On Whitney's Extension Theorem

By Minoru Nakaoka

(Received May 31, 1951)

S1. Introduction

Let Y be an arcwise connected and simply connected topological space whose second homotopy group has a finite number of generators. Let K be a 4 -dimensional finite complex. H. Whitney [10] gave an algebraic criterion for that a mapping f of the 2 -section K^{2} into Y be extendable over K. On the other hand, J. H. C. Whitehead gave many useful theorems on the investigation of homotopy type, and also defined the Pontrjagin squares [7,8]. We shall restate the Whitney's result in terms of the Pontrjagin squares, and prove this result by using Whitehead's theorems. The method is analogous to the Steenrod's [4]. We shall also give another definition of the Pontrjagin squares. I offer here my sincere thanks to Prof. A. Komatu, Messrs. T. Kudo and H. Uehara who gave me many valuable suggestions.

S2. Notations

(2.1) Let K be a finite cell complex, whose cells are oriented. Let $C^{r}(K$, A), $Z^{r}(K, A), B^{r}(K, A)$ and $H^{r}(K, A)$ denote respectively the groups of r-Acochains, r-A-cocycles, r-A-coboundaries and r-A-cohomology classes. We shall denote by $\{u\}$ the cohomology class containing u, an element of $Z^{r}(K, A)$. When cocycles u and v are cohomologous, we write $u \sim v$. When K_{1} and K_{2} are finite cell complexes and f is a cellular map of K_{1} into K_{2}, we denote by $)^{*}$ the homomorphism induced by f of $C^{r}\left(K_{2}, A\right), \ldots, H^{r}\left(K_{2}, A\right)$ into $C^{r}\left(K_{1}, A\right), \ldots, H^{r}\left(K_{1}\right.$, $A)$, respectively. Let I_{0} be the additive group of integers. A latin small letter attached with the symbol--such as \bar{u}, means an integral cochain.
(2.2) Throughout this paper, we suppose that a topological space Y is an arcwise connected, simply connected, Hausdorff space whose 2 -dimensional homotopy group $\pi_{2}(Y)$ has a finite number of generators. Let y_{*} be a fixed point in Y. Maps always mean continuous maps. Let $X, X^{\prime}, Y, Y^{\prime}$ be topological spaces such that $X^{\prime} \subset X$ and $Y^{\prime} \subset Y$. The notation $f:\left(X, X^{\prime}\right) \rightarrow\left(Y, Y^{\prime}\right)$ means that f is a map of X into Y satisfying the condition $f\left(X^{\prime}\right) \subset Y^{\prime}$. When maps f, g : $X \rightarrow Y$ are homotopic, we write $f \simeq g$.
§3. The Pontrjagin squares
(3.1) Let A and A^{\prime} be abelian groups and γ a map of A into A^{\prime} satisfying the following conditions:

1) $r(a)=\gamma(-a)$,
2) $r(a+b)=r(a)+\gamma(b)+[a, b], \quad a, b \in A$,
where $[a, b]$ is a bilinear function defined on $A \times A$ with values in A^{\prime}. Then, in the similar way as in [7, p. 61〕, we get the following properties: i) $\gamma(n a)=n^{2} \gamma(a)$, where n is an integer and $a \in A$. ii) $r\left(a_{1}+a_{2}+\cdots+a_{p}\right)=\sum_{i} r\left(a_{i}\right)+\sum_{i<j}\left[a_{i}, a_{j}\right]$, where $a_{i} \in A(i=1,2, \ldots, p)$. iii) $2 r(a)=[a, a]$. iv) If $m a=0$, then $\left(m^{2}, 2 m\right) r(a)$ $=0$, where (p, q) denotes the greatest common measure of integers p and q.
(3.2) We shall here recall the definition and some properties of the Pontrjagin squares which were given by J. H. C. Whitehead [8].

Let K be a finite simplicial complex, and $\left\{\bar{c}_{1}, \ldots, \bar{c}_{q}\right\}$ a canonical basis for C^{r} (K, I_{0}). Let $\left\{A, A^{\prime}, r\right\}$ be a system given in (3. 1). Let $u \in Z^{r}(K, A)$. Then, using the canonical basis, we may represent u by $\sum_{i-1}{ }^{q} u_{i} \bar{c}_{i}$, where $u_{i} \in A$. The Pontrjagin square of u is given by

$$
\mathfrak{p} u=\sum_{i} i\left(u_{i}\right) \bar{p}_{i}+\sum_{i<j}\left[u_{i}, u_{j}\right] \bar{c}_{i} \cup \bar{c}_{j},
$$

where $\mathfrak{p} \bar{c}_{i}=\bar{c}_{i} \cup \bar{c}_{i}+\bar{c}_{i} \cup_{1} \bar{\delta} \bar{c}_{i}$ and r is even. We have the following properties.
i) When we pass from cocycles to cohomology classes, \mathfrak{p} induces a map \mathfrak{P} of $H^{r}(K, A)$ into $H^{2 r}\left(K, A^{\prime}\right)$ which is independent of the choice of an order of vertices in K and a canonical basis of $C^{r}\left(K, I_{0}\right)$.
ii) \mathfrak{F} is natural, that is to say, when g denotes a simplicial map of finite simplicial complexes $g: K_{1} \rightarrow K_{2}$, the commutativity holds in the diagram:

$$
\begin{aligned}
& \underset{g^{*} \uparrow}{H^{r}\left(K_{1}, A\right)} \xrightarrow{\mathfrak{Y}} \underset{g^{*} \uparrow}{H^{2 r}\left(K_{1}, A^{\prime}\right)} \\
& H^{r}\left(K_{2}, A\right) \xrightarrow{\mathfrak{B}} H^{2 r}\left(K_{2}, A^{\prime}\right), \\
& \text { i.e., } \quad g^{*} \mathfrak{P}=\mathfrak{P} g^{*} \text {. } \\
& \text { iii) If } u_{1}, u_{2}, \ldots, u_{t} \in Z^{r}(K, A) \text {, } \\
& \mathfrak{p}\left(u_{1}+u_{2}+\cdots+u_{t}\right) \sim \sum_{i} p u_{i}+\sum_{i<j} u_{i} \cup u_{j},
\end{aligned}
$$

where U is the cup product given by considering the function $[a, b\rceil$ in the definition of γ as a group pairing of A with itself to A^{\prime}.
iv)

$$
2 \mathfrak{p u \sim u \cup u , \text { where } u \in Z ^ { r } (K , A) . ~}
$$

When X is a topological space, using the Čech cohomology theory, we can define $\mathfrak{B}: H^{r}(X, A) \rightarrow H^{2 r}\left(X, A^{\prime}\right)$ in the usual way. And we can see that the similar properties hold. \mathfrak{F} is a topological invariant and is called the Pontrjagin squares.
(3. 3) When A has a finite number of generators, we shall give another definition of the Pontrjagin squares. Let $\left\{a_{1} \ldots, a_{t}\right\}$ be a system of independent generators of A. Using this system, any $u \in Z^{r}(K, A)$ may be written in the form of $\sum_{i=1}^{t} \bar{u}_{i} a_{i}$. It is easily seen that \bar{u}_{i} is a cocycle mod. m_{i}, where m_{i} is the order of a_{t}. Now we define

$$
\mathfrak{p}^{\prime} u=\sum_{i} r\left(a_{i}\right) p u_{i}+\sum_{i<j}\left[a_{i}, a_{j}\right] \bar{u}_{i} \cup \bar{u}_{j},
$$

where $\mathfrak{p} \vec{u}_{i}=\bar{u}_{i} \cup \vec{u}_{i}+\bar{u}_{i} \cup_{1} \delta \bar{u}_{i}$ and r is even. Then we have the
Proposition. If $u \in Z^{r}(K, A)$,
in $Z^{2 r}\left(K, A^{\prime}\right)$.
Proof. Since $u \in Z^{r}(K, A), \bar{u}_{i}$ is a cocycle mod. m_{i} and $\bar{u}_{i} a_{i} \in Z^{r}(K, A)$. It follows from iii) of (3.2) that

$$
\mathfrak{p u}=\mathfrak{p}\left(\sum_{i=1}^{t} \bar{u}_{i} a_{i}\right) \sim \sum_{i} p\left(\bar{u}_{i} a_{i}\right)+\sum_{i<j}\left(\bar{u}_{i} a_{i}\right) \cup\left(\bar{u}_{j} a_{j}\right) .
$$

From the definition of the cup products,

$$
\bar{u}_{i} a_{i} \cup \bar{u}_{j} a_{j}=\left[a_{i}, a_{j}\right] \bar{u}_{i} \cup \bar{u}_{j} .
$$

Therefore it remains to prove that $\mathfrak{p}\left(\bar{u}_{i} a_{i}\right) \sim \dot{\gamma}\left(a_{i}\right) \mathfrak{p} \bar{u}_{i}$ for any i. Let $\delta \bar{c}_{i}=n_{i} \bar{d}_{i}$ $\left(i=1, \ldots, q ; n_{i} \mid n_{i+1}\right)$, where $n_{i} \bar{d}_{i}=0$ if $i>p$, and $\left(\bar{d}_{1}, \ldots, \bar{d}_{p}\right)$ is part of a canonical basis for $C^{r+1}\left(K, I_{0}\right)$. Let $\bar{u}_{i}=\sum_{j} \Omega_{i j} \bar{c}_{j}$ where $\Omega_{i j}$ is an integer. Then

$$
\delta \bar{u}_{i} a_{i}=\sum_{i} \Omega_{i j} n_{j} \bar{d}_{j} a_{i}=0
$$

It follows that for any $j, \Omega_{i j} n_{i} a_{i}=0$, hence $m_{i} \mid \Omega_{i j} n_{j}$.
Thus $\Omega_{i j} \bar{c}_{j}$ is a cocycle mod. m_{i}. Therefore, by [7,(4.7), p. 61],

$$
\begin{aligned}
\mathfrak{p} \bar{u}_{i}=\mathfrak{p}\left(\sum_{j} \Omega_{i j} \bar{c}_{j}\right)-\sum_{j p} \mathfrak{p}\left(\Omega_{i j} \bar{c}_{j}\right)+\sum_{j<k}\left(\Omega_{i j} \bar{c}_{j} \cup \Omega_{i k} \bar{c}_{k}\right) \\
\bmod . \quad\left(m_{i}^{2}, 2 m_{i}\right) .
\end{aligned}
$$

Since $\left(m_{i}^{2}, 2 m_{i}\right) \gamma\left(a_{i}\right)=0, \mathfrak{p}\left(\Omega_{i j} \bar{c}_{j}\right)=\Omega_{i j}^{2} \mathfrak{p} \bar{c}_{j}, \Omega_{i j}^{2} \gamma\left(a_{i}\right)=\gamma\left(\Omega_{i j} a_{i}\right)$ and $2 \gamma\left(a_{i}\right)=\left[a_{i}, a_{i}\right]$, it turns out that

$$
\begin{gathered}
\tilde{\gamma}\left(a_{i}\right) p \bar{u}_{i} \sim \sum_{j} \eta\left(a_{i}\right) \mathfrak{p}\left(\Omega_{i j} \bar{c}_{j}\right)+\sum_{j<k} \gamma\left(a_{i}\right)\left(\Omega_{i j} \bar{c}_{j} \cup \Omega_{i k} \bar{c}_{k}\right) \\
=\sum_{j} \gamma\left(\Omega_{i j} a_{i}\right) p \bar{c}_{i}+\sum_{j<k}\left[\Omega_{i j} a_{i}, \Omega_{i k} a_{i}\right] \bar{c}_{j} \cup \bar{c}_{k} .
\end{gathered}
$$

By the definition of \mathfrak{p}, the right hand is

$$
\mathfrak{p}\left(\sum_{j} \Omega_{i j} a_{i} \bar{c}_{i}\right)=\mathfrak{p}\left(\bar{u}_{i} a_{i}\right) .
$$

This completes the proof.
From this propasition it is seen that the operation \mathfrak{S}^{\prime} in cohomology classes induced by \mathfrak{p}^{\prime} coincides with the Pontrjagin square \mathfrak{F}. Since \mathfrak{F} is independent on the choice of independent generators of A, so is \mathfrak{F}^{\prime}.
§4. Relations between $\pi_{2}(Y)$ and $\pi_{3}(Y)$
(4. 1) Let S_{i}^{2} be an oriented 2-sphere, and $S_{1}^{2} \vee S_{2}^{2} \vee \ldots \vee S_{t}^{2}$ a space consisting of the collection of $S_{1}^{2}, S_{2}^{2}, \ldots, S_{t}^{2}$ intersecting in the unique point e^{0}. Let E^{2} be an oriented closed 2 -cube and $\beta_{i}:\left(E^{2}, \dot{E}^{2}\right) \rightarrow\left(S_{i}^{2}, e^{0}\right)$ be a map of degree +1 such that $\beta_{i} \mid\left(E^{2}-\dot{E}^{2}\right)$ is a homeomorphism of $E^{2}-\dot{E}^{2}$ onto $S_{i}^{2}-e^{0}$. We define a map $\omega_{i j}$ of the boundary $\dot{\varepsilon}_{i j}^{4}=E_{i}^{2} \times \dot{E}_{j}^{2}+\dot{E}_{i}^{2} \times E_{j}^{2}$ of $\varepsilon_{i j}^{4}=E_{i}^{2} \times E_{j}^{2}$ onto $S_{i}^{2} \vee S_{j}^{2}$ as follows:

$$
\omega_{i j}(x, y)= \begin{cases}\beta_{i}(x) & (x, y) \in E_{i}^{2} \times \dot{E}_{j}^{2} \\ \beta_{j}(y) & (x, y) \in \dot{E}_{i}^{2} \times E_{j}^{2}\end{cases}
$$

Let

$$
\rho:\left(S_{i}^{2} \vee S_{j}^{2}, e^{0}\right) \rightarrow\left(Y, y_{*}\right)
$$

be a map such that $\rho\left|S_{i}^{2}, \rho\right| S_{j}^{2}$ represent the elements a_{i}, a_{j} of $\pi_{2}(Y)$, respectively. Then the element of $\pi_{3}(Y)$ represented $\rho \omega_{i j}: \quad \varepsilon_{i j}^{1} \rightarrow Y$ is the Whitehead product $a_{i} \circ a_{j}[5,6]$. The Whitehead product is bilinear.
(4.2) Let $\eta: \dot{E}^{4} \rightarrow S^{2}$ be the Hopf map (i.e., a map with the Hopf invarient +1 , and $\alpha: S^{2} \rightarrow Y$ a map representing a given element $a \in \pi_{2}(Y)$. The correspondence $\alpha \rightarrow \mu$ induces a map η_{*} of $\pi_{2}(Y)$ into $\pi_{3}(Y)$. Then η_{*} has the following properties [5,8,9]:

$$
\begin{array}{lr}
\eta_{*}(-a)=\eta_{*}(a) & a \in \pi_{2}(Y), \\
\eta_{*}(a+b)=\eta_{*}(a)+\eta_{*}(b)+a \circ b & a, b \in \pi_{2}(Y) .
\end{array}
$$

§5. The extension theorem
Let $K=K^{4}$ be a 4-dimensional finite cell complex whose cells σ_{i}^{p} are oriented, K^{p} the p-section of K and f a map of K^{2} into Y. Since $\pi_{1}(Y)=0$, there exists a normal map f^{\prime} such that $f^{\prime} \simeq f$. For a map f^{\prime}, the difference cochain $d^{2}\left(f^{\prime}\right)$ $=d^{2}\left(f^{\prime}, *\right) \in C^{2}\left(K, \pi_{2}(Y)\right)$ is defined as usual, where $*$ denotes a constant map. Since $d^{2}\left(f^{\prime}\right)$ is independent on the choice of f^{\prime}, we shall define $d^{2}(f)=d^{2}\left(f^{\prime}\right)$. Clearly $\delta d^{2}(f)=0$ if and only if f is extendable over K^{3}.

Let us assume that f is extendable over K^{3}, and $\bar{f}: K^{3} \rightarrow Y$ be an arbitrary extension of f over K^{3}. Then the 4 -dimensional obstruction cocycle $c^{4}(\bar{f}) \in Z^{4}$ ($K, \pi_{3}(Y)$) is to be defined. It is well known that the cohomology class $\left\{c^{4}(\bar{f})\right\}$ does not depend on the choice of an extension \bar{f}, but only on $f[2\rceil$. Therefore we may denote this class by $\left\{z^{4}(f)\right\}$. Then the necessary and sufficient conditions for that f can be extended over K^{4} are $\delta d^{2}(f)=0$ and $\left\{z^{4}(f)\right\}=0$.
(5.2) By (4. 2), it is seen that $\left\{\pi_{2}(Y), \pi_{3}(Y), \eta_{*}\right\}$ is a system satisfying the conditions of (3.1). And since $\pi_{2}(Y)$ has a finite number of generators, we obtain from (3.2) or (3.3) the Pontrjagin square of this system:

$$
\mathfrak{P}=\Re^{\prime}: H^{2}\left(K, \pi_{2}(Y)\right) \rightarrow H^{4}\left(K, \pi_{3}(Y)\right) .
$$

Then our main theorem is stated as follows.
Theorem 1. If $f: K^{2} \rightarrow Y$ is extendable over K^{3},

$$
\left\{z^{4}(f)\right\}=\mathfrak{P}\left\{d^{2}(f)\right\} .
$$

The proof will be given in $\$ 6$ and $\$ 7$.
From this theorem, we get
Theorem 2. (Extension theorem) The necessary and sufficient conditions for that a map $f: K^{2} \rightarrow Y$ be extendable over K are $\delta d^{2}(f)=0$ and $p d^{2}(f) \sim 0$

Remark: Since $\mathfrak{F}=\mathfrak{S}^{\prime}$, our result is different from the Whitney's [10] only in the respect that the latter contains some terms including \cup_{2}. However, it is easily seen by the following proposition, that these terms are coboundaries which
vanish away in cohomology classes.
Proposition. If $u \in Z^{p}\left(K, I_{0}\right)$ and $p-i$ is odd, $2 u \bigcup_{i} u \sim 0$.
Proof. See [4, p. 299].
Thus our result coincides with the Whitney's.

§6. Reduced complex

(6. 1) We assumed that $\pi_{2}(Y)$ has a finite number of generators. Let a_{1}, a_{2}, \ldots, a_{t} be its independent generators, where the order of a_{i} is m_{i}. We may suppose that $m_{i}>1$ or $m_{i}=0$ according as $i \leqq s$ or $i>s$, and $m_{i} \mid m_{i+1}$. We note that the integers t, s and the system $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$ are invariants of $\pi_{2}(Y)$, hence of topological space Y. We shall construct the special 4-dimensional cell complex R which is called the reduced complex R for $Y[7]$.

Let ε_{i}^{p} be a p-dimensional oriented closed cube, and e_{i}^{p} its interior, when $p>0$. $R=R^{4}$ is the cell complex, which satisfies the following conditions:
(i) $R^{1}=R^{0}=$ a single point e^{0}.
(ii) $R^{2}=R^{1}+e_{1}^{2}+\cdots+e_{t}^{2}$, where $e_{i}^{2}(i=1,2, \ldots, t)$ is attached to R^{1} by a map $\dot{\varepsilon}_{i}^{2} \rightarrow e^{0}$. Thus $e_{i}^{2}+e^{0}$ is a 2 -sphere S_{i}^{2}, and $R^{2}=S_{1}^{2} \vee S_{2}^{2} \vee \ldots \vee S_{t}^{2}$.
(iii) $R^{3}=R^{2}+e_{1}^{3}+e_{2}^{3}+\cdots+e_{s}^{3}$, where $e_{i}^{3}(i=1,2, \ldots, s)$ is attached to R^{2} by a map $\dot{\varepsilon}_{i}^{3} \rightarrow S_{i}^{2}$ of degree $m_{i}(>1)$.
(iv) $R^{4}=R^{3}+e_{1}^{4}+e_{2}^{4}+\cdots+e_{t}^{4}+e_{12}^{4}+e_{13}^{4}+\cdots+e_{1 t}^{4}+e_{23}^{4}+\cdots+e_{t-1 t}^{4}$, where $e_{i}^{4}(i$ $=1,2, \ldots, t)$ is attached to R^{2} by the Hopf map $r_{i}: \dot{\varepsilon}_{i}^{4} \rightarrow S_{i}^{2}$, and $e_{i j}^{4}(i<j, i, j$ $=1,2, \ldots, t$) is attached to R^{2} by the map $\omega_{i j}: \varepsilon_{i j}^{4} \rightarrow S_{i}^{2} \backslash S_{j}^{2}$ defined in (4.1).
(6.2) Let $h: R^{2} \rightarrow Y$ be a map such that $h \mid S_{i}^{2}: S_{i}^{2} \rightarrow Y$ represents $a_{i} \in \pi_{2}(Y)$. Then since $c^{3}(h)=0, h$ has an extension $\bar{h}: R^{3} \rightarrow Y$. We shall prove Theorem 1 for R^{4} and h. Let $\bar{e}_{i}^{2}, \bar{e}_{i}^{4}, \bar{e}_{i}^{4}$, be integral cochains which take 1 as coefficient on $e_{i}^{2}, e_{i}^{4}, e_{i j}^{4}$ respectively. Since $\bar{e}_{j}^{2}(j \geq i)$ is a cacycle $\bmod . m_{i}, e_{i}^{2} \cup \bar{e}_{j}^{2}$ is a cocycle mad. m_{i} and $\mathfrak{p} \bar{e}_{i}^{2}$ is a cocycle mod. ($m_{i}^{2}, 2 m_{i}$). And, from [7, Theorem 5, p. 78], we have

$$
\begin{array}{cl}
e_{i}^{2} \cup \bar{e}_{j}^{2} \sim \bar{e}_{i j}^{4} & \text { mod. } m_{i} \quad(i<j), \\
\mathfrak{p} \bar{e}_{i}^{2} \sim \bar{e}_{i}^{4} \quad \text { mod. } \quad\left(m_{i}^{2}, 2 m_{i}\right) .
\end{array}
$$

Since $d^{2}(h)=\sum_{i} a_{i} e_{i}^{2}$ and $\left.a_{i} e_{i}^{2} \in Z^{2}\left(R, \pi_{2} \dot{(} Y\right)\right)$, it follows from (3.2) that

$$
\begin{aligned}
p d^{2}(h) & \sim \sum_{i} p\left(a_{i} \bar{e}_{i}^{2}\right)+\sum_{i<j} a_{i} \bar{e}_{i}^{2} \cup a_{j} \bar{e}_{j}^{2} \\
& =\sum_{i} \eta_{*}\left(a_{i}\right) p \bar{e}_{i}^{2}+\sum_{i<j}\left(a_{i} \circ a_{j}\right) \bar{e}_{i}^{2} \cup \bar{e}_{j}^{2} .
\end{aligned}
$$

Noting that $\left(m_{i}^{2}, 2 m_{i}\right) \eta_{*}\left(a_{i}\right)=0$ and $m_{i}\left(a_{i} \circ a_{j}\right)=0$, we have

$$
\mathfrak{p} d^{2}(h) \sim \sum_{i} \eta_{*}\left(a_{i}\right) \overline{e_{i}^{4}}+\sum_{i<j}\left(a_{i} \circ a_{j}\right) \bar{e}_{i j}^{4}
$$

On the other hand, by the difinition,

Thus

$$
c^{4}(\bar{h})=\sum_{i} \eta_{*}\left(a_{i}\right) \bar{e}_{i}^{4}+\sum_{i<j}\left(a_{i} \circ a_{j}\right) \overline{e_{i j}^{4}}
$$

i. e.,

$$
\mathfrak{P}\left\{d^{2}(h)\right\}=\left\{z^{4}(h)\right\} .
$$

Q. E. D.

Remark. The above-mentioned reduced complex is a special case of reduced complexes which were given' by J. H. C. Whitehead [7].
(6.3) Here we shall note some properties of homotopy groups of R which will be needed in the following parts. Let β_{t} be a map which was defined in (4.1), and $b_{i}, b_{i}{ }^{\prime}$ be respectively an element of $\pi_{2}\left(R^{2}\right)$, an element of $\pi_{2}\left(R^{3}\right)$, both of which are represented by β_{i}. Let $i: R^{2} \rightarrow R^{3}$ be an identity map, i_{*} the homomorphism of $\pi_{3}\left(R^{2}\right)$ into $\pi_{3}\left(R^{3}\right)$ induced by i. Then i_{*} is onto [5. Lemma 3]. On the other hand, $\pi_{3}\left(R^{2}\right)$ is a free abelian group which is generated by $\eta_{*}\left(b_{i}\right)(i=1,2, \ldots, t)$ and $b_{i} \circ b_{j}(i<j, i, j=1,2, \ldots, t)[1,7]$. Therefore $\pi_{3}\left(R^{3}\right)$ is generated by $\eta_{*}\left(b_{i}{ }^{\prime}\right)(i=1,2, \ldots, t)$ and $b_{i}{ }^{\prime} \circ b_{j}^{\prime}(i<j, i, j=1,2, \ldots, t)$.

§7. Proof of Theorem I

(7.1) Let $f: K^{2} \rightarrow Y$ be an arbitrary map. Since $\pi_{1}(Y)=0$, there exists a normal map f^{\prime} such that $f^{\prime} \simeq f$. Let σ_{k}^{2} be an arbitrary oriented 2 -cell. We shall denote by $\sum_{i=1}^{t} c_{k i} a_{i}$ an element of $\pi_{2}(Y)$ which is represented by $f^{\prime} \mid \sigma_{k}^{2}$, where $c_{k t}$ is an integer. In each σ_{k}^{2}, choose t disjoint closed 2 -cubes ${ }^{k} E_{1}^{2},{ }^{k} E_{2}^{2}, \ldots,{ }^{k} E_{t}^{2}$, oriented in agreement with σ_{k}^{2}. Let $g: K^{2} \rightarrow R^{2}$ be a map such that $\left.g\right|^{k} E_{i}^{2}$: $\left({ }^{k} E_{i}^{2},{ }^{k} \dot{E}_{i}^{2}\right) \rightarrow\left(S_{i}^{2}, e^{0}\right)$ is a map of degree $c_{k t}$ for any k, i and $g\left(K^{2}-\cup_{k}{ }^{k} E_{i}^{2}\right)=e^{0}$. It is clear that $h g \simeq f^{\prime}$, hence $h g \simeq f$. Therefore $d^{2}(f)=d^{2}(h g)$.

Now suppose that f can be extended over K^{3}. It follows from the homotopy extension property that $h g$ has an extension. Since $\pi_{1}(Y)=0$, it is seen [2] that

$$
\left\{z^{4}(f)\right\}=\left\{z^{4}(h g)\right\} .
$$

From these arguments, without loss of generality, we may suppose that f is $h g$ for the purpose of proving Theorem 1.
(7.2) Suppose that $f=h g: K^{2} \rightarrow Y$ has an extension over K^{3}. Let σ_{j}^{3} be an arbitrary oriented 3-cell of K, and $\dot{\sigma}_{j}^{3}=\sum_{k} \xi_{k}^{3} \sigma_{k}^{2}$, where ε_{k}^{3} is the incidence number between σ_{j}^{3} and σ_{k}^{2}. Then $h\left|\dot{\sigma}_{j}^{3}, f\right| \dot{\sigma}_{j}^{3}$ represent $\sum_{k, i} \varepsilon_{k}^{j} c_{k i} b_{i} \in \pi_{2}\left(R^{2}\right), \sum_{k}, i_{k}^{\varepsilon_{k}^{3}} c_{k i} a_{i}$ $\epsilon \pi_{2}(Y)$ respectively. Since f is extendable over K^{3},

$$
\sum_{k} \varepsilon_{k}^{3} c_{k i} \equiv 0 \text { mod. } m_{i}
$$

 if $i \leqq s$.

In σ_{3}^{3}, choose s closed 3 -cubes ${ }^{j} E_{1}^{3},{ }^{j} E_{2}^{3}, \ldots,{ }^{j} E_{s}^{3}$ oriented in agreement with σ_{3}^{3}, having only a single point p_{j} in common. Let ${ }^{j} E_{*}^{3}={ }^{j} E_{1}^{3 \vee j} E_{2}^{3 \vee} \ldots{ }^{\vee_{j}} E_{s}^{3}$ if $s>0$ and ${ }^{j} E_{*}^{3}=p_{j}$ if $s=0$. Let $\psi_{j}:\left({ }^{j} E_{*}^{3}, p_{j}\right) \rightarrow\left(R^{3}, e^{0}\right)$ be a map such that $\left.\psi_{j}\right|^{j} E_{i}^{3}$: $\left({ }^{5} E_{i}^{3},{ }^{j} \dot{E}_{i}^{3}\right) \rightarrow\left(\varepsilon_{i}^{3}, \dot{\varepsilon}_{i}^{3}\right)$ is a map of degree n_{i}^{j}. Let ${ }^{j} Q^{3}$ be a 3 -cube such that ${ }^{j} E_{*}^{3}$ $\subset^{j} Q^{3} \subset$ Int. $\sigma_{j}^{3} .{ }^{j} Q^{3}$ is oriented in agreement with σ_{j}^{3}. Let $q(p)$ be a point which a straight line $\overline{p_{j} p}$ interesects with ${ }^{j} Q^{3}$, where p is an arbitrary point of ${ }^{j} E_{\text {* }}^{3}$. Map all points of $\overline{p q(p)}$ to $\psi_{j}(p) \in R^{2}$, and ${ }^{j} Q^{3}-{ }^{j} E_{*}-\cup_{p \in{ }^{j}} \dot{E}_{\dot{*}}^{3} \overline{p q(p)}$ on e^{0}. Then we get an extension of $\psi_{j}, \overline{\psi_{j}}:{ }^{j} Q^{3} \rightarrow R^{3}$, such that $\left.\bar{\psi}_{j}\right|^{j} \dot{Q}^{3}:{ }^{j} \dot{Q}^{3} \rightarrow R^{2}$ represents an element $\sum_{i} n_{i}^{j} m_{\imath} b_{i}$ of $\pi_{2}\left(R^{2}\right)$. On the other hand, $g \mid \dot{\sigma}_{j}^{3}$ also represents $\sum_{i, k} \varepsilon_{k}^{j} c_{k i} b_{i}$
$=\sum_{i} n_{i}^{j} m_{i} b_{i}$. Therefore $g \mid \dot{\sigma}_{j}^{3}$ and $\left.\psi_{j}\right|^{j} \dot{Q^{3}}$ are homotopic in R^{2}. Using this homotopy, we obtain a mapping $\bar{g}_{j}: \sigma_{j}^{3} \rightarrow R^{3}$, which is an extension of $\bar{\psi}_{j}$ and $g \mid \dot{\sigma}_{j}^{3}$. Let \bar{g} : $K^{3} \rightarrow R^{3}$ be a map such that $\bar{g} \mid \sigma_{j}^{3}=\bar{g}_{j}$, then \bar{g} is an extension of g, and $\bar{f}=\bar{h} \bar{g}$ is an extension of f.
(7.3) Let σ_{l}^{4} be an arbitrary oriented 4-cell. Then, from (6.3), an element of $\pi_{3}\left(R^{3}\right)$ which is represented by a map $\bar{g} \mid \dot{\sigma}_{l}^{4}$ have a form

$$
\sum_{i} \Gamma_{i}^{l} \eta_{*}\left(b_{i}^{\prime}\right)+\sum_{u<j} \Gamma_{i j}^{l} b_{i}^{\prime} \circ b_{j}^{\prime},
$$

where $\Gamma_{i}^{l}, \Gamma_{i j}^{l}$ are integers.
Now choose in $\sigma_{l}^{4} \frac{t(t+1)}{2}$ closed 4-cubes ${ }^{\imath} E_{1}^{4}, \ldots,{ }^{\imath} E_{t}^{4},{ }^{l} E_{12}^{4},{ }^{l} E_{13}^{4}, \ldots,{ }^{l} E_{1 t}^{4},{ }^{l} F_{23}^{4}$, $\ldots,{ }^{l} E_{t-1 t}$, oriented in agreement with σ_{l}^{4}, with a single point p_{l}^{\prime} in common.
 such that $\left.\varphi_{i}\right|^{l} E_{i}^{4}:\left({ }^{l} E_{i}^{4},{ }^{l} \dot{E}_{i}^{4}\right) \rightarrow\left(\dot{\varepsilon}_{i}^{4}, \varepsilon_{i}^{4}\right),\left.\varphi_{l}\right|^{l} E_{i j}^{4}:\left({ }^{l} E_{i j}^{4},{ }^{l} \dot{E}_{i j}^{4}\right) \rightarrow\left(\varepsilon_{i j}^{4}, \dot{\varepsilon}_{i j}^{4}\right)$ are maps of degree $\Gamma_{i}^{l}, \Gamma_{i j}^{l}$ respectively. Let ${ }^{l} Q^{4}$ be an 4 -cube which is oriented in agreement with σ_{l}^{4} and satisfies the condition ${ }^{l} E_{*}^{4} \subset^{l} Q^{4} \subset$ Int. σ_{l}^{4}. Using the similar argument as in (6.2), we can construct an extension of $\varphi_{l}, \bar{\varphi}_{l}:{ }^{l} Q^{4} \rightarrow R$ such that ${ }_{\imath} \bar{\varphi}^{l} \dot{Q}^{4}$ represents $\sum_{i} \Gamma_{i}^{l} \eta_{*}\left(b_{i}{ }^{\prime}\right)+\sum_{i<j} \Gamma_{i j}^{l} b_{i}{ }^{\prime} \circ b_{j}{ }^{\prime} \in \pi_{3}\left(R^{3}\right)$. On the other hand, since $\bar{g} \mid \dot{\sigma}^{4}$ also represents it, $\left.\bar{\varphi}\right|^{l} \dot{E}_{i}^{4}$ and $\bar{g} \mid \dot{\sigma}_{l}^{4}$ are homotopic in R^{3}. Using this homotopy, we can get a map $\overline{\bar{g}}_{l}: \sigma_{l}^{4} \rightarrow R^{4}$ which is an extention of $\bar{g} \mid \dot{\sigma}_{l}^{4}$ and $\bar{\varphi}_{l}$. Let $\overline{\bar{g}}: K^{4} \rightarrow R^{4}$ be a map such that $\overline{\bar{g}} \mid \sigma_{l}^{4}=\overline{\bar{g}}_{l}$, then $\overline{\bar{g}}$ is an extension of \bar{g}.

Now using the general theory of continuous extension by Hu[3], we can see that

$$
\begin{aligned}
\left\{c^{4}(\bar{h} \bar{g})\right\} & =g^{*}\left\{c^{4}(h)\right\}, \\
\left\{d^{2}(h g)\right\} & =\bar{g}^{*}\left\{d^{2}(h)\right\} .
\end{aligned}
$$

Since $\left\{z^{4}(f)\right\}=\left\{c^{4}(\bar{h} \bar{g})\right\},\left\{c^{4}(\bar{h})\right\}=\mathfrak{B}\left\{d^{2}(h)\right\}$ and \mathfrak{F} is natural, we have

$$
\begin{aligned}
\left\{z^{4}(f)\right\} & =\left\{c^{4}(\bar{h} g)\right\}=\bar{g}^{*}\left\{c^{4}(\bar{h})\right\}=\bar{g}^{*} \mathfrak{P}\left\{d^{2}(h)\right\} \\
& =\mathfrak{F} \bar{g}^{*}\left\{d^{2}(h)\right\}=\mathfrak{P}\left\{d^{2}(h g)\right\}=\mathfrak{P}\left\{d^{2}(f)\right\} .
\end{aligned}
$$

Thus we have completed the proof of Theorem 1.

Literatures

[1] A. L. Blakers and W.S. Massey: The homotopy groups of a triad, Ann. of Math. 52, (1951).
[2] S. Eilenberg: Cohomology and continuous mapping, Ann. of Math., 41, (1940).
[3] S. T. Hu: Extension and classification of maps. Osaka Math. Journ., 2, (1950).
[4] N. E. Steenrod: Prcducts of cocycles and extensions of mappings, Ann. of Math. 48 (1947).
[5] G. W. Whitehead: A generalization of the Hopf invariants, Ann. of Math., 51, (1950).
[6] J. H. C. Whitehead: On adding relations to homotopy groups, Ann. of Math., 42, (1941).
〔7〕 J. H. C. Whitehead: On simply connected, 4-dimensional polyhedra, Comm. Math. Helv., 22 (1949).
[8] J. H. C. Whitehead: A certain exact sequence, Ann. of Math. 52 (1951).
[9] H. Whitney: Relations between the second and third homotopy groups of a simply connected space, Ann. of Math., 50 (1949).
[10] H. Whitney: An extension theorem for mappings into simply connected spaces, Ann. of Math. 50 (1949).

