leqq i \leqq n)$, $S q^{i} S q^{1} a(2 \leqq i \leqq n+1)$ and $a \cup S q^{1} a$. Furthermore we have the relations:

$$
\begin{aligned}
S q^{i} S q^{j+1} a & =\binom{j}{i} S q^{i+j+1} a+\binom{j-1}{i-2} S q^{i+j} S q^{1} a, \\
S q^{i} S q^{j+1} S q^{1} a & =\binom{j}{i} S q^{i+j+1} S q^{1} a, \quad(j \geq 1) .
\end{aligned}
$$

Applying the methods similar to those by which R. Bott [2] gives a proof of (1.2) in this paper, (5.5) can be proved easily. (The basic tools of this method are the Smith-Richardson sequence and the Theorem 2 in [2]).

Now we can calculate the (stable) homotopy groups $\pi_{i}(Y * Y)$ for $i \leqq 2 n-2$ by the method explained in $\S 3$. The results are as follows:
(5.6) $\pi_{i}(Y * Y)=0$ for $0 \leqq i<n, n+1 \leqq i \leqq n+4$ and $n+7$.
$\pi_{i}(Y * Y) \approx Z_{2}$ for $i=n, n+5, n+6$ and $n+8$, and $\pi_{n+9}(Y * Y)$ is not cyclic.

References

[1] J. Adem: The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 720-726.
[2] R. Bott: On symmetric products and the Steenrod squares, Ann. of Math., 57 (1953), 579-590.
[3] H. Cartan: Sur les groupes d'Eilenberg-MacLane II, Proc. Nat. Acad. Sci. U. S. A., 40 (1954), 704-707.
[4] H. Cartan and J-P. Serre, Espaces fibres et groups d'homotopie. I. C. R. Acad. Sci. Paris, 234 (1952), 288-290; II, ibid., 393-395.
[5] S. D. Liao: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.
[6] J. C. Moore: Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.
[7] M. Nakaoka: Classification of mappings of a complex into a special kind of complex. J. of the Inst. Polytech, Osaka City Univ., 3 (1952), 101-143.
[8] J-P. Serre: Homologie singuliere des espaces flbres, Ann. of Math., 54 (1951), 425-505.
[9] J-P. Serre: Groupes d'homotopie et classes de groupes abeliens, Ann. of Math., 58 (1953), 325-350.
[10] J-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232.
[11] N. E. Steenrod: Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
[12] S. K. Stein : Homology of the two-fold symmetric product, Ann. of Math., 59 (1954), 570-583.
[13] H. Toda: Generalized Whitehead products and homotopy groups of spheres, J. of the Inst. Polytech., Osaka City Univ., 3 (1952), 43-82.
[14] H. Toda: Calcul de groupes d'homotopie des spheres, C. R. Acad. Sci. Paris, 240 (1955), 147-149.
[15] J. H. C. Whitehead : Combinatorial homotopy, I, Bull. Amer. Math. Soc., 55 (1949), 213-213-245.

[^0]: 1) Numbers in brackets refer to the bibliography at the end of this paper.
 2) We denote by Z and Z_{p} the additive groups of integers, of integers mod p respectively.
 3) The author is indebted to Prof. H. Toda for pointing out the use of this method.
[^1]: 4) As usual, we denote $H^{i}(K(\pi, n) ; G)$ by $H^{i}(\pi, n ; G)$ simply.
[^2]: 5) We assume throughout this paper that $n \geqq 2$.
