Note on word-subgroups in free products of groups

By Mutuo Takahasi

(Received May 31, 1951)

In this note we shall apply the subgroup-theorem in free products of groups to a special class of subgroups, called word-subgroups, and study the free product decompositions of such subgroups. The commutator subgroup and related subgroups are especially studied. Elementary properties of word-subgroups are given and the subgroup-theorem is restated, without proof, in sentions 1 and 2. Results are in section 3.

§1. Word-subgroups.

The notion of word-subgroups was introduced by F. Levi ${ }^{1)}$ as follows.
Arbitrary group G is given. Let x_{1}, \ldots, x_{r} be r variables. By $\rho\left(x_{1}, \ldots, x_{r}\right)$ is denoted a word in x_{1}, \ldots, x_{r}, that is, a formal product such as

$$
x_{i_{1}}^{\varepsilon_{1}} x_{i_{2}}^{\varepsilon_{2}} \ldots x_{i_{s}}^{\varepsilon_{s}},
$$

where $x_{i_{v}}$ is some one of x_{1}, \ldots, x_{r} and $\varepsilon= \pm 1$. And let P be a set of such words. If we take, for x_{i}, an arbitrary element g_{i} of $G, i=1, \ldots, r$, then

$$
\rho\left(g_{1}, \ldots g_{r}\right)=g_{i_{1}}^{\varepsilon_{1}} g_{i_{2}}^{\varepsilon_{2}} \ldots g_{i_{s}}^{\varepsilon_{s}}
$$

is an element of G. All such elements $\rho\left(g_{1}, \ldots, g_{r}\right)$, for all $\rho \in P$ and for any $g_{i} \in G$, generate a subgroup in G, which is called a word-subgroup of G defined by P in G. We shall denote this subgroup by $P(G)$.

Now if we consider the free group F generated by countably infinite elements x_{1}, x_{2}, \ldots. any subset P of F defines in G a word-subgroup $P(G)$ of G. Obviously the subgroup U of F, which is generated by the subset P in F, defines the same word-subgroup in G as $P(G)$.

In the free group F, for arbitrary elements w_{1}, w_{2}, \ldots, the corespondence $x_{i} \rightarrow w_{i}, i=1,2, \ldots$, gives an endomorphism of F, and $\rho\left(x_{1}, \ldots, x_{r}\right)$ coresponds to $\rho\left(w_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, w_{r}\left(x_{1}, \ldots, x_{n}\right)\right)$ by this endomorphism. And coversely any endomorphism of F is determined, in this way, by the elements w_{1}, w_{2}, \ldots, which are the images of x_{1}, x_{2}, \ldots, respectively by this endomorphism.

Therefore the least fully invariant ${ }^{27}$ subgroup V containing U is generated by

1) F.Levi, Über die Untergruppen der freien Gruppen. Math. Zeitschr. Bd 37 (1933), s. 90-97.
2) A subgroup of a group is called fully invariant if it admits every endomorphism of the whole group. Such subgroups were first studied by F. Levi. Cf. 1).
the elements of P and those, which are obtained by these substitutions for x_{1}, x_{2}, \ldots.
The word-subgroup $V(G)$ is clearly identical with $P(G)$.
On the other hand, V itself is a word-subgroup of F defined by the set V in $F: V=V(F)$. Therefore we may consider, without loss of generality, that wordsubgroups in G are defined by word-subgroups of the free group F.

A word-subgroup $V(G)$ in an arbitrary group G is necessarily fully invariant. In a free group F, any fully invariant subgroup V is a word subgroup, since the set of all the elements of V can be considered as the defining set of words for V in F.

In arbitrary groups, as is well known, the commutator-groups, the terms of the derived series (iterated commutator-subgroups) and those of the lower central series, for examples, are some of important word-subgroups.

Word-subgroups in a free group and their factor groups were studied by B. H. Neumann. ${ }^{3)}$

§2. Subgroup theorem.

We now consider a group G which is decomposed into a free product of two its subgroups A and $B: G=A * B$.

Elements of A are denoted by $a, a_{1}, a^{\prime}, \ldots$, elements of B by $b, b_{1}, b^{\prime}, \ldots$, and elements which belong to either A or B by $c, c_{1}, c^{\prime}, \ldots$. If g is an element of G, g is represented in the form

$$
g=\prod_{i=1}^{\lambda} c_{i}=c_{1} c_{2} \ldots c_{\lambda}
$$

where the c_{i} are elements, not equal to 1 , alternately out of A and B. Then $\lambda=\lambda(g)$ is called the length of g. We define $\lambda(1)$ as 0 . Let g, g^{\prime} be two elements of $G ; g=c_{1} c_{2} \ldots c_{\lambda}, g^{\prime}=c_{1}{ }^{\prime} c_{2}{ }^{\prime} \ldots c^{\prime} \mu$. If c_{λ} and $c_{1}{ }^{\prime}$ belong neither to A nor to B at the same time, we call the product $g^{\prime} g^{\prime}$ to be irreducible, otherwise reducible.

On free product decompositions of subgroups in G, the author formulated and proved $^{4)}$ the subgroup-theorem in free product of groups, which is due first to A. Kurosch ${ }^{5}$) and to R. Bare and F. Levi, ${ }^{6)}$ as follows.

For a subgroup U of G, we consider the coset-decompositions of G

$$
\mathrm{G}=\sum_{i} U r_{i}=\sum_{j} U s_{j} A^{7)}=\sum_{k} U t_{k} B,
$$

3) B. H. Neumann, Identical relations in groups I. Math. Ann. 114 (1937) s. 506-525.
4) M. Takahasi, Bemerkungen iuber den Untergruppensatz in freien Produkte, Proc. Imp. Acad. Tokyo, 20 (1945) pp. 539-594.
5) A. Kurosch, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), s. 647.
6) R. Baer und F. Levi, Freie Prdukte und ihre Untergruppen, Compositio Math. 3 (1946) p. 391.
7) Double coset decompositition modulo (U, A). Usj A consists of all the elements of the form $u s j a, u \in U, a \in A$.
and take the set of representatives $\left\{r_{i}\right\},\left\{s_{j}\right\}$ and $\left\{t_{k}\right\}$ respectively. We put moreover,
and

$$
A=\sum_{\tau}\left(s_{j}^{-1} U s_{j} \cap A\right) a_{j \tau}
$$

$$
B=\sum_{\sigma}\left(t_{k}^{-1} U t_{k} \cap B\right) b_{k \sigma} .
$$

Then

$$
G=\sum_{j} U s_{j} A=\sum_{j}\left(U s_{j} \sum_{\tau}\left(s_{j}^{-1} U s_{j} \cap A\right) a_{j} \tau\right)=\sum_{j} \sum_{\tau} U s_{j} a_{j} \tau
$$

and

$$
G=\sum_{k} \sum_{\sigma} U t_{k} b_{k \sigma} .
$$

If we take any one coset $U r_{i}, s_{j}, a_{j \tau}, t_{k}, b_{\sigma}$ are determined uniquely respectively, such that

$$
U r_{i}=U s_{j} a_{j \tau}=U t_{k} b_{k o} \quad \text { hold }
$$

Now, if we put here

$$
u\left(r_{i}, A\right)=r_{i} a_{j}^{-1} s_{j}^{-1} \quad \text { and } \quad u\left(r_{i}, B\right)=r_{i} b_{k \sigma}^{-1} t_{k}^{-1}
$$

those elements u belong to U.
It is easily proved that the subgroup U is generated by all of these elements u and together by all the elements out of $U \cap s_{j} A s_{j}^{-1}\left(=s_{j}\left(s_{j}^{-1} U s_{j} \cap A\right) s_{j}^{-1}\right)$ and of $U \cap t_{k} B t_{k}^{-1}$.

Now we can choose the sets of regresentatives $\left\{r_{i}\right\},\left\{s_{j}\right\}$ and $\left\{t_{k}\right\}$ subject to the following conditions.
(i) r_{i} is one of the elements of the shortest length in the coset $U r_{i}$, and if $r_{i}=c_{1} c_{2} \ldots c_{\lambda}$ is taken as the representative of the coset $U r_{i}$, then any initial segment $r_{i}^{\prime}=c_{1} \ldots c_{\lambda^{\prime}}\left(\lambda^{\prime}<\lambda\right)$ must also be taken as the representative of the coset $U r_{i}^{\prime}$.
(ii) s_{j} is one r_{i}, which has the shortest length among the representatives chosen as in (i), which belong to $U s_{j} A$.
(iii) t_{k} is one r_{i}, which has the shortest length, among the representatives chosen as in (i), which belong to $U t_{k} B$.

If we have chosen the three sets of repiesentatives in this way respectively, we can prove that irreducible $u\left(r_{i}, A\right)$ and irreducible $u\left(r_{i}, B\right)$ generate a free subgroup H of U and that
holds.

$$
U=H * \prod_{j}^{*}\left(s_{j} A s_{j}^{-1} \cap U\right) * \prod_{k}^{*}\left(t_{k} B t_{k}^{-1} \cap U\right)
$$

Even when the number of free factors of G is more than 2, the theorem can be proved analogously by the seme way.

§3. Decomposition of word-subgroups.

We shall apply the results above to a word-subgroup $P(G)$ of G. First we prove
Lemma 1. If $U=P(G)$ is a word-subgroup generated by $P=\left\{\rho_{v}\right\}$ in G, then $U \cap A=P(A)$ and $U \cap B=P(B)$.

Proof. It is obvious that $P(A) \cong U \cap A$.
Take an element a from $U \cap A, a$ is represented as a product of the form

$$
a=\Pi \rho_{v}\left(g_{1}, \ldots, g_{r}\right), \quad g_{i} \in G .
$$

We consider the mapping α, which leaves any element a^{\prime} of A invariant and mapps every element b of B to 1 . This mapping is clearly an endomorphism of G onto A. Hence

$$
\left.a=a^{\alpha}=\Pi \rho_{\vee}\left(g_{1}^{\alpha}, \ldots, g_{1}^{\alpha}\right)^{8}\right) \text { and } g_{i}^{\alpha} \in A .
$$

a must belong to $P(A)$.
Therefore we have
Theorem 2. If $U=P(G)$ is a word subgroup of $\mathrm{G}=A * B$,

$$
P(G)=H * \Pi_{\Lambda_{j}}^{*} P(A) s_{j}^{-1} *{ }_{\Pi}^{*} t_{k} P(B) \overrightarrow{t_{k}^{1}},
$$

where H is a free subgroup.
As immediate corollaries we have
Corollary 3. The commutator-subgroup of a free product of abelian groups is a free group.

Corollary 4. In a free product of soluble groups with at most n-th derived group $=1$, the n-th derived group is a free group.

Corollary 5. In a free product of nilpotent groups of class at most c, the $c-t h$ subgroup in the lower central series is a free group.

We now consider the commutator-subgroup G^{\prime} of $G=A * B$. Taking the results in section 2 into consideration, we can take the set $\left\{a_{\sigma} b_{\tau}\right\}$ for the set $\left\{r_{i}\right\}$ of representatives in $G=\Sigma G^{\prime} r_{i}$, where a_{σ} and b_{τ} are representatives of $A \bmod A^{\prime}$ and of $B \bmod B^{\prime}$ respectively.

Since $G^{\prime}(a b) A=G^{\prime} b A$ and $G^{\prime}(a b) B=G^{\prime} a B$, we can take the sets $\left\{b_{\tau}\right\}$ and $\left\{a_{\sigma}\right\}$ for $\left\{s_{j}\right\}$ and $\left\{t_{k}\right\}$ respectively.

These sets of representatives satisfy the conditisns (i), (ii) and (iii) in section
2. If $a \neq 1, b \neq 1, u(a b, A)=a b a^{-1} b^{-1}$ is irreducible, and the other $u\left(r_{i}, A\right), u\left(r_{i}, B\right)$ are all reducible and can be ommitted from the generators. Hence we have

Theorem 6. The commutator-subgroup G^{\prime} of $G=A * B$ is decomposed into a free product of the form

$$
G=H * \Pi^{*} b_{\tau} A^{\prime} b_{\tau}^{-1} * \Pi a_{\sigma} B^{\prime} a_{\sigma}^{-1},
$$

where $A^{\prime}\left(B^{\prime}\right)$ is the commutator-subgroup of $A(B), A=\sum_{\sigma} A^{\prime} a_{\sigma}, B=\sum_{\tau} B^{\prime} b_{\tau}$ and the totality of $a_{\sigma} b_{\tau} a_{\sigma}^{-1} b_{\tau}^{-1}$ is a free generator system of H.

Corollary 7. If $\mathrm{G}=A * B$, where $A=(a), B=(b)$ are cyclic groups, then G is generated freely by all the elements $a^{n} b^{m} a^{-n} b^{-m}$ such that $a^{n-1} 1$ and $b^{m}=1$.
8) Because $G=A * B$ implies $A_{\cap} \bar{B}=1$, where \bar{B} is the normal subgroup generated by B.

We next consider the subgroup M of $G=A * B$, which is generated by all the elements $a b a^{-1} b^{-1},(a \in A, b \in B)$. Of course, M is a normal subgroup of G and $G / M \cong A \times B$. Since $G=\sum M(a b)$, like as in the case of G^{\prime} above, we see that M is generated freely by all the elements $a b a^{-1} b^{-1}, a \in A, b \in B$.

On the other hand, if we dencte by \bar{A} and by \bar{B} the least normal subgroups of G containing \bar{A} and \bar{B} respectively, then $M=\bar{A} \cap \bar{B}$.
$M \subseteq \bar{A} \cap \bar{B}$ is eveident.
If we consider the endomorphism β just like as $\%$ above,

$$
(\bar{A})^{\beta}=1 \quad \text { and } \quad(\bar{B})^{\alpha}=1,
$$

hence

$$
(\bar{A} \cap \bar{B})^{\alpha}=(\bar{A} \cap \bar{B})^{\beta}=1
$$

Conversely an element g is centained in $\bar{A} \cap \bar{B}$, when $g^{\alpha}=g^{\beta}=1$ hold.
If we take an element x of $\bar{A} \cap \bar{B}, x=m a b$, where $m \in M . \quad x=m a b \in \bar{A} \cap \bar{B}$ implies $m^{\alpha} a=m^{\beta} b=1$. But $M \subseteq \bar{A} \cap \bar{B}$ implies $m^{\alpha}=m^{\beta}=1$, therefore $a=b=1$ and $x \in M$.

Theorem 8. The subgroup $M=\bar{A} \cap \bar{B}$ of $G=A * B$ is generated freely by all the elements $a b a^{-1} b^{-1}(a \in A, b \in B)$, and $\mathrm{G} / M \cong A \times B$.

We next prove the following
Lemma 9. Let $G=H * A$, where H is a free group generated freely by $\left\{h_{\nu}\right\}$, and $h_{\nu} \rightarrow a_{\nu} \in A$ be an one valued mapping, then $\left\{h_{\nu} a_{\nu}\right\}$ generate freely a free subgroup K and $G=K * A$.

Proof.
If an element in K, of the form

$$
\left(h_{\nu_{1}} a_{\nu_{1}}\right)^{\varepsilon_{1}}\left(h_{\nu_{2}} a_{\nu_{2}}\right)^{\varepsilon_{2}} \ldots\left(h_{\nu_{t}} a_{\nu_{v}}\right)^{\varepsilon_{t}},
$$

is equal to 1 in $H * A$, there must exists some one s such that

$$
\varepsilon_{s}=-\varepsilon_{s+1}, \quad a_{\nu_{s}}=a_{\nu_{s+1}} \text { and } h_{\nu_{s}}=h_{\nu_{s+1}} .
$$

Hence there exists no non-trivial relation between elements of $\left\{h_{\nu} a_{\nu}\right\}$.
$G=H \cup A$ implies immediately $G=K \cup A$. If there exists a non-trivial relation between elements of K and elements of A, we take one of them such that it has the shortest length with respect to K and A. Let it be

$$
R=\left(h_{v_{1}} a_{v_{1}}\right)^{\varepsilon_{1}} a_{1}\left(h_{\nu_{2}} a_{\nu_{2}}\right)^{\varepsilon_{2}} a_{2} \ldots a_{t-1}\left(h_{v_{t}} a_{v_{t}}\right)^{\varepsilon_{t}} a_{t}
$$

and $\varepsilon_{1}=1$ (without loss of generality). a_{t} may be equal to 1 .
For R to be equal to 1 in $H * A$, considering it as a product in $H * A$, there must exists an initial part T of R such that

$$
T=h_{\nu_{1}} \ldots h_{\nu_{1}}^{-1}
$$

and the part (...) between $h_{\nu_{1}}$ and $h_{\nu_{1}}^{-1}$ is again equal to 1 in $H * A$.
Since $h_{\nu} \rightarrow a_{\nu}$ is an one valued mapping, T must be of the form $T=\left(h_{\nu_{1}} a_{\nu_{1}}\right)$ $\ldots . .\left(h_{\nu_{1}} a_{\nu_{1}}\right)^{-1}$. Hence, according to the assumption on the length of R, T must
be identical with R.
But if
and accordingly

$$
\begin{aligned}
& R=\left(h_{\nu_{1}} a_{\nu_{1}}\right) a_{1} \ldots . . a_{r-1}\left(h_{\nu_{1}} a_{\nu_{1}}\right)^{-1}, \\
& R^{\prime}=a_{\nu_{1}} a_{1}\left(h_{\nu_{2}} a_{\nu_{2}}\right)^{\varepsilon_{2}} \ldots \ldots .\left(h_{\nu_{t-1}} a_{\nu_{t-1}}\right)^{\xi t-1} a_{t-1} a_{\nu_{1}}^{-1}
\end{aligned}
$$

also, is equal to 1 in $H * A, R^{\prime}$ is a non-trivial relation of shorter lengtht han R^{\prime}. This is a contradiction. Hence there exists no non-trivial relation between K and A, and $G=K * A$ holds.

Return to Theorem 2, and consider the decomposition of a word-subgroup $U=P(G)$ of $G=A * B:$

$$
U=P(G)=H * \Pi_{\Pi}^{*} s_{j} P(A) s_{j}^{-1} * \Vdash_{\Pi}^{*} t_{k} P(B) t_{k}^{-1}
$$

We replace each h_{ν}, the free generator of H, by

$$
k_{v}=h_{v}\left(h_{v}^{\alpha}\right)^{-1}\left(h_{v}^{\beta}\right)^{-1}
$$

where α and β are the endomorphisms of G considerd above.
Since

$$
\begin{gathered}
h_{\nu}^{\alpha} \in P(G) \cap A=P(A), \quad h_{\nu}^{\beta} \in P(G) \cap B=P(B), \\
k_{v}^{\alpha}=h_{\nu}^{\alpha}\left(h_{\nu}^{\alpha}\right)^{-1}=1 \quad \text { and } \quad k_{v}^{\beta}=1 . \\
k_{\nu} \in M=\bar{A} \cap \bar{B} .
\end{gathered}
$$

Applying lemma 9, we have
Theorem 10. If $U=P(G)$ is a word-subgroup of $G=A * B$, then

$$
U=P(G)=K *{ }_{\Pi}^{*} s_{j} P(A) s_{j}^{-1} *{ }_{\Pi}^{*} t_{k} P(B) t_{k}^{-1},
$$

where K is part of the free subgroup

$$
M={\underset{a \in A, b \in B}{*}}_{\stackrel{*}{H}}^{\left(a b a^{-1} b^{-1}\right) .}
$$

Corollary 11. If V is a word subgroup of a free group F, than V is defined by some power x^{m} (m is an integer) and, besides it, by some words of commutator from.

Remark. Let $G=G_{1} \supset \ldots \supset G_{n} \supset \ldots$ be the lower central series of $G=A * B$, and G_{ω} be the meet of all G_{n}. Then holds also

$$
G_{\omega}=H * \stackrel{*}{\Pi} s A_{\omega} s^{-1} * \stackrel{*}{\Pi} t B_{\omega} t^{-1} .
$$

When G is a free group, it is known that $G_{\omega}=1$ holds. But in the case of $G=A * B$, in general, the factor H of G_{ω} need not be equal to 1 .

This is shown by the following example.
Let A and B be finite cyclic groups (a) and (b) of order p and q respectively, where p and q are two different prime numbers. The commutator-subgroup $G^{\prime}=G_{2}$ of G is a free group and $G_{2}=\underset{n \neq \circ(p), m \neq 0(q)}{\stackrel{*}{\|}}\left(a^{n} b^{m} a^{-n} b^{-m}\right)$. Modulo $G_{3}=G_{2} \circ G$, (a, b) is commutative with any element of G, and $\left(a^{n}, b^{m}\right) \equiv(a, b)^{n m} \bmod G_{3}$. Hence $(a, b)^{p} \equiv\left(a^{p}, b\right)=1$ and $(a, b)^{q} \equiv\left(a, b^{q}\right)=1$. Therefore $G_{2}=G_{3}$, which implies $G_{\omega}=G_{2}$. Obviously $A_{\omega}=B_{\omega}=1$, hence $H=G_{\omega}=G_{2} \neq 1$.

