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If a topological space Y has vanishing homotopy groups 7; for i < nand n< i < ¢
(1< n<q), it is a well known result” of Eilenberg and MacLane that the homology
and cohomology groups of Y in dimensions < ¢ are quite determined by the complex
K(m,,n) and the invariant cohomology class & = k*}(Y) of H*'(m,, n; my), where
mn = (Y) and mq = m,(Y).

According to the Mathematical Reviews 13(1952), it is reported that M. M.
Postnikov® defined the characteristic cohomology classes {k,} in the more general
cases, and he determined by them the homotopy type of the space Y.

In this paper, modifying a definition of K(ll, n) a little, we shall construct a
complex K(m,,mq, k) and define a new invariant # = k*1(Y) in the case where Y
has vanishing homotopy groups m; for i < n, n<i<gand ¢<i<{q (1< n<q<q).
Furthermore we shall determine a homotopy type of a topological space which is
dominated by a CW-complex by making use of the minimal complexes®.

1. Notations

We write [m] for the naturally ordered set of integers {0, 1,..., m). For each
pair of non-negative integers (m, p), let K, (p) be a free abelian group whose free
generators are the monotonic*’, degenerate® or non-degenerate® maps

B: [m]——>[pl
Following Eilenberg and MacLane [6], we introduce the special monotonic maps
e=¢g,: [p]—>[p]
defined as the identity map,
gd=ch:[p—1]—>[p1 =0,..., p,
defined as the map which covers all of [p] except 7, and
7= [p1—>[p-1] i=0,..., p—1,
with 7'(j) =j for j=<i, 9'(j)=j—-1 for j>i

1) The main theorem of [5].

2) M. M. Postnikov; Doklady Akad. Nauk. SSSR (N.S) 76, 359-362, 789-791 (1951).
(Russian).

3) Refer [4].

4) B() £LB(G) if i £,

5) If B(Z) = B(j) for some i~ j.

6) If B(Z) <(B(j) for any i < j.
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Let IT be a (discrete) abelian group with the unit element 0, and let F,(11, m)

be the family of homomorphism

¢ K,(p)—> 11
satisfying

() =0 if r€ K, (p) is degenerate.
For any element 3 of K.(p) the -face ¢pg of ¢ € Fp(11, m) is defined to be the
element of F.(II, m) determined by
¢e(r) = ¢(Br)  for any map 7 of K.(r),
where By = 2 APy i B=20AB: and 7 =u5.
In particular, the si~face ¢z of ¢ will be denoted simply by ¢¢ and is called
the i-th face. We shall further denote the neutral element of F,(IT, m) by (p.n i.e.
tp.m(7) =0  for any map 7 of K,(p).
Let T? : 4, > Y be a singular simplex of a space Y. Given an element 8 of
K,(p), we define T§, the S-face of T?, as the‘singular m-chain
Tg : dp—>Y
obtained by the composition of the barycentric (order preserving) map
B:dy—>4dy
determined by 8 and the map T? : 4, —> Y. The ei-face T, of a singular simplex
T will be denoted simply by T¢ and is called the i-th face.
2. The complexes K(II, #) and K(II, n, 11, ¢, k)

i) Let Il be a (discrete) abelian group with the unit element 0, and let #» be a

positive integer greater than 1. We shall then define an R-complex™ K(II, #) as

follows :
A p-cell ¢ of K(II, #) is an element of F,(1I, n) satisfying the condition :
2.0 SHES(- 1) ¢(ehiy) =0 for any map 7 of K,..(p).

Then we can introduce an FD-structure® in K(II, #) by defining the homomorphisms
g% Kp(1I, n) —> K. (11, n)

for each monotonic map B : [#]—>[p] as f*(¢) = ¢p. Especially we denote ¥,
5% as F7%, DY respectively. Note that ¢5.p is the identity of K,(II, #), and our require-
ments on the homomorphisms F; and D; include

Fitpn = to_1ns Ditpn = tpiim.

7) For the definition of the R-complex, see [6].
8) Refer [6].
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ii) Let further I’ be a (discrete) abelian group with the unit element 0, and let
g be a positive integer greater than #, and k be a fixed cocycle of Z¢7'(1I, n; II).
We shall then define an R-complex K(I1, », IT’, q, k) as follows :

A p-cell of K('H, n, II', ¢, k) is a pair (¢, ¢), where ¢ is a p—cell of K(II, n), and
¢ is an element of F,(II” ¢) subject to the condition :

(2.2) SHE(—1)id(7efs1) +h(gy) =0 for any map 7 of Ko, (p).
It is obvious that (¢pm, ¢pg) is the p-identity®” of K(II, #, 1T, ¢, k). Further
K(II, n, II', q, k) becomes an FD-complex'® if we define for any monotonic map
B :[r]1—>[p] a homomorphism
B* : Kp<11: n, 1T, q, k) — Kr(“) n, 11/» q, k)
by the formula
8%, ) = (¢, ¢)p = (b, dp) -
Then, by the above definitions, we have obiously

Ki(IL, #, 11, q, k) = {($, ¢) ; & =t} = K;(I1, n) for i <gq,
Ko(TL 1, 11, g, k) D {(¢, ¢) 5 ¢ = tqq) =2 Ko(IT, n).

iii) Uniqueness of K(II, n, IT/, ¢, k).

Let K(I1, n, 1T/, q, k), K(I1, n, I, ¢, k,) be the complexes corresponding to any
cocycles k,, k, which is cohomologous to each other. Let % be a g-cochain of
CUI, n; II") such that k,—Fk, = ok

For each p-cell (¢,, ¢,) of K(IT, n,II’, ¢, k,), we shall define a p-cell (¢, ¢»)
of K(IT, n, IT ¢, k,) such that

¢2 == ¢1 £l
Go(7) = ¢ (7) +h(gy) for any map 7 of Kq(p).
Setting (¢,, ¢,) = %(¢,, ¢,) we have the natural isomorphism
2.3) v KL, n, I, q, k) —> K1, n, T1', g, k»).
Moreover we have

3*77(¢1 » ¢'1) = (¢2-Br ¢2'B> = 773*(951 ’ d)l) >

where
G087 = 1p (D +1(gpy)

and therefore 7 is an FD-map'®.

9) The identity of Kp (11, #, I, g, k).
10) Refer [6].
11) Refer [6].
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Thus, in the following we shall denote K(1I, n, 11, ¢, k) simply as K(ll, 1I’, &)
if no confusion is occured, where %k is the fixed cohomology class reprsented by k.
Strictly speaking, K(1I, TI’, k) is the family of the complexes K(IIL, n, I1’, ¢, k) being
isomorphic onto one another.

3. The main theorem
Let Y be a topological space with vanishing homotopy groups 7; for i< # and
n<i<q(1<n<q), and let M be a minimal subcomplex of S,(Y). Then there is
a pair of FD-maps (k, ) satisfying the following conditions :
3.1 k: M—>K(r,, n),
(3.2) For any cocycle k of the invariant & = E%*! (Y), there is an FD-map
E=rf, : K(my,n) —>M
such that

(3.2.1) For each p-cell ¢ of K(m,,n) %,(¢) =%, (¢) and

£(E($)) = ¢ (p<q,
(3.2.2) &r(T) =T for any singular simplex T of M1

(3.2.3) For each g-cell ¢ of K(m,,n), ¥,(¢) depends upon k and «(%,(¢))=¢.
For any (g+1)-cell ¢ of K(m,, n), if we define a map fp:dg,,.a—> Y
such that'® fuz!,,=F,(¢®) =0, ..., g+1, then we have'® k(¢)=c( fs).

Since arbitrary minimal complexes are isomorphic onto one another, we shall

consider a fixed minimal complex in the following.

THEOREM 1. If a topological space Y has vanishing homotopy groups my for
i<<n,nli<lqgand q<i 1<n<q), (YY) =7an, m(Y) =mq and k™ (Y) =k,
then the complex K(mn,mq, k) is isomorphic onto the minimal subcomplex M of
S(Y ),

THEOREM II. If a topological space Y has vanishing homotopy groups m; for
i<mnli<lg and p<i<q (A<n<lq<lq), m(Y)=mn, wY)=rmq,
BN Y)=k and ny(Y) = ny, then there is a unique cohomology class EX*Y(Y) of

H“/*l(nn, e, k'), and it is a topological invariant (if we pay no heed to the
identification of the complexes K(m,, n, nq, q, k)).

12) M@-YV is the (¢—1)-dimensional skeleton of M.
13) gk, is the barycentric map induced by &, .

14) c¢ is the characteristic function defined in [1].
15) Cf. the main theorem of [5], p. 529.
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4. Prcef cf the thecrem J
To prove the theorem I, it is sufficient only to show the existence of a pair of
FD-maps («/, &)
IC/: M'—‘—)K<7Tn, nr”qu)k),
K K<7Tna n) 71’!17 (I, k) )M

satisfying the following conditions:

(4.1) For each p-cell (¢, ¢) of K(mn, n, mq,q, k) there is a unique p-simplex
in the minimal complex M such that

{k'($, 4} = (6, ¢),
(4.2) ¥ #(T) =T for any singular simplex T of M.

First, let p<{g¢. Since every map in K (p) is degenerate, there is only one
neutral element ¢y, in F,(mq, ¢). Therefore the p-cell (¢, ¢) is quite determined
only by ¢, and also %, £* can be determined by!®

£(T) = (e(T), tpq),
K (¢, tp.q) = Kk,(P) .
For any p g, we shall define ¥ as follows:

Let p =g¢q. For each g-cell (¢, ¢) we first choose a g-singular simplex ¥,(¢)
as in (3.2), and we choose a singular simplex

T : 4g—>Y
of M compatible'” with %,(¢) and satisfying!®

d(£.(¢),T") = P(e) €Ema(Y) .
Then, we define

K (¢, ¢)=T".
Let p =q+1. For each (g-+1)-cell (¢, ¢), we define the map
fo i dgyra—>Y
as in (3.2.3), and for any face (¢, ¢)@ of (¢4, ¢) we define a singular simplex of M
T . 44— Y
as in above. Since these mappings are compatible with %,(¢¢), the set of mappings

T" (i =0, 1,..., g+1) define a map

'}‘ M Aq_;,l.q“—*‘“) Y.

16) The existence of FD-maps «, & follows from (3.1) and (3.2).

17) Two singular gq-simplexes T,, T, are called compatible if their faces coincide: 7;®
= T,® for 0 Li £Lq.

18) d is the difference-function defined in [1].
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From (2.2) and (3.2.5) we have
o(T) = M~ 1 d (R (89, TD)+c(f3)
=305 (-Di(eir) +k(¢) = 0.
Therefore we can extend the map 7T all over the d4,,, such that we obtain a
singular simplex
T . dgyy —> Y
of M, then, we define
(s, ¢) =TT
Let p >>q-+1. For each pcell (¢, ¢) we shall define '(¢, ¢) inductively as follows :
For any i-th face of (¢, ¢) we may determine the singular simplex of M
T?—l-i . Ap_l —> Y
by the inductive assumption, and hence these maps define a map
7: t dpp,—> Y.
Since 7p_,(Y) = 0, we may extend it all over the 4, such that we obtain a singular
simplex
T2 . 4, —>Y
of M, then, we define
w(p, ¢)=T".
These constructions are uniquely determined, because, if T is a singular simplex

all of whose faces are in M, then M contains a unique singular simplex compatible
with and homotopic to 7.

Conversely, for any singular simplex 7?2 : 4, —> Y of S,(Y), we may construct
a p-cell £'(T) = (4, ¢) of K(my, n, mq, q, k) as follows:

At first, ¢ is determined by k(7?) as in (3.1). Any element 8 of K,(p)
determines a ¢g-dimentional (degenerate or non-degenerate) face 7g of T? and ¢g of
just determined ¢, also an element

d (kx($p), Te) €ma,
where d(£e(¢p), Te) = 2umid(kn(dg), Tg) if B =2imifds.
Consequently we may define ¢ by
¢(B) = d(kx($p), Te) for any map B of Ke(p).

Then it is easily seen that, these constructions satisfy the conditions (2.1), (2.2) and
also (4.1), (4.2). The proof is complete.
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5. Proof of the theorem II.

In this section we shall consider a topological space Y with vanishing homotopy
groups m; for i< n, n<i<q and ¢<i<{q (A< n<q<¢q), and corresponding
minimal subcomplex M of S(Y).

In the above section, if we attempt to continue the definition of " for (¢’+1)

—cells @ = (@, ¢) of K(mn, 1, 7q, q, k), we can only go as far as to define a map

fo @ Ay —>Y
such that
Sotirs = K (0W) 1=20..,qg+1.

Since my’ is not assumed to vanish, the map f, in general will not be extendable
to a map 4y, —> Y. We define ¥ = k”*! writing

(D) =c(fs)€rma.
Then % is a cochain of C¥*! (m,, n, mq, q, k ; m¢),**> and it follows from
(OR) (D) =k (0D) = c(0fs) = (8c)(fp) =0

that % is a cocycle, where @ is any (¢’ +2)-cell of K(mn, 1, e, q, k) and f is an
induced map 4y’ ,,.¢/ —> Y corresponding to @.

The cohomology class of the cocycle &’ will be denoted by £ or kg'“‘ WY). ltisan
element of the cohomology group HY+ (1n, m, 7q, q, k; me’), and it depends upon the
choice of the minimal complex M and after that upon the choice of % seemingly.

We shall first examine the effect of altering &’ without altering M. Let &/,

;" be the different FD-maps satisfying (4.1) and (4.2). For each ¢'-cell @ of
K(rn, n,7q, q, k), the ¢’-simplexes k,(@) and %,(®) are compatible. Let 4 be a
cochain of C¥(mn, n, nq, q, k ; mg’) defined by

W(®) = d(&/ (D), &;'(0) € (Y ),

and let k%, k,” be the cocycles defined by making use of %,” and %, respectively. Then
we can easily obtain.

kY —k, 40K =0

This shows that the cohomology class & is independent of the choice of %’ for a fixed
M (and fixed complex K(mn, n, ¢, q, k).

We shall next examine the effect of altering k without altering M. Let k&, k,
be the different cocycles of EI*!, and K;(i =1,2) be the corresponding complex
K(mn,n, wq, q, ;). Then there is the natural FD-map

7: K,—>K,
as in (2.5).

19) We shall denote C (K(m,, n, mq, q, k); ™qr)... simply by C(my,, n, @y, q, k; Ty)....
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For each g-cell (@i, ¢3), let us define the simplex 7§ =k/'(¢:, ¢;) as in $4.

If %(éy, ¢1) = ($5, ¢,) we have
d<E1<¢1):T‘11> — ¢1(EQ) = ¢2(5(1) _h<¢> — d<kz<¢2>y Tg) -d(’%z(qs)» El(¢>)
=d(x, (), TH .

Thus 7% and 7% are homotopic, hence we have T{ = T%, since M is minimal.

For each p-simplex (¢;, ¢;) where ¢ < p < ¢/, let us define the simplex

T =&/ ($:, ¢1) (t=12)

as in §4 inductively. Then we have that 7} and T3% are compatible, and so that
T? =T3% since n,(Y) =0 and M is minimal.

While, for each ¢'—cell (¢,,¢;,) of K, there is at least one ¢'-simplex 7, of M
such that «(T,) = (¢, ¢,). Any two such simplexes are compatible. One of these

simplexes 7, will be selected and denoted by &,’(¢,, ¢;). And, for each g¢'-cell
(¢,, ¢,) we shall select the g’-simplex &,’(% (9., ¢,)) and denote by £, (¢,, ¢,).

Further, if we attempt to continue the definitions of k,” and &,” for (¢’+1)-cells
of K, and K,, we obtain two mappings
fo,» fo, + Ay —> Y,

and it follows from our definition that

c(fo,) = c(fre,) for any (¢'+1)-cell @, of K,.
This shows that
k(@) = k' (20))
and also that
(5.6) K3 = 7Ry
where ki"zz‘,'} is the cohomology class of the cocycle k£ and #%* is the natural homo-
morphism
7% : HY(K,, ny) —> HU WK, , o) .

Finally, we shall examine the effect of altering M without altering k. ILet M,,

M, be the different minimal subcomplexes relative to the same base point y,€ Y.
Then there is a chain homotopy

¢e : S(Y) —>S(Y)
satisfying the following properties :
(5.1) @¢ is continuous,
(5.2) ¢, is identity,
(5.3) ¢, maps M, isomorphically onto M,,
(5.4) ¢¢ T =T if T is collapsed.
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It follows that for 7€ M,(Y) we have k" (T) = k,’(¢, T). Now, select the FD-map
%, of the g’—skeleton of K(mn, n, mq, g, k) into M, such that &, k,” = identity as in
84, and also define an FD-map k,” for M, by setting %,” = ¢,x,". For each (¢'+1)-
cell @ = (¢, ¢) of K(mn, n, nq, g, k) we then have maps

4

fg)l) ) ffl()Z) . Aq/+1"1/ —> Y)

and it follows from the conditions on ¢, that £’ and f<¢’ are homotopic. Thus
c(fP) =c(fY) and also kg/z‘}, = 3/2‘23 . Consequently, the cohomology class kY**(Y)

does not depend on the choice of M. The proof is complete.

6. Homotopy type of a space Y

In this section we shall deal with the homotopy type of a topological space Y
which is dominated by a CW-complex?® and has vanishing homotopy groups m; for
i<n,n<i<q and ¢q<i, And we shall make use of the notations and results of
the J. B. Giver’s paper [3].

For each minimal subcomplex M of S(Y), we shall construct the singular sub-
polytope P,,(Y) of P(Y) by the same method as in [3]. Then since M(Y) is a
deformation retract of S(Y),?" it follows that

(6.1) P,(Y) and P(Y) are of the same homotopy type.
While, following J.B. Giever [3], there is a mapping
FiP(YY—Y

which induce the isomorphisms
fn : Tfn(,P_<Y>) —> Tfn(Y)
for every n. And following J. H. C. Whitehead [2], this implies that

(6.2) f is a homotopy equivalence.

TrHEOREM 1II, Let Y be a topological spoce with vanishing homotopy groups
7 for i< myn< i< qand q<i and is dominated by a CW-complex. Then the
homotopy type of Y is quite determined by mn, mq and HF(Y )2

Proof. Let Y, and Y, be topological spaces satisfying the assumption of the
theorem III. Then by the theorem I, there is the FD-maps £;, ;" such that

’ =

£ . K,
IVI(YH) PR K(ﬂ'n y T0qy k) (—7 ]‘/I(Y2>
h’l/ Ky
20) Refer [2].
21) Refer [47], p. 505.
22) The systems (7, 7q, k) and (7', 7', k') are identified if there are isomorphisms
fu: Tas2w,, fq: mq==m, such that fi¥ =f%k where fk: H™ (), n; my) — HIH
(Tny w5 ®)) and f5 HIv3(m,, n; mq) — HOY' (7, n; 7)) are the induced homomor-

phisms.
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For the fixed cocycle k of &, ¥;” is uniquely determined for the fixed minimal
subcomplex M(Y;) of S(Y;) where ¢=1, 2. Thus, there are one-to-one corres-
pondences between M(Y,) and M(Y,) through the complex K(ma, #, 7q, g, k). From
this identification we may conclude that

(6.3) Py(Y,) and Py(Y,) are of the same homotopy type.
The theorem 1II is an immediate consequence of (6.1), (6.2) and (6.3).

7. Generalizations

In the following, let Y be a simpy connected topological space. We shall construct

complexes by induction on 7

K,=K(l,my,.c.,r, 0, by, ..., br_y)

which is an approximation for the minimal subcomplex M of S(Y) in the sence of
the theorem I.

Assume that the complexes {K,, K, ,..., Kr_,} are already constructed, and we
shall determine the invariant k., as follows:

For any 7—cell @ of K,_,, there is at least one simplex 7T of the minimal complex
M such that k" (T) = @ as in §4. Although this correspondence is not determined
uniquely since m, is not assumed to vanish, we shall select one of these simplexes and
denoted by ¥"V(d).

For any (r+1)-simplex @ of K, ,, we obtain a characteristic map

fo 1 drsyy—>Y
and also an element ¢(fy) of 7, as in §5. Consequently, we obtain a cochain k.,
= [t of C"™Y(K,_, ; m,) writing

ke (@) = c(fg) .

This cochain determine a unique cohomology class k.., of H™ (K, ;) as
in §5.

We shall next define a complex K, as follows:

A p-cell of K, is a pair (@, ¢) where @ is a p-cell of K,_,, and ¢ is an element
of Fu(mr, ) subject to the condition :

STL(— D (rely) + ke (@) =0 for any element 7 of K.\ (p).

Then it is obvious that (¢p.,, ¢p.so,..., tp,) is the p-identity of K,.. Further K,

becomes an FD-complex if we define for any element 3 of K,/(p) a homomorphism
8% Kpp—> Ky
by the formula

B*(@, ¢) = (@, $)p = (Dg, ¢p) .
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The uniquencess of K, and the existence of FD-maps £, k™ are proved by

the arguments similar to those used in the preceding sections.

Thus we have the following;

THEOREM IV. The r-th homology and cohomology groups of a simply connected
topological space Y are quite determined by the complex K., .

TeHEOREM V. If a simply connected topological space Y has vanishing homotopy
groups m;, for i >r and is dominated by a CW-complex, then the homotopy type of Y

is quite determined by the system

1]
[2]
(3]
[4]
(5]
LeJ

{1,712)"':777,0)k2,-'-ykr—l}'
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