Journal of the Institute of Polytechnics, Osaka City University, Vol. 1, No. 2, Series, A

On the Foundation of Orders in Groups

By Shin-ichi Matsushita

(Received May 20, 1951)

0. Orderd groups, or o-groups, have been studied by G. Birkhoff, A. H. Clifford, H. Cartan, T. Nakayama, C. J. Everett and S. Ulam, J. von Neuman and others, while lattice ordered groups, or *l*-groups, also discussed by many mathematicians, G. Birkhoff and others.¹⁾

The present work is to establish the structure or order-buds (cf. below) in groups. This notion is closely conjugated with that of algebraic systems²⁾; in other words, an order-bud is nothing but the modification of an algebraic order in groups.

1. We shall begin with some definitions. Let G be a group, e being its group identity, and P a subset of G with the following properties;

i) $e \in P$,

ii) $PP \subset P$.

We call such *P* an order-bud in **G**; in facts, we can define an order in **G**, $x \leq y(P,l)$, $x, y \in G$, when $x^{-1}y \in P$, and another order, $x \leq y(P,r)$, when $yx^{-1} \in P$.

The former, $\leq (P.l)$, is called a, *left order* in G, while the latter, $\leq (P,r)$, a *right order*.

(1. 1) If $x \leq y(P,l)$ or $x \leq y(P,r)$, then for all $t \in G$, $tx \leq ty(P,l)$ or $xt \leq yt(P,r)$ respectively.

It comes from the equalities $(tx)^{-1} \cdot ty = x^{-1}t^{-1}ty = x^{-1}y$ and $yt \cdot (xt)^{-1} = ytt^{-1}x^{-1} = yx^{-1}$.

(1. 2) The set of all t such that $x \leq t(P,l)$ or $x \leq t(P,r)$ coincides with $x \cdot P$ or $P \cdot x$ respectively.

We denote that $x \cdot P = P_x^i$, $P \cdot x = P_x^r$, then we have

- (1.3) $P_{e}^{i} = P_{e}^{r} = P$.
- (1.4) $y \in P_x^i$ implies $P_y^i \subset P_x^i$ and $y \in P_x^r$ implies $P_y^r \subset P_x^r$.

(1.5) $a \cdot P_{l}^{x} = P_{ax}^{l}, P_{x}^{r} \cdot a = P_{xa}^{r},$

If an order-bud P in **G** fulfils the further condition; for every $t \in G$,

iii) $tPt^{-1}\subset P$,

then we call P normal.

(1. 6) $P_a^{\iota} = P_a^{r} = a \cdot P = P \cdot a$ for normal P.

We put $P_a^i(=P_a^r)=P_a$ for normal P.

Let $\{P^{\lambda}\}_{\lambda \in \Lambda}$ be a family of order-buds in **G**, then the set-intersection of them

 $\cap_{\lambda \in \Lambda} P^{\lambda}$

is also an order-bud in G, and if all P^{λ} ; $\lambda \in \Lambda$, are normal, then $\bigcap_{\lambda \in \Lambda} P^{\lambda}$ is also normal. We next define $\bigcup_{\lambda \in \Lambda} P^{\lambda}$ for (normal) order-buds P^{λ} ; $\lambda \in \Lambda$, as the intersection $\bigcap_{\lambda,\mu} P^{\lambda}$, μ for all (normal) P^{λ} , μ such that $P^{\lambda} \subset P^{\lambda}$, μ .

(1. 7) $P \cup P' = [P,P']$, where [X,Y] means the subsemi-group generated from the set-join X + Y which is closed under multiplication.

The above assertions, taking together the E. H. Moore's theorem, suggests the following

Theorem 1. The totality of (normal) order-buds in G, denoting by $\mathbf{P}(\mathbf{P}^N)$, forms a complete lattice with respect to the above defined operations \cup and \cap ; $\mathbf{P}^N \subset \mathbf{P}$.

We remark that **G** is the greatest element of **P** and \mathbf{P}^N , while *e* the smallest of them.

2. We now denote the set of all elements x^{-1} such as belong to P by P^* , that is $P^* = P^{-1}$, and put $a \cdot P^* = P_a^{l^*} P^* \cdot a = P_a^{r^*}$ for $P \in \mathbf{P}$.

(2. 1) If $P \in \mathbf{P}(\text{or } \mathbf{P}^N)$, $P^* \in \mathbf{P}'(\text{or resp. } \mathbf{P}^N)$.

(2. 2) $P_a^{t^*}$ (or $P_a^{r^*}$) concides with the set of all t such that $t \leq a(P,l)$ (or resp. $t \leq a(P,r)$).

(2.3) $P_a^{**}=P_a$.

(2. 4) $P_a \subset P'_a$ implies $P^*_a \subset P'^*_a$.

(2.5) $P_a \subset P_b$ implies $P_a^* \subset P_b^*$.

Theorem 2. $(P \cap P')^* = P^* \cap P'^*$ and $(P \cup P')^* = P^* \cup P'^*$.

Proof. The former is obvious. The latter is obtained from the following relations: As $(P \cup P')^* \supset P^*$ and P'^* , we have

$$P \cup P' = P^{**} \cup P'^{**} \subset (P^* \cup P'^*)^*$$
$$\subset (P \cup P')^{**} = P \cup P'.$$

We say that P^* is the reciprocal order-bud of P and P is self-reciprocal, if $P=P^*$, The totality of self-reciprocal elements of \mathbf{P} or \mathbf{P}^N is denoted by \mathbf{K} or \mathbf{K}^N respectively.

(2, 6) $G \in \mathbf{K}, \mathbf{K}^N$ and $e \in \mathbf{K}, \mathbf{K}^N$.

(2.7) For every $P \in \mathbf{P}(\mathbf{P}^N)$, $P \cap P^*$ and $P \cup P^* \in \mathbf{K}(\mathbf{K}^N)$.

(2.8) If $P \in \mathbf{K}(\mathbf{K}^N)$, P is a (normal) subgroup of **G** belongs to **K** (\mathbf{K}^N).

Theorem 3. K is a complete lattice which is equal to the lattice of all subgroups of G, and K^{N} is a complete modular sublattice which is equal to the lattice of all normal subgroups of G^{3} .

3. We call the order which is generated from an order-bud P the order of P and denote the group G in which the order of P is defined by G(P).

We next introduce an order-bud P^s in a subgroup **S** of $\mathbf{G}(P)$ by putting $P^s = P_{\cap}\mathbf{S}$, and define an order-bud P_H in the factor-group \mathbf{G}/\mathbf{H} , where **H** is a normal subgroup of **G**, by taking the set of all $t \cdot \mathbf{H}$, $t \in P$, in \mathbf{G}/\mathbf{H} . We call P^s or P_H the

derived order-bud of P in S or in G/H respectively, and abbreviate the order of the derived order-bud to the derived order.

If P is normal, then P^s and P_{μ} are both normal.

We say that, if $P \cup P^* = G$, =e, $P \cap P^* = G$, or =e, the order of P connected, discrete, trivial, or proper respectively.

(3.1) The derived order of P in $G/P \cup P^*$, $G/P \cap P^*$, $P \cup P^*$, or $P \cap P^*$ is descrete, proper, connected, or trivial respectively.

(3. 2) If $\mathbf{S} \in \mathbf{K}$, the derived order \mathbf{S}^{s} is trivial, and if $\mathbf{H} \in \mathbf{K}^{s}$, the derived order \mathbf{H}_{H} is discrete.

Theorem 4. That normal P is connected in G(P) implies that G(P) is a directed set with respect to the order of P, and vice versa.⁴⁾

Proof. We denote the set of all x such that $x \in P_t^*, t \in P$, by R, then we have

i) $e \in R$,

ii) $R \cdot R \subset R$,

iii) $aRa^{-1} \subset R$ for every $a \in \mathbf{G}$.

Hence *R* is a normal order-bud in **G**. Since it is clear that $P \subset R$ and $P^* \subset R$, we have $\mathbf{G} = P \cup P^* \subset R$, that is $R = \mathbf{G}$. Consequently, for every pair *a*, *b* in **G**, we can find two elements *t* and *s* such that *e*, $a \leq t(P)$, *e*, $b \leq s(P)$ and so we have $a \leq ts(P)$ and $b \leq ts(P)$.

Coversely, if **G** is directed set for the order of *P*, for every $a \in \mathbf{G}$, there exists an element *t* of *P* such that $a \leq t$, and so we have $at^{-1} \in P^*$ and $t \in P$, that is

 $a = at^{-1}t \in P \cup P^*,$

and consequently, a being arbitrary, it concludes that $G \subseteq P \cup P^*$ and so $P \cup P^* = G$.

Each lefft (right) coset $\overline{C}_x^l(P)$ ($\overline{C}_x^r(P)$) in $\mathbf{G}/P \cup P^*$, which contains x, is said to be the *left* (*right*) component of x by P, while each left (right) coset $\overline{C}_x^l(P)$ ($\underline{C}_x^r(P)$) in $\mathbf{G}/P \cap P^*$, which contains x, the left (right) trivial kernel of x by P.

(3. 3) $a \in \overline{C}_x^l(P)$ implies $\overline{C}_a^l(P) = \overline{C}_x^l(P)$, and so for $\overline{C}_x^r(P)$.

(3. 4) $a \in \overline{C}_x^l(P)$ implies $C_a^l(P) = C_x^l(P)$, and so for $C_x^r(P)$.

(3.5) Putting $\overline{C}_{e}^{l}(P) = \overline{C}_{e}^{r}(P) = \overline{C}(P)$, $\overline{C}(P)$ belongs to **K**;

 $C_x^{l}(P) = x \cdot \overline{C}(P)$, and $\overline{C}_x^{r}(P) = \overline{C}(P) \cdot x$. If $P \in \mathbf{P}^{N}$, $\overline{C}(P) \in \mathbf{K}^{N}$.

(3. 6) Putting $C_{e}^{l}(P = C_{e}^{r}(P) = C(P), C(P)$ belongs to **K**;

 $C_x^l(P) = x \cdot \overline{C}(P)$, and $C_x^r(P) = C(P) \cdot x$. If $P \in \mathbf{P}^N$, $C(P) \in \mathbf{K}^N$.

(3.7) $P \subset Q$ implies $\overline{C}_x^l(P) \subset \overline{C}_x^l(Q)$, and so for the others, $\overline{C}_x^r(P)$, $\overline{C}_x^l(P)$, and $C_x^r(P)$.

(3.8) $(\bar{C}_{x}^{l}(P))^{*} = \bar{C}_{x}^{l}(P), \ (\bar{C}_{x}^{r}(P))^{*} = \bar{C}_{x}^{r}(P).$

(3. 9) $(C_x^l(P))^* = C_x^l(P), (C_x^r(P))^* = C_x^r(P).$

We have generally that for every $x \in G$,

(3. 10) $x \in C_x^r(P) \subset {P_x^i \choose P_x^{i+1}} \subset \overline{C}_x^i(P) \subset G$, and similary

(3. 11) $x \in C_x^r(P) \subset {P_x^r \atop P_x^{r*}} \subset \overline{C}_x^r(P) \subset G.$

As $\bar{C}_x^l(P) = \mathbf{G}(=e)$ for some x implies $\bar{C}(P) = \mathbf{G}(=e)$ and that is same for $\bar{C}_x^r(P)$, the order of P being connected or discrete is characterized by the equality $\bar{C}_x^l(P) = \mathbf{G}$ or =x resp., otherwise $\bar{C}_x^r(P) = \mathbf{G}$ or =x resp. for some x.

Analogously, the order of P being trivial or proper is characterized by the equality $\underline{C}^{z}(P) = \mathbf{G}$ or = e resp., otherwise $C_{x}^{r}(P) = \mathbf{G}$ or = e resp. for some x.

G(P) is decomposed into the direct sum of left or right components, or into that of left or right trivial-kernels; for example,

(3. 12) $\mathbf{G}(P) = \sum_{\lambda \in \Delta} \bigoplus_{-1}^{-1} \overline{C}_{\lambda}^{\lambda}(P), \quad \mathbf{G}(P) = \sum_{\mu \in \Delta'} \bigoplus_{-1}^{-1} C_{\mu}^{\lambda}(P),$

and each component $\bar{C}^l_{\lambda}(P)$ is also decomposed in some direct sum of trivialkernels;

$$\widetilde{C}^{l}_{\lambda}(P) = \sum \bigoplus C^{\lambda l}_{\mu}(P).$$

Here every component is a directed set with respect to the order of P, while every trivial-kernel is a trivial set, *i.e.* for its arbitrary two elements x and y, it is always that $x \leq y$ (P, l).

(3. 13) If P is self-reciprocal, then $\tilde{C}_x^l(P) = C_x^l(P)$ and $\tilde{C}_x^r(P) = C_x^r(P)$.

In general, we hold some duality betw^een components and trivial-kernels as follows;

Theorem 5. $\overline{C}_x(C(P)) = C_x(P)$, $C_x(\overline{C}(P)) = \overline{C}_x(P)$, for $P \in \mathbf{P}^N$

References.

- Numerous literatures on o-groups and *l*-groups are noted in the Birkhoff's work: G. Birkhoff, Lattice Theory (1948)
- 2) Algebraic orders in generalized algebraic systems shall be discussed later.
- The lattice of subgroups or normal subgroups is discussed by Prof. K. Shoda, O. Ore, etc.
- 4) Sometimes o-groups are a priori defined as directed sets; e.g.
 C. Everett and S. Ulrm, On ordered groups, Trans. Amer. Math. Soc. 57(1945). But our Theorem 4 indicates the fundamental meaning of this postulation.
- 5) Order-buds are sometimes defined in the form as follows;

This example is *e.g.* found in Iwasawa's paper: K. Iwasawa, On linearly ordered groups, Jour. of the Math. Soc. Japan, Vol. 1, No. 1 (1943)

But it is not suitable for the construction of order-algebra.