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1. Kaplansky characterized some sublattice of the lattice K of all continuous
functicns cn topological space by the axiom of “‘translation lattice”, lattice in
which translations were defined. It seems that his purpose is to characterize K
itself by some axiom of latticee. However the auther showed that the lattice of
semi-continuous functions characterized the topology of the completely regular (not
necessarily compact) topological space, so the characterization of such a lattice is
important in the effort to treat non-compact topological spaces with methods of
lattice theory.

In this paper we shall characterize the lattice of all lower semi-continuous,

non-negative and bounded functions on T;-space.
We concern ourselves with the lattice L with the operation of all non-negative

numbers which satisfies the following axioms.
Axioms. 1) L is a complete distributive lattice with the least element 0.
2) a=f implies af =pf. f=g implies uf =ug. oBf)=(up)f.
3) 1-f=/
4) Lr;fo af=0 for every f.
5) (sup fu)~ S =sup (fur /).
(S) (Separation axiom) If g==1, then for all Ar. elements ¢, there
exist u, B and some max element m such that « >3, f~Tm up>=fe,
g~ TmEBe (I=70) for some 7.
(E) There exists Ar. element ¢ such that
inf (/. Be)=B¢ "~ inf /s Jor any fu B,

igf(fuﬁa¢)=fuigf8a¢ for any f, Ba.

(We denote ome of such Ar. elements by e.)

Definitions. In the axioms above, we mean by an Ar. element an element
¢ such that for every element fof L «¢=f for some «, and we mean by a max
element a non-Ar. element m such that there exists some Ar. element ¢,—>m such
that if m<f<¢m, then fis Ar. We call this ¢, an upper element of m.
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Remark. Small Latin letters f, g,... and Greak letters ¢, ¢ are used for
elements of L. Greek letters @, 8, ... except ¢ and ¢ are used fer oprators, i.e.
pesitive numbers.

Lemma 1. Ifmis amax element, then m" f=>ae and «>f implies m" Bez f.

Proof. From now forth we denote by m a max element and by ¢» cne of
upper elements cf »z.

1. We can reduce cur problem to case of ¢,,->«e. Feor, if this lemma is estab-
lished in case of ¢,=>ue, and for a general max element m, m"“ f =ae. o >f and
m™~ Be==f hold, then also for a number 7 such that Tom—uxe, 721 we get Tm" f2ue,
im“Be=>f However, since 'm is obvicusly a max element having 7¢,, as an
upper element, this is a centradiction.

2. Firstly we prove that maae (gm=ue, «>>0) is a max element having ae
as an upper element.

For let ma~ae< f<ve<¢m, then if m=sf"m, from ¢gm=ne we get mue=f,
which contradicts m ~uze<_f. Hence it must be m<_f“m=<g¢n ; hence f“m is Ar,
i.e. there exists 8>>0 such that f“m=>Be. Therefore f=(f~ae)~(m~ue)=
(fYm)~ce=PBe~ue, i.e. fis Ar.

3. Next we show that for a max element m, ¢m=ce and o= imply
% (m ~ue)=m~ fe.

Since Z(mnae)gmmﬁe is obvious, we assume that % (m~une)<m~Pe.
Then, since 2~ uze<>(m ~Be)<ue, 2 (m~Be) is Ar. from ¢m=ue and 2, i.e.
15» (m~Be)>>7Te for some 7 >0. Hence mg(—; ¢, which contradicts the fact that m
is non-Ar.

4. We remark that a(f“ g)=af"ag holds generally. For = is obvicus, and
< can be. taken from fug=}7 (af)U% (ag)g% (afCag).

Next we show that #n<le and <1 imply n“7e=Fe.

Fer assume that n-7e=e. If we assume %~ 7*e=e for a positive integer &,
then 7n~7**le=Te; bence from n~Te=In we get Te=(nTe)V T +le=(n"7**1e)
~Te, i.e. n~T*"1e>Te. Hence nu7"“1e=nu(n"“’7"°+1e)gnu7’e=e; hence n-i*+1le
=e¢. Therefore we get n'-7*e=e for any positive integer 2. Hence from Axicm
®) e=i’£1f (n7*e)=n"infr*e=n"“~0=n, which contradicts n<e.

5. Now we prove Lemma 1. Assume that this proposition is false, i.e.
Om=ue, m"“ f=ae, a>B, m“pe=f, then m“Be=m" f=m“ue; hence from 3
ae=(mUBe)nae=(mnae)Uﬁe=% (m~Pe)~Be. Hence %%% (mnﬁe)uﬂe}=»(17 ae,
i. e. 7 (the)U; e=e. Since F(mﬁﬁe)<e and « >f, this formula contradicts
4. Thus this lemma is established.

- Remark. Frem Axicm (S) we see easily that if fXg, there exist m and «
such that f~Bm >ue, g BmEne (37>B,) for some Bo. For fXg implies f~g<f,
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hence there exist 7 and « such that (f~g)“YBmzwe. f“pm=ue (8=B0). Since
g Bm=ne implies (f~g)YBm=(f""m) (g Bm)>>ue, it must be g"“pmzEaue for
these m, « and B.

Lemma 2. If ¢,=>f, Te; fYmzre for a max element m, then m“-7e=f.

Proof. 1. Firstly we show that fYmZEg and ¢n=>f, g imply f-umEg for
any a=1.

We can see easily that am - ¢n=m, for if unt ~¢n >m, then from @m=uMm~¢m
>m, om~¢n must be Ar. But this is impessible; hence m=um ~¢mn. From this
fact fYum=>=g and «==1 are impossible. For then g<(f“Yum)~¢mn=Cf ~¢m)
Yam ~ em)fYm, which is a contradicticn.

2. We see easily that am“™7e=f and ¢n=f imply m“7e=f For from the
preof of 1 f<(um™7e) ~pm=Cumt ~om) (Ve om)<m“Te.

3. Now we prove Lemma 2. Frcem 1 and 2 we may assume that ¢m=Be-=f
for some B. If m“Tezxf, then from the remark above we can chocse some max
element # and « such that #“ f =ue, nY (m~7e)FEue and ¢pn=>Be=>f.

(a) In case that #“m is non-Ar.

Take a number A>>1 such that A¢m==¢n. Then, if imzzn, im<n“ im=2A¢m;
hence #“~2m must be Ar, which is impossible. Therefcre it must be im=n.
Hence ne<n“ f<Jm"“ f Since n-(m"“7e)*ue; it must be ae>Te; hence im"“ f
>Te. Therefore from 1 we get f“m=>Ve, which is a contradiction.

(b) In case that nYm is Ar.

There exists «p such that #~m >uge, 8221y >0. For this uo uge=0uoe ~(n-m)=
(1 ~108) (M~ 2ge) =2 (n,-\Be)U%"(mnBe)__{@nU@m holds from 3 of the proof
of Lemma 1, ¢»=>Be and ¢n,>Be. Hence nYm=>Be=>f; hence n-m"7e=f""n=uve,
which is a contradiction. Thus the proof of Lemma 2 is complete.

Lemma 3. f/=inf {m|m: max; ¢mn=Be, f; m“Be=f}~Be<f.

Proof. Assume that f’ZXf, then there exist a max element z and 7 such
that fo' Yn>=re, f“nre, pn=>f, Te, e from the remark. Since fe™~n=((infm)
~Be)n=re we get '<B from Lemma 1. Hence from Lemma 2 n“pe=n“ie=>f
helds. Since ¢,=>fe, n“Be>>f, it must be z=inf m ; hence 7e</fy’' “n=_(inf m)
~Be)~n=n, which contradicts the fact that # is non-Ar. Thus it must be f'</f.

Lemma 4. Ifm"Y f>ue, ©>B, om=>f, then m" fi’ >Be and ?i,(fa’ ~Te)<f hold
for every v, where fy’ is the one in Lemma 3.

Proof. %(fs’m?’e)g_.—? ((inf m)m‘/e)=%inf (m~Te)=inf % (m~Te)=inf (m
ABe)=Beinf m<Pe f from 3 of the proof of Lemma 1 and Lemma 3.

Next we show that ¢m~inf mEm. For if we assume that ¢m~inf m<m, then
from Axiom (E) m"“~pe=(gm~inf m)“ Be=inf (m"“ Be) ~(¢mn"~Be)=f, which con-
tradicts m"™ f=uae, «>f from Lemma 1. Hence ¢m~infm=Em; hence m<m
Y(@m~inf m)<em. Therefore m™(¢m~infm) is Ar, i.e. there exists a number
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7o such that m“inf m=>7,e, where we may take ¥y so that 7p,<B. Hence

_ . _(B ( 8. )
Be<L o (m"inf m),-\ﬁe——(ﬁ mﬁﬁe) g Be")’o inf m
=B (mree)Zint £ (maTee)=(m8e)inf (1 Be)=Ben(m" inf m)=m*
0 0
from 3 of the proof of Lemma 1. Thus this lemma is proved.

Definitions. 1) ZDL,=|7|/<e, f=1 (fnue) for al wz1}.

2) When ¢n—=e, we denote by m, the max element me.
Frem 3 of the proof of Lemma 1, m, € L. is cbvious.
3) We mean by a unit ideal a subset I of L such that

I=guluELc, u:<_=m,s =I(m).
4) We denote by € the set of all unit idee;ls of L.
5) 23F<u>={11ue1}<uezzc>.

6) fr=sup {ulué L., augfﬁue% (a=0)

% % (sup u)nﬁe$=%sup

We can ecasily see that f,*€¢L,. For -é—(fa*ﬁﬁe)=
(amﬁe)=%sup Bu=f* for BX1 from Axiom (5).

Next if f>>u, u€ L, and Bu<f~Be, then aug%(fﬁﬁe)_gfnae, i.e. we get
F(f*)2F(f,5) for B=a.

Theorem. In order that a lattice L with the operation of all non-negative
numbers is operation-isomorphic with the lattice of all lower semi-continuous, non-
negative and bounded functions on some T1-space, it is necessary and su fficient
that L satisfies Axioms 1)-5), (S) and (E).

Proof. Since it is easy to see the validity of the necessity, we shall show
that an operation-lattice L satisfying 1)-5), (S) and (E) is operaticn-iscmorphic
with the lattice of all lower semi-continuous, non-negative and bounded functions
on some T;-space.

1. We introduce a topology into € by the closed sets

F(u)= %IIuéI} (ue L)

F(~Yu,)=IF(u,) is obvious. We show that F(uy ~uz)=F(u1)“ F(u3). Since
= is obvious, we prove . Assume that u~u2€I, 1 ¢ I, us¢I and I=I(m),
then u3Em, ; hence ez>u1“m, >m,. Therefore L. u;“m,=>Be for some 0<F<1 ;
hence ul“Jme:L (1Y me)~Be)=e. We get us“m,=e on the same ground. Hence
me~ (uy ~uz)=e, which contradicts u; AUm,. It is easy to see that F(m,)
={I(m)}. Hence L is a Ti-space by this topology.

We denote by L(2) the lattice of all lower semi-continuous, non-negative and
bounded functions on €. We define a mapping from L intoc Z(2) in the following
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manner
L3 f>F € KO, F(D=int {u|T € F7{ .

Since {F(I)<a}= c‘I<T Fgs is a closed set in &, F(I) is a lower semi-continuous
8

function on . (We denote by F, F(f.*)).

Next we see that #€ L., 0<1 and u<de imply #=0. For, then a——:%(um&e)
=% u, i.e. u=0u; hence u=0"u for any positive integer 2. Therefore u=inf ¢*u
=0.

From this fact we see that f<7e<ue implies F,=¥. For if au=f~ue, then
aulie, i.e. ugge; hence #=0. Therefore it must be f*=0, i.e. F,=8. This
fact shows that f<7e implies F(I)<7. Therefore F(I)¢€ L().

2. Firstly we show that if f>F;, g—>G, by this mapping, and g<f, then
G,==F;.

When g<f, there exist « >0 and a max element m such that g“mzEue, f~m
=oe, om=J, e, ae.

a) Let us prove that FI(m))=a.

For any positive number 8<«, from Lemma 4 there exists # such that «“m
=Pe, %(u,-\i‘e)gf for all <R, where

u=f3’=inf {mlm: max, ¢m=>Pe, f; muﬁezfsnﬁe.
Let ¥<B, then from 2 and 3 of the proof of Lemma 1,
{i (u,-\i‘e)=§ (inf (m~pe) ~Te)=inf ;ﬁ ((m~Be)~Te)=inf (m~Be)=u.
Since 78<B holds for <1, we get % (u~7Be)=u from the above mentioned fact.

7
Hence %(% u,-\Te):%— U, i.e. > u€lL,.

Since #<f from Lemma 3, Bwe get B-%ug,fmﬁe.

Next, assume that -lugme=mne, then Be<u“~m<pBm,“m, which is impos-
sible. Hence it must be %uﬁme. Therefore fe*Em, for all B<la. Thus
F(I(m))=a is proved.

b) Next we prove that for some 3<u, Go(I(m))<f holds.

If g~ue=au, u€ L., then g“m=au"m. Since au~m=ue implies g m>>ue,
and this is a contradiction, auz“~mzae holds.

If u~me,=e, then ae=au™ame=auo(mne)=au>(Mm~awe)<oau“m from 3 of
the proof of Lemma 1; hence it must be u“m.==e. Therefore from 1 we get
u<m,; hence g, *<ms,.

Now we prove S‘?ﬁ Be=ue generally. If sru<p1 Te=e is established, then %?EE Be

8 B
=sup “—e=e, i. e. sup fe=ae, SO wWe may prove sup /e=e.
B<E o ’ s b ’ yp 7%

Assume that $1<1§) Te<e, then from Axiom (S) there exist m, «>f8 such that
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e~ mzue>Be, musgp vezzBe. Therefore if «>1, it must be e“mzze from Lemma
<1

1, which is impossible ; hence <1. But this contradicts muarsgg TezxzBe. Therefore
?3113 Te=e.

Next we show the existence of <« such that m.=>gs™.

For if we assume that mEgs*=sup {u|u€ L., Bu<g~Re} for all f<u, then
from 1 we get e<m,"“ gs*. Hence Be<pm,~Bgs*<pm.~ (Pe~g)Zam,~ g. There-
fere e=sup feLam,~ g<(am~¢m)- g=m" g from the proof of 1 of Lemma 2,

which is a contradiction. Therefore m.=>gs* for some B<u, i.e. Go(I(m))<P<a
holds. Hence Go(I(m))==F (I(m)) is proved.

Now it is easy to see that the mapping f—>F is one-to-one.

Let f>F;, g>G, and f==g, then if fZg, there exist m, « such that m"“~f
Zae, m™ g£oe, ¢m=>F, ae,e. Hence from the above mentioned fact F (I )EGq(I).

Since it is obvious that f <g implies F(I)<G,(I), this mapping f«F(I)
is one-to-one.

3. We prove that for every element F(I)<P of L(R) there exists some ele-
ment of L corresponding to F(I).

Let {I'NF(I)Zal=F(u)={Ilu. €I} (us€L.), then we can show that
f =as;1;) au, corresponds to F(I). Let us assume that f corresponds to Fy(I), and
prov_e FI)=F(I).

a) Firstly we prove that {I |us€I}2{I|u=9 €I} implies uaZita.

If Uy tsg€Le and uau,, there exists m such that m,“u.=e, ug<m, For
then there exist m, 6 >0 such that m“ u.=0e, m"“ u.,2Ede, gm=e. Since 0>1 con-
tradicts m““e>=>de by Lemma 1, it must be §<1; hence m"“ux,ze. If u.,==m,
then from 1 we get u.,“m,=e, which contradicts m“ uy,zze. Hence it must be
Uxy<m,. Nextfrom m"“ u,=>06e¢ and from 1 we get m.“ u,—e. Therefore u,, € I(m),
e I(m), i.e. {ua €It {usg€ It.

b) Now let @y be a fixed number, then for any number 8 >wo, u €L, and

Busf mﬁe—‘—satépr ditg~Pe Imply uZuy,,
For uiu; implies ua,<mte, u~m,=e for some m from a). Since we can
choose this 7 so that ¢, =>Be, ¢, we get
m™sup aug=m" fu=pm," fu={e.
In the other hand, from a) we get m.=u, for any «=>ao. Hence

SUD tll oy =SUP ity = SUP Gt oA~ e,
a=y  y=a=2x0  a<lap

where 1 is a number such that 22>V, le=¢,. Hence m,"“ ape =Ime" sup wuy=Pe
(for some >>up) from the above mentioned fact. Hence from Lemma 1 we get
img~ ugeage, but this is impossible., Therefore f>ug, # € L, and Bu<sup wus~Be

imply u<u.,,
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This proposition shows that F(I)<u or us, €I implies fy*<ua, for any 2> o,
i.e. fg¥e€I. Hence Fr(I)<ay. Thus Fy(I)XF(I) is proved.

¢) Next we prove F(I)ZF(I).

Let F(I)Zup<i and I=I(m), then fp*€I(m) for all f~>ao. For an arbi-
trary numher 8 such thati=p>ug, Bus<supaus~PBe holds; hence from the above
mentioned remark us<m,. Hence F(I)<B. Therefore F(I)<uy,i.e. F(I)XFI)
is proved. Thus F(I)=F(I) is established.

4. 1t is easy to see that this isocmorphism between L and L(8) is an opera-
tion-isomorphism.

Let foF(I), Af>Fir(I), and let us see F,(I)=iF(I).

FAI)=inf lal 1€ 1,
Fy(D=inf ul(1f)*€ 1 | and
(Af D =sup 3u | € Loy hauAfr lae} =sup {u |u € Le, au_é_f,-\ae} = f¥

show the equivalence between (Af ) .*€1 and f,¥€I for all «; hence F,,(I)
=JF;(I). Thus the proof of this theorem is complete.
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