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1. Dircted systems. Let X be a set and > be a binary relation between 

two elements of X. W e say that (X,>) is a directed system, if the following 

conditions are satisfied : 

1. X> X1 > X2 ~ X> X2 , 

2. VV:.>Ix>x1, x >x2. 
x1 x2 x 

When X' is a subset of X, the two notions "X' is cofinal in X", "X' is residual 

in X " are defined as follows : 

X' cof X:=: V:.ilx1 >x, x1 EX', 
" "1 

X' res X=== av Xl >x~ X! EX'. 
'" "1 

If a is a mapping from a directed system X to X, satisfying the condition 

V a(x) >x, then a is said a increasing transformation of X. It is easy to see 
"' that 

X' cof X:=: :.>Iran aC X', 
<> 

where ran a denotes the range of a. Hereafter we use "ran" is this sense. 

2. Ordering. If p is a mapping from a directed system X to another 

directed system Y, satisfying the condition 

V 3: V x> Xo ~ p(x) >y , 
v x0 x 

then p is said a divergent transformation from X to Y. Particularly, a divergent 

transformation from the naturally ordered natural numbers to the naturally 

ordered positive numbers is a divergent sequence. 

If there exists a divergent transformation from X to Y, then we define 

X> Y. 

This order is transitive and reflexive. The direct product X 0 Y> X, Y, 
because the projections are divergent transformations. Accordingly this order 

is also directed. Generally 
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Hence any number of directed systems have an upper bound. 

If we define 

X-Y=X>Y,Y>X, 

then ..._ is a congruence. Each class which is decided by this congruence is 

called a "type". We write the type of X by r(x). 

Lemma 1. X' cof X- X' -X. 

Proof. If X' cof X, there exists a increasing transformation 11 of X such 

that ran 11 C X'. This 11 is a divergent transformation from X toX'. Also the 

identity is a divergent transformation from X' to X. 

Lemma 2. If X is a countable directed system, X has the greatest element, 
or has the same type to the naturally ordered natural numbers. 

Proof. We assume X = {x1 , x2 , xs, ···}. Put 

a= x1 , 

a= :x;Ya, 

a= x Va, 

where v denotes an upper bound. Then 

a1<a2<as< ···. 

This sequence {a,.} is cofinal in X. I( {a,.} is consists of a finite number of 

elements, X bas the greatest element. Otherwise, {a,.} is congruent to the 

naturally ordered natural numbers, and bence by Lemma 1, X bas the same 

type to the naturally ordered natural numbers. 

3. Mappings from a directed system. If 1p is a mapping from a directed 

system X to a space R and if A is a subset ·of R, we define 

It is easy to see that 

~; ult A= :il: V x> xo~ ~;(x) E A, 
"'o "' 

~;divA=:V:ilx>xo, ~;(x)EA. 

1p ult A= :il X' res X, 
Xf 

1p div A= :il: X' cof X, 
Xf 

~;(X') CA, 

~;(X') CA 

= :ilran(~po11) CA. 
!]" 
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4. The structures of neighbourhood systems and the types of convergences. 

We stt,dy the relation between a neighbourhood space for which a .neighbourhood 

relation " nbd " is given and a convergence sp1:1ce for which a convergence 

relation " conv " is given. Here we confine the base of· convergence within a 

cJirected system X. If all directed systems are taken, that is the usul 

convergence. 
nbd given, conv is defined by 

T "" . 1p con v a = V N nbd a --.. 1p ult N 
N 

conv given, nbd is defined by 

T.,.. N nbd a= V 1p conv a_-. 1p ult N 
rp 

We study the condition for nbd and conv to be mutually reversible by these 

transformations. For this pourpose we put 

o,.. 

T~ ... 

Oc • 

(V N nbd a- 1p ult N) --.. 1p con v a , 
N 

1p con v a- (V N nbd a- 1p ult N) , 
N 

[V (V M nbd a- 1p ult M) ......... 1p ult N] --.. N nbd a; 
rp M 

(V 1p conv a---. 1p ult N) - N nbd a , 
rp 

N nbd a ......... (V 1p conv a- 1p ult N) , 
rp 

[V (V c/J conv a --cpult N)--. 1p ult N] ......... 1p conv a. 
N .p 

It is easy to see that 

T"- T" } ne en _,. Oe 

T~c } 
On -+ T~nt 

T"- T"} en ne ......__.. o,. 

T~,. } 
Oc -+ T~c • 

From above we have 

Theorem 1. Each of nbd satis/ying o,. and conv satisfying o. turns to one 

another by T ne, T.,. respective/y and returns to itsel/ by T "" and T.,. '· T.,. and 
T,.. respective/y. 

Oc is reformed as follows: 

(V 1p div A -+ ~ ran c/J C A , c/J con v a) ......... 1p con v a . 
A .p 

This means a star-convergence. 
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Next we take the neighbourhood system of an additive topology: 

1,.. Rnbda, 

2.,. M ::J Nnbda--+Mnbda, 

3,.. M,Nnbda-MNnbda. 

W e study the relation between these conditions and o,.. W e can easily verify 

the next lemma. 

Lernma 3. T~ .. - 1., ; T~ .. , T~~- 2., , 3,. . 

Theorern 2. o,. -1,., 2,., 3,.. 

Proof. If we define conv by T.,0 from nbd satisfying o,., by Theorem 1. Ten 

is satisfied by the first nbd. Accordingly, by Lemma 3, 1,. , 2,. , 3,. are hold. 

Theorem 3. I/VX>dN:Nnbda}, 2,.-o,.. 
" 

Proof. o,. is equivalent to 

A nbda- ril.<p div A, V N nbda--- <p ult N, 
'l' N 

where A means the complement of A and nbd means the negation of nbd. 

This formula is also equivalent to 

A nbd a- aran <p C A , V N nbd a--- <p ult N. 
'l' N 

On the other band, we have from 2,. 

A nbd a..._ V N nbd a..._ NA =!= 0 
N 

Therefore, for o,. to be hold, it is sufficient to prove 

(V N nbd a..._ NA =F 0) -> a ran <p C A , V N nbd a..._ <p ult N. 
N 'l' N 

We shaH prove the above formula. From this assumption {NA: N nbd a} is a 

collection of non-null sets. By Zermelo's axiom, there exists a function u. which 

choices a element from each NA. Also, by the assumption of this theorem, 

there exists a divergent transformation p from X to {N : N nbd a}. 

Th en 

ran ( u. o p) C A 

and V N nbda--+ aV x> Xo ..._ p(x) C N. 
N z 0 :li 

If we notice that (u. op) (x)= a(p(x)) E p(x), 

that is 

V N nbd a..._ a V x> Xo ..._ ( u. o p) (x) E N , 
N :110 :t: 

V N nbd a- ( u. o p) ult N. 
1f 
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Renee the existence of cp is assured by a o p. 

By Theorem 1, 3, we have 

Theorern 4. 1 f nbd gives an additive topology and if V X> r {N: N nbd a}, 
a 

nbd returns to itself by Tne and Ten. 

Next we study the relation between nbd, conv and the closure operator /. 

We put 

Renee 

Tet• 
T,,.. 

aEf(A)~arancpCA, cpconva, 
ip -

N nbda ~ aE f(N). 

T,1 T 1n. Nnbda=:3:rancpCN, cpconva 
ip 

= V cp con v a--. ( ran cp) N =F 0. 
ip 

On the other hand 

T,.,. N nbd a=: V cp conv a--. cp ult N. 
ip 

The right side of Te1 T 1,. is weaker than that of T en . But if con v satisfies 

le . cp con v a--. (cp o a) con v a , 

both are mutually equivalent and T,1 T 1., = T en, because we have from le , 

(3:conv a, cp div N)--. (3:cp conva, ran cp C N). 
ip ip 

We put 

It is evident that nbd and f are mutually reversible by Tnt, T 1,.. Since T .,, --. le , 

we have 

Renee T ne Ten = 1 (1 means that nbd returns to itself) is equivalent to 

T ne T,1 T 1,. = 1. This is also equivalent to T ne Te1 = Tnt , since nbd and f are 

mutually reversible by Tnt , T 1., • 

Renee we have next 

Theorern 5. nbd returns to itself by T,., and Ten if and only if nbd and 

conv defined by T,.e give the same topo/ogy. 

From Theorem 4, 5, we have 

Thorern 6. Il nbdgives an additive topo/ogy and if V X> r {N: N nbda}, 
a 

nbd is· equivalent to a convergence with the base X. 

From Lemma 2, Theorem 6, we have 
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Theorem 7. Il the neighbourhood system of an additive topology satisfies 

the first countabi lity axiom, the neighbourhood system is equivalent to a sequen

cial convergence. 

If we define conv from nbd and define nbd1 from that conv, 

T~~~ T~~ } 
T' ~(Nnbda----+Nnbd1 a). 

cn1 

Accordingly, the neighbourhood system of a point is exte.nded. 

Theorem 8. W e de fine nbd1 , nbd2 from nbd by two processes 

nbd ~ conv1 .._ nbd1 with base X , 

nbd .._ conv 2 ---+ nbd2 with base Y . 

In this case, if Y> X, then 

N nbd2 a--N nbd1 a. 

Proof. Let p be a divergent transformation from Y toX. If <p ult N, then 

a V x> Xo --> <p( x) E N . 
x0 x 

Wh ile 

Hence 
aVy> y 0 -- (<pop) (y) EN. 
v0 v 

This means (<fJ op) ult N. That is 

<p ult N ~ ( <p o p) ult N. 

Hence 

(V N nbd a---+ <p ult N) ---+ (V N nbd a----'" ( <p o p) ult N) . 
N N 

That is 

( * ) <p con v 1 a .._ ( <p o p) con v 2 a . 

After this preparation, we go to the proof of this theorem. It is sufficient 

that we lead to a contradiction from 

(Vif;conv2 a-+ if;ultN), rp conv1 a, <pdivN. 
>/1 

From <p div N, there exists a increasing transformation a such that ran (<po a) 

C N. From <p conv1 a, (<po a) conv1 a, because T nc1 implies <p conv1 a----+ (<po a) 

conv1 a. Using (*), ( rp o o op) conv2 a. From V if; conv2 a---+ if; ult N, (<po a op) 

ultN. On the other band, from ran(rpoa)C.PN, ran(rpoaop)CN. These 

two results lead us to a contradiction. 
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Theorem 9. 11 Y> X and the neighbourhood system of an additive topology 

is equivalent to the convergence defined by T ne with the base X, then it is also 

equivalent to the convergence defined by T,.e with the base Y. 

Proof. By Theorem 8, 

N nbda~ Nnbd2 a~ Nnbd1 a-> N nbda. 

Hence 

N nbd a ~ N nbd2 a. 

By Theorem 5, we get the statement. 

Theorem 6 gives a sufficient type of X for an additive topology and a 

star·convergence to be equivalent. It remains to decide a necessary and sufficient 

type of X. 
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