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1. Introduction 

Introducing the notion of 'classes of Abelian groups', J-P. Serre gave in his 

recent paper [7]') very useful generalizations of the classical theorems of W. Hurewicz 

and of }.H.C. Whitehead. Among the same kind of these classical theorems, we find 

a theorem due to S. Eilenberg and S. MacLane [4]: If Y is an arcwise connected 

space with vanishing homotopy groups rc1 (Y) for i < n and n < i < q, then the 

homotopy group rrn (Y) determines the homology groups of Y in dimensions < q, and 

partially the q-dimensional homology group of Y. 

In the present note, we generalize the theorem of Eilenberg-MacLane after the 

fashion of Serre. The generalizations are stated in § 2 and are proved in § 3. As 

applications we have two theorems. We solve in \3 4 a special kind of homotopy type 

problem, and prove in § 5 a theorem by which we can obtain an information about 

the homotopy groups from calculations of the Betti numbers. 

Throughout this note al! spaces will be assumed to be arcwise connected. 

2. Statements of theorems 

Let @, be a class in the sense of [7; Chap. I]. Namely @, is a non-vacuous 

collection of Abelian groups satisfying the condition : 

(I) If, in the exact sequence L > M _,_ N, the groups L and N are in @,, then 

Mis also in @,. 

W e further throughout this and next sections assume that @, satisfies the conditions: 

(liB) If M is in @,, then the tensor product M 0 N is in @, for any group N. 

(III) If M is in @,, then the i-dimensional homology group of M, Hi (M, 1) 

= H1(M), is in @, for any i >O. 

We call that a homomorphism f: M -~ N is @,-on if the cokernel N /!CM) is in 

@,, and that f is @, -isomorphic if the kernel and the cokernel are both in @,. For 

two given groups M and N, if there exist a group L and two (9-isomorphisms (i.e. 

@, -isomorphic homomorphisms) f: L -é> M and g : L --> N, th en we call th at M and 

N are (9-isomorphic, and write M = N. See [7] for the detailed accounts of classes. 
e 

Let us denote by J{;(rr, n) any one of spaces X such that rrn (X) = rr and 

rri(X) = 0 for i =t' n. Then it is well known [ 4] that the singular homology groups 

1) Numbers in brackets refer to the references cited at the end of the paper. 
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H;,(:/{;(rr, n) ; G) with coefficient group G are determined by rr, n and G alone, and 

are denoted by H,(rr, n; G). 

We can now state the generalized theorem of Eilenberg-MacLane as follows: 

THEOREM 1. Let Y be a simply connected space such that 1ft (Y) is in (9 for 

ï<n and n<i<q. Then we have 

Ht(Y;G)=H,(rr,.(Y),n;G) if i<q, 
e 

Hq(Y; G)/~q(Y; G) = Hq(rr,.(Y), n; G), 
e 

where L:q(Y; G) denotes the spherical subgroup [3]. 

More generally we have 

THEOREM 2. Let Y, Y' be simply connected spaces such that rr,(Y) and rrt(Y') 

are in (9 for i<n and n<i<q. If rr,.(Y) = rr,.(Y') and G= G', we have 
e e 

H,(Y;G)=H,(Y';G') if i<q, 
e 

Hq(Y; G)/:LMY; G) ~ Hq(Y'; G')jL]q(Y'; G'). 

It is obvious that Theorem 2 is a direct consequence of Theorem 1 and the 

following 

PROPOSITION 1. If M = N and G = G', we have 

for i ~ 0 and r:?;; 2. 

e e 

Ht(M, r; G) = H,(N, r; G') 
e 

REMARK. If rr,(Y), rrt(Y') and so H;,(Y), H,(Y') are finitely generated for any 

i :;::> 0, the sa me arguments as in [7 ; p. 275] show that Theorem 1 and 2 hold for 

any class (9 which does not necessarily satisfy (liB) and (III). 

3. Proofs of theorems 

Let us denote by (E, F, B; p) or (E, F, B) a jiber space in the sense of [6; 

p. 443], where E, F, B and p designate respectively the total space, the fiber, the 

base space and the projection. Then the following proposition is a direct consequence 

of the homology exact sequence for (E, F) and the Theorem 1. B in [7 ; p. 268]. 

PROPOSITION 2. Let B be simply connected, and let H,(F) be in (9 for O<i <r. 

Then p*:H,(E) ~H,(B) Ci<r) and p*:H .. (E)/i*H,.(F) ~H .. (B) induced by the 

projection p are (9-isomorphisms, where i*: H .. (F) ~ H,.(E) is the injection.2 ) 

It was proved by H. Cartan and J-P. Serre [1] (see also [9]) that we can associate 

with any simply connected space X a sequence of simply connected spaces X,. and 

continuous maps f,.: X.-+1 -- X,. (r = 1, 2, · .. ) with the following properties : 

2) We denote briefly by H;,(Y) in place of H; (Y; Z), where Z is the additive group of 
integers. 
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( i) CXr+ 1 , Jc(rrr(X), r-1), Xr;/r) constitutes a fiber space. 

(ii) There exists a fiber space (X/, Xr+ 1 , Jc(rrr(X), r)) such that X/ is of the 

same homotopy type as Xr -

(iii) rri(Xr)=O for i<r; X1 =X2 =X; and the composition f,of2 o--··-·ofr-l 

induces an isomorphism of rri(Xr) onto rri(X) for i r. 

Proof of Theorem 1. Consider the sequence of Cartan-Serre for the space Y. 

Then we have by (iii) and the assumption that 

rri(Yn+ 1 ) = rri(Y) E (9 

1ri(Yn+J = 0 

and hence rri(Y,.+ 1 ) is in (9 for any i <q. Therefore it follows from the generalized 

Hurewicz theorem [7; p. 271] that 

rjJ : rrq( Yn+1 ) -~ Hq( Yn+1) is a (9 -isomorphism, 

where rjJ is the natural homomorshism. Thus the i-dimensional homology group of 

the fiber in the fiber space (ii) with X= Y and r = n is in (9 for 0 < i < q, and 

hence we have by Proposition 2 that 

(3. 1) 
for i <q, 

Consider the commutative diagram 

7rq( Yn+1) 
1 • 
i Z:;:::;: 

v 
rrq( Y,,') 

1> 
----------+ Hq(Yn+I) 

1 i* 
<f/ v 

----------+ Hq(Yn'), 

then we have, since the induced homomorphism i!ti is onto, that 

and so 

"> 1q(Y,/) = rjJ'rrq(Yn') = rf/i!;!f7rq(Yn+1) 

= i*rprrq(Yn+1) C i*Hq(Yn+ 1 ), 

Since i*Hq(Yn+ 1 )/i*rprrq(Yn+ 1 ) is a factor group of H 9 (Y,+ 1 )/rjJrrq(Y,+ 1 ) and rjJ is 

(9-on, we have i*Hq(Y,+ 1 )/)__'q(Y,') E (9 and hence 

(3.2) 

Since rrr( Y) E (9 for r < n, it follows from Prop. 8 in [7; p. 271] that Hi(rrrC Y), 

r -1) is in (9 for n > r 2 and i :::>; 1. Therefore the positive dimensional homology 

groups of the fiber in the fiber space (i) with X= Y are all in (9. Thus it follows 

from Proposition 2 that fr*: H;( Yr+ 1 ) ->Hi( Yr) is (9-isomorphic for 2:;: r < n and 

i >O. This implies that 
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(3.3) g*:H;(Y,)~H;(Y2)=H;(Y) is (9-isomorphic for any i?O, where 

g = /1 o fz 0 · · · · · · o fn-1 · 

In general, we have 

PROPOSITION 3. If f: A~ B is a (9-isomrophism and A' is a subgroup of A, 

then 1 : A/ A' ~ B / f CA') induced by f is also (9 -isomorphic. 

Because the natural homomorphism /- 1(0) ~ J-'(f(A'))/A' = Ker.l is onto, and 

the Coker.l = (B/ f(A'))/(f(A)/ /(A'))= B/f(A). 

Since g#:rrq(Yn) ~rrq(Y) is onto, g* maps 2.jq(Yn) onto ~q(Y). Therefore it 

follows from (3. 3) in virtue of Proposition 3 that 

(3.4) 
H;(Yn)~H;(Y) for i<q, 

e 
Hq(Yn)/'"2]q(Yn) ~ Hq(Y)/'2:_q(Y). 

e 

Since Yn and Yn' are of the same homotopy type, we obtain from (3.1), (3. 2) 

and (3.4) 

(3.5) 
for i <q, 

which is Theorem 1 for the integer coefficient group. 

We know [7; p. 263] that 

PROPOSITION 4. If A~ A' and B ~ B', we have A IZ! B ~ A'~ B' and A* B 
e e e -

~ A'* B', where * denotes the torsion product, 
e 

and it can be easily seen from the definition of }._;q (Y; G) [3] that 

PROPOSITION 5. '"2]q (Y; G) is the image of the inclusion homomorphism .L::q (Y) 

IZJG~Hq(Y)IZJG, and so we have (Hq(Yl)IZJG)j'2:_q(Y;G) = (Hq(Y)/~q(Y))IZJG. 
Therefore Theorem 1 follows from these Propositions and (3. 5) in virtue of the 

universal coefficient theorem [5] 

and the proof is complete. 

Proof of Proposition 1. Since M ~ N, there exist a group L and two (9-
e 

isomorphisms f; L -~ M, g; L --~ N. Let K be the kernel of J, and /(L) =L'. Then 

K E (9 and M /L' E (9, and we have two exact sequences : 

(3.6)1 

(3.6)2 

ç 71 
o~ K --> L~ L/K--:----'> 0, 

!' 71 
o~LIK~M~M/L'--->0, 

where ~ is the injection, r; is the natural factorization and l' is a homomorphism 

induced by /. Therefore there exist fiber spaces (J(;(L, r), J(;(K, r), J(;(L/K, r)) and 

(J(;(L/ K, r), J(;(M/ L', r -1), J(;(M, r)) for any r > 1, as are shown in (6. 1) and 

(6.2) in [8]. Since KE(9 and M/L'E(9, we have H;(K,r)E(9,H;(M/L',r)E(9 



for i ;.::~ 1 and r ?:_ 1. 

(3. 7) 

Therefore we have 
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Renee we obtain by Proposition 2 that for i :::0: 0 and r ;:-;;; 2 

Hï(L, r) = Hi(M, r) e 

for i :::0: 0 and r > 2. By the same arguments we have 
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for i :2: 0 and r ;;-;;; 2, and so we obtain Proposition 1 for G = G' = Z. From this and 

Proposition 4, Proposition 1 is obvious in virtue of the universal coefficient theorem. 

This completes the proof. 

4. A homotopy type problem 

If rr is countable, it is obvious from the theorem in [11] that we can take 

;](;(re, n) which is locally finite CW-complex. Let us denote by K(re, n) such a space 

;](;(re, n). Then it follows from the obstruction theory [2, 12] and a theorem of 

}.H.C. Whitehead with respect to homotopy type [10] that every complex K(re, n) is 

of the same homotopy type for given rr and n 

THEOREM 3. Let Y be a simply connected space with the following properties: 

i) re11 (Y), rez 2 (Y), ···, rez,.(Y) are finite groups such that rez/Y)@ n:1k(Y) = 0 

for j ==Fk, 
ii) 7rï(Y) = 0 for any i differents from l,, 12 , ···,lm. Then we have 

Furthermore, if Y is a CW-complex then Y is of the same homotopy type as the 

product complex K(rez 1 , 1,) x K(rrz 2 , lz) x -····· XK(rrz,., l.m). 

REMARK. Every space K(re11 , 11) x ······ X K(rez,., lm) is on the same homotopy 

type for given groups re11 , • ••••• , rrz,. and integers l, , ······ , lm. Moreover this is a 

CW-complex, because it is proved in [10; p. 227] that the product of locally finite 

CW-complexes is also a CW-complex3). 

Proof. Let aJ be a set of prime numbers p such that the p-primary component of 

rr1/Y) is not zero. Then it is clear from rez;(Y)(g)rrzk(Y) =0 (jocF:k) that 

( 4. 1) aJ, a~r, are disjoint if j ='r k. 

For j = 1, 2, · · · , m, let (9 Jci!L) be the class of torsion groups which the p-primary 

3) J. H. C. Whitehead say that he does not know if the product of CW-complexes is generally 

a CW-complex. 
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component is 7ero for p E aJCp <$ a1)4 ). Then we see from ( 4. 1) and the assumption 

ii) that rr1( Y) E (9 1 if i "t~ !1 • Therefore, applying Theorem 1 with n = !1 , q = = 
and G=Z, we have H 1(Y) ~1 H1 (n:11 (Y),l1 ) for i:20 and j=1,2,···,m, and so 

we have 

(4. 2) The p-primary component of H 1(Y) is isomorphic with that of H;(n:z1 (Y), l;) 

forpEa1 • 

Since rr1;(Y) E (§ 1 , we have Hi(rrz;(Y), l;) E G; and hence we have 

( 4. 3) The p-primary component of H 1(rrz;, !1) is not zero if and on! y if P E a;. 

Finally let (§ be the class of torsion groups whose p-primary component is zero for 

p $ a 1 U a 2 U · ··· · · U am 0 . Then we have rri( Y) E (§ for i?: O. Therefore it follows 

from the generalized Hurewicz theorem that H;( Y) E G for i > 0, and so we have 

(4. 4) The P-Primary component of H;( Y) is not zero if and on! y if P E a 1 U a2 

U······ Uam. 

We see from (4.1)-(4. 4) that H;(Y) is isomorphic with 2:1J'~ 1 H;(rrz;(Y), l1). Thus 

we have the first part of Theorem 3. 

To proceed the proof of the second part, we assume that Y is a CW -complex, 

and we consider ali homotopy classes of maps of Y into K; = K(rrz;(Y), !1). Let u 

be the basic cohomology class of K 1 , and f*: H 1.1(K1 ; re1;(K1))->H1J(Y;rr11 (K;)) 

be the homomorphism between cohomology groups induced by a map f: Y-i> K 1 • 

Then we have from the obstruction theory [2, 12] 

(4. 5) All homotopy classes of Y into K1 are in one-to-one correspondence with 

elements of H 1J(Y; rez;(K1)) by means of the map {f) --i> f*u, where {f) denotes a 

homotopy class containing f. 

Moreover we have by the universal coefficient theorem 

H 1J(Y; rrz 3 (K1));:::::: Hom (Hz;(Y), rez;(K1)) +Ext (Hz;-1(Y), rez;(K;)). 

On the other hand we have re;( Y) E (9 1 for i < !1 , and hence the generalized Hurewicz 

theorem implies that Hz;-1CY) E (9 1 and rf;: rez;( Y) -Hz;( Y) is a (9;-isomorphism. 

Sin ce rrz;-1 (K1) E (9 1 , it follows from (3. 1) by the weil known properties of Hom 

and Ext [5] that Ext (Hz1- 1(Y), 1rz;(K1)) = 0 and </J*: Hom (Hz;( Y), rr1;(K;))-> 

Hom (rrz;(Y), rrz;(K;)) induced by rf; is isomorphic. We have now the following 

commutative diagram 
!;;;; 

Hom (rrz;(K5), rrz;(K;)) _,_Hom (rez/Y), rr1;(K;)) 

Il 1 .p* J* {( Î <P* 

HomHz;(K;), rez 3 (K1)) ___,_Hom (Hz;( Y), rr13 (K;)) 

Il Î e {( î1 o 
!* 

H 11(K;,rrz;(K)) - H 1l(Y;rr1;(K1 )), 

4) e J, ë; and e are classes satisfying (I), (II a) and (III). (see [7, p. 265]) 
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where if;* and tJ are isomorphisms. Th us if we associate each homotopy class { f} 
of Y into K 1 with the induced homomorphism f#: rr1;(Y) -> rr1;(K1), we see from 

( 4. 5) that it gives a one-to-one correspondence between all homotopy classes of Y 

into K 1 and Hon, (rr!1(Y), rrz;(K1)). Therefore there exists a map h1 : Y -->K1 such 

that h1#: rr1/Y) >rr!;(KJ) is isomorphic. Let h: Y~K,xK2 X ... XKm be a map 

defined by 

and consider the induced homomorphism h#: rri(Y) -> rri(K1 XK2 X ··· X Km). When 

i is not sorne !1 , hl;!; is isomorphic') sin ce rri( Y) and 7!'i(K1 x K 2 X ... X Km) are both 

zero. For i = !1 , consider the commutative diagram 

where pj(z1 XZ 2 X- .. XZm)=z1(ziEKi) is the projection. Then h1# and PJ# are 

isomorphic onto, and so h# is also an isomorphism. Thus h#: rri( Y)~ 7!'i(K1 XK2 

x ... X Km) is isomorphic') for every i. Since Y and K 1 XK2 X ... X Km are CW-

complexes as is noted in the above remark, it follows from a theorem of ].H.C. 

Whitehead [10; p. 215] that h is a homotopy equivalence. Thus we have the second 

part of Theorem 3. 

REMARK i). In the above proof of the second part of Theorem 3, we did not 

use Theorem 1 and 2, but we used only the generalized Hurewicz theorem. On the 

other hand, we used Theorem 1 in the proof of the first part. However, as is easily 

seen, we can reduce the first part from the second by making use of the result due to ].B. 

Giever (On the equivalence of two singular homo/ogy theory, Ann. of Math., 51 (1950), 

178-191). 

REMARK ii).') If we allow to use the results of M.M. Postnikov7), Theorem 3 

is obvious. 

5. Betti numbers and hnmotnpy groups 

THEOREM 4. Let Y be a simply connected space such that every dimensional 

homology group is finitely generated and p,. 0, Pi = 0 (0 < i < n), where Pi denotes 
the i-dimensional Betti number. Then the homotopy groups of Y are infinite for 
at !east two number of dimensions, if the fo!lowing relation is not satisfied for sorne i : 

5) An isomorphism, without qualification, will always mean an isomorphism onto. 
6) This is a remark by Mr. Mizuno. 
7) M. M. Postnikov: Determination of the homo/ogy groups of a space by means of the 

homotopy invariants, Doklady Akad. Nauk SSSR. 76 (1951), 359 362; On the homotopy 
type of Polyhedra. ibid, 789· 791. See also the paper of K. Mizuno in this journal and 
the mimeographed note due to P. ]. Hilton. 
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(5. 1) _ (q+pn-1) Pi- q if i = qn and n is even, 

=( Pn ) if i = qn and n is odd, q 

0 if i is not divided by n, 

where (~) is the binomial coefficient with the convention: (;) = 0 if j >k. 

Proof. Assume that all dimensional homotopy groups rr;,( Y) are fini te. Then all 

dimensional homology groups are also finite, by the generalized Hurewicz theorem and 

the assumption i). This contradicts the assumption i), and so there exists the smallest 

integer m such that rrm(Y) is infinite. Let C9r be the class of finite groups. Then, 

since rr;( Y) E (9 r for i < m, it follows from the generalized Hurewicz theorem that8 ) 

H;(Y) E C9r for i <m, 

Therefore we have m = n. 

rrw.(Y) ""'=' H,.(Y). 
er 

Let us now assume that rr;.( Y) is fini te except i = m = n, and let T'= Z +Z + 
... +Z, wherethenumberofZis Pn· Wehavethen rr;(Y)EC9r and rr;(J(;(I',n))EC9r 

for i =f= n. Further rrn( Y) ""'=' I' = l!n(X(I', n) ). Therefore it follows from Theorem 
er 

2 that6 ) 

for i ~0, 

and bence 

(5.2) H;(Y, k) = H;,(I', n; k) for i ~ 0, 

where k is a field of characteristic zero. 

J-P. Serre proved in [6; p. 501] that the cohomology algebra H* (Z, n; k) 

= ~ Hi(Z, n; k) is a commutative polynomial algebra or an exterior algebra generated 

by one element of Hn(z, n; k) according as n is even or odd. Therefore if n is 

even, Hi(Z, n; k) is one or zero dimensional vector space according as n is divided 

or not divided by n. If n is odd, H 0 (Z, n; k) and Hn(Z, n; k) is one dimensional, 

and the other is zero. On the other hand, we have 

by the Künneth relation. From (5. 2) and (5. 3), we have (5. 1). Therefore if the 

relation (5. 1) is not satisfied for sorne i, the homotopy groups are infinite for at 

least two number of dimensions. This completes the proof. 

8) er is a class which does not satisfy (lis). However Theorem 1 and the generalized 
Hurewicz theorem hold for this class, since we have the assumption i). See Remark in§ 2). 
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