Journal of the Institute of Polytechnics, Osaka City University, Vol. 2, No. 1, Series A

Note on word-subgroups in free products of groups

By Mutuo Takahasi

(Received May 31, 1951)

In this note we shall apply the subgroup-theorem in free products of groups to a special class of subgroups, called word-subgroups, and study the free product decompositions of such subgroups. The commutator subgroup and related subgroups are especially studied. Elementary properties of word-subgroups are given and the subgroup-theorem is restated, without proof, in sentions 1 and 2. Results are in section 3.

§1. Word-subgroups.

The notion of word-subgroups was introduced by F. Levi¹⁾ as follows.

Arbitrary group G is given. Let x_1, \ldots, x_r be r variables. By $\rho(x_1, \ldots, x_r)$ is denoted a *word* in x_1, \ldots, x_r , that is, a formal product such as

$$x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_s}^{\varepsilon_s}$$

where x_{i_y} is some one of x_1, \ldots, x_r and $\varepsilon = \pm 1$. And let P be a set of such words. If we take, for x_i , an arbitrary element g_i of G, $i=1, \ldots, r$, then

$$\rho(g_1,\ldots g_r) = g_{i_1}^{\varepsilon_1} g_{i_2}^{\varepsilon_2} \ldots g_{i_s}^{\varepsilon_s}$$

is an element of G. All such elements $\rho(g_1, \ldots, g_r)$, for all $\rho \in P$ and for any $g_i \in G$, generate a subgroup in G, which is called a *word-subgroup* of G defined by P in G. We shall denote this subgroup by P(G).

Now if we consider the free group F generated by countably infinite elements x_1, x_2, \ldots , any subset P of F defines in G a word-subgroup P(G) of G. Obviously the subgroup U of F, which is generated by the subset P in F, defines the same word-subgroup in G as P(G).

In the free group F, for arbitrary elements w_1, w_2, \ldots , the correspondence $x_i \rightarrow w_i$, $i=1, 2, \ldots$, gives an endomorphism of F, and $\rho(x_1, \ldots, x_r)$ corresponds to $\rho(w_1(x_1, \ldots, x_n), \ldots, w_r(x_1, \ldots, x_n))$ by this endomorphism. And coversely any endomorphism of F is determined, in this way, by the elements w_1, w_2, \ldots , which are the images of x_1, x_2, \ldots , respectively by this endomorphism.

Therefore the least fully invariant² subgroup V containing U is generated by

F.Levi, Über die Untergruppen der freien Gruppen, Math. Zeitschr. Bd 37 (1933), s. 90-97.

²⁾ A subgroup of a group is called *fully invariant* if it admits every endomorphism of the whole group. Such subgroups were first studied by F. Levi. Cf. 1).

the elements of P and those, which are obtained by these substitutions for $x_1, x_2, ...$. The word-subgroup V(G) is clearly identical with P(G).

On the other hand, V itself is a word-subgroup of F defined by the set V in F: V=V(F). Therefore we may consider, without loss of generality, that word-subgroups in G are defined by word-subgroups of the free group F.

A word-subgroup V(G) in an arbitrary group G is necessarily fully invariant. In a free group F, any fully invariant subgroup V is a word subgroup, since the set of all the elements of V can be considered as the defining set of words for V in F.

In arbitrary groups, as is well known, the commutator-groups, the terms of the derived series (iterated commutator-subgroups) and those of the lower central series, for examples, are some of important word-subgroups.

Word-subgroups in a free group and their factor groups were studied by B. H. Neumann.³

§2. Subgroup theorem.

We now consider a group G which is decomposed into a free product of two its subgroups A and B: G = A * B.

Elements of A are denoted by a, a_1, a', \ldots , elements of B by b, b_1, b', \ldots , and elements which belong to either A or B by c, c_1, c', \ldots . If g is an element of G, g is represented in the form

$$g=\prod_{i=1}^{\lambda}c_i=c_1c_2\ldots c_{\lambda},$$

where the c_i are elements, not equal to 1, alternately out of A and B. Then $\lambda = \lambda(g)$ is called the *length* of g. We define $\lambda(1)$ as 0. Let g, g' be two elements of G; $g = c_1c_2 \dots c_{\lambda}$, $g' = c_1'c_2' \dots c'_{\mu}$. If c_{λ} and c_1' belong neither to A nor to B at the same time, we call the product gg' to be *irreducible*, otherwise *reducible*.

On free product decompositions of subgroups in G, the author formulated and proved⁴¹ the *subgroup-theorem* in free product of groups, which is due first to A. Kurosch⁵³ and to R. Bare and F. Levi,⁶³ as follows.

For a subgroup U of G, we consider the coset-decompositions of G

$$\mathbf{G} = \sum_{i} U r_{i} = \sum_{j} U s_{j} A^{(7)} = \sum_{k} U t_{k} B ,$$

³⁾ B. H. Neumann, Identical relations in groups I. Math. Ann. 114 (1937) s. 506-525.

M. Takahasi, Bemerkungen über den Untergruppensatz in freien Produkte, Proc. Imp. Acad. Tokyo, 20 (1945) pp. 539-594.

A. Kurosch, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), s. 647.

R. Baer und F. Levi, Freie Prdukte und ihre Untergruppen, Compositio Math. 3 (1946) p. 391.

⁷⁾ Double coset decompositition modulo (U, A). UsiA consists of all the elements of the form usia, $u \in U$, $a \in A$.

and take the set of representatives $\{r_i\}$, $\{s_j\}$ and $\{t_k\}$ respectively. We put moreover,

$$A = \sum_{\tau} (s_j^{-1} U s_j \cap A) a_{j\tau}$$

 $B = \sum_{\sigma} (t_k^{-1} U t_k \cap B) b_{k\sigma}$.

Then

and

and

$$G = \sum_{j} U s_{j} A = \sum_{j} (U s_{j} \sum_{\tau} (s_{j}^{-1} U s_{j} \cap A) a_{j} \tau) = \sum_{j} \sum_{\tau} U s_{j} a_{j} \tau$$

$$G = \sum_{k} \sum_{\tau} U t_{k} b_{k\sigma}.$$

If we take any one coset Ur_i , s_j , $a_{j\tau}$, t_k , b_{σ} are determined *uniquely* respectively, such that

$$Ur_i = Us_j a_{j\tau} = Ut_k b_{k\sigma}$$
 hold

Now, if we put here

$$u(r_i, A) = r_i a_{j\tau}^{-1} s_j^{-1}$$
 and $u(r_i, B) = r_i b_{k\sigma}^{-1} t_k^{-1}$,

those elements u belong to U.

It is easily proved that the subgroup U is generated by all of these elements u and together by all the elements out of $U \cap s_j A s_j^{-1}$ $(=s_j(s_j^{-1} U s_j \cap A) s_j^{-1})$ and of $U \cap t_k B t_k^{-1}$.

Now we can choose the sets of regresentatives $\{r_i\}$, $\{s_j\}$ and $\{t_k\}$ subject to the following conditions.

(i) r_i is one of the elements of the shortest length in the coset Ur_i , and if $r_i = c_1 c_2 \dots c_{\lambda}$ is taken as the representative of the coset Ur_i , then any initial segment $r'_i = c_1 \dots c_{\lambda'} (\lambda' < \lambda)$ must also be taken as the representative of the coset Ur'_i .

(ii) s_j is one r_i , which has the shortest length among the representatives chosen as in (i), which belong to Us_jA .

(iii) t_k is one r_i , which has the shortest length among the representatives chosen as in (i), which belong to Ut_kB .

If we have chosen the three sets of representatives in this way respectively, we can prove that *irreducible* $u(r_i, A)$ and *irreducible* $u(r_i, B)$ generate a free subgroup H of U and that

$$U = H * \prod_{j}^{*} (s_j A s_j^{-1} \cap U) * \prod_{k}^{*} (t_k B t_k^{-1} \cap U)$$

holds.

Even when the number of free factors of G is more than 2, the theorem can be proved analogously by the same way.

§3. Decomposition of word-subgroups.

We shall apply the results above to a word-subgroup P(G) of G. First we prove Lemma 1. If U=P(G) is a word-subgroup generated by $P=\{\rho_{y}\}$ in G, then $U \cap A=P(A)$ and $U \cap B=P(B)$. **Proof.** It is obvious that $P(A) \subseteq U \cap A$.

Take an element a from $U \cap A$, a is represented as a product of the form

 $a=\prod \rho_{\mathcal{V}}(g_1,\ldots,g_r), \quad g_i \in G.$

We consider the mapping a, which leaves any element a' of A invariant and mapps every element b of B to 1. This mapping is clearly an endomorphism of G onto A. Hence

 $a=a^{\alpha}=\prod \rho_{\nu}(g_1^{\alpha},\ldots,g_1^{\alpha})^{(8)}$ and $g_i^{\alpha}\in A$.

a must belong to P(A).

Therefore we have

Theorem 2. If U=P(G) is a word subgroup of G=A*B,

$$P(G) = H * \prod_{k=1}^{k} s_j P(A) s_j^{-1} * \prod_{k=1}^{k} t_k P(B) t_k^{-1},$$

where H is a free subgroup.

As immediate corollaries we have

Corollary 3. The commutator-subgroup of a free product of abelian groups is a free group.

Corollary 4. In a free product of soluble groups with at most n-th derived group=1, the n-th derived group is a free group.

Corollary 5. In a free product of nilpotent groups of class at most c, the c-th subgroup in the lower central series is a free group.

We now consider the *commutator-subgroup* G' of G=A*B. Taking the results in section 2 into consideration, we can take the set $\{a_{\sigma}b_{\tau}\}$ for the set $\{r_i\}$ of representatives in $G=\sum G'r_i$, where a_{σ} and b_{τ} are representatives of $A \mod A'$ and of $B \mod B'$ respectively.

Since G'(ab)A = G'bA and G'(ab)B = G'aB, we can take the sets $\{b_{\tau}\}$ and $\{a_{\sigma}\}$ for $\{s_{j}\}$ and $\{t_{k}\}$ respectively.

These sets of representatives satisfy the conditisns (i), (ii) and (iii) in section 2. If $a \neq 1$, $b \neq 1$, $u(ab, A) = aba^{-1}b^{-1}$ is irreducible, and the other $u(r_i, A)$, $u(r_i, B)$ are all reducible and can be ommitted from the generators. Hence we have

Theorem 6. The commutator-subgroup G' of G = A * B is decomposed into a free product of the form

$$G = H * \prod^{*} b_{\tau} A' b_{\tau}^{-1} * \prod^{*} a_{\sigma} B' a_{\sigma}^{-1} ,$$

where A'(B') is the commutator-subgroup of A(B), $A = \sum_{\sigma} A' a_{\sigma}$, $B = \sum_{\tau} B' b_{\tau}$ and the totality of $a_{\sigma} b_{\tau} a_{\sigma}^{-1} b_{\tau}^{-1}$ is a free generator system of H.

Corollary 7. If G = A * B, where A = (a), B = (b) are cyclic groups, then G is generated freely by all the elements $a^n b^m a^{-n} b^{-m}$ such that $a^{n+1} and b^{m+1} = 1$.

8) Because G = A * B implies $A \cap \overline{B} = 1$, where \overline{B} is the normal subgroup generated by B.

We next consider the subgroup M of G=A*B, which is generated by all the elements $aba^{-1}b^{-1}$, $(a \in A, b \in B)$. Of course, M is a normal subgroup of G and $G/M \cong A \times B$. Since $G = \sum M(ab)$, like as in the case of G' above, we see that M is generated freely by all the elements $aba^{-1}b^{-1}$, $a \in A$, $b \in B$.

On the other hand, if we denote by \overline{A} and by \overline{B} the least normal subgroups of G containing \overline{A} and \overline{B} respectively, then $M = \overline{A} \cap \overline{B}$.

 $M \subseteq \overline{A} \cap \overline{B}$ is eveident.

If we consider the endomorphism β just like as α above,

$$(A)^{\beta} = 1$$
 and $(\overline{B})^{\alpha} = 1$,
 $(\overline{A} \cap \overline{B})^{\alpha} = (\overline{A} \cap \overline{B})^{\beta} = 1$.

hence

Conversely an element g is contained in $\overline{A} \cap \overline{B}$, when $g^{\alpha} = g^{\beta} = 1$ hold.

If we take an element x of $\overline{A} \cap \overline{B}$, x=mab, where $m \in M$. $x=mab \in \overline{A} \cap \overline{B}$ implies $m^{\alpha}a=m^{\beta}b=1$. But $M \subseteq \overline{A} \cap \overline{B}$ implies $m^{\alpha}=m^{\beta}=1$, therefore a=b=1 and $x \in M$.

Theorem 8. The subgroup $M = \overline{A} \cap \overline{B}$ of G = A * B is generated freely by all the elements $aba^{-1}b^{-1}(a \in A, b \in B)$, and $G/M \cong A \times B$.

We next prove the following

Lemma 9. Let G=H*A, where H is a free group generated freely by $\{h_v\}$, and $h_v \rightarrow a_v \in A$ be an one valued mapping, then $\{h_v a_v\}$ generate freely a free subgroup K and G=K*A.

Proof.

If an element in K, of the form

$$(h_{\nu_1}a_{\nu_1})^{\varepsilon_1}(h_{\nu_2}a_{\nu_2})^{\varepsilon_2}\dots(h_{\nu_t}a_{\nu_t})^{\varepsilon_t}$$

is equal to 1 in H*A, there must exists some one s such that

 $\varepsilon_s = -\varepsilon_{s+1}, \quad a_{v_s} = a_{v_{s+1}} \text{ and } h_{v_s} = h_{v_{s+1}}.$

Hence there exists no non-trivial relation between elements of $\{h_{y}a_{y}\}$.

 $G=H\cup A$ implies immediately $G=K\cup A$. If there exists a non-trivial relation between elements of K and elements of A, we take one of them such that it has the shortest length with respect to K and A. Let it be

$$R = (h_{\nu_1} a_{\nu_1})^{\varepsilon_1} a_1 (h_{\nu_2} a_{\nu_2})^{\varepsilon_2} a_2 \dots a_{t-1} (h_{\nu_t} a_{\nu_t})^{\varepsilon_t} a_t.$$

and $\varepsilon_1 = 1$ (without loss of generality). a_t may be equal to 1.

For R to be equal to 1 in H*A, considering it as a product in H*A, there must exists an initial part T of R such that

$$T = h_{v_1} \dots h_{v_1}^{-1}$$

and the part (...) between h_{ν_1} and $h_{\nu_1}^{-1}$ is again equal to 1 in H*A.

Since $h_{\nu} \rightarrow a_{\nu}$ is an one valued mapping, *T* must be of the form $T = (h_{\nu_1} a_{\nu_1})$ $(h_{\nu_1} a_{\nu_1})^{-1}$. Hence, according to the assumption on the length of *R*, *T* must be identical with R.

But if $R = (h_{v_1}a_{v_1})a_1....a_{r-1}(h_{v_1}a_{v_1})^{-1}$, and accordingly $R' = a_{v_1}a_1(h_{v_2}a_{v_2})^{\varepsilon_2}....(h_{v_{t-1}}a_{v_{t-1}})^{\varepsilon_{t-1}}a_{t-1}a_{v_1}^{-1}$

also, is equal to 1 in H*A, R' is a non-trivial relation of shorter length han R'. This is a contradiction. Hence there exists no non-trivial relation between K and A, and G=K*A holds.

Return to Theorem 2, and consider the decomposition of a word-subgroup U=P(G) of G=A*B:

$$U = P(G) = H * \prod^{*} s_j P(A) s_j^{-1} * \prod^{*} t_k P(B) t_k^{-1}.$$

We replace each h_{ν} , the free generator of H, by

$$k_{\nu} = h_{\nu}(h_{\nu}^{\alpha})^{-1}(h_{\nu}^{\beta})^{-1},$$

where α and β are the endomorphisms of G considerd above.

Since
$$h_{\nu}^{\mathfrak{a}} \in P(G) \cap A = P(A), \quad h_{\nu}^{\mathfrak{g}} \in P(G) \cap B = P(B),$$

 $k_{\nu}^{\mathfrak{a}} = h_{\nu}^{\mathfrak{a}}(h_{\nu}^{\mathfrak{a}})^{-1} = 1 \quad \text{and} \quad k_{\nu}^{\mathfrak{g}} = 1.$

Hence

$$k_{\nu} \in M = A \cap B.$$

Applying lemma 9, we have

Theorem 10. If U=P(G) is a word-subgroup of G=A*B, then

$$U=P(G)=K*\prod s_j P(A)s_j^{-1}*\prod t_k P(B)t_k^{-1},$$

where K is part of the free subgroup

$$M = \prod_{a \in A, b \in B}^{\times} (aba^{-1}b^{-1}).$$

Corollary 11. If V is a word subgroup of a free group F, than V is defined by some power x^m (m is an integer) and, besides it, by some words of commutator from.

Remark. Let $G = G_1 \supset ... \supset G_n \supset ...$ be the lower central series of G = A * B, and G_{ω} be the meet of all G_n . Then holds also

$$G_{\omega} = H * \prod^{*} s A_{\omega} s^{-1} * \prod^{*} t B_{\omega} t^{-1}.$$

When G is a free group, it is known that $G_{\omega}=1$ holds. But in the case of G=A*B, in general, the factor H of G_{ω} need not be equal to 1.

This is shown by the following example.

Let A and B be finite cyclic groups (a) and (b) of order p and q respectively, where p and q are two different prime numbers. The commutator-subgroup $G'=G_2$ of G is a free group and $G_2 = \prod_{n \equiv 0(p), m \equiv 0(q)}^{*} (a^n b^m a^{-n} b^{-m})$. Modulo $G_3 = G_2 \circ G$, (a, b) is commutative with any element of G, and $(a^n, b^m) \equiv (a, b)^{nm} \mod G_3$. Hence $(a,b)^p \equiv (a^p, b) = 1$ and $(a, b)^q \equiv (a, b^q) = 1$. Therefore $G_2 = G_3$, which implies $G_{\omega} = G_2$. Obviously $A_{\omega} = B_{\omega} = 1$, hence $H = G_{\omega} = G_2 \neq 1$.