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Introduction 

Ordinary cohomology theory for associative algebras was first established by 

G. Hochschild in his papers [ 4], [5], [6]. Recently M. Ikeda, T. Nakayama and the 

writer succeeded, in the joint paper [8], in determing the structure of algebras with 

vanishing n-dimensional cohomology groups; S. Eilenberg has given an alternative 

approach to our result ([1]). In our treatment a use was made of a notion of (-(relative) 

cohomology groups introduced by T. Nakayama [11]. Nakayama further extended 

our result to a characterization of algebras with vanishing n-dimensional a-cohomology 

groups, with a two-sided ideal a. His unpublished result reads: Let A be an algebra 

of finite rank over a ground field, N be its radical, and let a be a two-sided ideal of 

A. All nG~ 2)-dimensional a-relative cohomology groups of A vanish if and only if 

(i) A/(a+N) is separable and (ii) for every left ideal ( containing a, QÎ;~l') is an 

(M0 )-module2 ) as an A *-left modulé). 

In the present paper, we introduce the notion of [n]-cohomology groups of an 

algebra, which is a generalization of the notion of factor sets to higher dimensional 

cases, and by considering sorne exact sequences, extend the result of our joint paper 

[8] and the above result by Nakayama to (-relative case. 

In section 1, we repeat briefiy the notion of !-(relative) cohomology groups, and 

introduce the notion of [n}-cohomology groups. Then we get an exact sequence 

which clarifies the relation between the ordinary, (- and [f]-cohomology groups. In 

fact, the method of Nakayama essentially depends on the exactness of this sequence. 

In section 2, we relate the [n]-cohomology groups to the enlargement of modules, 

and, in section 3, we state sorne properties of algebras with vanishing ordinary or 

1) QÏÏ:11 = Ax ··· xAxl;a is the Kronecker product of the vector space of (n-2)-fold 

Kronecker product of A and the underlying vector space of l/lJ. W e defi ne the *-operation 
of A by setting 

X*(X1 X ···xx,_,)= xx1 x ··· xx,_1-xxx1x2 x ··· xx,-1+ ···+(-1)"'xxx,;<··· XXn-2Xn- 1 , 

where x, X 1 , ..• , Xn-2 E A, Xn- 1 E f/lJ. This makes Q[jd an A·left module. We shall 

speak of A*·left module Q{ja' in order to make distinction from QÏjd consideree! as A· 

left module in usual fashion. 
2) For the notion of (M0)-moclules, see [10]. 
3) See footnote 1). 
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f-cohomology groups. In section 4, we first prove a theorem on ordinary cohomology 

groups (Theorem 6), which is a generalization of our main theorem in [8] and 

seems to the writer to be sorne interest for itself. By combining this theorem and a 

theorem in section 3 (Theorem 2), we obtain two main theorems. In the appendix, 

we consider algebras with vanishing 1-dimensional f-cohomology groups with respect 

to the enlargement of modules. 

The writer wishes to express his best thamks to Prof. K. Shoda and Prof. T. 

Nakayama for their kind encouragement and advice, and to Mr. M. Ikeda for his 

discussions and suggestions during the preparation of the present paper. 

1. Cohomology groups H'((A, m), H[nJCA, m) 

Let A be an associative algebra, of finite or infinite rank, over a field !2, and let 

[ be a left ideal of A. We consider an A-A-module m satisfying 

( 1) mf= O. 

We briefly repeat the notion of (-(relative) cohomology groups of A in m as was 

introduced in [11]. Let P"=A x··· x A be the n-fold Kronecker product of the 

underlying vector space of A over !2, and let Cï(A, m) be the module of all SJ

linear mappings f of P" into m such that f(x 1 , ••• , Xn) =0 whenever x, E (. On the 

other hand C(CA, m) is identified with the !2-submodule of m consisting of al1 

elements u such that fu=O. The coboundary operater o, which maps each C[(A, m) 

linearly into C(H(A, m), is defined as usual. Namely, if /E C[(A, m), Xu ..• , 

Xn+ 1 E A, then 

(2) oj(Xu ···, Xn+!) = X1j(x2, ···, Xn+!) + ::8 ( -1)> /(Xl, ···, XiXHu 
i~l 

•.. , Xn+1) + (-1)"+ 1 /(Xu ... , X,.)Xn+J· 

Thus, we have a cochain complex C1(A, m)= g:o cy·(A, 111) which we want to call 

the {-cochain complex of A in m; we shall also speak of f-cochains, (-cocycles and 

(-coboundaries. We denote the n-dimensional cohomology group of C7CA, m) by 

H[CA, m), and call it the n-dimensional {-cohomology group of A in nt. If we speak 

of an (ordinary) cochain, cocycle, coboundary or cohomology group, we shall always 

mean a 0-cochain, -cocycle, -coboundary or -cohomology group, and denote the 

0-cochain complex and 0-cohomology group, omitting the suffixes 0, by C"(A, m) 

and H"(A, nt) respectively. 

(3) 

Now, we consider another cochain complex. Let n be an A-left module, and put 

Q"=AX···xAxn (withn-1A's). n 

Let n ::2: 1, and let m be an A-A-module. We denote by C[niA, m) the module of 

all !2-linear mappings of Q; into m, and define the coboundary operator o, which 
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maps each C[11J(A, m) linearly into C[~]CA, m), as follows; for fE C[ 11JCA, m), x,, 

... , x,. E A, Xn+1 E n, we set 

Then, we see, by direct computations, that oo f =0, and thus we have a cochain 

complex Cc 11lA, m) = t 1 C[11J(A, m) which we want to call [n]-cochain complex of 

A in m; we shall also speak of [n]-cochains, [n]-cocycles and [n]-coboundaries. 

We denote the n-dimensional cohomology group of C[n](A, m) by H[11J(A, m), and 

call it the n-dimensional [n]-cohomology group of A in m. It is readily seen, from 

the definition, that H[11J(A, m) is independent of the A-right module structure of m. 

We consider C(CA, m) and C[11lA, m) as A-A-modules, on defining, for 

/E C((A, m) or E C[11J(A, m), 

(5) 
(xf) (x,, ... , x,.) = xf(x,, ... , x,.) 

(fx) (x,, ... , x .. ) =xf(x,, ... , x .. )- of(x, x,, ... , x,.)' 

where x, x,, ... , x,._, E A and x,. E A or E n according as fE Cf CA, m) or E C[nJCA, m). 

Then we have the following reduction theorems; 

(6) 

(7) 

Ht 7 (A, m) ~ Hr(A, CfCA, m)), 

H[~'j(A, m) ~Hr(A, C[11JCA, m)). 

On the other hand, we consider C"(A, m) as an A-A-module, on defining, for 

/EC"(A, m), 

( 8) 
(xf) (x,, ... , x.,) = f(x,, ... , x,.) x + ( -1)"of(x,, ... , x,., x) , 

(fx) (x,, ... , x,.) =f(x,, ... , x,.)x, 

where x, x,, ... , x,. E A. Then we have another reduction theorems; 

( 9) Ht'CA, m) ~ H(CA, C"(A, m)), 

(10) H[~]CA, m) ~ H[nJ(A, C"(A, m)) . 

Proofs of these reduction theorems are exactly the same as in the ordinary case. 

Now, again, let f be a left ideal of A, and m be an A-A-module satisfying (1). 

For the sake of convenience, we define C[!J(A, m) as the SJ-module m/C(CA, m), 

and coboundary operator o, which maps C[f]CA, m) linearly into C[[JCA, tn) as 

follows: for xE f and a E C[r](A, m) (the residue class of m modulo C((A, m) which 

con tains an element u), we set 

(11) iJa(x) = xu. 

As is easily seen from the property of C{CA, nt), ou is independent of the choice of 

the representative u of the class u. Since oou = 0, we have a cochain complex 
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C[f](A, m)::::: ~ C[fJ(A, m). Let r; be a linear mapping of C(A, m) into C[{](A, m) 

which maps an element u of C0 (A, m) ( :::::m) to the residue class u of m modulo 

C((A, m), and an element f of C"(A, m) (n;:;;;; 1) to the element of C[f](A, m) 

obtained from f by restricting the last argument x,. to the elements of f. Then, the 

kernel of r; is Cf (A, m), and, as is readily seen from the assumed property (1) of 

m, iJr;::::: r;iJ. By the theorem similar to [3], theorem 3.7, we have an exact sequence 

(12) -> 

2. Modules Q~1 

Let n be an A-left module. Q~ is an A-left module under the usual operation 

defined by setting 

(13) 

(x, x1 , ... , Xn- 1 E A, x, E tl). However, we introduce, after Hochschild, a new opera

tion * of A by setting 

(14) 
'(1.-1 

x* (x1 x ... xx,.)= (xx,) x ... xx,.+ 2..] ( -1)ixx ... x (X;Xï+ 1 ) x ... xx,., 
i~l 

(x, x1 , ... , Xn- 1 E A, x,. E tl). Under this operation, too, Q~ is a left module of A, 

and we shall speak of A *-left module Q'tl' in order to make destinction trom Q" 
ll 

considered as A-left module in usual fashion. 

Let Ill be an A-A-module, and let L(n, m) be the module of ail JJ-linear map

pings of n into m. We may consider L(tl, m) as an A-A-module, on defining, for 

fE L(tl, m), 

(15) 
(xf) (u) = xf (u) , 

( fx) (u) ::::: f (xu) , 

(xE A, u E tl). From the definitions, it is readily seen that C[tl](A, m) may be 

identified with L(Q~, m), and, further, the A-A-module structure of CJ=n](A, m) 

defined in (5) coïncides with that of L(Q~, m) defined in (15) considering Q~ as 

A *-left module. The reduction theorem (7) gives, for n 2, 

(16) 

LEMMA 1. Let m and tl be two A-left modules. Then the group of equivalence 

classes of enlargments of m by tl is isomorphic to H 1 (A, L(tl, m) ). 

Proof is exactly the same as in [6], ~ L 

Combining (16) and· Lemma 1, we have readily 

THEO REM 1. Let n be an A-left module, and let n ?'; 2. Then H[nJ(A, m) = O. 

for every A-A-module nt if and only if Q~-l is an (M0)-module as an A *-left 

module. 
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From the reduction theorem (10) and Theorem 1, we have readily 

lEMMA 2. Let tt be an A-left module, and let n >: 1. If Q;t is an (M0)~module 

as an A *~left module, then Q~ is also an (M0 )-module as an A *-left module for 

every m :2: n. 

Now, let m be an A-A-module, I)Jè be an A~left module, and let n be a sub

module of I)Jt. The set of cochains of C[I)Jè](A, m) such that f = 0 whenever the 

last argument of f is in tt forms a subcochain of C[IJJ1J(A, m). This is clearly 

isomorphic to C[IJJU niA, m), and further, identifying this subcochain with C[IJJU n] 

(A, m), we have C[l)}è](A, m)/C[IJJê/n](A, m) '"'": C[n](A, nt). Renee, we have an 

exact sequence 

By considering this exact sequence, we have, from the reduction theorem (10) and 

Theorem 1, readily the the following lemmas. 

LEMMA 3. If Q~JUn is an (M0 )-module as an A *-left module, then Q~Jè is an 

(M0 )~module as an A *-left module if and only if Q;~ is so. 

LEMMA 4. If Q~Jè is an (M0 )-module as an A *-left module, then Q~ is an 

(Mo)-module as an A *-left module if and only if Q~J{~n is so. 

lEMMA 5. If Q;~ is an (M0 )-module as an A *-le ft module, then Q~J{ is an 

(M,,) -module as an A *~left module if and only if Q~_Î{n is so. 

3. Properties of algebras with vanishing f-cohomology groups 

Let A be an algebra of finite or infinite rank over fJ possessing a unit element. 

Then, either from Theorem 1 in [5], ?, 1 or from Theorem 1 and Lemma 2, H"(A, m) =0 

for every n :> 1 and A-A-module m satisfying mA = O. By considering the exact 

sequence (12), we have readily, for every n;:>1 and A--A~module m satisfying 

mA== 0, 

(18) 

LEMMA 6. H[f]CA, m) = 0 for all A~A-module m if and only if fis a principal 

left ideal generated by an idempotent element. 

Proof. It is readily seen, from the definition, that a 1-dimensional [f}-cochain 

of A in m is [(]-cocycle if and only if it induces an A-operator homomorphism 

from f into m. Assume first that H(riA, f) =O. Then the identical mapping of f 

is an [(]-cocycle of A in f, and hence an [f]~coboundary. Therefore, there exists 

an element e of f such that x = xe for all x E f. Such element e is necessarily an 

idempotent element, and we have r = Ar. 
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Conversely, assume that { = Ae with an idempotent element e, and let f be a 

1~dimensional [f]~cocycle of A in m. Since fis an A~operator homomorphism from 

( into m, f(ae) = aef(e), and hence f is an [f]~coboundary. This shows that 

H[l]CA, m) = o. 
LEMMA 7. Let A possesses a unit element 1. Then H[CA, m) = 0 for all 111 

satisfying mA= 0 if and only if, in case n = 2, ( is a principal left ideal generated 

by an idempotent element, and, in case n > 2, Qr2 is an (M0)~module as an A*~ 

left module. On the other hand, in case n = 1, H(CA, m) = 0 for all A~A~modules 

111 satisfying mA = O. 

Proof. In case n 2, from (15), Theorem 1 and Lemma 6, we have readily the 

lemma. In case n = 1, it is readily seen, from the definition that any (~cocycle of A 

in m induces an A~operator homomorphism from A into 111, if mA= O. Hence 

/(x) = xf(1) for ail xE A, and, since f(x) = 0 for ail xE(, f/(1) =O. This shows 

that f is an (~coboundary, and hence H(CA, m) = O. 

THEOREM 2. Let A be an algebra with a unit element 1, and let (be a left ideal 

of A. Then H[( A, m) = 0 for al! A~A~modules m satisfying mf= 0 if and only if 

(i) H"(A, m) = 0 for all A-A-modules 111 satisfying mf = 0, and, 

(ii) in case n = 1 or 2, f is a principal left ideal generated by an idempotent 

element, and, in case n > 2, Qr2 is an (M0)~module as an A *-left module. 

Proof. Assume first that H(CA, m) = 0 for al! A~A~modules m satisfying mf= O. 

Then, from Lem ma 7, it is readily seen that the assertion (ii) is valid in case n ;:c: 2. 

On the other hand, in case n :c"C 1, from the reduction theorem (9), H{CA, m) ::c 0 

for ail A-A-modules m satsfying mf= 0, and hence, from lemma 7, ( is a principal 

left ideal generated by an idempotent element. From lemma 6, in case n = 1 or 2, 

H[liA, m) = 0, and hence, from the reduction theorem (10), H[liA, m) = 0 for 

ali A~Amodules m, and, in case n > 2, from Theorem 1, H[!j(A, m) =O. By con

sidering the exact sequence (12), we see now that the assertion (i) is valid for 

every natural number n. 

Conversely, assume that the condition (i), (ii) are satified. In case n ~ 2, from 

the condition (ii), and Lemma 6 or Theorem 1, we see that H[fj(A, m) = 0 for 

al! A~A~module m. Renee, by considering the exact sequence (12), we see that 

H[CA, m) = 0 for al! m satisfying mf= O. In case n = 1, we see immediately, from 

the definition (11), that a O~dimensional [(]~cocycle of A in m is an element a of 

m/C(CA, m) such that fa= O. Since f = Ae with an idempotent element e, [2 = f. 
Renee ra = 5 implies fu= O. and so a = 0, because Cf CA, m) is a submodule of m 

of al! element v satisfying lv= O. Therefore, H[[JCA, m) = 0 for al! m. By con

sidering the exact sequence (12), we see that H(CA, m) = 0 for al! m satisfying 

mf = O. 
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THEOREM 3. Let A be an algebra with a unit element 1, and let a be a two-sided 

ideal of A. lf H"(A, m) = 0 for all A-A-modules m satisfying ma = 0, then, for 

every left ideal (1 of A containing a, in case n = 1, (1 is a principalleft ideal generated 

by an idempotent element, and, in case n ~ 2, Qf;1 is an (M0 )-module as an A *-left 

module. 

Proof. Let (1 be a left ideal of A containing a, and let m be an A-A-module 

satisfying mf1 =O. Then, from the reduction theorem (6), we have 

(19) 

where Ct (A, m) is considered as an A-A-module, on defining, for fE q1 (A, m), 

x, yEA, 

(20) 
(xf) (y) = xf(y), 

(fx) (y) = f(xy) - f(x) Y. 

If xE a, then xy and x belong to f1 , and hence f(xy) = f(x) = 0 for fE Ct (A, m). 

This shows that ct (A, m)a =O. Renee, from the assumption and (19), we see that 

Hj+1 (A, m) =O. From theorem 2, we have the theorem immediately. 
1 

Combining Theorem 2 and Theorem 3, we have the following theorem. 

THEOREM 4. Let A be an algebra with a unit element 1, and let f be a left idfal 

of A. If H[CA, m) = 0 for all A-A-modules nt satisfying mf= 0, then, 

(i) in case n = 1 or 2, f is a principal lejt ideal generated by an idempotent 

element, and, in case n > 2, Q't2 is an ( M 0)- module as an A *-le ft module, and, 

(ii) for any left ideal (1 containing TA, in case n = 1, {1 is an principal left 

ideal generated by an idempotent element, and, in case n::?; 2, Q~H is an (M0)-module 
•1 

as an A *-left module. 

Further, we have 

THEOREM 5. Let A be an algebra with a unit element 1, and let f be a left ideal 

of A. lf H'i(A, m) = 0 for all nt satisfying mf = 0, then, for every left ideal (1 

containing CA, in case n = 1, {1 is a principal left ideal generated by an idempotent 

element, and, in case n ~ 2, Qr(/r is an (M0 )-module as an A 'f.-left module. 

Proof. In case n = 1, the assertion is proved in Theorem 4, and, in case n > 2, 

since Q't2 and Q(;1 are both (M0)-modules as A *-left modules (Theorem 4), from 

Lemma 5, we see that Q(;,i\ is an (M0)-module as an A *-left module. In case 

n = 2, by Theorem 4, f = Ae with an idempotent element e and {1 is an (M0)-module. 

As is easily seen, (1 is a direct sum of f and another submodule which is necessarily 

isomorphic to f1 /L Renee, from [10], Lemma 1, we see that f1 /f is an (M0)-module. 
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4. Main theorems 

LEMMA 8. Let A be an algebra over !J, and a be a two-sided ideal of A. For 

any extension field A of !2, n-dimensional (ordinary) cohomology groups of Ai\ in 

AA-AA-modules m, satisfying m,aA = 0 al! vanish if, and only if, n-dimensional 

(ordinary) cohomology groups of A in A-A-modules m satisfying ma= 0 al! vanish. 

Proof. Assume first that all n-dimensional cohomology groups of A in A-A

modules m satisfying ma= 0 vanish. Let A be an extension field of JJ, m, be an 

AA-AA-module satisfying m,aA = 0, and let f, be an n-dimensional cocycle of AA in 

m,. Since a basis {x,.} of A over JJ is also a basis of AA over A, f, is determined 

by the value f,(xœ, ... , xœ) for x~, ... , xœ . The AA-AA-module m, may be 
1 n ul 1{, 

naturally considered as an A-A-module satisfying m,a = 0, and the cochain f,J A of 

A in 111 1 defined by f, is cocycle. From the assumption, there exists an (n-1)

dimensional cochain g of A in m, such that 

(21) 

In case n 2, let g, be the cochain of A_l\ in m, obtained from g by linear exten

sion. Then, from (21), we have f, = og, readily. In case n := 1, it is obvious from 

(21) that f, is a coboundary of AA, and hence the "if" part of the !emma is proved. 

Conversely, let A be an extension field of JJ, and assume that ali n-dimensional 

cohomology groups of AA in AA-Ai\-modules m, satisfying m,aA = 0 vanish. Let m 

be an A--A-module satisfying ma= 0, and let 1 be an n-dimensional cocycle of A 

in m. Since the cochain / 1 of AA in m,\ obtained from 1 by linear extension is also 

a cocycle, and mAnA= 0, there exist an (n~l)-dimensional cochain g, of AA in mA 

such that 

(22) 

l 
···J be a basis of A over JJ. Then mA is the direct surn of sub-

modules mi; which are ali isomorphic to m as A-A-modules. We denote the mÀ 0 -

component of g, (xœ , ... , xœ ) by g(xœ , ... , xœ ) then, since og 1 (xœ , ... , xœ ) = 
1 n.-1 1 n-1 1 n 

f(xœ , ... , xœ ) belongs to mio, we have readify àg(x œ , ... , x ) = àg 1 (x , ... , x ) = 
1 n 1 œn œl œn 

l(xœ , ... , xœ ). This shows that f is a coboundary of A in m, and hence the "only 
1 n 

if " part of the !emma is proved. 

So far, we did not assume that A is finite over JJ. But we assume now that 

our algebra A over JJ is of finite rank and possesses a unit element. 

We shall first prove the following theorem, which gives a generalization of our 

recently obtained main theorem ([8], Main Theorem). 

THEOREM 6. Let A be an algebra of finite rank over JJ, possessing a unit element, 

N be its radical, and let a be a two-sided ideal of A. 
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If Hn( A, m) = 0 for al! A -A modules m satisfying mn = 0, then, 

r;.) A/(n+N) is separable, and, 

23 

{3) for every left ideal ( of A containing a, zn case n = 1, ( is a principal left 

ideal generated by an idempotent element, and, in case n;:?, 2, Q't1 is an CM, )-module 

as an A *-le ft module. 

Converse/y, if a) is the case, and if, 

{3 1 ) in case n=1, N+a is a principal left ideal generated by an idempotent 

element!) and, in case n 2, QN!I-a is an (M0 )-module as an A *-left module, 

then Hn(A, tit) = 0 for all A-A-modules satisfyng ma =O. 

Since we showed, in Theorem 3, the assertion {3) in the former half of the 

theorem, it is sufficient to prove u.) in the former half, and the latter half of the 

theorem. The proof is very similar to that of Main theorem in [8]. 

Let 

(23) 

be a decomposition of 1 into mutually orthogonal primitive idempotent elements in 

A such that the left ideals Ae.i and AeÀJ are A-operator isomorphic (or, equivalently, 

the right ideals e.tA and e"J A are A-operator isomorphic) when, and only when 

"= J.. Put e< = e" 1 for the sake of simplicity. 

We first consider the case where the irreducible representations of A in g are 

ali absolutely irreducible. This is equivalent to that (e<Ae</e.Ne": JJ) = 1 for every 

K, and further to that the semi-simple algebra A/ N is a direct sum of matric algebras 

over JJ. Since A/ N is separable, by Wedderburn's theorem, there exists a subalgebra 

A of A such that 

(24) A=AE!)N. 

This is in fact a consequence of the fact that the 2-dimensional ( oridnary) cohomology 

groups of A/ N ali vanish. The idempotent elements e<i may, and shall be taken 

from A. 

We denote N +a by N 1 • Q"N-l and Qn-l may be considered as A *-A-module on 
1 a 

defining the right operation of A as usual, 

Now, assume that n-dimensional ( ordinary) cohomology groups of A in 111 satisfy· 

ing ma = 0 ali vanish. W e cons id er first the case n = 1. Any A/ a- A/ a-module m may 

be considered as an A-A-module satisfying am= ma= 0, and any 1-dimensional 

( ordinary) cocha in, cocycle, coboundary of A/ a in m may be naturally considered as 

1-dimensional cochain, cocycle, coboundary of A in ni respectively. Renee, from the 

assum ption, 1-dimensional cohomology groups of A/ a ali vanish. From [ 4 ], Theorem 

4) In this case, N is contained in a, and hence N+ct =t', 
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4.1, A/ a is semi-simple separable, and hence N +a = a. This proves the assertion If.) 

in case n = 1. 

Next, we consider the case n;?:2. Associating X1 XX2 X ... XXnEQ'NJ~aCx,, ... , 

Xn_ 1 EA, x,EN,/a) with the element X1 *(X2 X ... XXn) of 1*QN,ja, we have anA~ 

operator homomorphie mapping of Q'N,;a, under the ordinary left operation of A, 

upon 1 * Q']V1
1;a· The mapping is also A-operator homomorphism under the ordinary 

right operation of A, and its kernel is exactly 1 * Q'N,;a. It indu ces th us an eKAeK

e"'Ae"'-homomorphism of eKQ'N,;aeA onto eK * Q'Jj,jaeA, and the kernel is eK * QNJiaeA. 

Renee we have 

(25) 

Re re 

(26) 

and, by the same argument as above, we have 

(27) 

(eK * Q}v,e"': Q) = (e<Q'ke"': lJ) - (e< * Q}v,eÀ: l2) , 

(eK * Q}v,eÀ: JJ) = (e<N,e"': JJ) . 

Combining (25), (26) and (27), we have 

n-2 
(28) ( eK * Q"jy tQeÀ: JJ) - (e<QN ;aeÀ: Q) + ~ (- 1)i_, (eKQ"N-te"': g) 

l! 1 ?,=1 1 

- (e< * Q~-1eÀ: lJ) = (- 1)"- 1 (e<N,eÀ: !J) . 

(In case n = 2, the vacus sum on the left hand is to mean 0.) 

Now, we consider generally an A-A-module rn. Let m be a natural number. 

If Q~ is an (M0)~module as an A *-left module, then, by [9], Lemma 2.3, it is an 

(M0)~module as A *~A-module, where we consider the right operation of A as usual. 

The same is, by [10], Lemma 2, the case with the unitary A *~A~module 1 * Q"'. 
11l 

Then, by virtue of the structure theorem of (M0 )-modules (see [10], Theorem 1), 

applied to the Kronecker product algebra of A and an inverse-isomorphic image of 

A, 1 * Q~ is a direct sum of A-A~submodules isomorphic to the A-A~modules of 

form Ae,. X evA. Denoting by t,.v the number of component isomorphic to Ae,. x evA, 

we want to write, symbolically, 

Renee 
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(31) 

where 

(32) 

are the Cartan invariants of A. 

On the other band, if m 2, we have, for any A-A-module m, 

(33) (e.o;;e>-: JJ) = (e.AxAx ··· xAxme>-: JJ) (with n-2 A's) 

= (2.j c.,.m,.) CA: JJ)'"'- 2 (me>-: JJ). 
fL 

Now, by Theorem 3, Q"-1 and Q"N-1 are both (M0)-modules as A *-left modules a , 
and bence so as A *-A-modules. By Lemma 4, Q]v,;a is also an (M0 )-module as 

an A *-A-module. By (31) and (33), the left band side of (28) may be described 

as follows: 

(34) 

where s,.>- are certain integers. 

On the other band, since e.Ne. is a maximal two sided ideal of e.Ae., and 

e<Ne. Ç e.N,e" C e.Ae<, (e<N,e.: "Q) = c"" or = c .. - 1 according as e< ==" 0 modulo 

N, or e. =',-:: 0 modulo N,, and further r.: •1=:). implies (e.N,e>-: Q) = c<A· Thus, corn· 

bining (28) and (34), we have, for each r.: such that e< $0 modulo N,, 

(35) 

Thus we have 

LEMMA 9. Let A be an algebra over l2 such that the irreducible representations 

of A in JJ are al! absolutely irreducible, and let a be a tow·sidd ideal of A. If n

dimensional (ordinary) cohomology groups of A in A-A-modules m satisfying ma= 0 

all vanish, then the relation (35) holds for each r.: such that e. is not contained in a 

(or, equivalent! y, in N,). 

Further, we have the following !emma; the proof is exactly the same as that of 

[8], Lemma 5. 

LEMMA 10. Let A be an algebra over JJ, N be its radical, a be a tow-sided ideal 

of A, and let .1 be the algebraic closure of Q. If A/ CN +a) is inseparable, then there 

exists a r.: such that the primitive idempotent element e. of AA is not contained in aA 

and Cartan invariants c.p. of AA are divisible by the characteristic p of JJ for al! /~-

Combining Lemma 8, 9 and 10, we have easily the assertian r1.) of the former 

half of our theorem. 

We now prove the latter half of the theorem. If n-dimensional (ordinary) 

cohomology groups of A in A-A-modules nt satisfying 

(36) 

al! vanish, then n-dimensional cohomology groups of A in m satisfying ma = 0 al! 
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vanish; this may be easily seen by considering a normal series of a given A-A

module m satisfying ma = 0 in which every residue module satisfies (36), and apply

ing a well-known argument by considering residue modules. Therefore, it is sufficient 

to consider A-A-modules satisfying (36). 

We first consider the case n = 1. Let m be an A--A-module satisfying (36), and 

f be a 1-dimensional cocycle of A in 111. Put N, = Ae with idempotent element e, 

and e' = 1 - e. From the assumed property (36) of 111, it is readily seen that f 

in duces an A-left homomorphism of N, into m. Renee we have ae f(e) = f(ae). 

Since of(e,e') =ef(e')--f(ee')+f(e)e'=ef(e')+f(e)e'=O, and f(e)e'=f(e)(1-e)= 

f(e), we have ef(e') = - f(e). On the other hand, since Ae' is isomorphic to the 

semi-simple separable algebra A/ N,, there exists an element v of m such that f(ae') = 
ae'v- vae'. Thus, we have f(e) = - ef(e') = - ef(e'e') = -e(e'v - ve') =eve'= ev, 

and bence ov(ae+be') = (ae+be')v-v(ae+be') =aev+be'v-vbe' =aef(e)+f(be') = 
f(ae+be'). This shows that f is a coboundary, and hence the latter half of our 

theorem is proved in case n = 1. 

The proof in case n :2; 2 is very similar to [9]. We shall state it briefly. 

Sin ce A/ N, is semi-simple and separable, there exists a (separable semi-simple) 

subalgebra A, such that 

(37) 

By the similar argument to [9], we have 

LEMMA 11. Let m be an A-A-module satisfying mN, = 0, and let L(Q}j1\ m) 

be the module of all A-right homomorphism of QvN-r into m, ( where we consider Q}j1 
1 1 

under the ordinary right operation of A). We consider Q}j11 as A *-left module, and 

define the operation of A on L(Q'v'-1, m) as in (15). Thrn, (undrr thr assumption 
" 1 

that A/N, is separable), we have 

(38) H"(A, m) =H'(A, L(Q'Jj,\ m)). 

Now, the right band side of (38) is 0 for every A-A-module satisfying (36) 

when, and only when, Q'Jj11 is an (M0 )-module as an A *-A,-module, the proof is 

exactly the same as in Hochschild [6], \'i 1. And, further this is equivalent, by [9], 

Lemma 2.3, to that Q'}:j1 is an (M0 )-module as an A* left module. Thus, if Q"'N,-r 
1 1 

is an (M0 )-module as an A *-left module, then H"'( A, 111) = 0 for every A-A-module 

111 satisfying ( 36), and he nee the latter half of our theo rem is proved in case n ;?: 2. 

Combining Theorem 2 and Theorem 6, we have immediately the following main 

theorem. 

MAIN THEOREM I. Let A be an algebra of finite rank over a field .Q possessing 

a unit element 1, N be its radical, and let f be a left ideal of A. If n-dimensional 

l-cohomology groups of A al! vanish, thcn, 
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11.) A/CN+fA) is seperable, 

[3) in case n = 1 or 2, fis a principal left ideal of A generated by an idempotent 

element, and in case n > 2, Qr2 is an (M0 )-module as an A *-left module, and, 

r) for any left ideal f, of A containing fA, in case n = 1, f, is a principal left 

ideal of A generated by an idempotent element, and in case n~>z, Qr1 is an (M0 )-module 

as an A *-left module. 

• Converse/y, if fi.) and [3) are the cases, and if, 

ï 1 ) in case n = 1, N \-fA is a principal le ft ideal of A generated by an idempotent 

element, and in case n > 2, QN~-fA is an (M0 )-module as an A *-left module, tlzen 

al! n-dimensional f-colzomology groups of A vanish. 

Further we have 

MAIN THEOREM Il. Let A, [ and N be the same as in Main Theorem !. If n

dimensional f -colzomology groups of A all vanislz, tlzen, 

fi.) A/ CN HA) is separable, and, 

iJ) for any lef ideal (1 of A containing fA, in case n = 1, f and {1 are both 

principal left ideals of A gencrated by idempotent elements, and in case n ;>; 2, 

Q{':f( is an (M0 )-module as an A *-left module. 

Converse! y, if 11.) is tite case, and if, 

iJ 1 ) in case n = 1, [and Nt-fA are both principal left ideals generated by idempo

tent elements, and, in case n > 2 Q'A}r and Q'(!J+fA)/f are U'vfu)-modules as A *-left 

modules, then al! n-dimensional f-cohomology groups of A vanislz. 

Proof. The former half of the theorem is clear from Theorem 5 and Main 

Theorem I. We prove the latter half. In case n = 1, it is shown in Main Theorem 

I. Now, let m be an A-A-module such that mA = 0, and let n ,-;~ 2. Then we see 

readily that H['CA, m) is isomorphic to H[A;fiA, m). By the assumption, H[Aif] 

(A, m) = 0 for all A A-modules lll (Theorem 1), and he nee Hf(A, m) = 0 for all 

m satisfying mA= O. By Lemma 7, in case n = 2, f = Ae with an idempotent 

element e of A, and, in case n > 2, Qr2 is an (M0 )-module as an A *-left module. 

Hence Q[-1 is also an (M0 )-module, and hence, from Lemma 3, we see readily that 

Q]V+rA is an (M0 )-module (as an A* left module). Thus, from Main Theorem I, 

we have our theorem. 

As an immediate consequence of our Main theorems, we mention the following 

corollary. 

CoROLLARY. Let A be a quasi-Frobenius algebra over a field !2, and f be its left 

ideal. For every natural number n, n -dimensional ( cohomology groups of A al! 

vanish (if and) only if 1-dimensional (-cohomology groups of A al! vanish. 

Proof. Quasi-Frobenius algebras are characterized as algebras (with unit element) 
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whose (M0)-left modules are always (Mu)-left modules5 ) and conversely ([10]). By 

the same argument as in the proof of Corollary of main theorem in [8], we see that 

Q~(n;?:: 1) is an (M0 ) module as A-left module (if and) only if m is an (M0 )-left 

module, or, equivalently an (Mu)-left module. Therefore, if H{CA, m) = 0 for all 

m satisfying mf = 0, then, by Main Theorem I, f and N + fA are (Mu)-modules 

and hence generated by idempotent elements. This shows that H((A, m) = 0 for 

all m satisfying mf = O. 

Appendix: Significance of 1-dimensional f-cohomology groups 

The 1-, 2- and 3-dimensional ordinary cohomology groups of algebras were 

interpreted, by Hochschild, with reference to classical notions of structure, and a 

significance of 3-dimensional f-cohomology groups has been given by Nakayama in 

his paper [11]. 

For the significance of 1-dimensional cohomology groups, we shall prove the 

following theorem. 

THEOREM 7. Al! 1-dimensional f-cohomology groups of A vanish if and only if 

either of the following conditions is satisfied. 

(i) For any A-A-modules n and m satisfying fm = 0, every right inessential 

enlargement of n by nt splits. 

(ii) For any A-A-modules nt and n satisfying nf= 0, every left inessential 

enlargement of n by nt splits. 

Proof. Assume first that 1--dimensional cohomology groups of A all vanish. Let 

m and n be two A-A-modules, and assume that fm= O. We denote by lR(m, n) 

the module of all A-right operator homomeorphism of m into n, and consider it as 

an A-A-module on defining the operation of A as in (15). Clearly ~ll(m, n)f = O. 

Renee, by Theorem 2, we have H 1(A, !R(m, n)) =O. By [6], Theorem 1.3, this 

proves (i). In arder to prove (ii), let m and n be two A-A-modules, and assume 

that nf= O. We denote by 5.l(m, n) the modules of all A-left operator homomo

rphism of m into n, and consider it as an A-A-module on defining the operation 

of A as follows; for fE 5.l(m, n), we set 

(39) 
(xf)(u) = f(xu), 

Cfx)(u) =f(u)x, 

(xE A, u E m). Then, clearly 5.l(m, n) f = 0, and it 1s proved, by a similar way 

to [6], Theorem 1, 3, that the group of equivalent classes of left inessential enlarge

ment of n by m is isomorphic to H 1(A, 5.l(m, n)). But, by Theorem 2, H 1 

(A, 5.l(m, n)) = 0, hence we have (ii). 

Conversely, assume that (i) is satisfied. Let (1, A) be the algebra obtained from 

5) For the notion of (M,)-modules, see [10]. 
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A by adjoining a new identity element 1, and let m be an A-A-module satisfying 

mf= O. Then m may be naturally considered as a unitary (1, A)-(1, A)-module. 

Associate every 1-dimensional (-cochain f of A in m with a 1-dimensional cochain 

t• of A in ffi( (1, A)/lA, m) defined by 

(40) f'"(x)Cy) = f(x)y, 

where xE A, y E (1, A) and y is the residue class of (1, A) modulo fA which con

tains y. Then f is an (-cocycle or (-coboundary when, and only when, j• is so. 

From the assumption, H 1 (A, lR((A)/fA, m)) = 0, hence we have H{ (A, m) =O. 

By the same argument, we can conclude from (ii) that H[ (A, m) = 0 for ail m 

satisfying m( = O. 
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