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Abstract
We introduce in this paper a new resolution graph for an fedl@omplex plane
curve singularity and then calculate the monodromy zetatfan and the Alexander
polynomial for the singularity in terms of this graph.

1. Introduction

Let f: (C"t1, O) — (C, 0) be the germ of a complex analytic function with an
isolated singularity at the origin o€"*%. One important topological invariant of the
germ f is its Milnor fibration ([11])

fen: BeNf7Y(S) — S

with Milnor fiber F = fgnl(n) and geometric monodromly: F — F. We consider the
singularity C, O) which is the germ of the hypersurfac = f~1(0) at O. The zeta
function of the monodromyn of the singularity C, O) is defined to be

)k+1

i (t) = 1_[ det(1— th,|Hc(F))?

k=0

The earlier important result on monodromy zeta functionkrgs to ACampo.
In his celebrated article [2] he described explicitly theaz&inction of the singularity
(C, O) in terms of numerical data of an embedded resolution ofdargy. Let = be
a good embedded resolution of singularity f@, ©), let {Es}ses, with S finite, be the
set of exceptional divisors ot together with the irreducible components of the strict
transformC of C. For eachs in S, we setEg = Es\ U#S E:;. Denote byx(EZ) the

Euler—Poincaré characteristic &;. Note that if Es is an irreducible component «,
it is noncompact, and thep(Eg) = 0. Let ms be the multiplicity of Es, s € S. Then
the main theorem of [2] says that

@ cr(t) = [ —tm)*E,

seS
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Among the other important contributions to monodromy zetacfions we can re-
fer to ACampo [1], Guse-Zade [8, 9] and Némethi [13] fon = 1. In the gen-
eral dimension but under the condition of nondegenerack véspect to Newton poly-
hedron, Milnor and Orlik [12] calculateds for quasi-homogeneous isolated singular-
ities, Varchenko [18] and Ehlers [6] calculated it in ternfsttee Newton diagram.

In this paper we are interested in the case whete 1. We consider the complex
reduced isolated plane curve singularity, ©O) defined by germ of a complex analytic
function f at the originO of C2. We use the concept of extended resolution graph of
a resolution of singularity for@, O) introduced in [10]. Fix a resolution of singularity
7 for (C,0) with the set{Eg}scs as above. Then the extended resolution gr&glh, )
(or simply G) of « is defined to be a graph in which the vertices correspontEtdscs
and two verticesEs and Ey are connected by an edge if the intersectl®nn Egy is
nonempty. The zeta function is described in the formula (&)tlke resolution of sin-
gularity by ACampo [2] so that it only requires the multigiies m(Q) of the pullback
of the function f to the verticesQ of G which is either of degreel(Q) greater than
or equal to 3 inG or an end vertex (i.ed(Q) = 1), because for the casg = E5 with
d(Q) = 2 the Euler—Poincaré characteristigéE?) = x(S? — 2 points)= 0. If Es cor-
responds to an irreducible component®fits degree is 1 ands is homeomorphic to
a disk. Thusy(Eg) =0 and it does not contribute to the zeta function. Therefoie i
useful to define the extended simplified resolution gr&ahby cutting off the vertices
with degree 2 from the extended resolution graph (the cocttn of Gs is actually
more complicated, see Section 2 for detail). It is then ctbat G is independent of
the choice of the resolution of singularity.

Let Q be a vertex ofGg and E(Q) the corresponding exceptional divisor of the
fixed resolution of singularityz. We have evidently that, assumirg(Q) = Es for
somes, the Euler—Poincaré characterisfi¢Es) is equal to—d(Q) + 2. It thus follows
that to computes¢(t) it suffices to determine the multiplicities on the verticesd the
degree of each vertex @s. This is also the main purpose of this paper.

In [7], the tree of contacts was introduced in terms of thes@ux expansions.
Guibert used this tree to compute the motivic Igusa zetatimmadefined by Denef
and Loeser [4] associated with a family of functions, andnthelated it with the
Alexander invariants of the family. In Section 4, we will oefnulate Guibert’s for-
mula of Alexander polynomial in many variables fag,(O) in terms of the extended
simplified resolution grapiGs.

2. The extended simplified resolution graph

The main references for this section are [3], [10] and [16].
We divide the construction of the extended simplified reotugraphGs into two
processes as follows.
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2.1. Step 1: The “primitive” graph G,. Vertices of G, correspond bijectively
to the total space of each toric modification and the baseesfihe root ofGp). Thus
the number of vertices is one more than the number of negessac modifications.
Two vertices are connected by an edgeGpfif they correspond to a toric modification.
Thus the graplG, presents the hierarchy of the toric modifications.

2.2. Step 2: The inductive construction of G.  We view the root as the origin
O of the base space. For the first toric modificatioit X; — C?, we take the first
vertices of Gs corresponding to the faces of the Newton bound@¢y) (such vertices
will be called regular vertices), and add two vertices nam@f™ and Q9" to the left
end and to the right end (these two will be calledve3. They make a bamboo and
this is the first floor of the extended simplified resolutiommt (the bamboo should
lie in a horizontal plane—a floor).

Let us give some explanations for this. Assume théf) has faces corresponding
to a sequence of ordered primitive weight vect®s ..., P,. We add other primi-
tive weight vectors to this sequence to obtain a regular I&iap cone subdivision
Qu1, ..., Qq admissible forf(x, y) (in the terminology of [3]), i.e., every?, = Q; for
somej and detQ;, Qj+1) =1 foranyj =0,...,d where Qo = E; and Qq+1 = Eo.
Then Q" = Q; and Q" = Qq. This left end Q'™ appears only for the very first

modification. The weight vector®y, ..., Py are the unique ones satisfying that the
exceptional divisorE(P) has nonempty intersection with the strict transformfin
X1, 1 =1,...,m. We ignore the exceptional divisors with degree 2, i.e.,clvtdo not

intersect with the strict transform «&.

Next consider any other toric modificationz: X; — X; with center£ in an excep-
tional divisor E(Q) which appears irG, (Step 1), whereQ corresponds to a weight
vector of the previous modificatioX; — Xyx. We assume that the partial extended sim-
plified resolution graph is already constructed andQebe the correspondingegular
vertex of the simplified graph. (Note thatlies in the intersectiorig of E(Q) and the
strict transform ofC in X;.) Suppose that the Newton boundary of the pullbackf of
hasa faces with respect to the toric coordinatesy) at & so thatu = 0 is the divisor
E(Q), we preparex + 1 vertices in a horizontal bambodVe can assume that the right
end weight vector is different from the last face of the Newtoundary(if the right
end weight vector is aexceptional integralector, i.e., having the form (b), corres-
ponding to the lowest right end edge of the Newton boundasr,add an additional
weight vector

R="'1,b)+'0, 1)

betweenQ"9" and E,, then R is the new right end vertex.) We will call a vertex
corresponding to a right end weight vectoteaf of Gs.

By the above eacl in Ig gives rise to a toric modification, and hence to a bam-
boo in the next floor. We connect the left end vertex of such @bz with Q by
a non-horizontal edge. Observe that there is (4fg) bamboo(s) in the next floor
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non-horizontally connected witk, i.e., the degree o) is equal to|lg| + 2. Induc-
tively this describes the extended simplified resolutioapdrGs.

EXAMPLE 2.1. Consider the singularit@€: f(x,y) = (y?+x3)2(y® 4+ x?)? + x°y5.
The bamboo in the first floor consists of two regular verti€s='(3, 2), P, = (2, 3)
and two leavesQ'®" = (2, 1), Q}®" = (1, 2).

Q" Py P> rligm
The intersectionlp, of E(P;) and the strict transform of has only a point. Using

the method of [3], there is a standard system of local coatdg (I, v) at & such that
;7 fin (u, v) has the form

7 f(u, v) = Uu®(w? + u'® + higher terms),

with U a unit. Thus the bamboo of floor 2 correspondingRp has only a regular

vertex R, = '(1, 5) and two leave®Q!, Q™. Similarly, the bamboo of floor 2 cor-

responding toP, has a regular verteR, = t(5 1) and two leave®Q!, Q)"

Q|eft Rl erght Q|eft R2 erght

~—e

There are two one-point-bamboos in the third floor corredpanto R;. Also, there
are two one-point-bamboos in the third floor correspondimgRt. Now we connect
each left end vertex to the corresponding previous regudaiex, then we obtain the
extended simplified resolution grapbs of f(x, y) as follows

the third floor

. , . the second floor
right right
Ri Qy Rz Qy

the first floor

left right
1 P P2 1

3. The numerical data for Gs and the zeta function

In this section we will describe multiplicity and degree afich vertex ofGs through
the data of resolutions of singularity for the irreduciblargponents off (x, y) and the
relation between them. Based on the main theorem of [2], lwidcintroduced in the
first section, we read off the monodromy zeta function of timgdarity f(x, y).
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3.1. Irreducible case. Assume that, O) is irreducible (this case was already
considered in [3]). Lefl be a resolution tower forQ, O) by toric modifications

T:Xg— Xg1— - — Xo=C?

which corresponds to a sequence of primitive weight vecRrssay, '(a;, by), i =

1,...,0. EachR defines an exceptional divisd&(R;) which is the unique one con-
taining the centeG; of the next toric modification. We denot® = &;a;41 - - - ag for
i=1,...,0 Ag1 =1 Due to [3] there is a standard way to construct a system of

local coordinatesy, vj) at G; such thatE(R) is given byu; = 0, and if we denote
by ®; the compositionX; — --- — Xq, then we have

o7 £ (ui, vi) N =9
N u', Vi) =
T UM R (@3 4 quP A2 o+ (higher terms)), i < g,

where m(R;) is the multiplicity of & f on E(R), i.e., the multiplicity of the vertex
R in Gg, which satisfies the following

M(Ry) = a1y A2, m(R) =am(R_1) +abAy, i=2,...,0

3.2. General case: The first toric modification. Write f(x,y) as a product of
irreducible components i@{x}[y],

m 1 Sj
foay) =TTIT]T9..0¢ 9

i=1j=11=1

where
i (X, y) = (Y& + & ;x")A0 4 (higher terms)

are irreducible, the j's are distinct nonzero complex numbeis=1,..., m, j =
1,...,ri,1=1,...,s,. Then the Newton boundary(f) hasm faces whose weight
vectors areP, = '(a;, by), i = 1,..., m. Consider the first toric modification; for

(C,0). By the construction of the extended simplified resolutipaph, P, i = 1,...,m,
are regular vertices o6 corresponding tar; and eachP, has degree; + 2 in Gs.
Let m(P) (resp.m(Q'"®®), m(Q"9")) be the muiltiplicity of the pullbackr; f on E(P),
i =1,...,m, (resp. onE(Q"M"), on E(Q")). Let the verticesP, ..., Py be ordered
from the left to the right.

Observe that if we denote by j(Q) the multiplicity of ;g j; on an exceptional
divisor E(Q) then we have

re S

mR) =D "> > m(R).

t=1 j=1I=1
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Due to the irreducible case we hawg j(P) = ab; A j;. Some similar simple com-
putations also show that

meji(R) =abiAgjy for t<i,
mji(P) = abi A,y for t>i.

Denote byA; the sumzrj‘=l Zf‘;"l Aji. We have just proved

Lemma 3.1. With the previous notationghe following formulas hold

mR)=a » bA+b Y aA, i=1...,m,

1=t<i i+1l<t=m

m ) m
mQh =) aA, mQ") =) bA.

t=1 t=1

REMARK 3.2. Itis easily checked than(Q'*") is equal to the degree of f(x,Y)
in C{x}[y]. Using the Weierstrass preparation theorem, we can viri}ey) in the form
f(x,y) = ug(x, y), with u = u(x, y) a unit inC{x, y}, g(x, y) being monic inC{y}[x].
Thenm(Q"9") is equal to the degree a@f(x, y) in the variablex.

3.3. General case: Vertices on a bamboo of floor 2. For such a bambod,
let Pgi, i =1,..., mg, be the regular vertices (i.e., the left end ver@g" and the
right end vertergght not included) ofGg lying on B, and P the vertex ofGs non-
horizontally connected to the left end vert@igft of B, i.e., the bambo@ is arisen by
a toric modifications, centered at a point in the exceptional divige(P). As above,
we regardP as the predecessor of th®s;’'s in Gs. We assume that the multiplicity
m(P) is already described.

We give an explicit description for the relation betwea(P?) and m(P) as fol-
lows. Let ® be the composition of the sequence of toric modificationstista from
1 in Subsection 3.2 to the previous toric modificationmf just mentioned. Suppose
that, in the standard system of local coordinatg) (at the center ofr,) constructed
as in [3], the pullbackd™* f (u, v) has the form

mg I'si SBiij
@ f(u,v) =Uuv) [TTTT] 98, v),
i=1j=11=1
where
O5..1(U, v) = (V¥ + £g; juPEi)Asiin 4 (higher terms)
are irreducible inC{u}[v], the &z, ;’s are distinct and nonzera,=1,..., mg, j =

1,...,r5i, 1 = 1,....85i andU (u, v) is a unit inC{u, v}. The Pg; = t(ag,i,bg,i),
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i =1,...,mg, are different faces of the Newton bounddryd* f, u, v). As a vertex
of Gs, P has degrees; + 2. As usual we assume that the fadeg;’s are ordered
from the left to the right. We denote byg . ;,1(Q) the multiplicity of the pullback of
the irreducible component of (x, y) corresponding t@z; j; on an exceptional divisor
E(Q). Then due to the irreducible case, we have

M5,i,j1(Psi) = asimg,i,j1(P) + ags,ibsi AsijI
and similarly,

Mgt (Psi) = agimgy,ji(P) + agibstAgy,jy  for t<i,

Mz1,i1(Psi) = agimgy,ji1(P) + agibgi Ay for t>i.

Thus we have

Lemma 3.3. Fori =1,...,mg,

m(Ps,) = agim(P) +ag; Y bsiAsi+bsi Y. asiAsg,

1<t<i i+1<t<mg
moreover
ms
ight
m(Qy) = m(P) + ) bsiAst,
t=1

where Agt = 3174 35Y A
ExampLE 3.4. Continue Example 2.1. Due to Lemma 3.1 we have
m(P;) =3-2-2+2-2-2=20, m(P;) =2(2-2+ 3-2) = 20,
m(Q¥") =3.2+2.2 =10, m(Q®™) =2.2+3.2 = 10.
Similarly, applying Lemma 3.3 we get
m(Ry) = m(Q5¢") = 30,
m(R) = m(Q53") = 30.
3.4. The monodromy zeta function of the singularityf (x,y). As in the intro-
duction part, by a theorem of ACampo [2], each exceptioneisdr Es of a resolution
of singularity = contributes a factor (&t™)~*(&) to the zeta functiort;(t). Thus the

bamboo corresponding te; described in Subsection 3.2 contributes the following fac-
tor to ¢ (t)

m
(1) 1= (1= t™@D) 72— ¢™@) 7 [ (1 — ),
i=1
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Each bambod3 of floor > 2 contributes a factor tg¢(t) as follows
) mg
£i(t) == (1 — tmQE )1 H(l — tm(Pe)Y B
i=1

Let B be the set of bamboos &, which coincides with the set of necessary toric
modifications of resolution of singularity. Note thatm(Q'*") is equal to the degree
n of f(x,y) as a polynomial inC{x}[y]. Then we have

Theorem 3.5. The monodromy zeta functian (t) of the singularity X, y) is
described viaGg as follows

£r(t) = (@ -t T]@ - Q&) @ - tmPeyes,

BeB i=1

ExXAMPLE 3.6. We continue Examples 2.1 and 3.4. With the dataGgfde-
scribed in these examples one deduces that

£r(1) = (1= 10731 = 971 — (1 - £0) (1 — 192
— (1 + th)Z(l _ t30)2-

4. A formula for the Alexander polynomial

As before, we consider the reduced plane curve singul&ity { f(x, y) = 0} at
the origin O of C2. To recall the concept of Alexander polynomial, we writéx,y) as
a product]‘[ip:l fi (x,y) of irreducible components;(x,y), i =1,..., p. The Alexander
polynomial of this singularityA®(T), where T = (Ty, ..., Tp), is defined to be the
Alexander polynomial of the linkC N S? c S2 for sufficiently smalle > 0 (see [5])
such thatA©(0, ..., 0) = 1. Extending this notion to the relative version for regu-
lar functions f; on a complex algebraic varietX, Sabbah [17] gives the Alexander
complex viewed as an object of the categ®y(Xo, C[ZP]) of bounded constructible
complexes ofC[ZP]-modules onXgy, where X = ﬂipzl f=1(0). Guibert [7] defines
an Alexander zeta function associated with, (..., f,) at neighborhood of a com-
pact setK. In fact, whenK is a singular point{x} of Xg this notion reduces to the
Alexander polynomial of the singularityXp, X). In [17] Sabbah gives an expression of
this function in terms of a resolution of singularity fof(..., f,), which generalizes
the formula of ACampo [2] on the monodromy zeta function ofiagularity. LetEs,
s e S, again denote exceptional divisors and strict transforfna esolution of singu-
larity = for (C, O). Let A be the p-tuple of multiplicities of ¢* fy, ..., 7* fy) on
the divisor Es.

Theorem 4.1(Sabbah [17]). AS(Ty, ..., Tp) = [Tes(T" — 1) #E),
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Now to describe the Alexander polynomiaF (T) via the extended simplified reso-
lution graphGs of (C, O), we use the decompositions and the notations as in Section 3
We firstly consider the ordered vertic€¥®®, Py, ..., Py, Q9" of Gs on the unique
bamboo of the first floor. With the notations as in Subsecti@) ®e have

| _ fabAg, for 1=<t<i,
mt’l’I(P')_{atbiAt,j,l for i <t=<m,

and
me i1 (Q") = a Ay,
M (QM™) = by A jy1.

Thus the first bamboo contributes the following factor to &lexander polynomial of
(C, O):

(Tm(Q'e") _ 1)—1(Tm(Q”gh‘) —1y?t H(Tm(F’.) — 1),
i=1
where m(Q*") = (mg;(Q"*")ej;, M(Q™M™) = (m;(Q"M);; and m(P) =
(me, 1 (Pt

Consider a bambog of floor > 2 with the ordered verticeBg, 1, ..., Pgmg,
as in Subsection 3.3. b*g ;| = 9s,v,j, for some (', j’,I’), then we put

right
B
M1 (Ps,i) i= Mgy i1 (Pg,i)
_ {aB,i Mg j1(P) +agibsyAgy i for 1<t <i,
agimgy,j(P) +agvbgiAgy,jr for i <t <mg.
and

ight ight
My (Q ) == Mup i (Qg ) = May ju(P) + bgvAsy -

Otherwise for a triplet( j, ) such that®*g ji = gs,,j», 1 With B # B (actually
in the same floor), leP be the closest common “ancestor” of vertices Brand 3.
Then we put

m, i1 (Pg,i) = mt,j,l(Qg’ght) = mgy jr 1 (P).
Now we setm(QE"™) = (M1 (QE™)r.js, M(Psi) = (Mej1(Psi)).j- Then the bam-
boo contributes the following factor ta®(T):
mga
(Tm(Qnsght) _ 1)—1 H(Tm(PB‘i) _ 1)f5,i_
i—1

Denoten = (deg, g, (X, Y)).j,- Thusn = m(Q"").
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Proposition 4.2. The Alexander polynomiah®(T) is described vieGs as follows

) ms
AC(T) — (Tn _ 1)—1 H(Tm(ertht) _ 1)_1 H(Tm(PBYi) _ 1)r5,i'
BeB i=1

In the irreducible case this formula reduces to that of Bhaer-Neumann (cf. [5])
and that of ACampo and Oka (cf. [3]).
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