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0. Orderd groups, or o-groups, have been studied by G. Birkhoff, A. H. Clifford,
H. Cartan, T. Nakayama, C. J. Everett and S. Ulam, J. von Neuman and others,
while lattice ordered groups, or [-groups, also discussed by many mathematicians,
G. Birkhoff and others.?

The present work is to establish the structure or order-buds (cf. below) in
groups. This notion is closely conjugated with that of algebraic systems 2’ ; in other
words, an order-bud is nothing but the modification of an algebraic order in groups.

1. We shall begin with some definitions. Let G be a group, e being its group
identity, and P a subset of G with the following properties ;

i) e€P,

ii) PPCP.

We call such P an order-bud in G; in facts, we can define an order in G, x
<y (P,), x, y€G, when x~ 'y € P, and another order, x<y(P,»), when yx~! € P.

The former, <(P.0), is called a, left order in G, while the latter, <(P,r), a
right order.

(1. 1) If x<y(P,) or x<y(P,r), then for all 1 €G, tx<ty(P,l) or xi<yt(Pyr)
respectively.

1t comes from the equalities (#x)~! - ty =x"4"Uy = x"1y and yt . (xt) 1=
yit~lx~l=yx" L

(1. 2) The set of all £ such that x<¢(P,l) or x<t(P,r) coincides with x- P or

P -x respectively.

We denote that x-P=P., P-x=P;, then we have

(1. 3) Pl=P.=P.

(1. 4) y € P! implies P{CP% and y€ P, implies P,C P .

(1. 5) a-P{=Pf, Pz-a=Pg,

If an order-bud P in G fulfils the further condition ; for every { € G,

iii) tPt"CP,
then we call P normal.

(1. 6) Plt=P,=a-P=P-a for normal P.

We put Pi(=Pg)=P, for normal P.

Let {P*}; €A be a family of order-buds in G, then the set-intersection of them
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is also an order-bud in G, and if all P*; A€ 4, are normal, then N, 5 P* is also
normal. We next define U; . 5 P* for (normal) order-buds P*; A € A, as the inter-
section NMa,pP*,u for all (normal) P*u such that P*C P

(1. 7 PUP’=[P,P’], where [X,Y] means the subsemi-group generated from
the set-join X +Y which is closed under multiplication.

The above assertions, taking together the E. H. Moore’s theorem, suggests
the following

Theorem 1. T totality of (normal) order-buds in G, denoting by P (P¥),
forms a complete lattice with respect to the above defined operations \J and N ;
PYCP.

We remark that G is the greatest element of P and P¥, while ¢ the smallest
of them.

2. We now denote the set of all elements x~! such as belong to P by P¥,
that is P*=P -1, and put a-P*———Pf,* P*-a=P,§* for P€P.

(2. 1) If PeP(or P¥), P¥cP (or resp. P¥).

. 2) P,‘,* (or PQ*) concides with the set of all ¢ such that #<a(P,l) (or
resp. t=a(P,»)).

2.3) P¥F=P,.

(2. 4) P,C P, implies P%C Pg*

(2.5) P.CP, impiles P;C P%.

Theorem 2. (PNP’y*=P*NP’* and (PUP’yr=P*JP"*,

Proof. The former is obvious. The latter is obtained from the following
relations: As (PUP’)* DP* and P’¥, we have

PU P! =P¥rry PHFC(PHFUP/FYE
C(PUP Y*=PUP’.

We say that P* is the reciprocal order-bud of P and P is self-reciprocal, if
P=P%, The totality of self-reciprocal elements of P or P¥ is denoted by K or K¥
respectively.

(2. 6) GeK, K¥ and ecK, K?,

(2. 7) For every P c¢P(P¥), PNP* and PUP*cK(K¥),

(2. 8) If PcK(K?), P is a (normal) subgroup of G belongs to K (K¥),

Theorem 3. K is a complete lattice which is equal ito ihe lattice of all sub-
groups of G, and K¥ is a complete modular sublattice which is equal to the
lattice of all normal subgroups of G,

3. We call the order which is generated from an order-bud P the order of
P and denote the group G in which the order of P is defined by G (P).

We next introduce an order-bud P% in a subgroup S of G(P) by putting PS5
=P ~8, and define an order-bud Py in the factor-group G/H, where H is a normal
subgroup of G, by taking the set of all +H, {¢ P, in G/H. We call PSor Py the
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derived order-bud of P in S or in G/H respectively, and abbreviate the order of

the derived order-bud to the derived order.
If P is normal, then P® and Py are both normal.
We say that, if PUP*=G, =e¢, PNP*=G, or =e, the order of P connected,

discrete, trivial, or proper respectively.

(8. 1) The derived order of P in G/PUP*, G/PNP* PUP¥, or PNP¥is
descrete, proper, connected, or trivial respectively.

(3. 2) 1If S€K, the derived order S5 is trivial, and if H €KY, the derived
order Hy is discrete.

Theorem 4. That normal P is connected in G(P) implies that G(P) is a
directed set with respect to the order of P, and vice versa.®

Proof. We denote the set of all x such that x€ P¥,t€ P, by R, then we
have

i) e€R,

ii) R-RCR,

iii) aRa.*CR for every a€G.

Hence R is a normal order-bud in G. Since it is clear that PC R and P*CR,
we have G=P\JP*CR, that is R=G. Consequently, for every pair @, b in G, we
can find two elements { and s such that e, a<{(P), ¢, b<s(P) and so we have
a<is(P) and b<ts(P).

Coversely, if G is directed set for the order of P, for every a€ G, there exists
an element ¢ of P such that ¢<¢, and so we have af~1€ P* and {€ P, that is

a=at~t € P\UP¥,

and consequently, @ being arbitrary, it concludes that GC PUP* and so PUP*=G.

Each lefft (right) coset CL(P) (CXP)) in G/PUP¥*, which contains #, is
said to be the left (right) component of x by P, while each left (right) coset é;( P)
(Cx(P)) in G/PNP¥*, which contains x, the left (right) trivialkernel of x by P.

(3.3) acCt(P) implies C(P)=Ci(P), and so for C5(P).

(3. 4) a€CLP) implies CXP)=CL(P), and so for Ci(P).

(3. 5) Putting CX(P)=CI(P)=C(P), C(P) belongs to K
CYP)=xC(P), and C{(P)=C(P)x. 1f PcP¥ C(P)cK~,

(3. 6) Putting CAP=C{(P)=C(P), C(P) belongs to K;
CAP)=x-C(P), and CAP)=C(P)x. 1f PcP¥ C(P)cK”.

(3. 7) PCQ impiles CXP)C CXQ), and so for the others, C(P), CXP),
and Cz(P).

(3. 8) (CUP)*=CYP), (CAP)y*=CLP).

(3. 9) (CUPII¥*=CUP), (CP)=CiP).

We have generally that for every x € G,
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(3.10) x€ CAP)C D C CUP)CE,
and similary .

@1 secipe Brlccupice,

As CYP)=G(=e) for some x implies C(P)=G(=e¢) and that is same for
Ci(P), the order of P being connected or discrete is characterized by the equality
CYP)=G or =x resp., otherwise C5(P)=G or =x resp. for some x.

Analogously, the order of P being trivial or proper is characterized by the
equality C*(P)=G or = e resp., otherwise C;(P)=G or = ¢ resp. for some x.

G(P) is decomposed into the direct sum of left or right components, or into
that of left or right trivial-kernels ; for example,

3. 12) G(P)= ZEBC WP, G(P)= 2690 &(P),
and each (‘omponent C W(P) is also decomposed in some direct sum of trivial-

kernels ;
CUP)=2DCH(P).

Here every component is a directed set with respect to the order of P, while every
trivial-kernel is a trivial set, 7.e. for its arbitrary two elements x and v, it is

always that x<y (P, [).
(3. 13) If P is self-reciprocal, then CX(P)= CXP) and Ci(P) =Cz(P).
In general, we hold some duality betw®en components and trivial-kernels as

follows ;
Theorem 5. C,(C(P))=Cx(P), Co(C(P)=Cu(P), for P €PN
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