
Priola, E.
Osaka J. Math.
49 (2012), 421–447

PATHWISE UNIQUENESS FOR
SINGULAR SDEs DRIVEN BY STABLE PROCESSES

ENRICO PRIOLA

(Received June 9, 2010, revised November 5, 2010)

Abstract
We prove pathwise uniqueness for stochastic differential equations driven by non-

degenerate symmetric�-stable Lévy processes with values inRd having a bounded
and �-Hölder continuous drift term. We assume� > 1� �=2 and� 2 [1, 2). The
proof requires analytic regularity results for the associated integro-differential opera-
tors of Kolmogorov type. We also study differentiability ofsolutions with respect to
initial conditions and the homeomorphism property.

1. Introduction

In this paper we prove a pathwise uniqueness result for the following SDE

(1.1) Xt D x C
Z t

0
b(Xs) dsC L t , x 2 Rd, t � 0,

where bW Rd
! R

d is bounded and�-Hölder continuous andL D (L t ) is a non-
degenerated-dimensional symmetric�-stable Lévy process (L0D 0, P-a.s.) andd � 1.

Currently, there is a great interest in understanding pathwise uniqueness for SDEs
when b is not Lipschitz continuous or, more generally, whenb is singular enough so
that the corresponding deterministic equation (1.1) withL D 0 is not well-posed. A
remarkable result in this direction was proved by Veretennikov in [25] (see also [28] for
d D 1). He was able to prove uniqueness whenbW Rd

! R

d is only Borel and bounded
and L is a standardd-dimensional Wiener process. This result has been generalized in
various directions in [9], [13], [27], [6], [7], [5], [8].

The situation changes whenL is not a Wiener process but is a symmetric�-stable
process,� 2 (0, 2). Indeed, whend D 1 and� < 1, Tanaka, Tsuchiya and Watanabe
prove in [24, Theorem 3.2] that even a bounded and�-Hölder continuousb is not
enough to ensure pathwise uniqueness if� C � < 1 (they consider drifts likeb(x) D
sign(x)(jxj� ^ 1) and initial conditionx D 0). On the other hand, whend D 1 and
� � 1, they show pathwise uniqueness for any continuous and bounded b.
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In this paper we prove pathwise uniqueness in any dimensiond � 1, assuming
that � � 1 andb is bounded and�-Hölder continuous with� > 1� �=2. Our proof is
different from the one in [24] and is inspired by [7]. The assumptions on the�-stable
Lévy processL which we consider are collected in Section 2 (see in particular Hypoth-
esis 1). Here we only mention two significant examples which satisfy our hypotheses.
The first is whenL D (L t ) is a standard�-stable process (symmetric and rotationally
invariant), i.e., the characteristic function of the random variableL t is

(1.2) E[ei hL t ,ui] D e�tc
�

juj� , u 2 Rd, t � 0,

where c
�

is a positive constant. The second example isL D (L1
t , : : : , Ld

t ), where
L1, : : : , Ld are independent one-dimensional symmetric stable processes of index�.
In this case

(1.3) E[ei hL t ,ui] D e�tk
�

(ju1j
�

C���Cjudj
� ), u 2 Rd, t � 0,

wherek
�

is a positive constant. Martingale problems for SDEs driven by (L1
t , : : : , Ld

t )
have been recently studied (see [3] and references therein).

We prove the following result.

Theorem 1.1. Let L be a symmetric�-stable process with� 2 [1, 2), satisfy-

ing Hypothesis 1 (seeSection 2). Assume that b2 C�

b (Rd
I R

d) for some� 2 (0, 1)
such that

� > 1�
�

2
.

Then pathwise uniqueness holds for equation(1.1). Moreover, if X x
D (Xx

t ) denotes
the solution starting at x2 Rd, we have:
(i) for any t� 0, p � 1, there exists a constant C(t, p) > 0 (depending also on�, �
and LD (L t )) such that

(1.4) E

�

sup
0�s�t
jXx

s � Xy
s j

p

�

� C(t, p)jx � yjp, x, y 2 Rd
I

(ii) for any t � 0, the mapping: x 7! Xx
t is a homeomorphism fromRd onto Rd,

P-a.s.;
(iii) for any t� 0, the mapping: x 7! Xx

t is a C1-function onRd, P-a.s.

All these assertions require thatL is non-degenerate. Estimate (1.4) replaces the
standard Lipschitz-estimate which holds without expectation E when b is Lipschitz
continuous. Assertion (ii) is the so-called homeomorphismproperty of solutions (we
refer to [1], [19] and [14]; see also [20] for the case of Log-Lipschitz coefficients).
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Note that existence of strong solutions for (1.1) follows easily by a compactness argu-
ment (see the comment before Lemma 4.1). On the other hand, existence of weak solu-
tions whenb is only measurable and bounded is proved in [15]. SinceC�

0

b (Rd, Rd) �

C�

b (Rd, Rd) when 0< � � �

0, our uniqueness result holds true for any� � 1 when
� 2 (1=2, 1). Theorem 1.1 implies the existence of a stochastic flow (see Remark 4.4).

The proof of the main result is given in Section 4. As in [7] ourmethod is based
on an Itô–Tanaka trick which requires suitable analytic regularity results. Such results
are proved in Section 3. They provide global Schauder estimates for the following re-
solvent equation onRd

(1.5) �u � Lu � b � Du D g,

where� > 0 andg 2 C�

b (Rd) are given and we assume� � 1 and�C� > 1. HereL is
the generator of the Lévy processL (see (2.5), [1] and [22]). IfL satisfies (1.2) thenL
coincides with the fractional Laplacian�(�4)�=2 on infinitely differentiable functions
f with compact support (see [22, Example 32.7]), i.e., for anyx 2 Rd,

(1.6) �(�4)�=2 f (x) D
Z

R

d

( f (x C y) � f (x) � 1{jyj�1} y � D f (x))
Qc
�

jyjdC�
dy.

It is simpler to prove Schauder estimates for (1.5) when� > 1. In such a case, assum-
ing in addition thatL D �(�4)�=2, i.e., L is a standard�-stable process, these esti-
mates can be deduced from the theory of fractional powers of sectorial operators (see
[16]). We also mention [2, Section 7.3] where Schauder estimates are proved when
� > 1 andL has the form (1.6) but with variable coefficients, i.e.,Qc

�

D Qc
�

(x, y). The
limit case� D 1 in (1.5) requires a special attention even for the fractional Laplacian
L D �(�4)1=2. Indeed in this caseL is of the “same order” ofb � D. To treat� D 1,
we use a localization procedure which is based on Theorem 3.3where Schauder esti-
mates are proved in the case ofb(x) D k, for any x 2 Rd, showing that the Schauder
constant is independent ofk (the case� < 1 is discussed in Remark 3.5).

In order to prove Theorem 1.1, in Section 4 we apply Itô’s formula to u(Xt ),
where u 2 C�C�

b comes from Schauder estimates for (1.5) wheng D b (in such case
(1.5) must be understood componentwise). This is needed to perform the Itô–Tanaka
trick and find a new equation forXt in which the singular term

R t
0 b(Xs) ds of (1.1) is

replaced by more regular terms. Then uniqueness and (1.4) follow by L p-estimates for
stochastic integrals. Such estimates require Lemma 4.1 andthe condition�=2C� > 1.
In addition, properties (ii) and (iii) are obtained transforming (1.1) into a form suitable
for applying the results in [14].

We will use the letterc or C with subscripts for finite positive constants whose
precise value is unimportant; the constants may change fromproposition to proposition.

2. Preliminaries and notation

General references for this section are [1], [21, Chapter 2], [22] and [26].
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Let hu, vi (or u � v) be the euclidean inner product betweenu and v 2 Rd, for any
d � 1; moreoverjuj D hu, ui1=2. If D � Rd we denote by 1D the indicator function of
D. The Borel� -algebra ofRd will be indicated byB(Rd). All the measures considered
in the sequel will be positive and Borel. A measure
 on Rd is called symmetric if

 (D) D 
 (�D), D 2 B(Rd).

Let us fix � 2 (0, 2). In (1.1) we consider ad-dimensionalsymmetric�-stable
process LD (L t ), d � 1, defined on a fixed stochastic basis (�, F , (Ft )t�0, P) and
Ft -adapted; the stochastic basis satisfies the usual assumptions (see [1, p. 72]). Recall
that L is a Lévy process (i.e., it is continuous in probability, it has stationary incre-
ments, càdlàg trajectories,L t � Ls is independent ofFs, 0� s � t , and L0 D 0) with
the additional property that the characteristic function of L t verifies

(2.1) E[ei hL t ,ui] D e�t (u),  (u) D �
Z

R

d

(ei hu,yi
� 1� i hu, yi1{jyj�1}(y))�(dy),

u 2 Rd, t � 0, where� is a measure such that

(2.2) �(D) D
Z

S

�(d� )
Z

1

0
1D(r � )

dr

r 1C�
, D 2 B(Rd),

for some symmetric, non-zero finite measure� concentrated on the unitary sphereS D
{y 2 Rd

W jyj D 1} (see [22, Theorem 14.3]).
The measure� is called the Lévy (intensity) measure ofL and (2.1) is the Lévy–

Khintchine formula. The measure� is a � -finite measure onRd such that�({0}) D 0
and

R

R

d (1^jyj2)�(dy) <1, with 1^j � j D min(1,j � j). Formula (2.2) implies that (2.1)
can be rewritten as

(2.3)

 (u) D �
Z

R

d

(cos(hu, yi) � 1)�(dy)

D �

Z

S

�(d� )
Z

1

0

cos(hu, r �i) � 1

r 1C�
dr D c

�

Z

S

jhu, �ij��(d� ), u 2 Rd

(see also [22, Theorem 14.13]). The measure� is called the spectral measure of the
stable processL. In this paper we make the following non-degeneracy assumption
(cf. [23] and [22, Definition 24.16]).

HYPOTHESIS 1. The support of the spectral measure� is not contained in a
proper linear subspace ofRd.

It is not difficult to show that Hypothesis 1 is equivalent to the following assertion:
there exists a positive constantC

�

such that, for anyu 2 Rd,

(2.4)  (u) � C
�

juj�.
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Condition (2.4) is also assumed in [11, Proposition 2.1]. Tosee that (2.4) implies Hy-
pothesis 1, we argue by contradiction: if Supp(�) � (M \ S) where M is the hyper-
plane containing all vectors orthogonal to someu0 ¤ 0, then (u0) D 0. To show
the converse, note that Hypothesis 1 implies that for anyv 2 R

d with jvj D 1, we
have (v) > 0 (indeed, otherwise, we would have�({� 2 S W jhv, �ij > 0}) D 0 and
so Supp(�) � {� 2 S W hv, �i D 0} which contradicts the hypothesis). By using a com-
pactness argument, we deduce that (2.4) holds for anyu 2 Rd with juj D 1. Then,
writing, for any u 2 Rd, u¤ 0,

R

S

jhu, �ij��(d� ) D juj�
R

S

jhu=juj, �ij��(d� ), we obtain
easily (2.4).

The infinitesimal generatorL of the processL is given by

(2.5) L f (x) D
Z

R

d

( f (x C y) � f (x) � 1{jyj�1}hy, D f (x)i)�(dy), f 2 C1

c (Rd),

whereC1

c (Rd) is the space of all infinitely differentiable functions with compact sup-
port (see [1, Section 6.7] and [22, Section 31]). Let us consider the two examples of
�-stable processes mentioned in Introduction which satisfyHypothesis 1. The first is
when L is a standard�-stable process, i.e., (u) D c

�

juj�. In this case� has density
C
�

=jxjdC� with respect to the Lebesgue measure inRd. Moreover the spectral measure
� is the normalized surface measure onS (i.e., � gives a uniform distribution onS;
see [21, Section 2.5] and [22, Theorem 14.14]).

The second example isL D (L1
t , : : : , Ld

t ), see (1.3). In this case (u)D k
�

(ju1j
�

C

� � � C judj
�) and the Lévy measure� is more singular since it is concentrated on the

union of the coordinates axes, i.e.,� has density

c
�

�

1{x2D0,:::,xdD0}

1

jx1j
1C�
C � � � C 1{x1D0,:::,xd�1D0}

1

jxdj
1C�

�

with respect to the Lebesgue measure. The spectral measure� is a linear combination
of Dirac measures, i.e.� D

Pd
kD1(Æek C Æ�ek ), where (ek) is the canonical basis inRd.

The generator is

L f (x) D
d
X

kD1

Z

R

[ f (x C sek) � f (x) � 1{jsj�1}s �xk f (x)]
c
�

jsj1C�
ds, f 2 C1

c (Rd).

Let us fix some notation on function spaces. We defineCb(Rd
I R

k), for integersk,d � 1,
as the set of all functionsf W Rd

! R

k which are bounded and continuous. It is a Banach
space endowed with the supremum normk f k0D supx2Rd j f (x)j, f 2 Cb(Rd

I R

k). More-

over,C�

b (Rd
I R

k), � 2 (0,1), is the subspace of all�-Hölder continuous functionsf , i.e.,
f verifies

(2.6) [ f ]
�

WD sup
x,y2Rdx¤y

j f (x) � f (y)j

jx � yj�
<1.
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C�

b (Rd
I R

k) is a Banach space with the normk � k
�

D k � k0 C [ � ]
�

. If k D 1, we

set C�

b (Rd
I R

k) D C�

b (Rd). Let C0
b(Rd, Rk) D Cb(Rd, Rk) and [ � ]0 D k � k0. For any

n � 1, � 2 [0, 1), we say thatf 2 CnC�
b (Rd) if f 2 Cn(Rd) \ C�

b (Rd) and, for all
j D 1, : : : , n, the (Fréchet) derivativesD j f 2 C�

b (Rd
I (Rd)
( j )). The spaceCnC�

b (Rd)
is a Banach space endowed with the normk f knC� D k f k0C

Pn
kD1kD

k f k0C [Dn f ]
�

,
f 2 CnC�

b (Rd). Finally, we will also consider the Banach spaceC0(Rd) � Cb(Rd) of
all continuous functions vanishing at infinity endowed withthe normk � k0.

REMARK 2.1. Hypothesis 1 (or condition (2.4)) is equivalent to the following
Picard’s type condition (see [17]): there exists� 2 (0, 2) andC

�

> 0, such that the
following estimate holds, for any� > 0, u 2 Rd with juj D 1,

Z

{jhu,yij��}

jhu, yij2�(dy) � C
�

�

2��.

The equivalence follows from the computation
Z

{jhu,yij��}

jhu, yij2�(dy)D
Z

S

jhu, �ij2�(d� )
Z

1

0
1{jhu,�ij��=r }r

1�� dr

D �

2��
Z

S

jhu, �ij2�(d� )
Z

1

jhu,�ij

ds

s3��
D

�

2��

2� �

Z

S

jhu, �ij��(d� ).

The Picard’s condition is usually imposed on the Lévy measure � of a non-necessarily
stable Lévy processL in order to ensure that the law ofL t , for any t > 0, has a
C1-density with respect to the Lebesgue measure.

3. Some analytic regularity results

In this section we prove existence of regular solutions to (1.5). This will be achieved
through Schauder estimates and will be important in Section4 to prove uniqueness
for (1.1).

We will use the following three properties of the�-stable processL (in the sequel
�t denotes the law ofL t , t � 0).
(a) �t (A) D �1(t�1=�A), for any A 2 B(Rd), t > 0 (this scaling property follows from
(2.1) and (2.3));
(b) �t has a densitypt with respect to the Lebesgue measure,t > 0; moreoverpt 2

C1(Rd) and its spatial derivativeDpt 2 L1(Rd, Rd) (this is a consequence of Hypoth-
esis 1);
(c) for any � > �, we have by (2.2)

(3.1)
Z

{jxj�1}

jxj��(dx) <1.
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The fact that (b) holds can be deduced by an argument of [23, Section 3]. Actually,
Hypothesis 1 implies the following stronger result.

Lemma 3.1. For any � 2 (0, 2), t > 0, the density pt 2 C1(Rd) and all deriva-
tives Dk pt are integrable onRd, k � 1.

Proof. We only show thatpt 2 C1(Rd) and Dpt 2 L1(Rd, Rd), following [23];
arguing in a similar way one can obtain the full assertion. By(2.4), we know that
e�t (u)

� e�C
�

t juj� , u 2 Rd, and so by the inversion formula of Fourier transform (see
[22, Proposition 2.5])�t has a densitypt 2 L1(Rd) \ C0(Rd),

(3.2) pt (x) D
1

(2�)d

Z

R

d

e�i hx,zie�t (z) dz, x 2 Rd, t > 0.

Note that (a) implies thatpt (x)D t�d=� p1(t�1=�x). Thanks to (2.4) one can differentiate
infinitely many times under the integral sign and verifies that pt 2 C1(Rd). Let us fix
j D 1,:::,d and check that the partial derivative�x j pt 2 L1(Rd). By the scaling property
(a) it is enough to considert D 1. By writing  D  1C  2,

 1(u) D �
Z

{jyj�1}

(cos(hu, yi) � 1)�(dy),  2 D  �  1,

�x j p1(x) D
1

(2�)d

Z

R

d

e�i hx,zi((�i z j )e
� 1(z))e� 2(z)dz, x 2 Rd.

We find easily that 1 2 C1(Rd) and so, using also (2.4) we deduce that�i z j e� 1(z)

is in the Schwartz spaceS(Rd). In particular, there existsf1 2 L1(Rd) such that the
Fourier transform Of1(z) D (�i z j )e� 1(z). On the other hand (see [22, Section 8]), there
exists an infinitely divisible probability measure
 on Rd such that the Fourier trans-

form O
 (z) D e� 2(z). By [22, Proposition 2.5] we infer that1f1 � 
 D Of1 � O
 . By the
inversion formula we deduce that�x j p1(x) D ( f1 � 
 )(x) and this proves that�x j p1 2

L1(Rd).

Remark that (c) implies that the expression ofL f in (2.5) is meaningful for any

f 2 C1C

b (Rd) if 1 C 
 > �. IndeedL f (x) can be decomposed into the sum of two

integrals, over{jyj > 1} and over{jyj � 1} respectively. The first integral is finite since
f is bounded. To treat the second one, we can use the estimate

(3.3)

j f (yC x) � f (x) � y � D f (x)j

�

Z 1

0
jD f (x C r y) � D f (x)jjyj dr � [D f ]




jyj1C
 , jyj � 1.

Note thatL f 2 Cb(Rd) if f 2 C1C

b (Rd) and 1C 
 > �.
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The next result is a maximum principle. A related result is in[10, Section 4.5].
This will be used to prove uniqueness of solutions to (1.5) aswell as to study existence.

Proposition 3.2. Let � 2 (0, 2). If u 2 C1C

b (Rd), 1C 
 > �, is a solution to

�u � Lu � b � Du D g, with � > 0 and g2 Cb(Rd), then

(3.4) kuk0 �
1

�

kgk0, � > 0.

Proof. Since�u solves the same equation ofu with g replaced by�g, it is
enough to prove thatu(x) � kgk0=�, x 2 Rd. Moreover, possibly replacingu by
u � infx2Rd u(x), we may assume thatu � 0.

Now we show that there existsc1 > 0 such that, for any� > 0 we can findu
�

2

C1C

b (Rd) with ku

�

k0 D maxx2Rd
ju
�

(x)j and also

ku � u
�

k1C
 < �c1.

To this purpose letx
�

2 R

d be such thatu(x
�

) > kuk0 � � and take a test function
� 2 C1

c (Rd) such that�(x
�

) D 1, 0 � � � 1, and �(x) D 0 if jx � x
�

j � 1. One
checks thatu

�

(x) D u(x)C 2��(x) verifies the assumptions. Let us define the operator
L1 D LC b � D and write

�u
�

(x) � L1u
�

(x) D g(x)C �(u
�

(x) � u(x)) � L1(u
�

� u)(x).

Let y
�

be one point in whichu
�

attains its global maximum. Since clearlyL1u
�

(y
�

) � 0,
we have (using also (3.3))

�ku
�

k0 D �u
�

(y
�

) � kgk0C Cku � u
�

k1C
 � kgk0C Cc1�.

Letting � ! 0C, we get (3.4).

Next we prove Schauder estimates for (1.5) whenb is constant. The case ofb 2
C�

b (Rd, Rd) will be treated in Theorem 3.4. We stress that the constantc in (3.6) is
independent ofbD k.

The condition�C� > 1 which we impose is needed to have a regularC1-solution
u. On the other hand, the next result holds more generally without the hypothesis�C
� < 2. This is assumed just to simplify the proof and it is not restrictive in the study

of pathwise uniqueness for (1.1). Indeed sinceC�

0

b (Rd, Rd) � C�

b (Rd, Rd) when 0<
� � �

0, it is enough to study uniqueness when� satisfies� < 2� �.

Theorem 3.3. AssumeHypothesis 1. Let � 2 (0, 2) and � 2 (0, 1) be such that

1< �C� < 2. Then, for any � > 0, k 2 Rd, g 2 C�

b (Rd), there exists a unique solution
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u D u
�

2 C�C�

b (Rd) to the equation

(3.5) �u � Lu � k � Du D g

on Rd (L is defined in(2.5)). In addition there exists a constant c independent of g,
u, k and � > 0 such that

(3.6) �kuk0C �
(�C��1)=�

kDuk0C [Du]
�C��1 � ckgk

�

.

Proof. Equation (3.5) is meaningful foru 2 C�C�

b (Rd) with � C � > 1 thanks to
(3.3). Moreover, uniqueness follows from Proposition 3.2.

To prove the result, we use the semigroup approach as in [4]. To this purpose,
we introduce the�-stable Markov semigroup (Pt ) acting onCb(Rd) and associated to
LC k � Du, i.e.,

Pt f (x) D
Z

R

d

f (zC tk)pt (z� x) dz, t > 0, f 2 Cb(Rd), x 2 Rd,

where pt is defined in (3.2), andP0 D I . Then we consider the bounded function
u D u

�

,

(3.7) u(x) D
Z

1

0
e��t Pt g(x) dt, x 2 Rd.

We are going to show thatu belongs toC�C�

b (Rd), verifies (3.6) and solves (3.5).

PART I. We prove thatu 2 C�C�

b (Rd) and that (3.6) holds. First note that�kuk0 �
kgk0 since (Pt ) is a contraction semigroup. Then, using the scaling property pt (x) D
t�d=� p1(t�1=�x), we arrive at

(3.8) jDPt f (x)j �
t�1=�

td=�

Z

R

d

j f (zC tk)jjDp1(t�1=�z� t�1=�x)j dz�
c0k f k0

t1=�
,

t > 0, f 2 Cb(Rd), wherec0 D kDp1kL1(Rd), and so we find the estimate

(3.9) kDPt f k0 �
c0

t1=�
k f k0, f 2 Cb(Rd), t > 0.

By interpolation theory we know that (Cb(Rd), C1
b(Rd))

�,1 D C�

b (Rd), � 2 (0, 1), see for
instance [16, Chapter 1]; interpolating the previous estimate with the estimatekDPt f k0 �
kD f k0, t � 0, f 2 C1

b(Rd), we obtain

(3.10) kDPt f k0 �
c1

t (1��)=�
k f k

�

, t > 0, f 2 C�

b (Rd),
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with c1 D c1(c0, �). In a similar way, we also find

(3.11) kD2Pt f k0 �
c2

t (2��)=�
k f k

�

, t > 0, f 2 C�

b (Rd).

Using (3.10) and the fact that (1� �)=� < 1, we can differentiate under the integral
sign in (3.7) and prove that there existsDu(x) D Du

�

(x), x 2 Rd. Moreover Du
�

is
bounded onRd and we have, for any� > 0 with Qc independent of�, u, k and g,

�

(�C��1)=�
kDuk0 � Qckgk�

(we have used that
R

1

0 e��t t�� dt D c=�1�� , for � < 1 and� > 0).
It remains to prove thatDu 2 C�

b(Rd, Rd), where � D � � 1 C � 2 (0, 1). We
proceed as in the proof of [2, Proposition 4.2] and [18, Theorem 4.2].

Using (3.10), (3.11) and the fact that 2�� > �, we find, for anyx,x0 2 Rd, x ¤ x0,

jDu(x) � Du(x0)j � Ckgk
�

 

Z

jx�x0j�

0

1

t (1��)=�
dt C

Z

1

jx�x0j�

jx � x0j

t (2��)=�
dt

!

� c3kgk� jx � x0j� ,

and so [Du]
��1C� � c3kgk� , wherec3 is independent ofg, u, k and �.

PART II. We prove thatu solves (3.5), for any� > 0. We use the fact that the
semigroup (Pt ) is strongly continuous on the Banach spaceC0(Rd); see [1, Section 6.7]
and [22, Section 31].

LetAW D(A) � C0(Rd)! C0(Rd) be its generator. By [22, Theorem 31.5])C2
0(Rd)�

D(A) and moreoverA f D L f C k � D f if f 2 C2
0(Rd) (we say thatf belongs toC2

0(Rd)
if f 2 C2

b(Rd) \ C0(Rd) and all its first and second partial derivatives belong toC0(Rd)).
We first show the assertion assuming in addition thatg 2 C2

0(Rd). It is easy to
check thatu belongs toC2

0(Rd) as well. To this purpose, one can use the estimates
kDk Pt gk0 � kDkgk0, t � 0, k D 1, 2, and the dominated convergence theorem. On the
other hand, by the Hille–Yosida theorem we know thatu 2 D(A) and �u � Au D g.
Thus we have found thatu solves (3.5).

Let us prove the assertion wheng 2 C2
b(Rd). Note that alsou 2 C2

b(Rd). We con-
sider a function 2 C1

c (Rd) such that (0) D 1 and introducegn(x) D  (x=n)g(x),
x 2 Rd, n � 1. It is clear thatgn, un 2 C2

0(Rd) (un is given in (3.7) wheng is replaced
by gn). We know that

(3.12) �un(x) � Lun(x) � k � Dun(x) D gn(x), x 2 Rd.

It is easy to see that there existsC > 0 such thatkgnk2 � C, n � 1, and moreovergn

and Dgn converge pointwise tog and Dg respectively. It follows that alsokunk2 is
uniformly bounded and moreoverun and Dun converge pointwise tou and Du re-
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spectively. Using also (3.3), we can apply the dominated convergence theorem and
deduce that

lim
n!1

Lun(x) D Lu(x), x 2 Rd.

Passing to the limit in (3.12), we obtain thatu is a solution to (3.5).
Let now g2C�

b (Rd). Take any� 2C1

c (Rd) such that 0���1 and
R

R

d �(x) dxD1.
Define �n(x) D nd

�(xn) and gn D g � �n. Note that (gn) � C1

b (Rd) D
T

k�1 Ck
b(Rd)

and kgnk� � kgk� , n � 1. Moreover, possibly passing to a subsequence still denoted
by (gn), we may assume that

(3.13) gn ! g in C�

0

(K ).

for any compact setK � Rd and 0< �

0

< � (see p. 37 in [12]). Letun be given in
(3.7) wheng is replaced bygn. By the first part of the proof, we know that

kunk�C� � Ckgnk� � Ckgk
�

,

where C is independent ofn. It follows that, possibly passing to a subsequence still
denoted with (un), we have thatun ! u in C�C�

0

(K ), for any compact setK � Rd

and � 0 > 0 such that 1< � C �

0

< � C �. Arguing as before, we can pass to the
limit in �un(x)�Lun(x)� k � Dun(x) D gn(x) and obtain thatu solves (3.5). The proof
is complete.

Now we extend Theorem 3.3 to the case in whichb is Hölder continuous. We
can only do this when� � 1 (see also Remark 3.5). To prove the result when� D 1
we adapt the localization procedure which is well known for second order uniformly
elliptic operators with Hölder continuous coefficients (see [12]). This technique works
in our situation since in estimate (3.6) the constant is independent ofk 2 Rd.

We also need the following interpolatory inequalities (see[12, p. 40, (3.3.7)]); for any
t 2 [0, 1), 0� s� r < 1, there existsN D N(d,k, r, t) such that if f 2 CrCt

b (Rd,Rk), then

(3.14) [f ]sCt � N[ f ]s=r
rCt [ f ]1�s=r

t ,

where [f ]sCt is defined as in (2.6) if 0< sC t < 1, [ f ]0 D k f k0, [ f ]1 D kD f k0, and
[ f ]sCt D [D f ]sCt�1 if 1 < sC t < 2. By (3.14) we deduce, for any� > 0,

(3.15) [f ]sCt � QN�
r�s[ f ]rCt C QN�

�s[ f ]t , f 2 CrCt
b (Rd, Rk).

Theorem 3.4. AssumeHypothesis 1. Let � � 1 and � 2 (0, 1) be such that1<
� C � < 2. Then, for any � > 0, g 2 C�

b (Rd), there exists a unique solution uD u
�

2
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C�C�

b (Rd) to the equation

(3.16) �u � Lu � b � Du D g

on R

d. Moreover, for any ! > 0, there exists cD c(!), independent of g and u,
such that

(3.17) �kuk0C [Du]
�C��1 � ckgk

�

, � � !.

Finally, we havelim
�!1

kDu
�

k0 D 0.

Proof. Uniqueness and estimate�kuk0 � kgk0, � > 0, follow from the maximum
principle (see Proposition 3.2). Moreover, the last assertion follows from (3.17) using
(3.14). Indeed, witht D 0, sD 1, r D � C �, we obtain, for� � !,

[Du
�

]0 D [u
�

]1 � N[Du
�

]1=(�C�)
�C��1 [u

�

]1�1=(�C�)
0 � N Qc��(�C��1)=(�C�)

kgk
�

,

where QcD Qc(!). Letting �!1, we get the assertion.
Let us prove existence and estimate [Du]

�C��1 � ckgk
�

, for � � !, with ! > 0
fixed. We treat� > 1 and� D 1 separately.

PART I (the case� > 1). In the sequel we will use the estimate

(3.18) kl f k
�

� klk0k f k
�

C k f k0[ l ]
�

, l , f 2 C�

b(Rd), � 2 (0, 1).

Writing �u(x)�Lu(x) D g(x)Cb(x) � Du(x), and using (3.6) and (3.18), we obtain the
following a priori estimate (assuming thatu 2 C�C�

b (Rd) is a solution to (3.16))

(3.19)
[Du]

�C��1 � Ckgk
�

C Ckb � Duk
�

� Ckgk
�

C Ckbk
�

kDuk0C Ckbk0[Du]
�

,

where C is independent of� > 0. Combining the interpolatory estimates (see (3.15)
with t D 0, sD 1C �, r D � C �)

[Du]
�

�

QN���1[Du]
�C��1C QN�

�(1C�)
kuk0, � > 0,

and kDuk0 � QN��C��1[Du]
�C��1 C QN��1

kuk0 (recall that� C � > 1C �) with the
maximum principle, we get for� small enough the a priori estimate

(3.20)

[Du]
�C��1 � c1(kgk

�

C C(�)kuk0)

� c1

�

kgk
�

C

C(�)

�

kgk0

�

� c1

�

kgk
�

C

C(�)

!

kgk0

�

� C1kgk� ,
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for any � � !. Now to prove the existence of aC�C�

b -solution, we use the continuity
method (see, for instance, [12, Section 4.3]). Let us introduce

(3.21) �u(x) � Lu(x) � Æb(x) � Du(x) D g(x),

x 2 Rd, whereÆ 2 [0, 1] is a parameter. Let us define0 D {Æ 2 [0, 1]: there is a unique
solution u D u

Æ

2 C�C�

b (Rd), for any g 2 C�

b (Rd)}.
Clearly 0 is not empty since 02 0. Fix Æ0 2 0 and rewrite (3.21) as

�u(x) � Lu(x) � Æ0b(x) � Du(x) D g(x)C (Æ � Æ0)b(x) � Du(x).

Introduce the operatorSW C�C�

b (Rd)! C�C�

b (Rd). For anyv 2 C�C�

b (Rd), u D Sv is

the uniqueC�C�

b -solution to�u(x)�Lu(x)�Æ0b(x) �Du(x)D g(x)C(Æ�Æ0)b(x) �Dv(x).
By using (3.20), we getkSv1 � Sv2k�C� � 2jÆ � Æ0j � Qc1kbk� kv1 � v2k�C� . By

choosing jÆ � Æ0j small enough,S becomes a contraction and it has a unique fixed
point which is the solution to (3.21). A compactness argument shows that0 D [0, 1].
The assertion is proved.

PART II (the case� D 1). As before, we establish the existence of aC1C�
b (Rd)-

solution, by using the continuity method. This requires thea priori estimate (3.20) for
� D 1.

Let u 2 C1C�
b (Rd) be a solution. Letr > 0. Consider a function� 2 C1

c (Rd) such
that � (x) D 1 if jxj � r and � (x) D 0 if jxj > 2r .

Let now x0 2 R
d and define�(x)D � (x�x0), x 2 Rd, andv D u�. One can easily

check that

(3.22)
Lv(x) D �(x)Lu(x)C u(x)L�(x)

C

Z

R

d

(�(x C y) � �(x))(u(x C y) � u(x))�(dy), x 2 Rd.

We have

�v(x) � Lv(x) � b(x0) � Dv(x) D f1(x)C f2(x)C f3(x)C f4(x), x 2 Rd,

where

f1(x) D �(x)g(x), f2(x) D (b(x) � b(x0)) � Dv(x),

f3(x) D �u(x)[L�(x)C b(x) � D�(x)],

f4(x) D �
Z

R

d

(�(x C y) � �(x))(u(x C y) � u(x))�(dy), x 2 Rd.

By Theorem 3.3 we know that

(3.23) [Dv]
�

� C1(k f1k� C k f2k� C k f3k� C k f4k�),
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where the constantC1 is independent ofx0 and�. Let us consider the crucial termf2.
By (3.18) we find

k f2k� �

�

sup
x2B(x0,2r )

jb(x) � b(x0)j

�

[Dv]
�

C kDvk0kbk� .

Let us fix r small enough such thatC1 supx2B(x0,2r )jb(x) � b(x0)j < 1=2. We get

(3.24) [Dv]
�

� 2C1(k f1k� C kDvk0kbk� C k f3k� C k f4k�).

Note thatk f1k� � C(r )kgk
�

. By the interpolatory estimates (3.15) and the maximum
principle, arguing as in (3.20), we arrive at

[Dv]
�

� C2(kgk
�

C k f3k� C k f4k�),

for any � � !. Let us estimatef4. To this purpose we introduce the following non-
local linear operatorT

T f (x) D
Z

R

d

(�(x C y) � �(x))( f (x C y) � f (x))�(dy), f 2 C1
b(Rd), x 2 Rd.

One can easily check thatT is continuous fromC1
b(Rd) into Cb(Rd) and fromC1C�

b (Rd)
into C1

b(Rd). To this purpose we only remark that, for anyx 2 Rd,

jDT f (x)j � 5k�k2k f k1

�

Z

{jyj�1}

jyj2�(dy)C
Z

{jyj>1}

�(dy)

�

C 5k�k1k f k1C�

�

Z

{jyj�1}

jyj1C��(dy)C
Z

{jyj>1}

�(dy)

�

, f 2 C1C�
b (Rd).

By interpolation theory we know that

(C1
b(Rd), C1C�

b (Rd))
�,1 D C1C�2

b (Rd),

see [16, Chapter 1], and so we get thatT is continuous fromC1C�2

b (Rd) into C�

b (Rd)
(see [16, Theorem 1.1.6]). Sincef4 D �T u, we obtain the estimate

k f4k� � C3kuk1C�2.

We havek f4k� C k f3k� � c3(r )kuk1C�2 and so

[Dv]
�

� C4(kgk
�

C kuk1C�2),

whereC4 is independent of� � !. It follows that [Du]C� (B(x0,r )) � C4(kgk
�

Ckuk1C�2),
where B(x0, r ) is the ball of centerx0 and radiusr > 0. SinceC4 is independent of
x0, we obtain

[Du]
�

� C4(kgk
�

C kuk1C�2),
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for any � � !. Using again (3.15) and the maximum principle, we get the a priori
estimate (3.20) for� D 1. The proof is complete.

REMARK 3.5. In contrast with Theorem 3.3, in Theorem 3.4 we can not show
existence ofC�C�

b -solutions to (3.16) when� < 1. The difficulty is evident from the
a priori estimate (3.19). Indeed, starting from

[Du]
�C��1 � Ckgk

�

C Ckbk
�

kDuk0C Ckbk0[Du]
�

,

we cannot continue, since� < 1 gives Du 2 C�

b with � D � C � � 1 < �. Roughly
speaking, when� < 1, the perturbation termb � Du is of order larger thanL and so
we are not able to prove the desired a priori estimates.

4. The main result

We briefly recall basic facts about Poisson random measures which we use in the
sequel (see also [1], [14], [19], [26]). The Poisson random measureN associated with
the �-stable processL D (L t ) in (1.1) is defined by

N((0, t ] �U ) D
X

0<s�t

1U (4Ls) D #{0< s� t W 4Ls 2 U},

for any Borel setU in R

d
n {0}, i.e., U 2 B(Rd

n {0}), t > 0. Here4Ls D Ls � Ls�

denotes the jump size ofL at time s > 0. The compensated Poisson random measure
QN is defined by QN((0, t ] �U ) D N((0, t ] �U ) � t�(U ), where� is given in (2.2) and

0 � NU . Recall the Lévy–Itô decomposition of the processL (see [1, Theorem 2.4.16]
or [14, Theorem 2.7]). This says that

(4.1) L t D Obt C
Z t

0

Z

{jxj�1}

x QN(ds, dx)C
Z t

0

Z

{jxj>1}

x N(ds, dx), t � 0,

where ObD E
�

L1�
R 1

0

R

{jxj>1}
x N(ds, dx)

�

. Note that in our case, since� is symmetric,

we have ObD 0.
The stochastic integral

R t
0

R

{jxj�1}
x QN(ds,dx) is the compensated sum of small jumps

and is anL2-martingale. The process
R t

0

R

{jxj>1}
x N(ds, dx) D

R

(0,t ]

R

{jxj>1}
x N(ds, dx) D

P

0<s�t , j4Lsj>14Ls is a compound Poisson process.
Let T > 0. The predictable� -field P on � � [0, T ] is generated by all left-

continuous adapted processes (defined on the same stochastic basis fixed in Section 2).
Let U 2 B(Rd

n {0}). In the sequel, we will always consider aP � B(U )-measurable
mapping F W [0, T ] �U ��! R

d.

If 0 � NU , then
R T

0

R

U F(s, x)N(ds, dx) D
P

0<s�T F(s,4Ls)1U (4Ls) is a random
finite sum.
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If E
R T

0 ds
R

U jF(s, x)j2�(dx) <1, then one can define the stochastic integral

Zt D

Z t

0

Z

U
F(s, x) QN(ds, dx), t 2 [0, T ]

(here we do not assume 0� NU ). The processZ D (Zt ) is anL2-martingale with a càdlàg
modification. Moreover,EjZt j

2
D E

R t
0 ds

R

U jF(s, x)j2�(dx) (see [14, Lemma 2.4]). We
will use the following L p-estimates (see [14, Theorem 2.11] or the proof of Propos-
ition 6.6.2 in [1]); for anyp � 2, there existsc(p) > 0 such that

(4.2)

E

�

sup
0<s�t
jZsj

p

�

� c(p)E

"

�

Z t

0
ds
Z

U
jF(s, x)j2�(dx)

�p=2
#

C c(p)E

�

Z t

0
ds
Z

U
jF(s, x)jp�(dx)

�

, t 2 [0, T ]

(the inequality is obvious if the right-hand side is infinite).
Let us recall the concept of (strong) solution which we consider. A solution to the

SDE (1.1) is a càdlàgFt -adapted processXx
D (Xx

t ) (defined on (�, F , (Ft )t�0, P)
fixed in Section 2) which solves (1.1)P-a.s., for t � 0.

It is easy to show the existence of a solution to (1.1) using the fact thatb is
bounded and continuous. We may argue at! fixed. Let us first considert 2 [0, 1].
By introducingv(t) D Xt � L t , we get the equation

v(t) D x C
Z t

0
b(v(s)C Ls) ds.

Approximating b with smooth driftsbn we find solutionsvn 2 C([0, 1]I Rd). By the
Ascoli–Arzela theorem, we obtain a solution to (1.1) on [0, 1]. The same argument
works also on the time interval [1, 2] with a random initial condition. Iterating this
procedure we can construct a solution for allt � 0.

The proof of Theorem 1.1 requires some lemmas. We begin with adeterminis-
tic result.

Lemma 4.1. Let 
 2 [0, 1] and f 2 C1C

b (Rd). Then for any u, v 2 Rd, x 2 Rd,

with jxj � 1, we have

j f (uC x) � f (u) � f (v C x)C f (v)j � c



k f k1C
 ju � vjjxj

 , with c




D 31�
 .

Proof. For anyx 2 Rd, jxj � 1, define the linear operatorTx W C1
b(Rd)! C1

b(Rd),

Tx f (u) D f (uC x) � f (u), f 2 C1
b(Rd), u 2 Rd.
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SincekTx f k0 � kD f k0jxj and kD(Tx f )k0 � 2kD f k0, it follows that Tx is continuous
and kTx f k1 � (2C jxj)k f k1, f 2 C1

b(Rd). Similarly, Tx is continuous fromC2
b(Rd)

into C1
b(Rd) and

kTx f k1 � jxjk f k2, f 2 C2
b(Rd).

By interpolation theory (C1
b(Rd), C2

b(Rd))

 ,1 D C1C


b (Rd), see for instance [16, Chap-

ter 1]; we deduce that, for any
 2 [0, 1], Tx is continuous fromC1C

b (Rd) into C1

b(Rd)
(cf. [16, Theorem 1.1.6]) with operator norm less than or equal to (2C jxj)1�


jxj
 .

Since jxj � 1, we obtain thatkTx f k1 � c



jxj
 k f k1C
 , f 2 C1C

b (Rd). Now the

assertion follows noting that, for anyu, v 2 Rd,

j f (uC x) � f (u) � f (v C x)C f (v)j D jTx f (u) � Tx f (v)j � kDTx f k0ju � vj.

The proof is complete.

In the sequel we will consider the following resolvent equation on Rd

(4.3) �u � Lu � Du � bD b,

wherebW Rd
! R

d is given in (1.1),L in (2.5) and� > 0 (the equation must be un-
derstood componentwise, i.e.,�ui � Lui � b � Dui D bi , i D 1, : : : , d). The next two
results hold for SDEs of type (1.1) whenb is only continuous and bounded.

Lemma 4.2. Let � 2 (0, 2) and b2 Cb(Rd, Rd) in (1.1). Assume that, for some

� > 0, there exists a solution u2 C1C

b (Rd,Rd) to (4.3) with 
 2 [0, 1], and moreover

1C 
 > �.

Let XD (Xt ) be a solution of(1.1) starting at x2 Rd. We have, P-a.s., t � 0,

(4.4)

u(Xt ) � u(x)

D x � Xt C L t C �

Z t

0
u(Xs) dsC

Z t

0

Z

R

d
n{0}

[u(Xs� C x) � u(Xs�)] QN(ds, dx).

Proof. First note that the stochastic integral in (4.4) is meaningful thanks to the
estimate

(4.5)

E
Z t

0
ds
Z

R

d

ju(Xs� C x) � u(Xs�)j2�(dx)

� 4tkuk20

Z

{jxj>1}

�(dx)C tkuk21

Z

{jxj�1}

jxj2�(dx) <1.



438 E. PRIOLA

The assertion is obtained applying Itô’s formula tou(Xt ) (for more details on Itô’s
formula see [1, Theorem 4.4.7] and [14, Section 2.3]).

Let us fix i D 1, : : : , d and setui D f . A difficulty is that Itô’s formula is usu-
ally stated assuming thatf 2 C2(Rd). However, in the present situation in whichL
is �-stable, using (3.1), one can show that Itô’s formula holds for f (Xt ) when f 2

C1C

b (Rd). We give a proof of this fact.

We assume that
 > 0 (the proof with
 D 0 is similar). By convolution with
mollifiers, as in (3.13) we obtain a sequence (fn) � C1

b (Rd) such that fn ! f in
C1C
 0(K ), for any compact setK � Rd and 0< 
 0 < 
 . Moreover,k fnk1C
� k f k1C
 ,
n � 1. Let us fix t > 0. By Itô’s formula for fn(Xt ) we find, P-a.s.,

(4.6)

fn(Xt ) � fn(x)

D

Z t

0

Z

R

d
n{0}

[ fn(Xs� C x) � fn(Xs�)] QN(ds, dx)

C

Z t

0
ds
Z

R

d

[ fn(Xs� C x) � fn(Xs�) � 1{jxj�1}x � D fn(Xs�)]�(dx)

C

Z t

0
b(Xs) � D fn(Xs)ds.

It is not difficult to pass to the limit asn ! 1; we show two arguments which are
needed. To deal with the integral involving�, one can apply the dominated conver-
gence theorem, thanks to the following estimate similar to (3.3),

j fn(Xs� C x) � fn(Xs�) � x � D fn(Xs�)j � [D f ]



jxj1C
 , jxj � 1

(recall that
R

{jxj�1}
jxj1C
 �(dx) < 1 since 1C 
 > �). To pass to the limit in the

stochastic integral with respect toQN, one uses the isometry formula

(4.7)

E

�

�

�

�

Z t

0

Z

R

d
n{0}

[ fn(Xs� C x) � fn(Xs�) � f (Xs� C x)C f (Xs�)] QN(ds, dx)

�

�

�

�

2

D

Z t

0
ds
Z

{jxj�1}

Ej fn(Xs� C x) � f (Xs� C x) � fn(Xs�)C f (Xs�)j2�(dx)

C

Z t

0
ds
Z

{jxj>1}

Ej fn(Xs� C x) � f (Xs� C x) � fn(Xs�)C f (Xs�)j2�(dx).

Arguing as in (4.5), sincek fnk1C
 � k f k1C
 , n � 1, we can apply the dominated con-
vergence theorem in (4.7). Lettingn! 1 in (4.7) we obtain 0. Finally, we pass to

the limit in probability in (4.6) and obtain Itô’s formula when f 2 C1C

b (Rd).

Noting that, for anyi D 1, : : : , d,

Lui (y) D
Z

R

d

[ui (yC x) � ui (y) � 1{jxj�1}x � Dui (y)]�(dx), y 2 Rd,
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and using thatu solves (4.3), i.e.,Lu C b � Du D �u � b, we can replace in the Itô
formula for u(Xt ) the term

Z t

0
Lu(Xs) dsC

Z t

0
Du(Xs)b(Xs) ds

D

d
X

iD1

�

Z t

0
Lui (Xs) dsC

Z t

0
Dui (Xs) � b(Xs)ds

�

ei

with �
R t

0 b(Xs)dsC�
R t

0 u(Xs)dsD x�XtCL tC�
R t

0 u(Xs)ds and obtain the assertion.

The proof of Theorem 1.1 will be a consequence of the following result.

Theorem 4.3. Let � 2 (0, 2) and b2 Cb(Rd,Rd) in (1.1). Assume that, for some

� > 0, there exists a solution uD u
�

2 C1C

b (Rd, Rd) to the equation(4.3) with 
 2

[0, 1], such that c
�

D kDu
�

k0 < 1=3. Moreover, assume that

2
 > �.

Then the SDE(1.1), for every x2 Rd, has a unique solution(Xx
t ).

Moreover, assertions(i), (ii) and (iii) of Theorem 1.1hold.

Proof. Note that 2
 > � implies the condition 1C 
 > � of Lemma 4.2.
We provide a direct proof of pathwise uniqueness and assertion (i). This uses Lem-

mas 4.2 and 4.1 together withL p-estimates for stochastic integrals (see (4.2)). State-
ments (ii) and (iii) will be obtained by transforming (1.1) in a form suitable for apply-
ing the results in [14, Chapter 3].

Let us fix t > 0, p � 2 and consider two solutionsX and Y of (1.1) starting at
x and y 2 Rd respectively. Note thatXt is not in L p if p � � (compare with [14,
Theorem 3.2]) but the differenceXt � Yt is a bounded process. Pathwise uniqueness
and (1.4) (for anyp � 1) follow if we prove

(4.8) E

�

sup
0�s�t
jXs � Ysj

p

�

� C(t)jx � yjp, x, y 2 Rd,

with a positive constantC(t) independent ofx and y. Indeed in the special case of
x D y estimate (4.8) gives uniqueness of solutions.
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We have from Lemma 4.2,P-a.s.,

(4.9)

Xt � Yt D [x � y] C [u(x) � u(y)] C [u(Yt ) � u(Xt )]

C

Z t

0

Z

R

d
n{0}

[u(Xs� C x) � u(Xs�) � u(Ys� C x)C u(Ys�)] QN(ds, dx)

C �

Z t

0
[u(Xs) � u(Ys)] ds.

SincekDuk0 � 1=3, we haveju(Xt ) � u(Yt )j � (1=3)jXt � Yt j. It follows the estimate
jXt � Yt j � (3=2)31(t)C (3=2)32(t)C (3=2)33(t)C (3=2)34, where

31(t) D

�

�

�

�

Z t

0

Z

{jxj>1}

[u(Xs� C x) � u(Xs�) � u(Ys� C x)C u(Ys�)] QN(ds, dx)

�

�

�

�

,

32(t) D �
Z t

0
ju(Xs) � u(Ys)j ds,

33(t) D

�

�

�

�

Z t

0

Z

{jxj�1}

[u(Xs� C x) � u(Xs�) � u(Ys� C x)C u(Ys�)] QN(ds, dx)

�

�

�

�

,

34 D jx � yj C ju(x) � u(y)j �
4

3
jx � yj.

Note that,P-a.s.,

sup
0�s�t
jXs � Ysj

p
� Cpjx � yjp C Cp

3
X

kD1

sup
0�s�t

3k(s)p.

The main difficulty is to estimate33(t). Let us first consider the other terms. By the
Hölder inequality

sup
0�s�t

32(s)p
� c1(p)t p�1

Z t

0
sup

0�s�r
jXs � Ysj

p dr .

By (4.2) with U D {x 2 Rd
W jxj > 1} we find

E

�

sup
0�s�t

31(s)p

�

� c(p)E

"

�

Z t

0
ds
Z

{jxj>1}

ju(Xs� C x) � u(Ys� C x)C u(Ys�) � u(Xs�)j2�(dx)

�p=2
#

C c(p)E
Z t

0
ds
Z

{jxj>1}

ju(Xs� C x) � u(Ys� C x)C u(Ys�) � u(Xs�)jp�(dx).

Using ju(Xs�C x)� u(Ys�C x)C u(Ys�)� u(Xs�)j � (2=3)jXs� �Ys�j and the Hölder
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inequality, we get

E

�

sup
0�s�t

31(s)p

�

� C1(p)(1C t p=2�1)

�

 

Z

{jxj>1}

�(dx)C

�

Z

{jxj>1}

�(dx)

�p=2
!

Z t

0
E

�

sup
0�s�r
jXs � Ysj

p

�

dr .

Let us treat33(t). This requires the condition 2
 > �. By using (4.2) withU D {x 2
R

d
W jxj � 1, x ¤ 0} and also Lemma 4.1, we get

E

�

sup
0�s�t

33(s)p

�

� c(p)kukp
1C
 E

"

�

Z t

0
ds
Z

{jxj�1}

jXs � Ysj
2
jxj2
 �(dx)

�p=2
#

C c(p)kukp
1C
 E

Z t

0
ds
Z

{jxj�1}

jXs � Ysj
p
jxj
 p

�(dx).

We obtain

E

�

sup
0�s�t

33(s)p

�

� C2(p)(1C t p=2�1)kukp
1C


�

 

�

Z

{jxj�1}

jxj2
 �(dx)

�p=2

C

Z

{jxj�1}

jxj
 p
�(dx)

!

Z t

0
E

�

sup
0�s�r
jXs � Ysj

p

�

dr,

where
R

{jxj�1}
jxjp
 �(dx) < C1, since p � 2 and 2
 > �. Collecting the previous

estimates, we arrive at

E

�

sup
0�s�t
jXs � Ysj

p

�

� Cpjx � yjp C C4(p)(1C t p�1)
Z t

0
E

�

sup
0�s�r
jXs � Ysj

p

�

dr .

Applying the Gronwall lemma we obtain (4.8) withC(t) D Cp exp(C4(p)(1C t p�1)).
The assertion is proved.

Now we establish the homeomorphism property(ii) (cf. [14, Chapter 3], [1, Chap-
ter 6] and [19, Section V.10]).

First note that, sincekDuk0 < 1=3, the classical Hadamard theorem (see [19, p. 330])
implies that the mapping W Rd

! R

d,  (x)D xCu(x), x 2 Rd, is aC1-diffeomorphism
from R

d ontoRd. Moreover,D �1 is bounded onRd andkD �1
k0 � 1=(1� c

�

) < 3=2
thanks to

(4.10) D �1(y) D [ I C Du( �1(y))]�1
D

X

k�0

(�Du( �1(y)))k, y 2 Rd.
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Let r 2 (0, 1) and introduce the SDE

(4.11)

Yt D yC
Z t

0

Qb(Ys) ds

Z t

0

Z

{jzj�r }

g(Ys�, z) QN(ds, dz)C
Z t

0

Z

{jzj>r }

g(Ys�, z)N(ds, dz), t � 0,

where Qb(y) D �u( �1(y)) �
R

{jzj>r }
[u( �1(y)C z) � u( �1(y))]�(dz) and

g(y, z) D u( �1(y)C z)C z� u( �1(y)), y 2 Rd, z 2 Rd.

Note that (4.11) is a SDE of the type considered in [14, Section 3.5]. Due to the
Lipschitz condition, there exists a unique solutionYy

D (Yy
t ) to (4.11). Moreover, using

(4.4) and the formula

L t D

Z t

0

Z

{jxj�r }

x QN(ds, dx)C
Z t

0

Z

{jxj>r }

x N(ds, dx), t � 0

(due to the fact that� is symmetric) it is not difficult to show that

(4.12)  (Xx
t ) D Y (x)

t , x 2 Rd, t � 0.

Thanks to (4.12) to prove our assertion, it is enough to show the homeomorphism prop-
erty for Yy

t . To this purpose, we will apply [14, Theorem 3.10] to equation (4.11). Let
us check its assumptions.

Clearly, Qb is Lipschitz continuous and bounded. Let us consider [14, condition (3.22)].
For anyy 2 Rd, z 2 Rd, jg(y, z)j � jzj(1C kDuk0) � K (z), with K (z) D (4=3)jzj (recall
that

R

jzj�1jzj
2
�(dz) <1); further by Lemma 4.1 and (4.10) we have, for anyy, y0 2 Rd,

z 2 Rd with jzj � 1,

jg(y, z) � g(y0, z)j � L(z)jy� y0j where L(z) D C1kuk1C
 jzj

 ,

with
R

jzj�1 L(z)2
�(dz) <1, since 2
 > �. Note that we may fixr > 0 small enough

in (4.11) in order thatK (r ) C L(r ) < 1 (according to [14, Section 3.5], this con-
dition is needed to study the homeomorphism property for equation (4.11) without
R t

0

R

{jzj>r }
g(Ys�, z)N(ds, dz); see also [14, Remark 1, Section 3.4]).

By [14, Theorem 3.10] in order to get the homeomorphism property, it remains to
check that, for anyz 2 Rd, the mapping:

(4.13) y 7! yC g(y, z) is a homeomorphism fromRd onto Rd.

Let us fix z. To verify the assertion, we will again apply the Hadamard theorem.
We have

Dyg(y, z) D [Du( �1(y)C z) � Du( �1(y))][ D �1(y)]
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and so by (4.10) (sincekDuk0 < 1=3) we getkDyg( � ,z)k0 � 2c
�

=(1�c
�

)< 1. We have
obtained (4.13). By [14, Theorem 3.10] the homeomorphism property for Yy

t follows
and this gives the assertion.

Now we show that, for any t � 0, the mapping: x 7! Xx
t is of class C1 on Rd,

P-a.s. (see (iii)).
We fix t > 0 and a unitary vectorek of the canonical basis inRd. We will show

that there exists,P-a.s., the partial derivative lims!0(XxCsek
t � Xx

t )=s D Dek Xx
t and,

moreover, that the mappingx 7! Dek Xx
t is continuous onRd, P-a.s.

Let us consider the processYy
D (Yy

t ) which solves the SDE (4.11). If we prove
that the mappingy 7! Yy

t is of classC1 on Rd, P-a.s., then we have proved the as-
sertion. Indeed,P-a.s.,

Dek Xx
t D [D �1(Y (x)

t )][ DY (x)
t ]Dek (x), x 2 Rd.

We rewrite (4.11) as

(4.14) Yt D yC �
Z t

0
u( �1(Yr )) dr C

Z t

0

Z

R

d
n{0}

h(Yr�, z) QN(dr, dz)C L t ,

t � 0, y 2 Rd, where

h(y, z) D u( �1(y)C z) � u( �1(y)) D g(y, z) � z,

and note that the statement of [14, Theorem 3.4] about the differentiability property
holds for SDEs of the form (4.14), provided that the coefficients �uÆ �1 andh satisfy
[14, conditions (3.1), (3.2), (3.8) and (3.9)]. Indeed the presence ofL t in the equation
does not give rise to any difficulty. To check this fact, remark that, for any t � 0,
y 2 Rd, s¤ 0, we have the equality

YyCsek
t � Yy

t

s
D ek C

�

�

Z t

0

u( �1(YyCsek
r )) � u( �1(Yy

r ))

s
dr

C

Z t

0

Z

R

d
n{0}

h(YyCsek
r� , z) � h(Yy

r�, z)

s
QN(dr, dz)

�

,

whereL t is disappeared. Thus we can apply the same argument which is used to prove
[14, Theorem 3.4] (see also the proof of [14, Theorem 3.3]), i.e., we can provide esti-
mates for

E

"

sup
0�t�T

�

�

�

�

�

YyCsek
t � Yy

t

s

�

�

�

�

�

p#

and E

"

sup
0�t�T

�

�

�

�

�

YyCsek
t � Yy

t

s
�

Yy0Cs0ek
t � Yy0

t

s0

�

�

�

�

�

p#

,

p � 2, s, s0 ¤ 0, y, y0 2 Rd, by using (4.2) and the Gronwall lemma (remark that in
[14] the terms�1(YyCsek

t �Yy
t ) is denoted byNt (y, s)), and then apply the Kolmogorov

criterion in order to prove thaty 7! Yy
t is of classC1 on Rd, P-a.s.
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Let us check that�uÆ �1 andh satisfy the assumptions of [14, Theorem 3.4] (i.e.,
respectively, [14, conditions (3.1), (3.2), (3.8) and (3.9)]). Conditions (3.1) and (3.2)
are easy to check. Indeed�u( �1( � )) is Lipschitz continuous onRd and, moreover,
thanks to Lemma 4.1 and to the boundeness ofD �1,

jh(y, z) � h(y0, z)j � Ckuk1C
 (1{jzj�1}jzj



C 1{jzj>1})jy� y0j, z 2 Rd,

y, y0 2 Rd, with
R

R

d (1{jzj�1}jzj
 C 1{jzj>1})p
�(dz) < 1, for any p � 2. In addition,

jh(y, z)j � L0(z), z 2 Rd, y 2 Rd, where, sincekDuk0 < 1=3,

L0(z) D
1

3
1{jzj�1}jzj C 2kuk01{jzj>1} with

Z

R

d

L0(z)p
�(dz) <1, p � 2.

Assumptions [14, (3.8) and (3.9)] are more difficult to check. They require that there
exists someÆ > 0 such that (settingl (x) D �u( �1(x)))

(4.15)
(1) sup

y2Rd

jDl (y))j <1I jDl (y) � Dl (y0)j � Cjy� y0jÆ, y, y0 2 Rd.

(2) jDyh(y, z))j � K1(z)I jDyh(y, z) � Dyh(y0, z)j � K2(z)jy� y0jÆ,

for any y, y0 2 Rd, z 2 Rd, with
R

R

d K i (z)p
�(dz) <1, for any p � 2, i D 1, 2. Such

estimates are used in [14] in combination with the Kolmogorov continuity theorem to
show the differentiability property.

Let us check (1) withÆ D 
 , i.e., Dl 2 C


b (Rd, Rd). Since, for anyy 2 Rd,
Dl (y) D �Du( �1(y))D �1(y), we find thatDl is bounded onRd. Moreover, thanks
to the following estimate (cf. (3.18))

[Dl ]



� �kDuk0[D �1]



C �[Du]



kD �1
k

1C

0 ,

in order to prove the assertion it is enough to show that [D �1]



<1. Recall that for
d�d real matricesA and B, we have (I CA)�1

�(I CB)�1
D (I CA)�1(B�A)(I CB)�1

(if ( I C A) and (I C B) are invertible). We obtain, using also thatD �1 is bounded,

jD �1(y) � D �1(y0)j D j[ I C Du( �1(y))]�1
� [ I C Du( �1(y0))]�1

j

� c1[Du]



jy � y0j
 , y, y0 2 Rd

and the proof of (1) is complete with
 D Æ. Let us consider (2). Clearly,

Dyh(y, z) D [Du( �1(y)C z) � Du( �1(y))]D �1(y)

verifies the first part of (2) withK1(z) D c2kDuk



(1{jzj�1}jzj
 C 1{jzj>1}).
Let us deal with the second part of (2). We choose
 0 2 (0, 
 ) such that 2
 0 > �

and first show that, for anyf 2 C


b (Rd, Rd), we have

(4.16) [Tx f ]

�


0

� C[ f ]



jxj

0

, x 2 Rd,
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where (as in Lemma 4.1) for anyx 2 Rd, we define the mappingTx f W Rd
! R

d as
Tx f (u) D f (x C u) � f (u), u 2 Rd. Using also (3.14), we get

[Tx f ]

�


0

� N[Tx f ](
�
 0)=




[Tx f ]1�(
�
 0)=

0 � cN[ f ]




jxj
 (1�(
�
 0)=
 )
� cNjxj


0

[ f ]



,

for any x 2 Rd. By (4.16) we will prove (2) withÆ D 
 � 
 0 > 0.
First consider the case whenjzj � 1. By (4.16) with Du D f , we get

jDyh(y, z) � Dyh(y0, z)j

D jDu( �1(y)C z) � Du( �1(y)) � Du( �1(y0)C z)C Du( �1(y0))jkD �1
k0

� C1[Du]



jy� y0jÆjzj

0

,

for any y, y0 2 Rd. Let now jzj > 1; we find, for y, y0 2 Rd with jy� y0j � 1,

jDyh(y, z) � Dyh(y0, z)j � C2[Du]



jy � y0j
 � C2[Du]



jy� y0j
�

0

.

On the other hand, ifjy�y0j> 1, jzj> 1, jDyh(y,z)�Dyh(y0,z)j � 4kDuk0jy�y0j
�

0

.
In conclusion, the second part of (2) is verified withÆ D 
 � 
 0 and

K2(z) D C3kDuk



(1{jzj�1}jzj



0

C 1{jzj>1}).

(note that
R

R

d K2(z)p
�(dz) <1, for any p � 2, since 2
 0 > �). SinceC


b (Rd, Rd) �

C
�


0

b (Rd, Rd), we deduce that both (1) and (2) hold withÆ D 
 � 
 0.
Arguing as in [14, Theorem 3.4], we get thaty 7! Yy

t is C1, P-a.s., and this proves
our assertion. We finally note that [14, Theorem 3.4] also provides a formula forH y

t D

DYy
t , i.e.,

H y
t D I C �

Z t

0
Du( �1(Yy

s ))D �1(Yy
s )H y

s ds

C

Z t

0

Z

R

d
n{0}

(Dyh(Yy
s�, z)H y

s�) QN(ds, dz), t � 0, y 2 Rd.

The stochastic integral is meaningful, thanks to (2) in (4.15) and to the estimate
sup0�s�t E[jHsj

p] <1, for any t > 0, p � 2 (see [14, assertion (3.10)]). The proof
is complete.

Proof of Theorem 1.1. We may assume that 1��=2< � < 2��. We will deduce
the assertion from Theorem 4.3.

Since � � 1, we can apply Theorem 3.4 and find a solutionu
�

2 C1C

b (Rd, Rd)

to the resolvent equation (4.3) with
 D � � 1C � 2 (0, 1). By the last assertion of
Theorem 3.4, we may choose� sufficiently large in order thatkDuk0D kDu

�

k0 < 1=3.
The crucial assumption about
 and � in Theorem 4.3 is satisfied. Indeed 2
 D 2� �
2C 2� > � since� > 1� �=2. By Theorem 4.3 we obtain the result.
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REMARK 4.4. Thanks to Theorem 1.1 we may define a stochastic flow associ-
ated to (1.1). To this purpose, note that by (ii) we haveXx

t D �t (x), t � 0, x 2 Rd,
P-a.s., where�t is a homeomorphism fromRd onto Rd. Let ��1

t be the inverse map.
As in [14, Section 3.4], we set�s,t (x) D �t Æ �

�1
s (x), 0� s� t , x 2 Rd.

The family (�s,t ) is a stochastic flow since verifies the following properties(P-a.s.):
(i) for any x 2 Rd, (�s,t (x)) is a càdlàg process with respect tot and a càdlàg process
with respects;
(ii) �s,t W R

d
! R

d is an onto homeomorphism,s� t ;
(iii) �s,t (x) is the unique solution to (1.1) starting fromx at time s;
(iv) we have�s,t (x) D �u,t (�s,u(x)), for all 0� s� u � t , x 2 Rd, and �s,s(x) D x.
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