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In the study of spaces of continuous functions on a topological space the weak
topology and the strong topology are useful. Indeed, every completely regular space
is homeomorphic with a functional space with the weak topology, and this fact
implies Tychonoff—(\fech’s theorem about compactification.’> Moreover the topological
space is defined up to a homeomorphism by the topological ring of all continuous
functions with the weak topology.” It is also well known that a compact T,-space
is characterized by the topological ring of all continuous functions with the strong
topology.?> However, there does not exist such a usefulness in the weak or strong
uniform topology by studying uniform spaces except particular cases. For example,
a complete metric space is characterized by the topological ring of all bounded uni-
formly continuous functions with the strong topology or with the weak topology,*’
but in the case of a general complete uniform space this proposition is invalid.

In this paper we define a new uniform topology, m—uniform topology of func-
tional space and give analogous theories about uniform spaces as about topological
spaces. In §1 the definition of m—uniform topology is given, and it is shown that
any general uniform space are uniformly homeomorphic with a functional space with
this uniform topology. This fact implies that any uniform space is uniformly
homeomorphic with a dense subspace of a complete uniform space. In §2 it is
shown that if we introduce a suitable uniform topology in the topological ring or
lattice of all bounded uniformly continuous functions with the strong topology, then
this ring or lattice defines the uniform space up to a uniform homeomorphism.
M-uniform topology is used as the suitable uniform topology.

§1. From now on we denote by R a uniform space and by {lU,la€ A},
U, = {Uy(x)|x€ R} the uniform nbd (= neighborhood) system of R.

DeriniTion.  For a real valued function f(x) on R and for a subset A of R we
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denote by [f(A)] the closed interval [irelf f(x), sup f(x)].
zCA ZEA

Derinrrion.  do(g(x), f(x)) =Max (d(g(x) [f(U ()], d(f(x)Lg(U(2))D).
DerFINITION. Uge(f) = {gld(f(x), g(x)) < e for all x€ R} & F(R), where F(R)

denotes a set of real valued functions on R.

TueoreM 1. (e la€ A, e >0} Mpe = (U (F)|FEC(R)}) satisfies the condition
of uniform nbd system, where C(R) is a set of continuous functions on R.

Proof. Let f, g€ C(R), f==g, then there exists x€ R such that f(x)==g(x).
Since f(x) is continuous, there exist ¢ >0 and «€A such that d(g(x),
[A(UL(x))]) >e>>0. Hence g¢ Un(f).

Since for Ug< U,,» 0< 6<e we get Ups(f) E& Un(f) for every f&C(R),
for every 1, and 1, there exists Ugs such that Upgs(f) S Uue(f) A Uner(f)
(fECR)).

For «€ A and ¢ >0 we take € A such that Y {Ug(y)|y€ Up(x)} & Uy(x). If
& he Upt(f), then since d(g(x), [f(Ug(x))])<~%, there exist y, 2€ Up(x) such
that  d(g(x), [f(3), F@D< 5. Since  d(f(3), [W(Ups(»D < 5, d(f(2),
[A(Us(2))]) < %, there exist », y” such that A( y')—;—< £, K y”)+% > f(2).
Hence we get h(y)—e< f(3)—5 <g(x), h(y")+e>f(2)+ >g(x). Since
¥,y € Uy(x), d(g(x), [M(Uy(x))]) < e holds. In a similar way we get d(h(x),
[g(U.(x))]) < e and accordingly d,(g(x), f(x)) <e. Therefore g€ U (k).

Derinition. We call this uniform topology m-—uniform topology and denote by
Cu(R), C'(R) and C,’(R) the uniform spaces with the m—uniform topology consist of
the bounded uniformly continuous functions, of the continuous functions taking values
between 0 and 1 and of the uniformly continuous functions taking values between 0

and 1 respectively.

Remark. Generally, the m-topology, the topology defined by the m-—uniform
topology is weaker than the strong topology and it is stronger than the weak
topology in C(R).

Derinition. We define M(x) to mean the mapping which maps x € R to the
function x(f) = f(x) (f€C,/(R)) on C,/(R).

Lemma 1. M(R) S C'(CJ/(R)).

Proof. For any f€C,(R) and ¢ >0 there exists a€ A such that f(U,(x))
CE S, (f(x)) for every x€ R Since g€ Uy (f) implies d(g(x), [f(U (2N <e,

5) d(p, M) denotes the distance between a real number p and a subset M of the space of
real numbers.

6) We denote |18 <|la to mean Ug(x) & Uyx(x) for every x¢€ R.

7) Se(p)=1{qld(p, ¢) <&})-
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there exist y, 2€ U,(x) such that (f(y)—e, f(2)+e)dg(x). Hence g(x) € (f(x)—2e,
f(R)+2¢), i.e. |x(f)—x(g)|=|f(x)—g(x)]| <2 Therefore x(f)¢cC'(C,/(R)).

Tueorem 2. M(x) is a uniformly homeomorphic mapping between R and
M(R) S C'(Cy/(R)).

Proof. It is obvious that M(x) is one-to-one. M(x) is uniformly continuous.
For given ¢ >0 and a € A, we take B € A such that Ug*<U,.»> If y€ Up(x) and if
fEC/(R), f(y) > f(x), then there exist nbds V,(x), V,(») of x, ¥ respectively such that
Vi) A V() =6, Vi(x)“YVy(3) S Ups(x); f(Vi(x)) & (f(x) —¢, f(x)+e), F(Va(3))
S (f(9)—& f(¥)+¢e). From g,, g,€C,/(R) such that g,(x) = f(y), &(Vi(x)) =0,
f(9)=8,=0;" g.(y) =f(x), g(V3(y)) =1 1=g, = f(x), we get an element

g=(fVg)ng, of C/(R). If zeV,(x), then f(y)+e>g(2)=f(2)>f(x)—¢
:g(y)—e. Since ¥y € Uy(2), we get d (f(2), g(z))<e. In a similar way we get
d,(f(2), g(2))<e for z€ V,(y). For z¢& V,(x)Y V,(y) f(2) =g(z) holds. Hence
g€ Uy(f). Since x(f) =y(g), x(g) =y(f), we see M(9) € Ugee(M(x)).' Thus
M(x) is uniformly continuous.

Next we show that the inverse mapping M~'(x(f)) is also uniformly continuous.
For a given a€ A we take BE€A such that Up(x) & Uy(x) for every x€R. If
y& Uy(x), then for an element f of C,(R) such that f(Ups(x)) =1, f(y) =0,

g € Up3(f) implies lg(x) 1[< L d.e x(g) = (x)> 5 Since y(f) =0, we get
dey(y(f), ()= 2 , i.e. M(y)¢ Up33(M(x)). Hence M(y) € Up33(M(x)) implies
y€ Uy(x), and hence M~*(x(f)) is uniformly continuous.

Let {F,|y€C} be a cauchy filter of R, then for each f¢ C,'(R) { f(Fs)|reC)}
converges to a real value p = u(f). Hence u(f) is a real valued function defined
on C,/(R).

Lemma 2. u(f)€C'(C,/(R)).

Proof. For an arbitrary ¢ >0 we take a, € A such that |f(x)—f(y)]|<e
(y€eUy(x)), N, >Upg* Let g€ Us(f) and let Us(x) D F , then since for each
yCF, there exist 2z, 2'¢ Ug(y) such that f(2)—e<g(y) < f(2)+e, f(2) > f(x)—¢
and f(2") < f(x)+e hold for z, 2 € U,(x). Hence f(x)—2¢<g(y) < f(x)+2¢, i.e.
| f(x)—g(y)| < 2e. Since |f(x)-u(f)|<e we get |u(f)-g(y)|< 3e for every
y€F,. Therefore |u(f)—u(g)| <3¢ i.e. u(f)EC(Cy(R)).

Lemma 3. For every diverging cauchy filter {F |y €C} of R {M(F,)|y €C} con-
verges to u(f) in C'(C/(R)).

Proof. For simplicity we can restrict {F,} to a cauchy filter of closed sets.

8) We define UB*< Uy to mean y, z€ Up(x) implies z€ Ug( ¥) for every x€ R.

9) Vi,*(x) means the complement of Vi(x). g,(V:°(x)) =0 means that g,(z) =0 for every
ze Vio(x).

10) Ugz:(a) denotes the uniform nbd of @€ C'(C’y(R)) defined by |lae and €.
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For given &/ € A and ¢>>0, we take @, BE€A such that 1y >11,% > 11, > 1lg* and
x, Fy such that x€ Fy C Up(xg). Now we shall prove x€ Upyee(#). For f€C,/(R)
we take F€ (Fy} such that ¢ F & Us(xp), | /() —f(2)| < 5 (g z€ F). I d(f(x),
LAFD< % then |2(f)~u(f)|<e i.e. dye(x(f)u(f)) e If f(x)> iggf(y),
then there exist a nbd V, of F and a nbd V, of x such that V, = S(F Ug)*? for
some §' € 4; Vi Vo =4, VYV, SUL0); SIVIS (0=, av ), AV S (-
f(x)+¢). For V,, V, we define g,, g,, g € C,’(R) such that g,(F) = f(x), g.(V{)=0,
0<g, <f(®); &) =u(f), gV =1, 1=g,=u(f); g=(fVgIAg.- In a
similar way as in the proof of Theorem 2 we can show g€ Uy.(f). Since
2(f) =u(g), x(g) =u(f), we get x€ Uye(u). Hence for any a’€ A, e >0 there
exists 7, € C such that y =7, implies F ~ Upye:(#)==¢. Therefore {Fy} converges
to u( f).

From this lemma we get
Tueorem 3. M(R)(ZC'(C,(R))) is complete.*?

§2. The topological ring of the bounded uniformly continuous functions with the
strong topology characterizes the complete metric space. Generally, a uniform homeo-
morphism between two complete uniform spaces implies the topological isomorphism
between their topological rings of the bounded uniformly continuous functions with
the strong topology, but the inverse is not valid.'*> Hence we use that topological
ring with a suitable uniform topology to characterize R.

Lemma 4. M-uniform topology agrees with the strong topology in C,(R).

Prbof. For given f€C,(R) and ¢ >0 we choose a€ A such that y, z€ Uy,(x)
implies |f(y)~f(2)| < 5. Since g€Uuz(f) implies d(g(x), [AUalx)D <
for every x€ R, |g(x)—f(x)| < e holds for g€ U,,%(f ). Thus this lemma is estab-
lished.

DeriniTion. We use the notation L(R) to mean C,(R) with the natural lattice
order.

DeriniTioN. If a non-vacous subset J of L(R) satisfies the conditions,

i) f=ge] implies f€J,

ii) if there exists y{;fy for f, ¢ J, then ~ fy€ ],

then we call J an i—set.

11) S (F, Us) = Y{Up(x)|Us(x)~ Fy = ¢

12) M(R) means the closure in C'(C,/(R)).

13) Let R be a non-compact complete uniform space and let S be the totally bounded uni-
form space having the same topology as R and with the uniform subbasis {N,|fe C,(R)},

Ry = (Nelk = +1,4-2,+), Nk={x1§ <f<x)<’in%>, then Cu(R) = Cu(S). Tf we

denote by S the completion of S, then C,(R) = Cy(S), but R and § are not uniformly
homeomorphic,
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We call a non-vacous subset satisfying the dual condition an s-—sef.

DeriniTion. We mean by an i—ideal a subset I of L(R) satisfying

1) I=~{/JxlA€M)}, where J, are i-sets, and for every 1, pn€ M there exists
v€M such that J, & J) ~ Ju»

2) if fy€l (7€C) and if {f,|y€C} are upper bounded,'*? then for every U,
there exist g €1 and f,//(y € C) such that g € U, (f/), f = fv,

3) [ is a non-trivial ideal.’®?

We call a subset satisfying the dual condition an s—ideal.

Lemma 5. For an open set V. {(flAxeV:f(x)<a}=J.(V) is an i-set.
(flAxe V:f(x) >a} = S(V) is an s—set.

Proof. 1t is obvious.

Lemma 6. {f|f(x) <k} = Ju(x) is an i-ideal.
{flf(x) =k} = Si(x) is an s—ideal.

Proof. I,(x) = ~{Ja(V)|la>>k, V is an open nbd of x}. Since Condition 2) is
obviously valid for an isolated point x, we prove 2) for an accumulating point x.
Let f,€I(x) (7€ C) and let f, <gq for a real number ¢, then for a given U, and
for Ug such that Ug¥< 1, we can define f,f/€L(R) such that f(x)=2kF,
S(U () =q; f(3) =¢q, yeUp(x); k< f<q; f/ =f,Vf. For a point z¢ Us(x)
f/(z) = f(2) holds. For a point z¢ Up(x), f(y) =q=f/(2)=f(z) =k=f"'(¥)
holds. Since x, y€ Uy(2), f€ Uue(f/) and f€ I(x) hold.

LemmA 7. For every i-set | there exists a real number a and an open set P such
that f(x) < a for some x € P implies f€ J.2%

Proof. If we assume the contrary, then from the property of i-set a¢ J holds
for every a. Hence J = ¢, which is a contradiction.

Lemma 8. If I = ~{J\|1A€ M} is an i-ideal and if sup {a| there exists P such
that x€P, f(x) < a imply fF€J\} —e =a,(e>0), then 32}3%# — oo,

Proof. Assume that infa, = —co, then for every fé€ L(R) there exists a real
AEN

number & and @, such that e+a, < k<f. Now let us show f¢ J,. Since k >c¢e+a,,
for every open set P there exists fp(x) € L(R) such that fp(x) <k, x€P; fpt J,.
Hence f,“ k¢ J,, and hence inf (fp“k) = ké¢ J. Thus we get f& J, 21 and I = ¢,
which is a contradiction. )

Let us put infa, =a (5= — ), then for every J, there exists some open set P
A€M

14) There exists f such that f> fy (v€C).
15) I==L(R), ¢.
16) Lemmas 7-14 admit the dual propositions.
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such that f(x) < a and x€ P imply f€ J,. For this ¢ we give the following

Dermnition. Y {P{f(x) < a and x€ P (open) imply f¢€ J,} = Py.
{(flHx e Py f(x) L a} = Ax S .

LemMma. 9. Ju & Jy (u, A€ M) implies P. P, .

Proof. If P, < P,, then there exist f€ L(R) and x€ P, such that f(x) <a,
f&Ja. Since f€ Ju, Ju ST,

Lemma 10. {P,|A€ M) is a cauchy filter.

Proof. {P,} is a filter from Lemma 9.

Assume that {P,} is not cauchy, then there exists 11, such that U,(x) 22 P, for
every x, 2. Let Ug¥*< 1, and let b be an arbitrary large real number, then taking
f2€L(R) such that fp(Us(x)) =0, fu(Us,S(¥)) =a; a<f, <b we get f,€ A,
C A Jr=1 for every x€R. Since {fy|¥€R} is bounded, from Condition 2) of an
i-ideal there exist f¢I, f,) > f, such that f¢€ Ug(f,). Since f,/(Up(x))=2b, it
must be f(x) == b--¢ for every x€ R, and hence b—¢c€ 1. Therefore I = L(R) holds,
but this is impossible.

Since R is complete, {P,} converges to a point x of R. Then {f|f(x) <a—c¢}
= Ja-e(x) &I is obvious.

Lemma 11, { flf(x) <c) = J/(x) 1T holds for ¢ = sup {k| Ju(x) Z1I}.
Proof. 1t is obvious.
Lemma 12. f(x) >c implies f& I for the same ¢ in lemma 11.

Proof. If we assume that f(x) >c and f€1I, then there exists a real number %
such that f(x) >k >c. If g(x) <k then there exists #€ L(R) such that k(x) g,
fYh>g. Since h€l, we get fYhel and accordingly g€I. Hence J,(p) 1],
which contradicts the definition of c.

DermniTioN. We denote by I(x, ¢) an ideal I satisfying Lemmas 12, 11.
Every i-ideal is represented uniquely by the form I(x, c).

DeriniTioN. For two i—ideals I,, I, we define I,~I, to mean that there exists
some s-ideal S such that S~I, =¢, S~I, = ¢.

Lemma 13. I(x, ¢)~I(y,d), if and only if x =y.
Proof. 1t is obvious.

Derinrrion. For an 7-ideal I and an s-ideal S, we define S~I to mean that
there exist some i-ideal I, and s-ideal S, such that S~S,, I~I;; S~ I, = ¢.

LemMma 14, I(x, ¢)~S(y, d), if and only if x =y.
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Proof. It is obvious.

Hence we can classify all the i-ideals and all the s-ideals by ~. We denote by
L(R) the totality of such classes and by L(x) the one-to-one mapping from R onto
Q(R), which maps x to the classes consisting of I(x, @) and S(x, b).

Dermvition. If for a family {I(x, a(x))|x€ A} of i-ideals there exists fe NI
€A
(x, a(x)), then we call this family lower bounded.
“Upper bounded” is defined as the dual.

Lemma 15, {I(x, a(x))|x€ A} is lower bounded, if and only if igf a(x) == —oo,
rxc4
Proof. 1t is obvious.

Dermnition.  8(U) and &(A) are called u-disjoint, if and only if for every lower
bounded {I(x, a(x))|x€ U} and upper bounded {S(x, b(x))|x€ A} there exists
foQUI(x, a(x))mQAS(x, b(x)).

Lemma 16, 8(U) and 8(A) are u—disjoint, if and only if there exists a uni-
Sormly continuous function f such that f(U) =0, f(A) =1, 0< F< 1.

Proof. 1t is obvious.

Dermvition. A family {2(V(x))|x€ R} of non-void subsets of £(R) is called a
uniform nbd of L(R), if and only if there exists {2(U(x))|x€ R} such that

1) L(U(x)) and L(V(x)) are u—disjoint,

2) if {I(y,a(y))|y€ U(x)} is lower bounded for every x€ R, then there exist
b(x), a, ¢ such that fo,€ ~{I°(y, a(p))|y€U(x)} and g,€I(x, b(x)) imply
82 ¢ Uy (f) for every x€ R.

Lemma 17. {(V(x))|x€ R} is a uniform nbd of L(R), if and only if
{V(x)|x€R} is a uniform nbd of R.

Proof. If {V(x)|x€ R} is a uniform nbd of R, then there exists a uniform nbd
U, such that U,(x) and V°(x) are u—disjoint for each x€ R. Since for a lower
bounded family {I(y, a(y)|y€ Un(x)} inf {a(p)|y€ Uy(x)} =c(x)== —oo, we put
b(x) =clx)—1. If g,€I(x, b(x)), fu€ ~{I°(y, a(¥))|y€ Uy(x)}, then go(x) = b(x) and
J2(9) = b(x)+1 (y€ Uy(x)) hold. Hence g, ¢ U, (fz). Therefore {&(V(x))|x€R}
is a uniform nbd of L(R).

Conversely, if {V(x)|x€ R} is no uniform nbd of £(R), then we can show that
Condition 2) is not valid for any {U(x)} such that U(x) and V°(x) are u-disjoint.
Take the lower bounded family {I,(¥)|y€ U(x)} and any I(x, b(x)), a, ¢, then since
there exist €A and x€R such that Ug*<U,, Us(x) = V(x) 2 Ux), we get
f,8€L(R) such that f(Ux)) =2, f(V¢(x)) =0b'(x)=Min (b(x)-1,2), b'(x)
=f=2;8x) =), g(y) =2 yeUs(x)—-V(x), g(2) =f(2) (for 2z¢ Up(x)),
b'(x) £ g <2 as in the proof of Theorem 2. It is obvious that f€ ~{I{(¥»)|y€ U(x)},



94 Jun-iti NAGATA

g€l(x, b(x)) and f€ U,(g). Therefore {V(x)|x€ R} is not a uniform nbd of ¥(R).
From this lemma we get

Tueorem 4. In order that two compete uniform spaces R, and R, are uniformly
homeomor phic, it is necessary and sufficient that L(R,) and L(R,) are umniformly
isomorphic.}™?

Next, by C(R) we denote C,(R) with the natural ring-operation. Since f=g
in L(R), if and only if there exists % such that 4> = f—g in C(R), a ring-isomorphism
between C(R,) and C(R,) generates a lattice-isomorphism between L(R,) and L(R,).
Hence we get the following corollary.

CoroLLArY. In order that two complete uniform spaces R, and R, are uniformly
homeomor phic, it is necessary and sufficient that C(R,) and C(R,) are uniformly
isomor phic.

Finally, let us denote by L’'(R) C,/(R) with the natural lattice-order, then the
analogous theory is simpler.

Dermition We call a subset I of L(R) an i'—ideal, if and only if I satisfies
conditions 1),2) in the definition of i-ideal and 3)’ I is a non-trivial ideal and
closed, 4)” I is a minimum set satisfying 1), 2), 3).

We call a subset S satisfying the dual condition an s—ideal.
Lemma 18. I(x) = { f| f(x) =0} is an i’'~ideal.

Lemma 19. For any i-set J there eXists an open set P and a™>0 such that
f(x) Za x€P imply fc].

Let I be an i’'—ideal and let I = J,, where J, are i-sets, then we use the

AEX

following notations, “Y{P|f(x) <a for some x¢ P implies f¢J,, and P is open}
= Pq, aL;JoP)\w =Py; {(flHxCPry: f(2) S al = Aya, ak)JOAAw = A\ & -

Lemma 20. ]p, gj)\ imﬁlies PM__C_P)\.

Proof. Puq & P,, is proved for every ¢ >0 asin Lemma 9, and hence P, T P,.

Lemma 21. {P\|A€ M} is a cauchy filter.

Proof. {P,} is a filter by Lemma 20. If we assume that it is not cauchy, then
for some 1, and for every 4, x U,(x) 22 P, holds. Choose 3 such that 1g*¥< 11, and
Jf»€ L'(R) such that f,,(Us(x)) =1, f,(U,(x)) =0, then f,€ ~Ax& ~J, =1 Hence
there exist f,/, g such that f, < f,/, g€ Upe(f), g €1 for every € >0. Therefore
g(x) > 1—¢ for every x€ R, and hence 1--¢e€I. Thus it must be I =1 = L'(R), but
this is a contradiction.

From this lemma any {P,} converges to a point x.

17) A uniform isomorphism means a uniform homeomorphism preserving the lattice-order.
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Lemma 22. If {P,) converges to x, then I = I(x).

Proof. Let f(x) =0, then for Aany a€ A and e >0 there exist 3, ¥ € A such that
U* < Up < Ug* < Uy, f(y)<Te (y€ Up(x)).

Taking g’ € L'(R) such that g’(U (x)) =0, g’(Up®(x)) =1, we get g =g’ ~f€ L.
For U (x) ~Py=1=¢ for every 2, and this implies g€ ~ A, . Since g€ Uy(f) is
obvious, we get €I =1 Therefore I22I(x) = { f|f(x) =0}, and hence from Con-
dition 4) of an i-ideal it must be I = I(x).

Lemma 23. An  arbitrary s'-ideal S is represented by the form S(x)
= {flf(x) =1}.

Dermvition. By I~S we denote that J~S = ¢ holds for the i"-ideal I and for the
s’—ideal S.

Lemma 24. I(x)~S(y), if and only if x =y.

Herce we can classify all the ¢~ and s’-ideals by~. We denote by &(R) the
totality of such pairs and by ¥'(x) the one-to-one mapping from R onto £'(R).

Derinition.  We denote by €(A) > (&) the fact that ~ {(I(y)|y€ A} T I(x).

Lemma 25. CA) 3 (%) if and only if x€A.

Derinirion. By a star-uniform nbd we mean a family {¢(V(x))|x€ R} of open
nbds of €(x) such that for scme a, ¢ and for every f€S(x) and g€ ~{I(»)y
€ Uy(x)}, g¢ Uge(f) holds.

LemMma 26. If {Uy(x)|x€ R} is a uniform nbd of R, then {¥'(U,(x))|x€R) is
a star-uniform nbd of ¥'(R).

Proof. If {U,(x)} is a uniform nbd, then f€S(x) and g€ ~{I(M)|y€ Ux(x)}
imply f(x) =1, g(Uy(x)) =0 and accordingly g¢& U, (f).

Lemma 27. If {S(V(x), B)|x€R) is no uniform nbd of R, then (&' (V (%)) |x € R}
is no star-uniform nbd of L (R), where B = {V(¥)|y€R} is a family of nbds.

Proof. For a given U, we choose 3€ A such that Ug*<U,. Since Up(x)ES
(V(x), B) for some x€ R, for y€ Up(x)—S(V(x), B) we get nbds V,(x), V,(y) ard
J €X' (R) such that Vy(x) A Vo(9) =9, V()Y V() S Us(x); f(V(2)) =0, f(3) =1
Moreover we get g/, g”7,g€L'(R) such that g'(x) =1, g (V§(x))=0; g”7(y) =0,
g"(Ve(y")) =1; g =(g'Vf)ag” 1t is obvious that f¢ ~{I(y)|y€ V(x)}, g€Sx)
and g € U, (f) for every ¢ >0. Therefore {&(V(x))} is no star-uniform nbd.

If we define uniform topology of ¥(R) by the uniform nbds {S(L'(V(x)),
(B))|x€R} for star-uniform nbds (V) = (L (V(x))}, then R and ¥(R) are
uniformly homeomorphio from Lemmas 26, 27.

Tueorem 5. In order that two complete uniform spaces R, and R, are uniformly
homeomorphic it is necessary and sufficient that L'(R,) and L'(R,)are uniformly
isomorphic.



