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I. Kaplansky characterized sorne sublattice of the lattice K of all continuous 

functions on topological spa ce by the axiom of "translation lattice", lattice in 

which translations were defined. It seems that his purpose is to characterize K 

itself by sorne axiom of lattice. However the authcr showed that the lattice of 

semi-continuous functions characterized the topology of the completely regular (not 

necessarily compact) topological space, so the characterization of such a lattice is 

important in the effort to treat non-compact topological spaces with methods o.f 

lattice theory. 

In this paper we shall characterize the lattice of all lower semi-continuous, 

non-negative and bounded functions on T1-space. 

We concern ourselves with the lattice L with the operation of all non-negative 

numbers which satisfies the following axioms. 

Axioms. 1) L is a complete distributive lattice with the least element O. 

2) u.~{j implz'es uJ?i3!. f2g implies td?ag. tJ.([jf)=(u.[j)f. 

3) 1·f=!. 

4) inf u.f =0 for every !. 
"..>0 

5) (sup fa)rJ =sup Uar.f). 
" " 

(S) (Separatz'on axiom) If g~/, then for all Ar. elements rp, there 

exist (J., p and some,max element m such that rJ.>P. furm~ arp';;~prp, 

gurm~{jrp cr~ro) for some i'o. 

(E) There exists Ar. element rp such that 

inf(f"u{jrp)=Srpuinffa for any fa.S, 
" C1. 

(W e denote one of such Ar. elements by e.) 

Definitions. In the axioms above, we mean by an Ar. element an element 

rp such that for every element f of L (J.rp?>J for sorne a, and we mean by a max 

element a non-Ar. element m such that there exists some Ar. element ~Pm?-m such 

that if m<f ~<pm, then fis Ar. W e call this lfJm an upper element of m. 
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Remark. Small Latin letters /, g, ___ and Greak letters <p, cf; are used for 

elements of L. Greek l etters u., ~, _.. except <p and cf; are used for opra tors, i. e. 

positive numbers. 

Lemma 1. If m z"s a max element, then mu /~fJ..e and u.>~ implies mu~e~f. 

Proof. From now forth we denote by m a max element and by 'Pm one of 

upper el.ements of m. 
1. W e can reduce our problem to case of <f!m?;rJ.e. For, if this lemma is estab­

lished in case of 'Pm?>-rt.e, and for a general max element m, mu f~r;_e. a>~ and 

mu~e?J hold, then also for a number r such that r'Pm~-:fJ..e, r,?J we get rmu /?fJ..e, 

rmu~e?-.1. Rowever, since rm is obviously a max element having: t'Pm as an 

upper element, this is a contradiction. 

2. Firstly we prove that mnft.e (<f!m?u.e, a>O) is a max element having ae 

as an upper element. 

Fer let mnfJ.e<J<S:ae-;;.<pr,., then if m=!um, from CfJm>ae we get mnai~/, 

which co.ntradicts mnft.e<f. Renee it must be m<Jums;,rpm; bence fum is Ar, 

i.e. there exists ~>O such that fum?~e. Therefore F;;;;{/nft.e)u(mnae)= 

(fum)nf1.e?~enrt.e, i.e. 1 isAr. 

3. Next we show that for a max element m, CfJm~u.e and a?"~ imply 
{3_ (m ae)=m iJe. 
fi. n ni-' 

Since ft~ (mr,u.e)<mn~e is obvious, we assume that fJ__ (mnu.e)<mn~e. 
r;_ ~ (J. 

Then, since mnfJ..e<'fCmn~e)"'S:ae, 8 (mn~e) is Ar. from 'Pm?ae and 2, i.e. 

}Cmn~e):::-":re for sorne r>O. Renee m>@.!__ e, which contradicts the fact that m 
1-' fi. 

is non-Ar. 

4. We remark that fJ.(/u g)=uJuag holds generally. For:<: is obvious, and 

~ can be taken from j'Jg=l_(a!)ul(ag)<l(fdur;_g). 
ff. r;_ ff-

Next we show that n<e and r<1 imply nure'*'e. 

For assume that nure=e. If we assume nu r"e=e for a positive integer k, 

then i'nUrk+le=re; bence from nnre~rn We get i'e=(nr,re)Urk+le=(n.'-.Jrk+le) 

ni'e, i.e. nni'k+ 1e~re. Renee nur"+ 1e=nu(nUrk+le)?_nure=e; bence nurk+le 

=e. Therefore we get nur"e=e for any positive integer k. Renee from Axiom 

(E) e=inf(nur"e)=nuinfr"e=nuO=n, which contradicts n<e. 
le 

5. Now we l'rove Lemma 1. Assume that this proposition is false, i.e. 

CfJm?r;_e, mu !~ae, r;_>~. mu~e?J, then mu~e~mu !?:cmuae; bence from 3 
u u 1/. 1 1 fi. } 1 ae=(m ~e)r,ae=(mnfJ.e) f3e=s·Cmn~e)u~e. Renee (J. nrCmn~e)u~e =-u: ae, 

i.e. ~ (mn~e)ufl__ e=e. Since ; Cmn/3e)<e and a>~. this formula contradicts 
1-' (J. 1-' 

4. Thus this lemma is established. 

· Remark. From Axiom (S) we see easily that if /$g, there exist m and r1. 

such that fu~m:>rœ, gu~ml;rt.e (~">i3o) for sorne ~ 0 • For f$g implies 1 ng<' /, 
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bence there exist m and a such that (fng)u[3m;f;_rt.e. fu[3m:;?rJ.e ([3;?:[3o). Since 

gu{3m?:_ae implies (fng)u[3m=(fu[3m)n(gu[3m)~>ae, it must be gu[3m;:f:ae for 

these m, a and [3. 

Lemma 2. If <Pm>J, re; fUm;f;le for a max element m, then mure?;!. 

Proof. 1. Firstly we show that fum;f;_g and 'Pm~f. g imply fuam;f;g lor 

any r1.;?l. 

We can see easily that rJ.mncpm=m, for if amn<Pm>m, then from <Pm~amn<Pm 

>m, amn'Pm must be Ar. But this is impossible; bence m=amn<Pm· From this 

fact /ur1.m?g and a~1 are impossible. For then g~(fuam)n<Pm=(f nl.f,.) 

u(u.mncpm)<!um, which is a contradictic.n. 

2. We see easily that amure> 1 and Cf!m?f imply mure;>:!. Far from the 

proof of 1 !<(r;.muï'e)nl.fm=(amncpm)u(ïencpm)<mure. 

3. Now we prove Lemma 2. From 1 and 2 we may assume that <Pm~f3e';?;! 

for sorne [3. If mure;f;!, then from the remark above we can choose sorne max 

element n and a such that nu f~ae, nu(mure);f;_ae and <Pn~f3e"?f. 

(a) In case that num is non-Ar. 

Take a number J2:1 such that Àcpm?Cf!n- Then, if Àm~n, J.m<nu Àm~Àcpm; 

bence nu ).m must be Ar, which is impossible. Therefore it must be J.m-:2,.n. 

Renee rJ.e~nu /~) .. mu f Since nu(mure)~ae; it must be ae>re; bence Jmu 1 
>re. Therefore from 1 we get fum?Ye, which is a ccmtradiction. . 

(b) In case that num is Ar. 

There exists u.0 such that num;;;;r1.0e, [3>rJ.0>0. For this rJ.o rJ.oe=rJ.oen(num)= 

(nnr1.0e)u(mnr1.0e)=r~o (nnf3e)ur~o (mnf3e);;;,r~o nu~ m holds from 3 of the proof 

of Lemma 1, 'Pn>f3e and <Pm?f3e. Renee num;;;;[3e> !; hence numure?JUn?.rJ.C, 

which is a contradiction. Thus the proof of Lemma 2 is complete. 

Lemma 3. /~'=inf {mlm: max; 'Pm:?:[3e, !; mu[3e~f} nf3e<f 

Proof. Assume that /~'$[, then there exist a max element n and r such 

that f~'un?;i'e, fun~re, 'Pn;:c;f. re, [3e from the remark. Since [3eun>((inf m) 

nf3e)un?re we get i':5[3 from Lemma 1. Renee from Lemma 2 nu[3e~nure>J 

holds. Since <Pn?.f3e, nu[3e?f. it must be n;;;;inf m; bence re.::s:;/~'un=((inf m) 

nf3e)un=n, which contradicts the fact that n is non-Ar. Thus it must be !~'5J 

Lemma 4. I 1 mu f?(J.e, r1.>[3, cpm?:.,f. then mu !~';?[3e and ~ (k nre)~f hold 

for every r<[3, where !~' z"s the one in Lemma 3. 

Proof. ~-(!~' nre)<f ((infm)nre)=~·inf(mnre)=inf ·~· (mnre)=inf(m 

n [3e) = [3e n inf m <[3e n 1 from 3 of the proo.f of Lemma 1 and Lemma 3. 

Next we show that <Pmninf m$m. For if we assume that 'Pmninf m;:;::;m, then 

from Axiom (E) mu [3e;;:o;( 'Pmninf m)u [3e=inf (mu [3e)n (<Pmu [3e)>t, which con­

tradicts mu l?:_r;_e, a>f3 from Lemma 1. Renee <Pmninf m$m; hence m<m 

u(<Pmninf m)<cpm. Therefore muC<Pmninf m) is Ar, i.e. there exists a number 
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ro such that muinfm;?:r0e, where we may take i'o so that ro::;/3. Renee 

{3e< ~(muinfm),.{3e=(~ m,.i3e)u(!3e,.~infm) 

=-~ (m,.roe)uinf r{3 (m,.roe)=(m,.{3e)uinf (m,.{3e)=/3e,.(muinf m)~mu !~' 
1 0 0 

from 3 of the proof of Lemma 1. Thus this lemma is proved. 

Definitions. 1) L-:JL,=itlt-:;_e, != ~ ( !,.u.e) for al\ r~::;1}. 
2) When 'Pm?~e, we denote by me the max element m,.e. 

From 3 of the proof of Lemma 1, me EL, is obvious. 

~n W e mean by a unit ideal a subset l of L such that 

l = 1u !u E Le. u-:;_m.( =I(m). 

4) We denote by ~ the set of al\ unit ideals of L. 

5) ~-:JF(u)=illuEI}(uEL,). 

6) fa*=sup iu 1 u E Le. au<! ,.rœl (a;:c:O) 

. . 1 1 1 ( 1 
We can cas1ly see that fa·~EL,. For {3-(fc,*,.{3e)=jj ( (supu),.{3el=f3sup 

(u,./3e)=}sup/3u=fa* for {3<1 from Axiom (5). 

Next if /3:>rl, uELe and {3u-:;_t,.{3e, then rw-:;_~ (!,.{3e)-:;_!,.rle, i.e. we get 

F( ~~~')?F( !/") for e;;;rl. 
Theorem. ln arder that a lattice L with the operation of all non-negative 

numbers is operation-isomorphic with the lattice of alllower semi-continuous, non­

negative and bounded !unctions on some T 1-space, it is necessary and sufficient 

that L satisfies Axioms 1)-5), (S) and (E). 

Proof. Since it is easy to see the validity of the necessity, we shall show 

that an operation-lattice L satisfying 1)-5), (S) and (E) is operation-isomorphic 

with the lattice of all lower semi-continuous, non-negative and bounded functions 

on sorne T1-space. 

1. W e introduce a topo.logy into ~ by the closed sets 

F(u)=illuÉI} (uEL,) 

F(uua)=IIF(ua) is obvious. We show that F(u1nli2)=F(u1)u F(u2). Since 

2 is obvious, we prove ~:;:;. Assume that u1,.u2 El, u1 $[, u2 $[ and l =I(m), 

th en udfi,me ; bence e?o;ul u m.:>m.. Therefore L, 3 u1 u m.;:c:Pe for sorne 0</3<1 ; 

bence u1 um.= ~ CCu1 um.),..{3e)=e. We get u2 um.=e on the same ground. Renee 

m. u(u1,.u2)=e, which contradicts u1 ,.u2~m.. It is easy ta see that F(m8 ) 

= {I(m)}. Renee Lis a T1-space by this topology. 

We denote by L(~) the lattice of alllower semi-continuous, non-negative and 

bounded functions on ~- We define a mapping from L into L(~) in the following 
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mann er 

L?J!~FEL('iJ), F(l)=inf{r.cliEF(f"*)(. 

Since {F(I)<a} =JI F~ is a closed set in 53, F(l) is a lower semi-continuous 
a.<~ 

function on 53. (We denote by F" FUa.*)). 

Next we see that u EL., B<1 and u<Be imply u=O. For, then u= ~(un Be) 

= ~ u, i.e. u=Bu; hence u=Bicu for any positive integer k. Therefore u=inf a~cu 
=0. 

From this fact we see that JS,Je<ae implies F a.='i3. For if au<!nae, then 

au<re, i.e. u< ~ e; hence u=O. Therefore it must be fa.*=O, i.e. F a.='i3. This 

fact shows that t<re implies F(I)S,L Therefore F(I) E L(53). 

2. Firstly we show that if I~F :r, g~Gu by this mapping, and g<f. then 

Gu-;;;;y :!· 

When g<f. there exist a>O and a max element m such that gum~ae, fum 

>ae, <f!m> /, e, ae. 

a) Let us prove that F :r(I(m))>a. 

For any positive number f1<a, from Lemma 4 there exists u such that uum 

:?:.{je, ~ (un re)<! for ali r<[1, where 

u=/~'=inf{mlm: max, <f!m>{3e, f; mu{3e>!~nf1e. 

Let r <[1, th en from 2 and 3 of the proof of Lemma 1, 

-~(un re)=~ (inf (mnf1e)nre)=inf ~ ((mnf1e)nre)=inf (mnf1e)=u. 

Since r[1;;;;J3 holds for r<1, we get ~ (unr{1e)=u from the above mentioned fact. 

Hence ~ (~ unre)= ~ u, i.e. ~ uEL •. 
Since u<! from Lemma 3, we get [1· ~ u<! nf1e. 

Next, assume that ~ u<m.=mne, then [1e<uum<{1m6 um, which is impos­

sible. Hence it must be t u$m.. Therefore !~*$m. for all f1<a. Thus 
F :rU(m)):?:.a is proved. 

b) Next we prove that for sorne f1<a, Gu(I(m))<{j holds. 

If gnr.ce2au, u EL., then gum>auum. Since auum2ae implies gum;>ae, 

and this is a contradiction, auum~ae holds. 

If uvm.=e, then ae=auuam.=auua(mr.e)=auu(mnae):::;;,auum from 3 of 

the proof of Lemma 1; hence it must be uum;'fi=.e. Therefore from 1 we get 

u:::;;,m.; bence ga.*<m •• 

Nowweprove sup{je=ae generally. If supre=e isestablished, then l_sup{je 
[1 . ~<" r<1 a ~<" 

=sup- e=e, 1. e. sup [1e=ae, so we may prove sup re=e. 
~<" a ~<" r<I 

Assume that sup re<e. then from Axiom (S) there exist m, r.c>f1 such that 
r<I 
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eum-;~r.t.e>{3e, musup i'e"~/3e. Therefore if a>1, it must be euml;e from Lemma 
r<1 

1, which is impossible; bence !3<1. But this contradicts musup re~{3e. Therefore 
r<l 

sup7e=e. 
r<1 

Next we show the existence of f3<a such that m.>g~*· 

For if we assume that m.~g~*=sup {u\uEL0 , {3u<gnf3e} for all f3<a, then 

from 1 we get e~m. u g~*· Renee {3e<{3m. u{3g~*<{3m. u(f3eng)<am8 u g. There­

fore r;_e=sup{3e-5:am.ug:;:;;_(amn'Pm)ug=mug from the proof of 1 of Lemma 2, 
~<a 

which is a contradiction. Therefore m.?;g~* for sorne {3<a, i.e. Gg(I(m))~f3<a 

holds. Renee Gg(I(m))~F r(I(m)) is proved. 

Now it is easy to see that the mapping 1-+F is ane-to-one. 

Let /->Fr. g-+Go and /i=g, then if /$g, there exist m, r;. such that mu 1 

?';rJ.e, mu g~r.t.e, 'Pm?;/, ae, e. Renee from the above mentioned fa ct F rCI )$GoCI ). 

Since it is obvious that t::;g implies Fr(I)::;Gg(I), this mapping /<-->Fr(I) 

is one-to-one. 

3. We prove that for every element F(I)~r of L('iJ) there exists sorne ele­

ment of L corresponding to F(I ). 

Let {I \F(I)::;r.t.} =F(ua)= {I \ua E!} (ua E Le), then we can show that 

l=supr.t.ua corresponds to F(I). Let us assume that f corresponds to Fr([), and 
a,;;r 

prove F r(I)=F(I). 

a) Firstly we prove that {I \ua El} ;;:,:2 {I \uo.0 E 1} implies uas;u,.0• 

If Ua, u,_ 0 E Le and ua$u,.0, there exists m such that meu ua=e, u,_ 0 <m.. For 

then there exist m, o>O such that muua?:oe, muux0~oe, 'Pm?:e. Since o>l con­

tradicts mue?:oe by Lemma 1, it must be o~l; bence muux0~e. If u;,.0$m, 
then from 1 we get llxo um,=e, which co.ntradicts mu Ux0~e. Renee it must be 

llx0<m •. Next from mu ua?;,oe and from 1 we get m. u ua=e. Therefore u,_0 E l(m), 

u"<!f I(m), i.e. {ua E l}*{uo.0 E /}. 

b) Now let ao be a fixed number, then for ïnY number f3>r.t.o, u E Le and 

{3u<! ni3e=sup auanf3e imply u<ux0• 
a&r 

For u$ux0 implies u,_0<m., uum.=e for sorne m from a). Since we can 

choose this m so that 'Pm>f3e, e, we get 

m usup r;_ua?:,m u {3u;-:;;{3m. u {3u={3e. 

In the other band, from a) we get m.~ua for any r;.~a0 • Renee 

sup r.t.Ua=sup r;.ua usup f!.Ua<~m. u r;.0e, 
(X;;;;_; r~:...~xo o.<:o..o 

where ~ is a number such that J~r, ~e?;,cpm. Renee ~m. u rJ.oe ~Àme u sup aucx;?':[3e 

(for sorne f3>ao) from the above mentioned fact. Renee from Lemma 1 we get 

Àme u aoe~aoe, but this is impossible. Therefo.re f3>Œ0 , 11 E Le and [3u;;::sup allanf3e 

imply u$u,.0• 
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This proposition shows that F(I )<ao or ucx0 E I implies f~*<uo:0 for any f3>u.o, 

i.e. !~* E /. Renee F f(I)~rJ.o. Thus F ,(I)<F(I) is proved. 

c) Next we prove F(I)~F 1(1). 

Let F f(I)<u.o<r and I =I(m), then f~* E I(m) far all f3>a 0 • For an arbi­

trary number /3 such thatJ':::?f3>ao, {3u~5supauani3e holds; bence from the above 

mentioned remark u~~m8 • Renee F(I)</3. Therefore F(I)<r;.0 , i.e. F(l)g f(I) 

is proved. Thus F f(I)=F(I) is established. 

4. It is easy to see that this isomorphism between L and L(53) is an opera­

tion- isomorphism. 

Let f~F 1(1), )J~F-v(I), and let us see F uCI)=ÀF ,(!). 

F ,(I)=inf la\ fa* E Il , 
F H(I)=inf ia\O!)a* E I ( and 

0/)aÀ*=sup iulu EL., i,au<À/nÀae}=sup {uluELo, au~lnae}=f,* 

show the equivalence between (À/ )À a* E 1 and /,.* E I for a11 a ; bence F H(I) 

= ).F f(I ). Thus the proof of this theorem is complete. 
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