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O. Orderd groups, or o-groups, have been studied by G. Birkhoff, A. H. Clifford, 

H. Cartan, T. Nakayama, C.}. Everett and S. Ulam, J. von Neuman and others, 

while lattice ordered groups, or [-groups, also discussed by many mathematicians, 

G. Birkhoff and others.D 

The present work is to establish the structure or order-buds (cf. below) in 

groups. This notion is closely conjugated with that of algebraic systems 2l; in other 

words, an order-bud is nothing but the modification of an algfbraic order in groups. 

1. We shall begin with sorne definitions. Let G be a group, e being its group 

identity, and P a subset of G with the following properties ; 

i) eEP, 

ii) PPCP. 

We call such P an order-bud in G; in facts, we can define an order in G, x 

;;;=::y (P,l), x, yEG, when x- 1yEP, and another order, x<y(P,r),when yx- 1EP. 

The former, <(P.l), is called a, left arder in G, while the latter, <(P,r), a 

right arder. 

(1. 1) If x~y(P,l) or x~s(P,r), then for all tE G, tx<ty(P,l) or xt<yt(P,r) 

respective ly. 

It cornes from the equalities (tx)- 1 · ty = x- 1t- 1ty = x- 1y and yt · (xt)- 1= 

ytt-1x-1=yx-1. 

(1. 2) The set of al! t such that x~t(P,l) or x:;::;t(P,r) coïncides with x·P or 

P·x respectively. 

We denote that x·P=P},, P·x=P;, then we have 

(1. 3) P!=P;=P. 
(1. 4) y E P~ implies PtCP~ and yEP; implies P~cP;. 

(1. 5) a·P'î=P~,, P;·a=P;a , 
If an order-bud P in G fulfils the further condition; for every tE G, 

iii) tPt- 1 CP, 

then we call P normal. 

(1. 6) P~=P;=a·P=P·a for normal P. 
We put P~(=P;)=Pa for normal P. 

Let {P"}À ~A be a family of orde.r-buds in G, then the set-intersection of them 

nÀ E AP" 
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is also an order-bud in G, and if ali PÀ; À E A, are normal, then (ÎÀ El\ PÀ is also 

normal. We next define U À E A PÀ for (normal) order-buds PÀ; À E A, as the inter

section n À,fi-P À, fi- for ali (normal) P\fl- such that PÀCP\fl-. 
(1. 7) PUP' =[P,P'], wh.ere [X,Y] means the subsemi-group generated from 

the set-join X+ Y which is closed under multiplication. 

The above assertions, taking together the E. H. Mooœ's theorem, suggests 

the following 

Theorem 1. The totality of (normal) order-buds in G, denoting by P (PN), 

forms a comp!ete lattice with respect to the above de:/ined operations U and n ; 
PNCP. 

We remark that G is the greatest element of P and PN, while e the smallest 

of them. 

2· We now denote the set of ali elements x- 1 such as belong to P by P*, 

* * that is P·'f.=P- 1 , and put a·P*=P~ P*·a=P~ for PEP. 

(2. 1) If P E P(or PN), P* E P 'cor resp. PN). 

* * (2. 2) P~ (or P~ ) concides with the set of all t such that t~a(P,l) (or 

resp. t<a(P,r)). 

(2. 3) P;I*=Pa. 

(2. 4) Pa CP~ implies P?i C P~*. 
(2. 5) PaCPb impiles P~CP'i;. 

Theorem 2. (PnP')*=P*nP'* and (PUP')*=P*UP'*. 

P roof The former is obvious. The latter is obtained from the following 

relations: As (PUP' )* ~P* and P'*, we have 

PUP' =P**UP'**C(P-l<UP'*)* 

C(PUP')-F-'f.=PUP'. 

We say that P* is the reciprocal order-bud of P and P is self-reciprocal, if 

P=P*, The totality of self-reciprocal elements of P or PN is denoted by K or KN 

respectively. 

(2. 6) G EK, KN ande EK, KN. 

(2. 7) For every P E P(PN), PnP* and PUP* E K(KN). 

(2. 8) If P E K(KN), P is a (normal) subgroup of G belongs to K (KN). 

Theorem 3. K is a complete lattice which is equal to the lattice of aU sub-

groups of G, and KN is a comp!ete modular sublattice which is equal to the 

lattice of a!l normal subgroups of G3l. 

3. We call the order which is generated from an order-bud P the order of 

P and denote the group G in which the order of P is defined by G (P). 

We next introduce an order-bud ps in a subgroup S of G(P) by putting ps 

=P nS, and define an order-bud PR in the factor-group GjH, where His a normal 

subgroup of G, by taking the set of all t·H, tEP, in GjH. We call ps or PR the 
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derived order-bud of P in S or in G}H respectively, and abbreviate the arder of 

the derived order-bud to the derived arder. 

If P is normal, then P 8 and P n are bath normal. 

We say that, if PUP*=G, =e, PnP*=G, or =e, the arder of P connected, 

discrete, trivial, or proper respectively. 

(3. 1) The derived arder of P in G}PUP*, GJPnP*, PUP*, or PnP:J<. is 

descrete, proper, connected, or trivial respectively. 

(3. 2) If SE K, the derived arder 88 is trivial, and if HE KN, the derived 

arder Ha is discrete. 

Theorem 4. That normal P is connected in G(P) implies that G(P) is a 

directed set with respect to the arder of P, and vice versaY 

Proof. We denote the set of ali x such that xE Pt ,tE P, by R, then we 

have 

i) e ER, 

ii) R·R_CR, 
iii) aRa- 1CR for every a E G. 

Hence R is a normal order-bud in G. Since it is clear that PCR and P*CR, 
we have G=PUP*CR, that is R=G. Consequently, for every pair a, b in G, we 

can find two elements t and s such that e, a<t(P), e, b<s(P) and so we have 
aS_ts(P) and b<ts(P). 

Coverse ly, if G is directed set for the arder of P, for every a E G, the re exists 

an element t of P such that a<t, and so we have at-1 E P* and tEP, that is 

a=at- 1t E PUP*, 

and consequently, a being arbitrary, it concludes that GCPUP* and so PUP*=G. 

Each lefft (right) coset C~(P) (ë~(P)) in G}PUP*, which contains x, is 

said to be the left (right) component of x by P, while each left (right) coset ë~(P) 
(ç_~(P)) in G}PnP*, which contains x, the left (right) trivialkemel of x by P. 

(3. 3) a E ë~ (P) implies ë~(P)=C!(P), and so for ë;(P). 

(3. 4) a E C~(P) implies ~~(P) = ~~(P), and so for ~~(P). 
(3. 5) Putting ë~(P)=C;(P)=C(P), C(P) belongs to K; 

~~(P)=x·C(P), and C~(P)=C(P)-x. If PEPN, C(P)EKN. 
(3. 6) Putting ÇKP=~~(P)=Ç(P), Ç(P) belongs to K; 

Ç},(P)=x·C(P), and ~~(P)=C(P)-x. If P E PN, Ç(P) E KN. 
(3. 7) PCQ impiles ë!CP)C C!(Q), and so for the others, ë~(P), Ç;(P), 

and Ç~(P). 

(3. 8) Cë!(P))* =C!(P), (ë~(P))*=C~(P). 
(3. 9) C~!(P))*=~!(P), (~~(P))*=~~(P). 

We have generally that for every xE G, 
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(3. 10) xE _ç~(P)C î~i*1 c C!(P)CG, 
and similary 

(3. 11) x E_ç;(P)Ct~f*}cë;;(P)CG. 
As c;,(P)=G( =e) for sorne x implies C(P)=G( =e) and that is same for 

c;;(P), the order of P being connected or discrete is characterized by the equality 

C!,(P)=G or =x resp., otherwise ë;;(P)=G or =x resp. for sorne x. 
Analogously, the order of P being trivial or proper is characterized by the 

equality Ç"'(P )=G or = e resp., otherwise c;;(P )=G or = e resp. for sorne x. 

G(P) is decomposed into the direct sum of left or right components, or into 

that of left or right trivial-kernels; for example, 

(3. 12) G(P)=I:EBCi(P), G(P)=I;EBC~(P), 
). E ~ _ f'E ~~ -

and each component C~(P) is also decomposed in sorne direct sum of trivial-

kernels; 

Here every compone nt is a directed set with respect to the order of P., while every 

trivial-kernel is a trivial set, i.e. for its arbitrary two elements x and y, it is 

always that x<y (P, l). 

(3. 13) If p is self-reciprocal, then C!(P)~_ç;(P) and c;;(P) =_ç;;(P). 

In general, we hold sorne duality between components and trivial-kernels as 

follows; 

Theorem 5. C,(G_(P))=C:_w(P), C,(C(P)=C-;,(P), for P E PN 
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