Journal of the Institute of Polytechnics, Osaka City University, Vol. 2, No. 1, Series A

A Characterization of the Lattice of Lower Semi-Continuous Functions on T_1 -Space

By Jun-iti NAGATA

(Received May 31, 1951)

I. Kaplansky characterized some sublattice of the lattice K of all continuous functions on topological space by the axiom of "translation lattice", lattice in which translations were defined. It seems that his purpose is to characterize K itself by some axiom of lattice. However the author showed that the lattice of semi-continuous functions characterized the topology of the completely regular (not necessarily compact) topological space, so the characterization of such a lattice is important in the effort to treat non-compact topological spaces with methods of lattice theory.

In this paper we shall characterize the lattice of all lower semi-continuous, non-negative and bounded functions on T_1 -space.

We concern ourselves with the lattice L with the operation of all non-negative numbers which satisfies the following axioms.

Axioms. 1) L is a complete distributive lattice with the least element 0.

- 2) $a \ge \beta$ implies $af \ge \beta f$. $f \ge g$ implies $af \ge ag$. $a(\beta f) = (a\beta)f$.
 - 3) $1 \cdot f = f$.
 - 4) $\inf_{a>0} af=0$ for every f.
 - 5) $(\sup f_{\alpha}) \cap f = \sup (f_{\alpha} \cap f).$

(S) (Separation axiom) If $g \leq f$, then for all Ar. elements φ , there exist a, β and some max element m such that $a > \beta$, $f \cup \tilde{i} m \geq a \varphi \geq \beta \varphi$, $g \cup \tilde{i} m \geq \beta \varphi$ ($\tilde{i} \geq \tilde{i}_0$) for some \tilde{i}_0 .

(E) There exists Ar. element φ such that

 $\inf_{\alpha} (f_{\alpha} \cup \beta \varphi) = \beta \varphi \cup \inf_{\alpha} f_{\alpha} \text{ for any } f_{\alpha}, \beta,$ $\inf_{\alpha} (f \cup \beta_{\alpha} \varphi) = f \cup \inf_{\alpha} \beta_{\alpha} \varphi \text{ for any } f, \beta_{\alpha}.$

(We denote one of such Ar. elements by e.)

Definitions. In the axioms above, we mean by an Ar. element an element φ such that for every element f of L $a\varphi \ge f$ for some a, and we mean by a max element a non-Ar. element m such that there exists some Ar. element $\varphi_m \ge m$ such that if $m < f \le \varphi_m$, then f is Ar. We call this φ_m an upper element of m.

Remark. Small Latin letters f, g, ... and Greak letters φ, ψ are used for elements of L. Greek letters α, β, \dots except φ and ψ are used for oprators, i.e. positive numbers.

Lemma 1. If m is a max element, then $m \cup f \ge a$ and $a > \beta$ implies $m \cup \beta e \ge f$. **Proof.** From now forth we denote by m a max element and by φ_m one of upper elements of m.

1. We can reduce our problem to case of $\varphi_m \ge ue$. For, if this lemma is established in case of $\varphi_m \ge ae$, and for a general max element $m, m^{\cup} f \ge ae$. $a > \beta$ and $m^{\cup}\beta e \geq f$ hold, then also for a number \tilde{i} such that $\tilde{i}\varphi_m \geq ae$, $\tilde{i} \geq 1$ we get $\tilde{i}m^{\cup}f \geq ae$, $\tilde{i}m^{\cup}\beta e \geq f$. However, since $\tilde{i}m$ is obviously a max element having $\tilde{i}\varphi_m$ as an upper element, this is a contradiction.

2. Firstly we prove that $m_{\bigcirc}ae (\varphi_m \ge ae, a > 0)$ is a max element having ae as an upper element.

For let $m_{\cap}ae < f \leq ae \leq \varphi_m$, then if $m = f^{\cup}m$, from $\varphi_m \geq ae$ we get $m_{\cap}ae \geq f$, which contradicts $m_{\cap} ue < f$. Hence it must be $m < f^{\cup} m \leq \varphi_m$; hence $f^{\cup} m$ is Ar, i.e. there exists $\beta > 0$ such that $f \cup m \ge \beta e$. Therefore $f \ge (f_{\cap} ae) \cup (m_{\cap} ae) =$ $(f \cup m) \cap ae \geq \beta e \cap ae$, i. e. f is Ar.

3. Next we show that for a max element m, $\varphi_m \ge ae$ and $a \ge \beta$ imply

 $\frac{\beta}{\alpha}(m_{\Omega}ae) = m_{\Omega}\beta e.$ Since $\frac{\beta}{\alpha}(m_{\Omega}ae) \leq m_{\Omega}\beta e$ is obvious, we assume that $\frac{\beta}{\alpha}(m_{\Omega}ae) < m_{\Omega}\beta e.$ Then, since $m_{\Omega}ae < \frac{\alpha}{\beta}(m_{\Omega}\beta e) \leq ae, \frac{\alpha}{\beta}(m_{\Omega}\beta e)$ is Ar. from $\varphi_m \geq ae$ and 2, i.e. $\frac{\alpha}{\beta}(m_{\Omega}\beta e) \geq ie$ for some i > 0. Hence $m \geq \frac{\beta i}{\alpha}e$, which contradicts the fact that mis non-Ar.

4. We remark that $a(f \cup g) = af \cup ag$ holds generally. For \geq is obvious, and \leq can be taken from $f \cup g = \frac{1}{\alpha} (af) \cup \frac{1}{\alpha} (ag) \leq \frac{1}{\alpha} (af \cup ag)$. Next we show that $n \le e$ and $i \le 1$ imply $n^{\cup} i e \neq e$.

For assume that $n^{\cup} \tilde{i} e = e$. If we assume $n^{\cup} \tilde{i}^k e = e$ for a positive integer k, then $i n \cup i^{k+1}e = ie$; hence from $n \cap ie \ge in$ we get $ie = (n \cap ie) \cup i^{k+1}e = (n \cup i^{k+1}e)$ $\cap \tilde{i}e$, i.e. $n \cap \tilde{i}^{k+1}e \ge \tilde{i}e$. Hence $n \cup \tilde{i}^{k+1}e = n \cup (n \cup \tilde{i}^{k+1}e) \ge n \cup \tilde{i}e = e$; hence $n \cup \tilde{i}^{k+1}e$ =e. Therefore we get $n^{\cup} i^k e = e$ for any positive integer k. Hence from Axiom (E) $e = \inf_{k} (n \cup i e) = n \cup \inf i e = n \cup 0 = n$, which contradicts n < e.

5. Now we prove Lemma 1. Assume that this proposition is false, i.e. $\varphi_m \geq ue, m \cup f \geq ue, u > \beta, m \cup \beta e \geq f$, then $m \cup \beta e \geq m \cup f \geq m \cup ue$; hence from 3 $ue = (m \lor \beta e) \land ae = (m \land ae) \lor \beta e = \frac{u}{\beta} (m \land \beta e) \lor \beta e. \text{ Hence } \frac{1}{\alpha} \left\{ \frac{u}{\beta} (m \land \beta e) \lor \beta e \right\} = \frac{1}{\alpha} ue,$ i. e. $\frac{1}{\beta} (m \land \beta e) \lor \frac{\beta}{\alpha} e = e.$ Since $\frac{1}{\beta} (m \land \beta e) \lt e$ and $u > \beta$, this formula contradicts 4. Thus this lemma is established.

• **Remark.** From Axiom (S) we see easily that if $f \leq g$, there exist m and a such that $f \cup \beta m \ge ae$, $g \cup \beta m \ge ae$ ($\beta \ge \beta_0$) for some β_0 . For $f \le g$ implies $f \circ g < f$,

hence there exist *m* and *a* such that $(f g) \cup \beta m \geqq ae$. $f \cup \beta m \ge ae$ $(\beta \ge \beta_0)$. Since $g {}^{\cup}\beta m \ge ae$ implies $(f {}_{\bigcirc} g) {}^{\cup}\beta m = (f {}^{\cup}\beta m) {}_{\bigcirc} (g {}^{\cup}\beta m) \ge ae$, it must be $g {}^{\cup}\beta m \ge ae$ for these m, α and β .

Lemma 2. If $\varphi_m \geq f$, ie; $f \cup m \geq ie$ for a max element m, then $m \cup ie \geq f$.

Proof. 1. Firstly we show that $f {}^{\cup}m \geqq g$ and $\varphi_m \ge f, g$ imply $f {}^{\cup}am \geqq g$ for any $a \geq 1$.

We can see easily that $\mu \sigma \varphi_m = m$, for if $\mu \sigma \sigma \varphi_m > m$, then from $\varphi_m \ge \mu \sigma \sigma_m$ >m, $am_{\bigcirc}\varphi_m$ must be Ar. But this is impossible; hence $m=am_{\bigcirc}\varphi_m$. From this fact $f \cup um \ge g$ and $u \ge 1$ are impossible. For then $g \le (f \cup um) \circ \varphi_m = (f \circ \varphi_m)$ $(am_{\bigcirc}\varphi_m) \leq f^{\bigcirc}m$, which is a contradiction.

2. We see easily that $am^{\bigcirc} i e \ge f$ and $\varphi_m \ge f$ imply $m^{\bigcirc} i e \ge f$. For from the proof of 1 $f \leq (\alpha m^{\cup} i e) \circ \varphi_m = (\alpha m \circ \varphi_m)^{\cup} (i e \circ \varphi_m) \leq m^{\cup} i e.$

3. Now we prove Lemma 2. From 1 and 2 we may assume that $\varphi_m \ge \beta e \ge f$ for some β . If $m \cup i e \ge f$, then from the remark above we can choose some max element *n* and *u* such that $n \circ f \ge ae$, $n \circ (m \circ f e) \ge ae$ and $\varphi_n \ge \beta e \ge f$.

(a) In case that $n \cup m$ is non-Ar.

Take a number $\lambda \ge 1$ such that $\lambda \varphi_m \ge \varphi_n$. Then, if $\lambda m \ge n$, $\lambda m < n \lor \lambda m \le \lambda \varphi_m$; hence $n \cup \lambda m$ must be Ar, which is impossible. Therefore it must be $\lambda m \ge n$. Hence $ae \leq n \cup f \leq \lambda m \cup f$. Since $n \cup (m \cup ie) \geq ae$; it must be ae > ie; hence $\lambda m \cup f$ $\geq i e$. Therefore from 1 we get $f \cup m \geq i e$, which is a contradiction.

(b) In case that $n \cup m$ is Ar.

There exists a_0 such that $n \lor m \ge a_0 e, \beta \ge a_0 > 0$. For this $a_0 a_0 e = a_0 e_0 (n \lor m) = a_$ $(n_{\bigcap} u_0 e)^{\bigcup} (m_{\bigcap} u_0 e) = \frac{u_0}{\beta} (n_{\bigcap} \beta e)^{\bigcup} \frac{u_0}{\beta} (m_{\bigcap} \beta e) \leq \frac{u_0}{\beta} n^{\bigcup} \frac{u_0}{\beta} m \text{ holds from 3 of the proof}$ of Lemma 1, $\varphi_n \geq \beta e$ and $\varphi_m \geq \beta e$. Hence $n^{\bigcup} m \geq \beta e \geq f$; hence $n^{\bigcup} m^{\bigcup} i e \geq f^{\bigcup} n \geq ue$, which is a contradiction. Thus the proof of Lemma 2 is complete.

Lemma 3. $f_{\beta}' = \inf \{m \mid m : \max; \varphi_m \ge \beta e, f; m \cup \beta e \ge f\} \cap \beta e \le f.$

Proof. Assume that $f_{\beta} \leq f$, then there exist a max element *n* and \tilde{i} such that $f_{\beta}' \cup n \geq ie$, $f \cup n \geq ie$, $\varphi_n \geq f$, ie, βe from the remark. Since $\beta e \cup n \geq ((\inf m))$ $\beta e^{i} n \geq i e$ we get $i \leq \beta$ from Lemma 1. Hence from Lemma 2 $n^{i} \beta e \geq n^{i} i e \geq f$ holds. Since $\varphi_n \geq \beta e$, $n \cup \beta e \geq f$, it must be $n \geq \inf m$; hence $\gamma e \leq f_{\beta'} \cup n = ((\inf m))$ $\beta e^{n-n} = n$, which contradicts the fact that *n* is non-Ar. Thus it must be $f_{\beta} \leq f$.

Lemma 4. If $m^{\cup} f \ge ae$, $a > \beta$, $\varphi_m \ge f$, then $m^{\cup} f_{\beta'} \ge \beta e$ and $\frac{\beta}{\gamma} (f_{\beta'}, \gamma e) \le f$ hold

for every $\tilde{i} \leq \beta$, where $f_{\beta'}$ is the one in Lemma 3. **Proof.** $\frac{\beta}{\tilde{i}}(f_{\beta'} \cap \tilde{i}e) \leq \frac{\beta}{\tilde{i}}((\inf m) \cap \tilde{i}e) = \frac{\beta}{\tilde{i}}\inf(m \cap \tilde{i}e) = \inf \frac{\beta}{\tilde{i}}(m \cap \tilde{i}e) = \inf(m \cap \tilde{i}e)$ $\beta e = \beta e_{\beta} \inf m \leq \beta e_{\beta} f$ from 3 of the proof of Lemma 1 and Lemma 3.

Next we show that $\varphi_{m_{O}}$ inf $m \leq m$. For if we assume that $\varphi_{m_{O}}$ inf $m \leq m$, then from Axiom (E) $m^{\cup}\beta e \ge (\varphi_m \inf m)^{\cup}\beta e = \inf (m^{\cup}\beta e) \cap (\varphi_m \cup \beta e) \ge f$, which contradicts $m \cup f \ge ae$, $a > \beta$ from Lemma 1. Hence $\varphi_{m \cap} \inf m \le m$; hence m < m $\bigcup(\varphi_{m} \inf m) \leq \varphi_{m}$. Therefore $m \bigcup(\varphi_{m} \inf m)$ is Ar, i.e. there exists a number \tilde{r}_0 such that $m^{\bigcup} \inf m \geq \tilde{r}_0 e$, where we may take \tilde{r}_0 so that $\tilde{r}_0 \leq \beta$. Hence

$$\beta e \leq \frac{\beta}{\tilde{r}_{0}} (m^{\bigcup} \inf m)_{\bigcap} \beta e = \left(\frac{\beta}{\tilde{r}_{0}} m_{\bigcap} \beta e\right)^{\bigcup} \left(\beta e_{\bigcap} \frac{\beta}{\tilde{r}_{0}} \inf m\right)$$
$$= \frac{\beta}{\tilde{r}_{0}} (m_{\bigcap} \tilde{r}_{0} e)^{\bigcup} \inf \frac{\beta}{\tilde{r}_{0}} (m_{\bigcap} \tilde{r}_{0} e) = (m_{\bigcap} \beta e)^{\bigcup} \inf (m_{\bigcap} \beta e) = \beta e_{\bigcap} (m^{\bigcup} \inf m) \leq m^{\bigcup} f_{\beta}'$$

from 3 of the proof of Lemma 1. Thus this lemma is proved.

Definitions. 1)
$$L \supset L_c = \left\{ f \mid f \leq e, \ f = \frac{1}{\alpha} (f_{\cap} ae) \text{ for all } a \leq 1 \right\}.$$

- 2) When $\varphi_m \geq e$, we denote by m_e the max element $m_{\bigcirc}e$.
- From 3 of the proof of Lemma 1, $m_e \in L_c$ is obvious.
- 3) We mean by a *unit ideal* a subset I of L such that

$$I = \left\{ u \mid u \in L_c, \ u \leq m_e \right\} = I(m)$$

- 4) We denote by \mathfrak{L} the set of all unit ideals of L.
- 5) $\mathfrak{L} \supset F(u) = \{I \mid u \in I\} (u \in L_c).$
- 6) $f_{\alpha}^* = \sup \left\{ u \mid u \in L_c, au \leq f_{\Omega} ae \right\} (a \geq 0)$

We can easily see that $f_a^* \in L_e$. For $\frac{1}{\beta} (f_a^* \cap \beta e) = \frac{1}{\beta} \left\{ (\sup u) \cap \beta e \right\} = \frac{1}{\beta} \sup (u \cap \beta e) = \frac{1}{\beta} \sup \beta u = f_a^*$ for $\beta \leq 1$ from Axiom (5). Next if $\beta \geq u$, $u \in L_e$ and $\beta u \leq f \cap \beta e$, then $au \leq \frac{a}{\beta} (f \cap \beta e) \leq f \cap ae$, i.e. we get

 $F(f_{\beta}^*) \supseteq F(f_{\alpha}^*)$ for $\beta \ge \alpha$.

Theorem. In order that a lattice L with the operation of all non-negative numbers is operation-isomorphic with the lattice of all lower semi-continuous, nonnegative and bounded functions on some T_1 -space, it is necessary and sufficient that L satisfies Axioms 1)-5), (S) and (E).

Proof. Since it is easy to see the validity of the necessity, we shall show that an operation-lattice L satisfying 1)-5), (S) and (E) is operation-isomorphic with the lattice of all lower semi-continuous, non-negative and bounded functions on some T_1 -space.

1. We introduce a topology into \mathfrak{L} by the closed sets

$$F(u) = \left\{ I \mid u \in I \right\} \quad (u \in L_c)$$

 $F(\bigcup u_a) = \prod F(u_a)$ is obvious. We show that $F(u_1 \cap u_2) = F(u_1) \cup F(u_2)$. Since \supseteq is obvious, we prove \subseteq . Assume that $u_{1} \cap u_2 \in I$, $u_1 \notin I$, $u_2 \notin I$ and I = I(m), then $u_1 \leq m_e$; hence $e \geq u_1 \cup m_e > m_e$. Therefore $L_e \ni u_1 \cup m_e \geq \beta e$ for some $0 < \beta \leq 1$; hence $u_1 \cup m_e = \frac{1}{\beta} ((u_1 \cup m_e) \cap \beta e) = e$. We get $u_2 \cup m_e = e$ on the same ground. Hence $m_e^{\cup}(u_{1} u_2) = e$, which contradicts $u_{1} u_2 \leq m_e$. It is easy to see that $F(m_e)$ $= \{I(m)\}$. Hence L is a T₁-space by this topology.

We denote by $L(\mathfrak{L})$ the lattice of all lower semi-continuous, non-negative and bounded functions on \mathfrak{L} . We define a mapping from L into $L(\mathfrak{L})$ in the following manner

$$L \ni f \rightarrow F \in L(\mathfrak{L}), F(I) = \inf \left\{ a | I \in F(f_a^*) \right\}$$

Since $\{F(I) \leq a\} = \prod_{\alpha < \beta} F_{\beta}$ is a closed set in $\mathfrak{L}, F(I)$ is a lower semi-continuous function on \mathfrak{L} . (We denote by F_a $F(f_a^*)$).

Next we see that $u \in L_c$, $\delta < 1$ and $u \leq \delta e$ imply u=0. For, then $u = \frac{1}{\delta}(u \otimes \delta e) = \frac{1}{\delta}u$, i. e. $u = \delta u$; hence $u = \delta^k u$ for any positive integer k. Therefore $u = \inf \delta^k u$ =0.

From this fact we see that $f \leq re < ue$ implies $F_u = \mathfrak{L}$. For if $uu \leq f_u ue$, then $au \leq \gamma e$, i. e. $u \leq \frac{\gamma}{a}e$; hence u=0. Therefore it must be $f_a^*=0$, i. e. $F_a=\mathfrak{L}$. This fact shows that $f \leq i e$ implies $F(I) \leq i$. Therefore $F(I) \in L(\mathfrak{L})$.

2. Firstly we show that if $f \rightarrow F_f$, $g \rightarrow G_g$ by this mapping, and g < f, then $G_g \leq F_f$.

When g < f, there exist a > 0 and a max element m such that $g \cup m \geqq ae$, $f \cup m$ $\geq a.e., \varphi_m \geq f. e. a.e.$

a) Let us prove that $F_{f}(I(m)) \ge a$.

For any positive number $\beta < u$, from Lemma 4 there exists u such that $u \cup m$ $\geq \beta e, \frac{\beta}{\gamma}(u_{\cap} \tilde{r} e) \leq f \text{ for all } \tilde{r} \leq \beta, \text{ where}$

$$u=f_{\beta}'=\inf\left\{m\mid m: \max, \varphi_{m}\geq\beta e, f; m\cup\beta e\geq f\right\}\cap\beta e.$$

Let $\tilde{i} \leq \beta$, then from 2 and 3 of the proof of Lemma 1,

$$\frac{\beta}{\tilde{i}}(u_{\Omega}\tilde{i}e) = \frac{\beta}{\tilde{i}}(\inf(m_{\Omega}\beta e)_{\Omega}\tilde{i}e) = \inf\frac{\beta}{\tilde{i}}((m_{\Omega}\beta e)_{\Omega}\tilde{i}e) = \inf(m_{\Omega}\beta e) = u.$$

Since $\gamma_{\beta \leq \beta}$ holds for $\gamma \leq 1$, we get $\frac{\beta}{\gamma_{\beta}}(u_{\Omega}\gamma_{\beta}e) = u$ from the above mentioned fact. Hence $\frac{1}{\gamma}\left(\frac{1}{\beta}u_{\Omega}\gamma_{e}\right) = \frac{1}{\beta}u$, i. e. $\frac{1}{\beta}u \in L_{e}$. Since $u \leq f$ from Lemma 3, we get $\beta \cdot \frac{1}{\beta}u \leq f_{\Omega}\beta e$. Next, assume that $\frac{1}{\beta}u \leq m_{e} = m_{\Omega}e$, then $\beta e \leq u^{\Box}m \leq \beta m_{e}^{\Box}m$, which is impossible. Hence it must be $\frac{1}{\beta}u \leq m_{e}$. Therefore $f_{\beta} \leq m_{e}$ for all $\beta < u$. Thus $F_{f}(I(m)) \geq \alpha$ is proved.

b) Next we prove that for some $\beta \le a$, $G_g(I(m)) \le \beta$ holds.

If $g_{\cap} ae \geq au$, $u \in L_c$, then $g^{\cup} m \geq au^{\cup} m$. Since $au^{\cup} m \geq ae$ implies $g^{\cup} m \geq ae$, and this is a contradiction, $au^{\cup}m \geqq ae$ holds.

If $u \cup m_e = e$, then $ae = au \cup am_e = au \cup a(m_0 e) = au \cup (m_0 ae) \leq au \cup m$ from 3 of the proof of Lemma 1; hence it must be $u \cup m_e \leq e$. Therefore from 1 we get $u \leq m_e$; hence $g_a^* \leq m_e$.

Now we prove $\sup_{\beta < \alpha} \beta e = \alpha e$ generally. If $\sup_{r < 1} \tilde{r} e = e$ is established, then $\frac{1}{\alpha} \sup_{\beta < \alpha} \beta e = \sup_{\beta < \alpha} \frac{\beta}{\alpha} e = e$, i. e. $\sup_{\beta < \alpha} \beta e = \alpha e$, so we may prove $\sup_{r < 1} \tilde{r} e = e$.

Assume that $\sup_{x < 1} \tilde{r} e < e$, then from Axiom (S) there exist $m, a > \beta$ such that

Jun-iti NAGATA

 $e^{\bigcirc}m \ge ae > \beta e$, $m^{\bigcirc}\sup_{r<1} \tilde{r}e \ge \beta e$. Therefore if a>1, it must be $e^{\bigcirc}m \ge e$ from Lemma 1, which is impossible; hence $\beta < 1$. But this contradicts $m^{\bigcirc}\sup_{r<1} \tilde{r}e \ge \beta e$. Therefore $\sup_{r<1} \tilde{r}e = e$.

Next we show the existence of $\beta < \alpha$ such that $m_e \ge g_{\beta}^*$.

For if we assume that $m_e \geqq g_{\beta}^* = \sup \{u \mid u \in L_e, \beta u \leqq g_{\bigcap} \beta e\}$ for all $\beta < a$, then from 1 we get $e \le m_e \cup g_{\beta}^*$. Hence $\beta e \le \beta m_e \cup \beta g_{\beta}^* \le \beta m_e \cup (\beta e_{\bigcap} g) \le a m_e \cup g$. Therefore $ue = \sup_{\beta < a} \beta e \le a m_e \cup g \le (a m_{\bigcap} \varphi_m) \cup g = m \cup g$ from the proof of 1 of Lemma 2, which is a contradiction. Therefore $m_e \ge g_{\beta}^*$ for some $\beta < a$, i. e. $G_g(I(m)) \le \beta < a$ holds. Hence $G_g(I(m)) \le F_f(I(m))$ is proved.

Now it is easy to see that the mapping $f \rightarrow F$ is one-to-one.

Let $f \to F_f$, $g \to G_g$ and $f \neq g$, then if $f \leq g$, there exist *m*, *u* such that $m^{\cup} f \geq ae$, $m^{\cup}g \geq ae$, $\varphi_m \geq f$, *ae*, *e*. Hence from the above mentioned fact $F_f(I) \leq G_g(I)$.

Since it is obvious that $f \leq g$ implies $F_f(I) \leq G_g(I)$, this mapping $f \leftrightarrow F_f(I)$ is one-to-one.

3. We prove that for every element $F(I) \leq i$ of $L(\mathfrak{L})$ there exists some element of L corresponding to F(I).

Let $\{I | F(I) \leq a\} = F(u_{\alpha}) = \{I | u_{\alpha} \in I\} \ (u_{\alpha} \in L_{c}),$ then we can show that $f = \sup_{\alpha \leq T} au_{\alpha}$ corresponds to F(I). Let us assume that f corresponds to $F_{f}(I)$, and prove $F_{f}(I) = F(I)$.

a) Firstly we prove that $\{I | u_{\alpha} \in I\} \supseteq \{I | u_{\alpha_0} \in I\}$ implies $u_{\alpha} \leq u_{\alpha_0}$.

If u_{α} , $u_{\lambda_0} \in L_e$ and $u_{\alpha} \not\equiv u_{\lambda_0}$, there exists m such that $m_e^{\smile} u_{\alpha} = e$, $u_{\lambda_0} \leq m_e$. For then there exist m, $\delta > 0$ such that $m^{\smile} u_{\alpha} \geq \delta e$, $m^{\smile} u_{x_0} \not\equiv \delta e$, $\varphi_m \geq e$. Since $\delta > 1$ contradicts $m^{\smile} e \geq \delta e$ by Lemma 1, it must be $\delta \leq 1$; hence $m^{\smile} u_{\alpha_0} \not\equiv e$. If $u_{\lambda_0} \not\equiv m$, then from 1 we get $u_{\lambda_0}^{\smile} m_e = e$, which contradicts $m^{\smile} u_{\alpha_0} \not\equiv e$. Hence it must be $u_{x_0} \leq m_e$. Next from $m^{\smile} u_{\alpha} \geq \delta e$ and from 1 we get $m_e^{\smile} u_a = e$. Therefore $u_{\lambda_0} \in I(m)$, $u_a \notin I(m)$, i.e. $\{u_a \in I\} \not\cong \{u_{\lambda_0} \in I\}$.

b) Now let a_0 be a fixed number, then for any number $\beta > a_0$, $u \in L_c$ and $\beta u \leq f_{\cap} \beta e = \sup_{\alpha \leq x} u u_{\alpha \cap} \beta e$ imply $u \leq u_{x_0}$.

For $u \leq u_{\alpha_0}$ implies $u_{\alpha_0} \leq m_e$, $u \cup m_e = e$ for some *m* from a). Since we can choose this *m* so that $\varphi_m \geq \beta e$, *e*, we get

$$m^{\cup} \sup \alpha u_{\alpha} \geq m^{\cup} \beta u \geq \beta m_e^{\cup} \beta u = \beta e.$$

In the other hand, from a) we get $m_e \ge u_a$ for any $a \ge a_0$. Hence

$$\sup_{\alpha \leq \gamma} \underbrace{ uu_{\alpha} = \sup_{\gamma \geq \lambda \geq x_0} uu_{\alpha} \subseteq \sup_{\alpha < \lambda_0} uu_{\alpha} \leq \lambda m_e \cup u_0 e, }_{\lambda \leq \lambda_0}$$

where λ is a number such that $\lambda \geq i$, $\lambda e \geq \varphi_m$. Hence $\lambda m_e \cup a_0 e \geq \lambda m_e \cup \sup au_{\alpha} \geq \beta e$ (for some $\beta > a_0$) from the above mentioned fact. Hence from Lemma 1 we get $\lambda m_e \cup a_0 e \geqq a_0 e$, but this is impossible. Therefore $\beta > a_0$, $u \in L_c$ and $\beta u \leq \sup au_{\alpha} \cap \beta e$ imply $u \leq u_{\alpha_0}$. This proposition shows that $F(I) \leq u_0$ or $u_{\alpha_0} \in I$ implies $f_{\beta}^* \leq u_{\alpha_0}$ for any $\beta > u_0$, i.e. $f_{\beta}^* \in I$. Hence $F_f(I) \leq u_0$. Thus $F_f(I) \leq F(I)$ is proved.

c) Next we prove $F(I) \leq F_f(I)$.

Let $F_f(I) \leq a_0 < \tilde{i}$ and I = I(m), then $f_{\beta}^* \in I(m)$ for all $\beta > a_0$. For an arbitrary number β such that $\tilde{i} \geq \beta > a_0$, $\beta u_\beta \leq \sup \alpha u_{\alpha} \cap \beta e$ holds; hence from the above mentioned remark $u_\beta \leq m_e$. Hence $F(I) \leq \beta$. Therefore $F(I) \leq a_0$, i.e. $F(I) \leq F_f(I)$ is proved. Thus $F_f(I) = F(I)$ is established.

4. It is easy to see that this isomorphism between L and $L(\mathfrak{L})$ is an operation-isomorphism.

Let $f \rightarrow F_{f}(I)$, $\lambda f \rightarrow F_{\lambda f}(I)$, and let us see $F_{\lambda f}(I) = \lambda F_{f}(I)$.

$$F_{f}(I) = \inf \left\{ a \mid f_{a}^{*} \in I \right\},$$

$$F_{\lambda f}(I) = \inf \left\{ a \mid (\lambda f)_{a}^{*} \in I \right\} \text{ and}$$

$$(\lambda f)_{a\lambda}^{*} = \sup \left\{ u \mid u \in L_{c}, \ \lambda au \leq \lambda f_{0} \lambda ae \right\} = \sup \left\{ u \mid u \in L_{c}, \ au \leq f_{0} ue \right\} = f_{a}^{*}$$

show the equivalence between $(\lambda f)_{\lambda a}^* \in I$ and $f_a^* \in I$ for all α ; hence $F_{\lambda f}(I) = \lambda F_f(I)$. Thus the proof of this theorem is complete.

References

- I. Kaplansky, Lattices of Continuous Functions II, Amer. J. of Math. Vol. 70, No. 3 (1948).
- J. Nagata, On Lattices of Functions on Topological Spaces and of Functions on Uniform Spaces, Osaka Math. J. Vol. 1, No. 2 (1949).
- We mean by "complete" the condition that if f_a≤f for some f and all α, then there exists sup f_α.