Meromorphic approximations on Riemann surfaces

By Kanenji Sakakihara
(Received Feb. 1, 1954)

Let D, D^{\prime} be compact domains of a Riemann surface R relative to R such that $\bar{D} \subset D^{\prime}$ and D be enclosed by a finite number of closed Jordan curves. Let P be a finite point set contained in D, Q^{\prime} be a selected set of the collection of compact components of $D^{\prime}-\bar{D}$ relative to D^{\prime}, that is, any point of Q^{\prime} is contained in one and only one element of the collection and conversely any element of the collection contains one and only one point of Q^{\prime}, and Q be a selected set of the collection of compact components of $R-\bar{D}$ relative to R. Obviously both Q^{\prime} and Q are finite point sets. Then we have the following theorems:

Theorem 1'. There exists such a function as is meromorphic in D^{\prime} and has its poles on P.

Theorem 2'. Any function which is regular in a certain domain containing \bar{D} is uniformly approximated on \bar{D} by such a function as is meromorphic on D^{\prime} and has its poles on Q^{\prime}.

Theorem 3'. Any functon which is meromorphic in a certain domain containing \bar{D} and has its poles on P is uniformly approximated on \bar{D} by such a function as is meromorphic in D^{\prime} and has its poles on $P \cup Q^{\prime}$.

Theorem 1. There exists such a function as is meromorphic in R and has its poles on P.

Theorem 2. Any function which is regular in a certain domain contiaining \bar{D} is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on Q.

Theorem 3. Any function which is meromorphic in a certain domain containing \bar{D} and has its poles on P is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on $P \cup Q$.

According to the method of Behenke and Stein ${ }^{11}$, these theorems are easily derived by the following process ${ }^{2}$:

1) Behnke und Stein: Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann. 120 (1948), pp. 430-461.
2) Theorem 1^{\prime} is trivial. Theorem 2^{\prime} is a modified one of a theorem in the above paper in which D is simply connected relative to D^{\prime}.

The purpose of this paper is to bring Theorem 2,3 in the following formulations.
Theorem 2*. Any function which is continuous on \bar{D} and regular in D is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on Q.

Theorem 3*. Any function which is continuous on $\bar{D}-P$ and meromorphic in D is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on $P \cup Q$.

Since Theorem 3* follows from Theorem 1, 2*, it is sufficient to prove Theorem 2^{*} only. To see this, it is sufficient to prove the following theorem.

Theorem 4. Any function which is continuous on \bar{D} and regular in D is uniformly approximated on D by such a function as is regular in a certain domain containing \bar{D}.

We shall begin with some preparations. A closed Jordan curve is briefly called a loop. When there exists a family of mutually homotopic loops, its order is denoted by $>$, the part enclosed by two mutually homotopic loops α, β by (α, β), and (α, β) $\cup \mu,(\mu, \beta) \cup \beta,(\alpha, \beta) \cup \mu \cup \beta$ by $[\mu, \beta),(\mu, \beta],[\mu, \beta]$ respectively. Also the definition domain or the range of a function f is denoted by $\operatorname{dom} f$ or ran f, and a function which is defined on a set E by $f \mid E$. Throughout this paper, we assume that a function is continuous on its domain and regular in the interior of its domain.

Lemma 1. Let $\alpha_{0}, \alpha, \beta, \beta_{0}$ be four mutually homotopic loops arranged in this order. Then, for any positive number ε, there exist two loops $\alpha^{\prime}, \beta^{\prime}$ and a function φ such that

1. $\alpha_{0}>\alpha^{\prime}>\alpha, \beta>\beta^{\prime}>\beta_{0} ;$
2. $\operatorname{dom} \varphi=\left[\alpha^{\prime}, \beta^{\prime}\right)$, $\operatorname{ran} \varphi \subset\left[\mu, \beta_{0}\right)$;
3. $|I-\varphi|<\varepsilon$ on $\left[\alpha^{\prime}, \beta\right]$.
where I is the identity function.
Proof. We can assume without loss of generality that $\left[\alpha_{0}, \beta_{0}\right]$ lies on the z-plane. On the w-plane, if the Jordan domain enclosed by κ contains λ, then we define the ordering as $\kappa>\lambda$. Let $\left\{\alpha_{n}\right\}$ be a sequence such that $\alpha_{0}>\alpha_{n_{n}} \downarrow \alpha$ and f_{n} the function which maps topologically $\left[\mu_{n}, \beta_{0}\right]$ onto the closed ring $\left[\kappa, f_{n}\left(\beta_{0}\right)\right]$ on the w-plane, α_{n} onto κ, β_{0} onto $f_{n}\left(\beta_{0}\right)$ and conformally (μ_{n}, β_{0}) onto ($\kappa, f_{n}\left(\beta_{0}\right)$), where $\kappa, f_{n}\left(\beta_{0}\right)$ are concentric circles. Then the circles $f_{n}\left(\beta_{0}\right)$ are monotone-increasing and converge to a certain circle $\lambda(<\boldsymbol{\kappa})$.

Let g_{n} be the inverse function of f_{n}, then we shall show that g_{n} form a normal family on κ. To see this, it is sufficient to prove that g_{n} are equi-continuous on κ. Since f_{n} form a normal family on (α, β_{0}), if g_{n} were not equi-continuous on κ, there would exist an increasing sequence $\left\{n_{i}\right\}$ of natural numbers, a function $f \mid\left(\alpha, \beta_{0}\right)$, $\omega_{i}^{\prime}, \omega_{i}^{\prime \prime}, \omega(\in \kappa)$ and $\varsigma^{\prime}, \varsigma^{\prime \prime}$ such that

$$
\begin{aligned}
& f_{n_{i}} \rightarrow f \quad \text { on }\left(\mu, \beta_{0}\right) \\
& \omega_{i}^{\prime} \rightarrow \omega, \omega_{i}^{\prime \prime} \rightarrow \omega ; \\
& g_{n_{i}}\left(\omega_{i}^{\prime}\right) \rightarrow \varsigma^{\prime}, g_{n_{i}}\left(\omega_{i}^{\prime \prime}\right) \rightarrow \varsigma^{\prime \prime}, \varsigma^{\prime} \neq \zeta^{\prime \prime}
\end{aligned}
$$

$\alpha_{n_{\imath}} \alpha$

1. Obviously $\varsigma^{\prime}, \varsigma^{\prime \prime} \in \alpha$. Describe two circles with their centers $\varsigma^{\prime}, \varsigma^{\prime \prime}$ and with the common radius $l=\frac{1}{3}\left|\varsigma^{\prime}-\varsigma^{\prime \prime}\right|$ and let $U_{l}\left(\varsigma^{\prime}\right), U_{l}\left(\varsigma^{\prime \prime}\right)$ be the interiors of these circles.
2. Since $\varsigma^{\prime}, \varsigma^{\prime \prime}$ are accessible boundary points of (μ, β_{0}), there exist such two curves $\gamma_{0}{ }^{\prime}, \gamma_{0}^{\prime \prime}$ as end in $\varsigma^{\prime}, \varsigma^{\prime \prime}$ and are contained in $\left[\kappa, \beta_{0}\right) \cap U_{l}\left(\varsigma^{\prime}\right),\left[\kappa, \beta_{0}\right) \cap U_{l}\left(\varsigma^{\prime \prime}\right)$, respectively. Let $z^{\prime}, z^{\prime \prime}$ be the initial points of $\gamma_{0}{ }^{\prime}, \gamma_{0}{ }^{\prime \prime}$.
3. There exist two curves $\gamma^{\prime}, \gamma^{\prime \prime}$ such that, (i) $\gamma^{\prime}, \gamma^{\prime \prime}$ contain $g_{n_{i}}\left(\omega_{i}^{\prime}\right), g_{n i}\left(\omega_{i}^{\prime \prime}\right)$ and end in $\zeta^{\prime}, \zeta^{\prime \prime}$ respectively, (ii) the parts $\gamma_{i}^{\prime}, \gamma_{i}{ }^{\prime \prime}$ of $\gamma^{\prime}, \gamma^{\prime \prime}$ rising respectively from $g_{n_{i}\left(\omega_{i}\right)}$, $g_{n_{i}}\left(\omega_{i}{ }^{\prime \prime}\right)$ are contained in $\left[\alpha_{n_{i}}, \alpha\right]$.
4. Put $w^{\prime}=f\left(z^{\prime}\right), w_{i}^{\prime}=f_{n_{i}}\left(z^{\prime}\right)$, then $w_{i}^{\prime} \rightarrow w^{\prime}$.

Put $w^{\prime \prime}=f\left(z^{\prime \prime}\right), w_{i}^{\prime \prime}=f_{n_{i}}\left(z^{\prime \prime}\right)$, then $w_{i}^{\prime \prime} \rightarrow w^{\prime \prime}$.
5. Let $U_{R}(\omega), U\left(w^{\prime}\right), U\left(w^{\prime \prime}\right)$ be neighbourhoods of $\omega, w^{\prime}, w^{\prime \prime}$, and mutually exclusive.

Under these circumstances, for any given positive number $\varepsilon(<R)$, there exists a natural number i such that

$$
\begin{array}{ll}
\text { 1. } & \omega_{i}^{\prime} \in U_{\varepsilon}(\omega), \quad \omega_{i}^{\prime \prime} \in U_{\varepsilon}(\omega) \\
\text { 2. } & w_{i}^{\prime} \in U\left(w^{\prime}\right), \quad w_{i}^{\prime \prime} \in U\left(w^{\prime \prime}\right) \\
\text { 3. } & \gamma_{i}^{\prime} \subset U_{l}\left(\varsigma^{\prime}\right), \quad \gamma_{i}^{\prime \prime} \subset U_{l}\left(\varsigma^{\prime \prime}\right)
\end{array}
$$

Then

$$
\gamma_{0}^{\prime}+\gamma_{i}^{\prime} \subset\left[\mu_{n_{i}}, \beta_{0}\right) \cap U_{l}\left(\varsigma^{\prime}\right), \quad \gamma_{0}^{\prime \prime}+\gamma_{i}^{\prime \prime} \subset\left[\alpha_{n_{i}}, \beta_{0}\right) \cap U_{l}\left(\varsigma^{\prime \prime}\right)
$$

Hence

$$
\operatorname{dis}\left(\gamma_{0}^{\prime}+\gamma_{i}^{\prime}, \gamma_{0}^{\prime \prime}+\gamma_{i}^{\prime \prime}\right) \geqq l
$$

Next we consider on $\left[\kappa, f_{n_{i}}\left(\beta_{0}\right)\right)$ the images of $\gamma_{0}{ }^{\prime}+\gamma_{i}{ }^{\prime}, \gamma_{0}{ }^{\prime \prime}+\gamma_{i}{ }^{\prime \prime}$ by $f_{n_{i}}$. They form curves conbining $w_{i}{ }^{\prime}$ and $\omega_{i}{ }^{\prime}, w_{i}{ }^{\prime \prime}$ and $\omega_{i}{ }^{\prime \prime}$. For any r such that $R>r>\varepsilon, w_{i}{ }^{\prime}, w_{i}{ }^{\prime \prime}$ lie in the exterior of the circle $|w-\omega|=r$, while $\omega_{i}{ }^{\prime}, \omega_{i}{ }^{\prime \prime}$ lie in the interior of that circle. Hence $f_{n_{i}}\left(\gamma_{0}^{\prime}+\gamma_{i}^{\prime}\right)$ (resp. $f_{n_{i}}\left(\gamma_{0}^{\prime \prime}+\gamma_{i}^{\prime \prime}\right)$) intersects that circle. Let w_{i}^{*} (resp. $w_{i}^{* *}$) be one of the intersecting points. Then

$$
\left|g_{n_{i}}\left(w_{i}^{* *}\right)-g_{n_{i}}\left(w_{i}^{*}\right)\right| \geqq l
$$

Hence

$$
\begin{aligned}
& \text { area of }\left(\alpha_{0}, \beta_{0}\right)>\text { area of }\left(\alpha_{n_{i}}, \beta_{0}\right) \\
& \qquad>\iint_{A}\left|g_{n_{i}}^{\prime}(w)\right|^{2} d u d v
\end{aligned}
$$

where $A=(\kappa, \lambda) \cap\{w: R>w-\omega>\varepsilon\}, w=u+i v$,

$$
\begin{gathered}
\geqq\left.\int_{\varepsilon}^{R} d r \int_{w_{i}^{*} w_{i}^{* *}} \frac{\mid g_{n_{i}}^{\prime}}{}(w)\right|^{2}|d w| \\
\geq \int_{\varepsilon}^{R} d r \frac{w_{i}^{*} w_{i}^{* *}}{\pi r} \int_{w_{i}^{*} w_{i}^{* *}}^{\left|g_{n i}^{\prime}(w)\right|^{2}}|d w|=\int_{\varepsilon}^{R} d r \frac{1}{\pi r} \int \frac{|d w|}{w_{i}^{*} w_{i}^{* *}} \int_{\left|\frac{\mid g_{n i}^{\prime}}{w_{i}^{*} w_{i}^{* *}}(w)\right|^{2}|d w|}
\end{gathered}
$$

and by Schwarz's inequality,

$$
\begin{aligned}
& \geqq \int_{\varepsilon}^{R} d r \frac{1}{\pi r}\left(\iint_{w_{i}^{*} w_{i}^{* *}}^{\left.g_{n i}^{\prime}(w)| | d w \mid\right)^{2}}\right. \\
& \geqq \int_{\varepsilon}^{R} d r \frac{1}{\pi r} \left\lvert\, \int_{w_{i}^{*} w_{i}^{* *}} \frac{\left.g_{n i}^{\prime}(w) d w\right|^{2}=\int_{\varepsilon}^{R} d r \frac{1}{\pi r}\left|g_{n_{i}}\left(w_{i}^{* *}\right)-g_{n_{i}}\left(w_{i}^{*}\right)\right|^{2}}{}=\frac{1}{2}\right.
\end{aligned}
$$

$$
\geq \int_{\varepsilon}^{R} d r \frac{l^{2}}{\pi r}=\frac{l^{2}}{\pi} \log \frac{R}{\varepsilon}
$$

Hence the area of $\left(\alpha_{0}, \beta_{0}\right)>\frac{l^{2}}{\pi} \log \frac{R}{\varepsilon}$ for all positive number $\varepsilon(<R)$, which is impossible.

Since we have seen that g_{n} form a normal family on κ, we shall go to the next step. Of course, g_{n} form a normal family on (κ, λ), so that g_{n} form a normal family on $\left[\kappa, \lambda\right.$), while f_{n} form a normal family on ($\alpha, \boldsymbol{\beta}_{0}$). Then there exist an increasing sequence $\left\{n^{\prime}\right\}$ of natural numbers and two functions $f\left|\left(\mu, \beta_{0}\right), g\right|[\kappa, \lambda)$ such that

$$
\begin{array}{ll}
f_{n^{\prime}} \rightarrow f & \text { on }\left(\alpha, \beta_{0}\right) . \\
g_{n^{\prime}} \rightarrow g & \text { on }[\kappa, \lambda) .
\end{array}
$$

Since $f_{n^{\prime}}(\beta)>f_{n^{\prime}}\left(\beta_{0}\right) \geqq f_{1}\left(\beta_{0}\right)$, the oscilation of $f_{n^{\prime}}$ on β is not smaller than the diameter of the circle $f_{1}\left(\beta_{0}\right)$. Consulting with $f_{n^{\prime}} \rightarrow f$ on β, we conculude that f is nonconstant and hence univalent and regular, so that f is an open mapping. Then $\operatorname{ran} f$ is an open set contained in $[\kappa, \lambda]$, and therefore ran $f \subset(\kappa, \lambda)$. As well as f, g is also an open mapping. Then $g((\kappa, \lambda))$ is an open set contained in $\left[\alpha, \beta_{0}\right]$, and therefore $g((\kappa, \lambda)) \subset\left(\kappa, \beta_{0}\right)$. Also $g(\kappa) \subset \%$. We have then

$$
\operatorname{ran} g=g([\kappa, \lambda]) \subset\left[\kappa, \beta_{0}\right)
$$

From ran $f \subset(\kappa, \lambda)$, it follows $f(\beta) \subset(\kappa, \lambda)$. Take λ^{*} such that $f(\beta)>\lambda^{*}>\lambda$, then

$$
f(\beta) \subset\left(\kappa, \lambda^{*}\right)
$$

Consulting with $f_{n^{\prime}} \rightarrow f$ on β and $g_{n^{\prime}} \rightarrow g$ on $[\kappa, \lambda$), for any positive number ε, there exists a suitably large natural number $N\left(=n^{\prime}\right)$ such that

$$
\begin{gathered}
f_{N}(\beta) \subset\left(\kappa, \lambda^{*}\right), \\
\left|g_{N}-g\right|<\varepsilon \text { on }\left[\kappa, \lambda^{*}\right] .
\end{gathered}
$$

From the former, it follows

$$
f_{N}\left(\left[\alpha_{N}, \beta\right]\right)=\left[\kappa, f_{N}(\beta)\right] \subset\left[\kappa, \lambda^{*}\right)
$$

and from the latter and the above fact,

$$
\left|g_{N} \circ f_{N}-g \circ f_{N}\right|<\varepsilon \quad \text { on }\left[\mu_{N}, \beta\right],
$$

that is,

$$
\left|I \cdots g \circ f_{N}\right|<\varepsilon \text { on }\left[\mu_{N}, \beta\right]
$$

and $\alpha_{0}>\mu_{N}>\alpha_{,}, \beta>g_{N}(\lambda)>\beta_{0}$ from $f_{N}(\beta)>\lambda^{*}>\lambda>f_{N}\left(\beta_{0}\right)$, dom $\left(g \circ f_{N}\right)=g_{N}$ $(\operatorname{dom} g)=\left[\mu_{N}, g_{N}(\lambda)\right), \operatorname{ran}\left(g \circ f_{N}\right)=\operatorname{ran} g \subset\left[\alpha, \beta_{0}\right)$.

Putting $\alpha^{\prime}=\alpha_{N}, \beta^{\prime}=g_{N}(\lambda), \varphi=g \circ f_{N}$, we get the statement.
Lemma 2. Let $\alpha_{0}, \alpha, \beta, \beta_{0}$ be four mutually homotopic loops arranged in this order. Let f be a function such that $\operatorname{dom} f=\left[\mu, \beta_{0}\right]$. Then, for any positive number ε, there exist two loops $\alpha^{\prime}, \beta^{\prime}$ and a function g such that

1. $\alpha_{0}>\alpha^{\prime}>\alpha, \beta>\beta^{\prime}>\beta_{0}$;
2. $\operatorname{dom} g=\left[\mu^{\prime}, \beta^{\prime}\right)$;
3. $|f-g|<\varepsilon$ on $[\alpha, \beta]$.

Proof. Since f is uniformly continuous on $\left[\alpha, \beta_{0}\right]$, for any positive number ε, there exists a positive number δ such that
if $z, z^{\prime} \in\left[\alpha, \beta_{0}\right],\left|z-z^{\prime}\right|<\delta$, then $\left|f(z)-f\left(z^{\prime}\right)\right|<\varepsilon$.
By Lemma 1, for this δ, there exist two loops $\alpha^{\prime}, \beta^{\prime}$ and a function φ such that

1. $\alpha_{0}>\alpha^{\prime}>\alpha, \beta>\beta^{\prime}>\beta_{0}$;
2. $\operatorname{dom} \varphi=\left[\alpha^{\prime}, \beta^{\prime}\right), \operatorname{ran} \varphi \subset\left[\alpha, \beta_{0}\right)$;
3. $|I-\varphi|<\delta$ on $\left[\alpha^{\prime}, \beta\right]$.

From these conditions we have

$$
\begin{gathered}
|f-f \circ \varphi|<\varepsilon \text { on }[\alpha, \beta], \\
\operatorname{dom}(f \circ \varphi)=\operatorname{dom} \varphi=\left[\alpha, \beta^{\prime}\right) .
\end{gathered}
$$

Putting $g=f \circ \varphi$, we get the statement.
All preparatians have been achieved; now we proceed to prove the theorem.
Proof of Theorem 4. Let $\left\{\mu_{i}\right\}$ be a finite number of loops enclosing D. In a planer neighbourhood of α_{i}, we take $\alpha_{0 i}, \beta_{i}^{*}, \beta_{i}, \beta_{0 i}$ such that $\alpha_{0 i}>\alpha_{i}>\beta_{i} *>\beta_{i}$ $>\beta_{0 i}$, where $\alpha_{0 i}$ lies in the exterior of $D, \beta_{i}{ }^{*}, \beta_{i}, \beta_{0 i}$ lie in the interior of D and β_{i} is rectifiable.

By lemma 2, for any positive number ε, there exist two curves $\alpha_{i}{ }^{\prime}, \beta_{i}{ }^{\prime}$, and a function g_{i} such that

1. $\mu_{0 i}>\mu_{i}{ }^{\prime}>\mu_{i}, \quad \beta_{i}>\beta_{i}{ }^{\prime}>\beta_{0 i}$;
2. $\operatorname{dom} g_{i}=\left[\mu_{i}{ }^{\prime}, \beta_{i}{ }^{\prime}\right)$;
3. $\left|f-g_{i}\right|<\varepsilon$ on $\left[\mu_{i}, \beta_{i}\right]$.

Moreover we take a rectifiable loop $\mu_{i}{ }^{*}$ such that $\mu_{i}{ }^{\prime}>\mu_{i}{ }^{*}>\mu_{i .}$, whence $\mu_{i .}{ }^{*}$ depends on ε.

Let D^{\prime} be the domain enclosed by $\left\{\mu_{i}{ }^{\prime}\right\}$, then there exists a many valued function $\omega_{p}(\pi) \mid \pi \in D^{\prime}$ depending on the parameter $p\left(\in D^{\prime}\right)$ such that, for any univalent regular function ς defined in $G^{\prime}\left(\subset D^{\prime}\right)$,

$$
H(\pi, p)=H_{p}(\pi)=\frac{d \omega_{p}(\pi)}{d_{\zeta}(\pi)}
$$

is meromorphic for (π, p) in $G^{\prime} \times D^{\prime}$ and $H_{p}(\pi)$ has its singular part $\frac{1}{\zeta(\pi)-\varsigma(p)}$ at $p\left(\in G^{\prime}\right) .^{3}$

Take any rectifiable loop $\beta_{i}{ }^{* *}$ such that $\alpha_{i}>\beta_{i}{ }^{* *}>\beta^{*}$. Then for all $p \in\left(\beta_{j}{ }^{* *}\right.$, $\beta_{j}{ }^{*}$),

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\beta_{i} * *} f(\pi) d \omega_{p}(\pi)=\frac{1}{2 \pi i} \int_{\beta_{i}} f(\pi) d \omega_{p}(\pi)+\delta_{i j} f(p) \\
& \text { where } \quad \delta_{i j}=\left\{\begin{array}{l}
1(i=j) \\
0(i \neq j)
\end{array}\right. \\
&=\frac{1}{2 \pi i} \int_{\beta_{i}} f(\pi) H_{i}(\pi, p) d_{\varsigma i}(\pi)+\delta_{i j} f(p)
\end{aligned}
$$

where ς_{i} is a univalent regular function defined in a planar neighbourhood of μ_{i} and

$$
H_{i}(\pi, p)=\frac{d \omega_{p}(\pi)}{d \varsigma_{i}(\pi)} .
$$

Similarly

$$
\frac{1}{2 \pi i} \int_{\alpha_{i}} g_{i}(\pi) d \omega_{p}(\pi)=\frac{1}{2 \pi i} \int_{\beta_{i}} g_{i}(\pi) H_{i}(\pi, p) d \varsigma i(\pi)+\delta_{i j} g_{i}(p) .
$$

Putting

$$
\max _{(\pi, p) \in \beta_{j} \times\left[\alpha_{i}, \beta_{i^{*}} *\right]}\left|H_{i}(\pi, p)\right|=M_{i j},
$$

$M_{i j}$ does not depend on ε, and

$$
\left.\frac{1}{2 \pi i} \int_{\beta_{i} * *} f(\pi) d \omega_{p}(\pi)-\frac{1}{2 \pi_{i}} \int_{\alpha_{i}{ }^{*}} g_{i}(\pi) d \omega_{p}(\pi) \right\rvert\, \leqq\left(\frac{M_{i j}}{2 \pi} \int_{\beta_{i}}\left|d \zeta_{i}(\pi)\right|+\delta_{i j}\right) \varepsilon .
$$

Putting

$$
\max _{j}\left(\frac{M_{i j}}{2 \pi} \int_{\beta_{i}}\left|d \rho_{i}(\pi)\right|+\delta_{i j}\right)=M_{i},
$$

for all $p \in \bigcup_{j}\left(\beta_{j}^{* *}, \beta_{j}^{*}\right)$,

$$
\left|\frac{1}{2 \pi i} \int_{\beta_{i} * *} f(\pi) d \omega_{p}(\pi)-\frac{1}{2 \pi i} \int_{\alpha_{i} *} g_{i}(\pi) d \omega_{p}(\pi)\right| \leqq M_{i} \varepsilon .
$$

Putting

$$
\sum_{i} M_{i}=M,
$$

[^0]for all $p \in \bigcup_{j}\left(\beta_{j}^{* *}, \beta_{j}^{*}\right)$,
$$
\left|f(p)-\frac{1}{2 \pi i} \sum_{i} \int_{\alpha_{i} *} g_{i}(\pi) d \omega_{p}(\pi)\right| \leqq M \varepsilon
$$

Since $\beta_{j}^{* *}$ was arbitrarily chosen under the condition $\alpha_{j}>\beta_{j}{ }^{* *}>\beta_{j}{ }^{*}$, the above formula is satisfied for all $p \in U\left(\alpha_{j}, \beta_{j}{ }^{*}\right)$. Putting

$$
g(p)=\frac{1}{2 \pi i} \sum_{i} \int_{\alpha_{i}} * g_{i}(\pi) d \omega_{p}(\pi)
$$

$g(p)$ is defined on the domain enclosed by $\left\{\alpha_{i}^{*}\right\}$, that is, a certain domain containing \bar{D}. Since $\bigcup_{j}\left(\alpha_{j}, \beta_{j}^{*}\right)$ is a boundary strip of D, we have by the maximum principle,

$$
|f-g| \leqq M \varepsilon \quad \text { on } D
$$

Since M does not depend on ε, g is the function which we have desired.

[^0]: 3) Behnke und Stein, ibid.
