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Abstract
We introduce in this paper a new resolution graph for an isolated complex plane

curve singularity and then calculate the monodromy zeta function and the Alexander
polynomial for the singularity in terms of this graph.

1. Introduction

Let f W (CnC1, O) ! (C, 0) be the germ of a complex analytic function with an
isolated singularity at the origin ofCnC1. One important topological invariant of the
germ f is its Milnor fibration ([11])

f
�,� W B

�

\ f �1(S1
�

)! S1
�

with Milnor fiber F D f �1
�,� (�) and geometric monodromyhW F ! F . We consider the

singularity (C, O) which is the germ of the hypersurfaceC D f �1(0) at O. The zeta
function of the monodromyh of the singularity (C, O) is defined to be

� f (t) D
Y

k�0

det(1� th
�

jHk(F))(�1)kC1
.

The earlier important result on monodromy zeta functions belongs to A’Campo.
In his celebrated article [2] he described explicitly the zeta function of the singularity
(C, O) in terms of numerical data of an embedded resolution of singularity. Let � be
a good embedded resolution of singularity for (C, O), let {Es}s2S, with S finite, be the
set of exceptional divisors of� together with the irreducible components of the strict
transform QC of C. For eachs in S, we setEÆ

s D Es n
S

t 6Ds Et . Denote by�(EÆ

s ) the

Euler–Poincaré characteristic ofEÆ

s . Note that if Es is an irreducible component ofQC,
it is noncompact, and then�(EÆ

s ) D 0. Let ms be the multiplicity of Es, s 2 S. Then
the main theorem of [2] says that

(1) � f (t) D
Y

s2S

(1� tms)��(EÆ

s ).
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Among the other important contributions to monodromy zeta functions we can re-
fer to A’Campo [1], Gusĕın-Zade [8, 9] and Némethi [13] forn D 1. In the gen-
eral dimension but under the condition of nondegeneracy with respect to Newton poly-
hedron, Milnor and Orlik [12] calculated� f for quasi-homogeneous isolated singular-
ities, Varchenko [18] and Ehlers [6] calculated it in terms of the Newton diagram.

In this paper we are interested in the case wherenD 1. We consider the complex
reduced isolated plane curve singularity (C, O) defined by germ of a complex analytic
function f at the originO of C2. We use the concept of extended resolution graph of
a resolution of singularity for (C, O) introduced in [10]. Fix a resolution of singularity
� for (C,O) with the set{Es}s2S as above. Then the extended resolution graphG( f,�)
(or simply G) of � is defined to be a graph in which the vertices correspond to{Es}s2S

and two verticesEs and Es0 are connected by an edge if the intersectionEs \ Es0 is
nonempty. The zeta function is described in the formula (1) via the resolution of sin-
gularity by A’Campo [2] so that it only requires the multiplicities m(Q) of the pullback
of the function f to the verticesQ of G which is either of degreed(Q) greater than
or equal to 3 inG or an end vertex (i.e.,d(Q)D 1), because for the caseQD Es with
d(Q) D 2 the Euler–Poincaré characteristics�(EÆ

s ) D �(S2
� 2 points)D 0. If Es cor-

responds to an irreducible component ofQC, its degree is 1 andEs is homeomorphic to
a disk. Thus�(EÆ

s ) D 0 and it does not contribute to the zeta function. Therefore it is
useful to define the extended simplified resolution graphGs by cutting off the vertices
with degree 2 from the extended resolution graph (the construction of Gs is actually
more complicated, see Section 2 for detail). It is then clearthat Gs is independent of
the choice of the resolution of singularity� .

Let Q be a vertex ofGs and E(Q) the corresponding exceptional divisor of the
fixed resolution of singularity� . We have evidently that, assumingE(Q) D Es for
somes, the Euler–Poincaré characteristic�(EÆ

s ) is equal to�d(Q)C2. It thus follows
that to compute� f (t) it suffices to determine the multiplicities on the verticesand the
degree of each vertex ofGs. This is also the main purpose of this paper.

In [7], the tree of contacts was introduced in terms of the Puiseux expansions.
Guibert used this tree to compute the motivic Igusa zeta function defined by Denef
and Loeser [4] associated with a family of functions, and then related it with the
Alexander invariants of the family. In Section 4, we will reformulate Guibert’s for-
mula of Alexander polynomial in many variables for (C, O) in terms of the extended
simplified resolution graphGs.

2. The extended simplified resolution graph

The main references for this section are [3], [10] and [16].
We divide the construction of the extended simplified resolution graphGs into two

processes as follows.
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2.1. Step 1: The “primitive” graph G p. Vertices ofGp correspond bijectively
to the total space of each toric modification and the base space (the root ofGp). Thus
the number of vertices is one more than the number of necessary toric modifications.
Two vertices are connected by an edge ofGp if they correspond to a toric modification.
Thus the graphGp presents the hierarchy of the toric modifications.

2.2. Step 2: The inductive construction of Gs. We view the root as the origin
O of the base space. For the first toric modification�1 W X1 ! C

2, we take the first
vertices ofGs corresponding to the faces of the Newton boundary0( f ) (such vertices
will be called regular vertices), and add two vertices namedQleft and Qright to the left
end and to the right end (these two will be calledleaves). They make a bamboo and
this is the first floor of the extended simplified resolution graph (the bamboo should
lie in a horizontal plane—a floor).

Let us give some explanations for this. Assume that0( f ) has faces corresponding
to a sequence of ordered primitive weight vectorsP1, : : : , Pm. We add other primi-
tive weight vectors to this sequence to obtain a regular simplicial cone subdivision
Q1, : : : , Qd admissible for f (x, y) (in the terminology of [3]), i.e., everyPi D Q j for
some j and det(Q j , Q jC1) D 1 for any j D 0, : : : , d where Q0 D E1 and QdC1 D E2.
Then Qleft

D Q1 and Qright
D Qd. This left end Qleft appears only for the very first

modification. The weight vectorsP1, : : : , Pm are the unique ones satisfying that the
exceptional divisorE(Pi ) has nonempty intersection with the strict transform ofC in
X1, i D 1, : : : , m. We ignore the exceptional divisors with degree 2, i.e., which do not
intersect with the strict transform ofC.

Next consider any other toric modification�
�

W Xi ! X j with center� in an excep-
tional divisor E(Q) which appears inGp (Step 1), whereQ corresponds to a weight
vector of the previous modificationX j ! Xk. We assume that the partial extended sim-
plified resolution graph is already constructed and letQ be the correspondingregular
vertex of the simplified graph. (Note that� lies in the intersectionIQ of E(Q) and the
strict transform ofC in X j .) Suppose that the Newton boundary of the pullback off
has� faces with respect to the toric coordinates (u, v) at � so thatuD 0 is the divisor
E(Q), we prepare�C1 vertices in a horizontal bamboo.We can assume that the right
end weight vector is different from the last face of the Newton boundary(if the right
end weight vector is anexceptional integralvector, i.e., having the form (1,b), corres-
ponding to the lowest right end edge of the Newton boundary, we add an additional
weight vector

RD t (1, b)C t (0, 1)

betweenQright and E2, then R is the new right end vertex.) We will call a vertex
corresponding to a right end weight vector aleaf of Gs.

By the above each� in IQ gives rise to a toric modification, and hence to a bam-
boo in the next floor. We connect the left end vertex of such a bamboo with Q by
a non-horizontal edge. Observe that there is (are)jIQj bamboo(s) in the next floor
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non-horizontally connected withQ, i.e., the degree ofQ is equal tojIQj C 2. Induc-
tively this describes the extended simplified resolution graph Gs.

EXAMPLE 2.1. Consider the singularityCW f (x, y)D (y2
Cx3)2(y3

Cx2)2
Cx6y6.

The bamboo in the first floor consists of two regular verticesP1 D
t (3, 2), P2 D

t (2, 3)

and two leavesQleft
1 D

t (2, 1), Qright
1 D

t (1, 2).

r r qq

Qleft
1 P1 P2 Qright

1

The intersectionI P1 of E(P1) and the strict transform ofC has only a point� . Using
the method of [3], there is a standard system of local coordinates (u, v) at � such that
�

�

1 f in (u, v) has the form

�

�

1 f (u, v) D Uu20(v2
C u10

C higher terms),

with U a unit. Thus the bamboo of floor 2 corresponding toP1 has only a regular

vertex R1 D
t (1, 5) and two leavesQleft

21 , Qright
21 . Similarly, the bamboo of floor 2 cor-

responding toP2 has a regular vertexR2 D
t (5, 1) and two leavesQleft

22 , Qright
22 .

q r q

Qleft
21 R1 Qright

21
q r q

Qleft
22 R2 Qright

22

There are two one-point-bamboos in the third floor corresponding to R1. Also, there
are two one-point-bamboos in the third floor corresponding to R2. Now we connect
each left end vertex to the corresponding previous regular vertex, then we obtain the
extended simplified resolution graphGs of f (x, y) as follows

q

Qleft
1

. . . the first floorr

P1

r

P2

q

Qright
1

q r

R1

q

Qright
21

q r

R2

q

Qright
22

. . . the second floor

q q q q . . . the third floor

❈
❈
❈
❈

✄
✄
✄
✄

❈
❈
❈
❈

✄
✄
✄
✄

3. The numerical data for Gs and the zeta function

In this section we will describe multiplicity and degree of each vertex ofGs through
the data of resolutions of singularity for the irreducible components off (x, y) and the
relation between them. Based on the main theorem of [2], which is introduced in the
first section, we read off the monodromy zeta function of the singularity f (x, y).
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3.1. Irreducible case. Assume that (C, O) is irreducible (this case was already
considered in [3]). LetT be a resolution tower for (C, O) by toric modifications

T W Xg ! Xg�1! � � � ! X0 D C

2,

which corresponds to a sequence of primitive weight vectorsRi , say, t (ai , bi ), i D
1, : : : , g. Each Ri defines an exceptional divisorE(Ri ) which is the unique one con-
taining the centerGi of the next toric modification. We denoteAi D ai aiC1 � � � ag for
i D 1, : : : , g, AgC1 D 1. Due to [3] there is a standard way to construct a system of
local coordinates (ui , vi ) at Gi such thatE(Ri ) is given by ui D 0, and if we denote
by 8i the compositionXi ! � � � ! X0, then we have

8

�

i f (ui , vi ) D

(

u
m(Rg)
g vg, i D g,

um(Ri )
i ((vaiC1

i C �iC1ubiC1
i )AiC2

C (higher terms)), i < g,

where m(Ri ) is the multiplicity of 8�

i f on E(Ri ), i.e., the multiplicity of the vertex
Ri in Gs, which satisfies the following

m(R1) D a1b1A2, m(Ri ) D ai m(Ri�1)C ai bi AiC1, i D 2, : : : , g.

3.2. General case: The first toric modification. Write f (x, y) as a product of
irreducible components inC{x}[y],

f (x, y) D
m
Y

iD1

r i
Y

jD1

si j
Y

lD1

gi , j ,l (x, y),

where

gi , j ,l (x, y) D (yai
C �i , j x

bi )Ai , j ,l
C (higher terms)

are irreducible, the�i , j ’s are distinct nonzero complex numbers,i D 1, : : : , m, j D
1, : : : , r i , l D 1, : : : , si , j . Then the Newton boundary0( f ) hasm faces whose weight
vectors arePi D

t (ai , bi ), i D 1, : : : , m. Consider the first toric modification�1 for
(C,O). By the construction of the extended simplified resolutiongraph,Pi , i D 1,:::,m,
are regular vertices ofGs corresponding to�1 and eachPi has degreer i C 2 in Gs.
Let m(Pi ) (resp.m(Qleft), m(Qright)) be the multiplicity of the pullback��1 f on E(Pi ),
i D 1, : : : , m, (resp. onE(Qleft), on E(Qright)). Let the verticesP1, : : : , Pm be ordered
from the left to the right.

Observe that if we denote bymt, j ,l (Q) the multiplicity of ��1 gt, j ,l on an exceptional
divisor E(Q) then we have

m(Pi ) D
m
X

tD1

r t
X

jD1

st, j
X

lD1

mt, j ,l (Pi ).
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Due to the irreducible case we havemi , j ,l (Pi ) D ai bi Ai , j ,l . Some similar simple com-
putations also show that

mt, j ,l (Pi ) D ai bt At, j ,l for t < i ,

mt, j ,l (Pi ) D atbi At, j ,l for t > i .

Denote byAt the sum
Pr t

jD1

Pst, j

lD1 At, j ,l . We have just proved

Lemma 3.1. With the previous notations, the following formulas hold

m(Pi ) D ai

X

1�t�i

bt At C bi

X

iC1�t�m

at At , i D 1, : : : , m,

m(Qleft) D
m
X

tD1

at At , m(Qright) D
m
X

tD1

bt At .

REMARK 3.2. It is easily checked thatm(Qleft) is equal to the degreen of f (x, y)
in C{x}[y]. Using the Weierstrass preparation theorem, we can writef (x, y) in the form
f (x, y) D ug(x, y), with u D u(x, y) a unit inC{x, y}, g(x, y) being monic inC{y}[x].
Thenm(Qright) is equal to the degree ofg(x, y) in the variablex.

3.3. General case: Vertices on a bamboo of floor� 2. For such a bambooB,
let PB,i , i D 1, : : : , mB, be the regular vertices (i.e., the left end vertexQleft

B
and the

right end vertexQright
B

not included) ofGs lying on B, and P the vertex ofGs non-
horizontally connected to the left end vertexQleft

B
of B, i.e., the bambooB is arisen by

a toric modification�k centered at a point in the exceptional divisorE(P). As above,
we regardP as the predecessor of thePB,i ’s in Gs. We assume that the multiplicity
m(P) is already described.

We give an explicit description for the relation betweenm(PB
i ) and m(P) as fol-

lows. Let 8 be the composition of the sequence of toric modifications starting from
�1 in Subsection 3.2 to the previous toric modification of�k just mentioned. Suppose
that, in the standard system of local coordinates (u, v) (at the center of�k) constructed
as in [3], the pullback8� f (u, v) has the form

8

� f (u, v) D U (u, v)
mB
Y

iD1

rB,i
Y

jD1

sB,i j
Y

lD1

gB,i , j ,l (u, v),

where

gB,i , j ,l (u, v) D (vaB,i
C �B,i , j u

bB,i )AB,i , j ,l
C (higher terms)

are irreducible inC{u}[v], the �B,i , j ’s are distinct and nonzero,i D 1, : : : , mB, j D
1, : : : , rB,i , l D 1, : : : , sB,i , j , andU (u, v) is a unit inC{u, v}. The PB,i D

t (aB,i , bB,i ),
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i D 1, : : : , mB, are different faces of the Newton boundary0(8� f, u, v). As a vertex
of Gs, PB,i has degreerB,i C 2. As usual we assume that the facesPB,i ’s are ordered
from the left to the right. We denote bymB,t, j ,l (Q) the multiplicity of the pullback of
the irreducible component off (x, y) corresponding togB,t, j ,l on an exceptional divisor
E(Q). Then due to the irreducible case, we have

mB,i , j ,l (PB,i ) D aB,i mB,i , j ,l (P)C aB,i bB,i AB,i , j ,l ,

and similarly,

mB,t, j ,l (PB,i ) D aB,i mB,t, j ,l (P)C aB,i bB,t AB,t, j ,l for t < i ,

mB,t, j ,l (PB,i ) D aB,i mB,t, j ,l (P)C aB,tbB,i AB,t, j ,l for t > i .

Thus we have

Lemma 3.3. For i D 1, : : : , mB,

m(PB,i ) D aB,i m(P)C aB,i

X

1�t�i

bB,t AB,t C bB,i

X

iC1�t�mB

aB,t AB,t ,

moreover,

m(Qright
B

) D m(P)C
mB
X

tD1

bB,t AB,t ,

where AB,t D
PrB,t

jD1

PsB,t, j

lD1 AB,t, j ,l .

EXAMPLE 3.4. Continue Example 2.1. Due to Lemma 3.1 we have

m(P1) D 3 � 2 � 2C 2 � 2 � 2D 20, m(P2) D 2(2 � 2C 3 � 2)D 20,

m(Qleft
1 ) D 3 � 2C 2 � 2D 10, m(Qright

1 ) D 2 � 2C 3 � 2D 10.

Similarly, applying Lemma 3.3 we get

m(R1) D m(Qright
21 ) D 30,

m(R2) D m(Qright
22 ) D 30.

3.4. The monodromy zeta function of the singularityf (x, y). As in the intro-
duction part, by a theorem of A’Campo [2], each exceptional divisor Es of a resolution
of singularity� contributes a factor (1� tms)��(EÆ

s ) to the zeta function� f (t). Thus the
bamboo corresponding to�1 described in Subsection 3.2 contributes the following fac-
tor to � f (t)

�

�1(t) WD (1� tm(Qleft))�1(1� tm(Qright))�1
m
Y

iD1

(1� tm(Pi ))r i .
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Each bambooB of floor � 2 contributes a factor to� f (t) as follows

�B(t) WD (1� tm(Qright
B

))�1
mB
Y

iD1

(1� tm(PB,i ))rB,i .

Let B be the set of bamboos ofGs, which coincides with the set of necessary toric
modifications of resolution of singularity� . Note thatm(Qleft) is equal to the degree
n of f (x, y) as a polynomial inC{x}[y]. Then we have

Theorem 3.5. The monodromy zeta function� f (t) of the singularity f(x, y) is
described viaGs as follows

� f (t) D (1� tn)�1
Y

B2B

(1� tm(Qright
B

))�1
mB
Y

iD1

(1� tm(PB,i ))rB,i .

EXAMPLE 3.6. We continue Examples 2.1 and 3.4. With the data ofGs de-
scribed in these examples one deduces that

� f (t) D (1� t10)�1(1� t10)�1(1� t20)2[(1 � t30)�1(1� t30)2]2

D (1C t10)2(1� t30)2.

4. A formula for the Alexander polynomial

As before, we consider the reduced plane curve singularityC D { f (x, y) D 0} at
the origin O of C2. To recall the concept of Alexander polynomial, we writef (x,y) as
a product

Qp
iD1 fi (x, y) of irreducible componentsfi (x, y), i D 1,: : : , p. The Alexander

polynomial of this singularity1C(T), where T D (T1, : : : , Tp), is defined to be the
Alexander polynomial of the linkC \ S3

�

� S

3
�

for sufficiently small� > 0 (see [5])
such that1C(0, : : : , 0) D 1. Extending this notion to the relative version for regu-
lar functions fi on a complex algebraic varietyX, Sabbah [17] gives the Alexander
complex viewed as an object of the categoryDb

c (X0, C[Zp]) of bounded constructible
complexes ofC[Zp]-modules onX0, where X0 D

Tp
iD1 f �1

i (0). Guibert [7] defines
an Alexander zeta function associated with (f1, : : : , f p) at neighborhood of a com-
pact setK . In fact, whenK is a singular point{x} of X0 this notion reduces to the
Alexander polynomial of the singularity (X0, x). In [17] Sabbah gives an expression of
this function in terms of a resolution of singularity for (f1, : : : , f p), which generalizes
the formula of A’Campo [2] on the monodromy zeta function of asingularity. Let Es,
s 2 S, again denote exceptional divisors and strict transforms of a resolution of singu-
larity � for (C, O). Let �(s) be the p-tuple of multiplicities of (�� f1, : : : , �� f p) on
the divisor Es.

Theorem 4.1 (Sabbah [17]). 1C(T1, : : : , Tp) D
Q

s2S(T�

(s)
� 1)��(EÆ

s ).
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Now to describe the Alexander polynomial1C(T) via the extended simplified reso-
lution graphGs of (C, O), we use the decompositions and the notations as in Section 3.
We firstly consider the ordered verticesQleft, P1, : : : , Pm, Qright of Gs on the unique
bamboo of the first floor. With the notations as in Subsection 3.2, we have

mt, j ,l (Pi ) D

�

ai bt At, j ,l for 1� t � i ,
atbi At, j ,l for i < t � m,

and

mt, j ,l (Q
left) D at At, j ,l ,

mt, j ,l (Q
right) D bt At, j ,l .

Thus the first bamboo contributes the following factor to theAlexander polynomial of
(C, O):

(Tm(Qleft)
� 1)�1(Tm(Qright)

� 1)�1
m
Y

iD1

(Tm(Pi )
� 1)r i ,

where m(Qleft) D (mt, j ,l (Qleft))t, j ,l , m(Qright) D (mt, j ,l (Qright))t, j ,l and m(Pi ) D
(mt, j ,l (Pi ))t, j ,l .

Consider a bambooB of floor � 2 with the ordered verticesPB,1, : : : , PB,mB
, Qright

B

as in Subsection 3.3. If8�gt, j ,l D gB,t 0, j 0,l 0 for some (t 0, j 0, l 0), then we put

mt, j ,l (PB,i ) WD mB,t 0, j 0,l 0(PB,i )

D

�

aB,i mB,t 0, j 0,l 0(P)C aB,i bB,t 0 AB,t 0, j 0,l 0 for 1� t 0 � i ,
aB,i mB,t 0, j 0,l 0(P)C aB,t 0bB,i AB,t 0, j 0,l 0 for i < t 0 � mB.

and

mt, j ,l (Q
right
B

) WD mB,t 0, j 0,l 0(Q
right
B

) D mB,t 0, j 0,l 0(P)C bB,t 0 AB,t 0, j 0,l 0 .

Otherwise for a triple (t, j , l ) such that8�gt, j ,l D gB,t 00, j 00,l 00 with B 6D B (actually
in the same floor), letP be the closest common “ancestor” of vertices onB and B.
Then we put

mt, j ,l (PB,i ) D mt, j ,l (Q
right
B

) WD mB,t 00, j 00,l 00(P).

Now we setm(Qright
B

) D (mt, j ,l (Q
right
B

))t, j ,l , m(PB,i ) D (mt, j ,l (PB,i ))t, j ,l . Then the bam-
boo contributes the following factor to1C(T):

(Tm(Qright
B

)
� 1)�1

mB
Y

iD1

(Tm(PB,i )
� 1)rB,i .

Denoten D (degy gt, j ,l (x, y))t, j ,l . Thus n D m(Qleft).
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Proposition 4.2. The Alexander polynomial1C(T) is described viaGs as follows

1

C(T) D (Tn
� 1)�1

Y

B2B

(Tm(Qright
B

)
� 1)�1

mB
Y

iD1

(Tm(PB,i )
� 1)rB,i .

In the irreducible case this formula reduces to that of Eisenbud–Neumann (cf. [5])
and that of A’Campo and Oka (cf. [3]).
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