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Abstract
In this paper we study geometric properties of the slowness surface of the system

of crystal acoustics for cubic crystals in the special case when the stiffness constants
satisfy the conditiona D �2b. The paper is a natural continuation of the paper [9]
in which related properties were studied for general constants a andb, but assuming
that we were in the nearly isotropic case, in which casea � b has to be small. We
also take this opportunity to correct a statement made in [9]: see Remark 1.3.

1. Introduction

In this paper we study geometric properties of the slowness surface QS of the sys-
tem of crystal elasticity for cubic crystals in the special case when the stiffness con-
stants of the crystal are related by the condition “a D �2b”. To some extent the paper
is a continuation of the paper [9] in which similar geometricproperties were studied
for cubic crystals in the nearly isotropic case. Information on the terminology, the no-
tations and the condition “a D �2b” shall be given in a moment. The geometric prop-
erties in which we are interested are related to the curvature properties in the smooth
part of QS and the structure of the singularities at the singular points. Such properties
are needed in order to understand the asymptotic behavior for jxj ! 1 of integrals
of form

(1.1) I (x) D
Z

QS
ei hx,�iu(� ) d� (� ),

with d� denoting the surface element onQS. Estimates for integrals as in (1.1) in turn
are an essential ingredient in establishing estimates concerning the long-time behavior
of global solutions of the system of crystal elasticity for cubic crystals (See e.g., [10]).
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We recall the exact form of the system to which we refer: it is

(1.2)

0

�

�

2
t � a�2

x1
� c1 �b�x1�x2 �b�x1�x3

�b�x2�x1 �

2
t � a�2

x2
� c1 �b�x2�x3

�b�x3�x1 �b�x3�x2 �

2
t � a�2

x3
� c1

1

A

0

�

u1

u2

u3

1

A

D 0,

and the “characteristic” surface associated with the system can be written in the follow-
ing form (due to Kelvin):

(1.3)
b�2

1

�

2
� cj� j2C (b� a)�2

1

C

b�2
2

�

2
� cj� j2C (b� a)�2

2

C

b�2
3

�

2
� cj� j2C (b� a)�2

3

D 1.

In these equationsa, b, c, are real constants which can be calculated in terms of the
stiffness constants of the crystal under consideration. (Recall that for cubic crystals
the number of essential stiffness constants is 3. For more details on all this, see [3]
and also [6].) The fact that (1.3) defines the characteristicsurface of a cubic crys-
tal gives some restrictions on the constantsa, b, c. Of these we mention that we
must havec > 0, a ¤ 0, a C c > 0, 3c � b C a > 0 (see, e.g., [6]. Some of these
restrictions simply come from the fact that the system of crystal elasticity is hyper-
bolic, while others may have a deeper physical interpretation: see [3], [5]). As in
[3] we shall often assume thatb � 0 (for a physical justification, see [10]). The sur-
face{� 2 R3

I �satisfies (1.3) with� D 1} is called the “slowness surface” of the crystal
under consideration. It is essentially the intersection ofthe characteristic surface with
the hyperplane� D 1.

In [9] the main assumption on the constantsa, b, c was thata � b had to be
small compared withc. Sincea� b is a measure of the anisotropy of the crystal, this
assumption says that we are in a “nearly” isotropic case. In the first main result in this
paper we shall now assume thata D �2b, with no additional restrictions on the size
of the quantitya� b, whereas in the second main result the restrictions on the size of
the constants are quantitatively more precise than in the corresponding result in [9].

We know of no physical interpretation of the conditionaD �2b, but from a math-
ematical point of view it leads to a significant simplification of the situation. Indeed,
(1.3) transforms fora D �2b to

(1.4)
3
X

jD1

b�2
j

�

2
� cj� j2C 3b�2

j

D 1,

which holds trivially when� 2
D cj� j2. This shows that the factor� 2

� cj� j2 must split
off in the characteristic polynomial defined by (1.3) and in fact, (1.3) can in this case
equivalently be written as

(1.5) (� 2
� cj� j2)[(� 2

C (b� c)j� j2)2
� b2(�4

1 C �
4
2 C �

4
3 � �

2
1�

2
2 � �

2
1�

2
3 � �

2
2�

2
3 )] D 0.
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(See, e.g., [13].) Since the “geometry” of the sphere 1� cj� j2 D 0 is trivial from our
point of view, we may restrict attention in the sequel to the quartic surface defined by
the second factor in (1.5) when� D 1, i.e., to SD {� 2 R3

I p(� ) D 0}, where

(1.6) p(� ) D (1C (b� c)j� j2)2
� b2(�4

1 C �
4
2 C �

4
3 � �

2
1�

2
2 � �

2
1�

2
3 � �

2
2�

2
3 ) D 0.

Note in particular, thatS already contains all the essential singularities of the full slow-
ness surface. In fact, it is known that the full slowness surface QS for a cubic crys-
tal has 6 singular points of “uniplanar” type which lie on thecoordinate axes and 8
singular points of conical type which lie on the lines definedby the conditionj�1j D

j�2j D j�3j. (Cf. e.g., [3], [6].) However, the uniplanar singularities are very weak in
the special casea D �2b, in that they are just due to the fact that the spherej� j D
1=
p

c is tangent toS at the points of the sphere which lie on the coordinate axes,
S itself being smooth at those points. As for the conically singular points, they are
(�1=

p

3(c� b),�1=
p

3(c� b),�1=
p

3(c� b)), with all combinations of signs allowed.
When a D �2b, the conditionaC c > 0 mentioned above is of course equivalent

to c > 2b. Since, except for Section 9, we shall from now on always assume that
a D �2b, there is no need for the constant “a” in the sequel, so we shall henceforth
formulate all conditions in terms ofb and c. (We also mention that despite of this
convention, we shall every now and then speak about the case “a D �2b”, in order
to make it clear that our results refer to this case and not to general cubic crystals.)
We could in principle simplify notations further by normalizing to c D 1. In fact, if
we replaceb by b0 D b=c, and � by �=

p

c, then (1.4) transforms to essentially the
same equation in (� , �) space with the constants (c, b) replaced by (1,b=c). (All this
amounts to a re-normalization for the speed of elastic wavesin the crystal.) We shall
however work with a generalc for most of the calculations, since then many relations
are homogeneous in the variables (b, c) and calculations are easier to check.

Our first remark on the geometry ofS is that it is a two-sheeted bounded surface
with an inner and an outer sheet which we shall callSo, respectivelySi . By this we
mean that we can writeS in the form SD Si [ So where both surfaces are bounded
and are such thatSi lies in the closure of the bounded component ofR

3
n So. These

surfaces are clearly symmetric under a permutation of the variables and under reflection
with respect to the coordinate planes�i D 0. The �3-coordinates of the points on the
positive�3 semi-axis are 1=

p

c� 2b and 1=
p

c. The two surfaces have exactly 8 points
in common, which are the conically singular points mentioned above. It follows indeed
from the fact that the system of crystal elasticity is hyperbolic that the full slowness
surface QS is a three sheeted surface andS is obtained from the full slowness surface
by removing the smooth sheet{� I j� j2 D 1=c}. The inner sheetSi is easily seen to be
strictly convex: if we could find a line which intersectedSi in 3 or more points, then
this line would intersectS in at least five points. (For this to be true when one or two
of these points is a singular point, we have to take into account multiplicities: when
our line passes through a singular point, we count the intersection “twice”.) SinceS
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is a quartic this is impossible, so any line which intersectsSi has only two points of
intersection withSi .

The main results of the paper are

Theorem 1.1. Assume aD �2b, b> 0. Then there are no non-trivial curves em-
bedded in S with a common tangent plane.

Theorem 1.2. Still under the assumption aD �2b, there is a calculable constant
Æ > 0 such that for0< b � Æc the surface So has no points where the Gaussian and
the mean curvature vanish simultaneously.

REMARK 1.3. In the nearly isotropic case (and for “generic” constants (b,c)) sim-
ilar results have already been established in [9]. However in that paper it was wrongly
stated that “the mean curvature of the slowness surfaceS does not vanish in the nearly
isotropic case”. The correct statement there should be that“in the nearly isotropic case
the mean curvature and the total curvature can not vanish simultaneously”. Our aim in
this paper is to remove the restriction to the nearly isotropic case in the special case
when a D �2b in the case of Theorem 1.1 and to make the restrictions on the size of
what nearly isotropic means more precise in the case of Theorem 1.2. (The argument in
[9] does not allow for this.)

The reason why the Theorems 1.1, 1.2, are interesting for estimates of integrals
as in (1.1) is explained (e.g.) in Proposition 1.2 in [9]. On the way to proving them
we shall also establish other results on the geometric nature of S and shall studyS
near the singular points. While we do so in this paper as preliminary results for the
proof of Theorem 1.2 we should mention that the results referring to singular points
are exactly in the form in which they are needed to establish decay estimates for the
associated system of crystal elasticity.

REMARK 1.4. We have not made any serious attempt to calculate an optimal
value for Æ. The reason is that while most partial results are sharp, we hope that The-
orem 1.2 itself can be improved by arguing in a different way.

REMARK 1.5. We recall here that Theorem 1.1 is in sharp contrast withwhat
happens for Fresnel’s surface in crystal optics for biaxialcrystals: it was discovered by
R.W. Hamilton that there are four circles embedded in Fresnel’s surface such that the
points on each circle admit a common tangent plane. (Cf. e.g., [2].) This is intimately
related to “conical refraction” in crystal optics. For somecomments on this and on
the fact that there is still some kind of conical refraction in crystal acoustics for cubic
crystals, see, e.g., [6].

As for Theorem 1.2, we restrict our attention toSo, sinceSi is strictly convex and
it should be possible to prove much better results with othermethods.
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We shall show in Section 2 that forb> 0, S lies completely in the cube{� I j� j j �

1=
p

c� 2b, j D 1, 2, 3}. Since the point (0, 0, 1=
p

c� 2b) (and similar ones on the
other axes) lies inS, this comes as no surprise, but a look at the only somewhat more
general case of the slowness surface for general cubic crystals may convince us that
some argument is needed to check the statement.

We also mention that when we keepc fixed and letb tend increasingly towards
c=2, then the points on the outer sheet on the axes will tend to infinity whereas on the
inner sheet the non-zero component will have constant value�1=

p

c. Since the two
sheets are glued together at the conically singular points,which remain in the bounded
region supj j� j j � 1=

p

3c, we see that withb % (c=2), the surface will look wilder
and wilder.

There is also another information about the surfacesS which is quite easy to ob-
tain. We assume for simplicity, here (but also often in the sequel when this leads to
simplifications) thatb > 0: it follows from (1.4) that

(1.7) j� j �

1
p

c
when � 2 S.

Indeed, if j� j < 1=
p

c then jb� j j
2
=(1� cj� j2C 3b�2

j ) < 1=3, for every j , so (1.4) can-
not hold.

Acknowledgments written by the first author. The present paper owes its existence
to a discussion the two authors had in September 2003 in Kyoto. Both of us were
then interested in the long-time behavior of global solutions to the system of crystal
acoustics in the cubic case, the first author for general nearly isotropic crystals, the
second for the case whena D �2b. I myself was in that discussion more interested
in theorems of type Theorem 1.1, T. Sonobe in how the singularities of the slowness
surface bear on loss of decay of solutions for large times. None of us had a strategy
to prove theorems of type Theorem 1.1, but T. Sonobe, at the time a Ph.D. student
at Osaka University, with professor M. Sugimoto as an advisor, expressed his strong
belief, which for him was perhaps based on graphical evidence and preliminary calcu-
lations, that his insights were true and calculable. Soon after this discussion, T. Sonobe
fell seriously ill and passed away in the Summer of 2004. At that time, I still had no
idea of how to prove Theorem 1.1, neither in the nearly isotropic general case, nor in
the casea D �2b. It was only much later that I understood what was going on for
the nearly isotropic case and then also how the special casea D �2b simplifies things
enough to study crystals away from the nearly isotropic caseif we assumea D �2b.
Since there were no further contacts between T. Sonobe and meafter September 2003,
I am to blame alone for any shortcomings of the paper.
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2. Preliminary remarks

1. For later purpose we now introduce the notations�

0

D (�1, �2),

(2.1)

d0(b, c) D (b� c)2
� b2

D c(c� 2b),

d2(� 0, b, c) D 2(1C (b� c)j� 0j2)(b� c)C b2
j�

0

j

2,

d4(� 0, b, c) D (1C (b� c)j� 0j2)2
� b2(�4

1 C �
4
2 � �

2
1�

2
2 ),

and

(2.2) p(� , b, c) D d0(b, c)�4
3 C d2(� 0b, c)�2

3 C d4(� 0, b, c).

In particular, S is then given by the condition{� I p(� , b, c) D 0}. The coefficientd0

is strictly positive, since by assumptionc > 2b, c > 0.
We now first study the curvature ofS at the pointP

C

D (0, 0, 1=
p

c� 2b).
For this purpose we parameterize the outer sheet ofS by � 0, i.e., we write this sheet

locally near (0, 0, 1=
p

c� 2b) as the graph of some function� 0 ! g(� 0) which satisfies

d0(b, c)g4(� 0)C d2(� 0, b, c)g2(� 0)C d4(� 0, b, c) � 0, g(0)D
1

p

c� 2b
.

(For notations, see (2.2).) Thusg also depends onb and c, but since we shall use the
notationg only in the present argument, we shall not make this dependence explicit in
the notation.

If we denote byH
�

0

�

0 the Hessian in the variables� 0 we must then have (since it is
clear by symmetry thatr

�

0g(0)D 0) 4d0(b,c)g3(0)H
�

0

�

0g(0)C2d2(0,b,c)g(0)H
�

0

�

0g(0)C
g2(0)H

�

0

�

0d2(0, b, c)C H
�

0

�

0d4(0, b, c) D 0. This gives

(2.3) H
�

0

�

0g(0)D �
p

c� 2b
(c� 2b)�1H

�

0

�

0d2(0, b, c)C H
�

0

�

0d4(0, b, c)

4d0(b, c)=(c� 2b)C d2(0, b, c)
.

Here 4d0(b, c)=(c� 2b)C d2(0, b, c) D 4cC 2(b� c) D 2(cC b) is strictly positive, so
the Hessian will have a sign if (c� 2b)�1H

�

0

�

0d2(0, b, c)C H
�

0

�

0d4(0, b, c) has one. A
trivial computation shows that

(2.4)

1

c� 2b
H
�

0

�

0d2(0, b, c)C H
�

0

�

0d4(0, b, c)

D

2

c� 2b

�

2(b� c)2
C b2 0

0 2(b� c)2
C b2

�

C

�

4b� 4c 0
0 4b� 4c

�

and this is positive definite if 0< 2b< c. We see therefore that in the neighborhood of
the poles the surfaceS has non-vanishing Gaussian curvature. Moreover, it is also clear
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from these calculations that the value of�3 on S has locally a maximum at� 0 D 0. (We
shall see later on that the maximum is global.)

2. In the engineering literature it is customary to study the“principal sections” of
S, i.e., the curves which appear as intersections ofS with the planes� j D 0, j D 1,2,3.
Such a study may be regarded as a substitute for a full geometric study of surfaces of
type S, which may be out of reach.

In this section we shall obtain, somewhat more generally, some preliminary infor-
mation on the sections0

�

D S\ {� 2 R3
I �3 D �} where� is a real number, which

we may assume nonnegative. With the notations

(2.5)
a0 D c(c� 2b), a1 D 2(b� c)2

C b2, a2 D 2(1C (b� c)�2)(b� c)C b2
�

2,

a3 D (1C (b� c)�2)2
� b2

�

4,

(which are a variant of notations considered above) the point (� 0, �) will lie on 0

�

precisely when

(2.6) Q1(�1, �2) D a0(�4
1 C �

4
2 )C a1�

2
1�

2
2 C a2(�2

1 C �
2
2 )C a3 D 0.

Thus in particular,a0 > 0 for c > 2b, and for b > 0 we havea3 � 0 precisely when
1=
p

c � � � 1=
p

c� 2b, whereas forb < 0 we shall havea3 � 0 precisely when
1=
p

c� 2b � � � 1=
p

c.
To gain a first insight into the shape ofSo and Si , we start with some elementary

calculations referring to the curves0
�

. Q1 is a fourth order polynomial equation of
a form which is (easily seen to be) precisely of the type whichhas been studied in
section 6 in [7]. We explicitly want to insist on the fact thatin what follows we are
interested only in real points of the quartics which we consider.

As a preparation we mention the following trivial:

REMARK 2.1. Let

(2.7) t ! QQ(t) D b0t4
C b1t2

C b2

be a fourth order polynomial with real coefficientsbi . Assume thatb0 > 0. Then
QQ(t) D 0 admits exactly two real roots (one by necessity positive, the other negative)

if and only if b2 � 0.

In the sequel of this section we shall assume (unless specified otherwise) thatb> 0.
Let us also consider the polynomials

QQ(t) D a0(�4t4
C �

4t4)C a1�
2
�

2t4
C a2(�2

C �

2)t2
C a3 D 0,

which are obtained by restricting the polynomialQ(� 0) to the lines�1 D �t , �2 D �t ,
�

2
C �

2
D 1 passing through the origin. These polynomials are of the form in (2.7)
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with b0 D a0(�4
C�

4)Ca1�
2
�

2 and b2 D a3. In particular,b0 > 0 for 2b< c. (In fact,
both a0 and a1 are then positive.) It follows that as long as 1=

p

c � � � 1=
p

c� 2b
we must have exactly two points of intersection of the linet ! (�t, �t) with S

�

D

{� 0 I (� 0, �) 2 S}, whatever value of (�, �) we consider. It is then clear that0
�

is a
simple curve which, when regarded as a curve in the�

0-plane, surrounds the origin
once and is symmetric with respect to the origin. Also whenj�j < 1=

p

c, the lines
considered a moment ago will intersect0

�

, but the number of intersection points must
then be four. (By symmetry the number of points of intersection must be even, and it
cannot be two, since two points of intersection occur only inthe region 1=

p

c� j�j �
1=
p

c� 2b.) 0

�

must therefore consist of two connected curves which surround the
origin. The inner curve must be strictly convex, since it is the intersection ofSi with
the plane�3 D �. (Similar remarks hold whenb < 0, but now of course the region
with exactly two points of intersection is 1=

p

c� 2b � j�j � 1=
p

c.)
The only � for which the two components have singularities are when� D

�1=
p

3(c� b). In this case in fact the two curves have the points (�1=
p

3(c� b),
�1=
p

3(c� b), �) in common.
We can sum up the results which we have obtained so far in the following lemma:

Lemma 2.2. Assume b� 0. � 2 S then impliesj�j � 1=
p

c� 2b. In particular,
0

�

¤ ; precisely whenj�j � 1=
p

c� 2b. When1=
p

c < j�j < 1=
p

c� 2b then0
�

consists of a simple smooth closed curve surrounding the origin. When0� j�j< 1=
p

c
and j�j ¤ 1=

p

3c� 3b then0
�

consists of two connected components, both of which
are simple smooth curves which surround the origin.

A similar result is true by the same argument for the caseb < 0, in that then0
�

shall have a single component when 1=

p

c� 2b < j�j < 1=
p

c and two components
for j�j � 1=

p

c� 2b.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is by elementary arguments. Since the inner sheet is
strictly convex, it will suffice to show that there is no planetangent to the outer sheet
along entire curves. We shall argue by contradiction. We shall thus assume that there is
a plane, which we shall denote by6, which is tangent toS along an entire curve and
shall show that this leads to a contradiction. We recall herefor completeness some ar-
guments which are probably quite common when one studies curvature for low degree
algebraic surfaces. (Also see [2] for a related argument.)

Let thus6 be a plane inR3 and assume that6 is tangent toS along some non-
trivial curve G � S. We also denote6 \ S by QG. QG is a bounded plane quartic and
we haveG � QG. (When we speak aboutG or QG, we shall sometimes regard these
curves as curves inR3 and sometimes as plane curves in the plane6.) The first thing
to show is:
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Proposition 3.1. Under the above assumptions G is an ellipse and GD QG.

Proof. After an orthogonal change of coordinates and a translation we may as-
sume that6 D {� 2 R3

I �3 D 0}. Denote byQ the polynomial p restricted to6 in
these new coordinates. We regardQ as a polynomial in the variables (�1, �2), i.e., we
defineQ by Q(�1,�2)D p(�1,�2,0), keeping in mind that the notation of variables refers
to the new coordinates. We claim thatQ vanishes of order two onG. In fact, since
{� I �3 D 0} is tangent toS along G, we must have that (�=��i )p(P) D 0, i D 1, 2, for
every P 2 G. This shows that the gradient ofQ in the variables (�1, �2) must vanish
on G. We conclude with the aid of Proposition 8.6 in [9] thatQ must be reducible,
i.e., that we can writeQ as Q1Q2 for two nontrivial polynomialsQ1, Q2. It is also
clear that Q cannot have factors of degree one, since in the opposite caseQG would
be unbounded. Thus, bothQ1 and Q2 are of degree two and both must vanish onG,
since otherwise the gradient ofQ could not vanish on the curveG. It follows that
G is a parabola, hyperbola or ellipse, but since it is bounded it must be an ellipse.
But then,G is the “complete” set of real zeros, both forQ1 and for Q2, and the two
polynomials must be proportional since they vanish on the same ellipse.

REMARK 3.2. Let G be the ellipse along which6 is tangent toS. Also as-
sume that coordinates have been chosen as above. In particular, 6 is of form 6 D

{� 2 R3
I �3 D 0}. Then for every pointP 2 G there is a neighborhoodQW in 6 so

that the projection ofSo to 6 contains QW. Moreover, if we chooseQW small enough,
then we can findÆ > 0 with the property that when (�1, �2, 0) 2 QW, then there is ex-
actly one�3 with j�3j < Æ such that (�1, �2, �3) 2 So. In fact, P must lie in the smooth
part of S, so gradp(P) ¤ 0. Since6 is tangent toS, it follows that we must have
(�=��3)p(P) ¤ 0. The statement follows therefore from the implicit function theorem.
It follows from this that the orthogonal projection ofSo onto the plane6 contains a
neighborhoodW of G. Moreover, if we chooseW small enough, then we can find
Æ > 0 so that for every (�1, �2, 0) 2 W, there is exactly one�3 with j�3j < Æ such that
(�1, �2, �3) 2 So.

We consider next a pointP in the smooth part ofS and let6o be the tangent
plane toS at P. To simplify notations we shall make again an affine change ofvari-
ables such thatP in the new coordinates is 02 R3 and the tangent plane is6 D
{� 2 R3

I �3 D 0}. Locally nearP we can writeSo as the graph of some smooth func-
tion � 0 ! h(� 0), i.e., if � is a small neighborhood of the origin inR3 then S\ � D
{� 2 �I �3 D h(� 0)}. The fact that6 is tangent toS at 0 means thatr

�

0h(0)D 0. We
also consider some lineL in the plane6. After a further linear change of coordinates
we may assume thatL has the formL D {(�1,0,0)I �1 2 R}. The fact that6 is tangent
to S at P implies that the order of contact of any lineL in the plane6 which passes
through P with S is at least two.
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We also observe that ifL intersectsS in the points Pi , i D 1, : : : , s, then the
sum of the orders of contact at these points withS can be at most four. In fact, if we
look at the intersection ofS with the plane�2 D 0, then we obtain a quarticT in the
variables�1, �3. If we denote byQq the defining equation of this quartic, then a point
Pi
D (�1,i , 0) 2 T which has contact of orderki , will give a root of multiplicity ki of

�1! Qq(�1, 0) at �1,i . It remains then to note that since�1! Qq(�1, 0) is a fourth order
polynomial, we can at most have 4 roots when multiplicities are taken into account.

As a further preparation for the proof of Theorem 1.1 we proveone more “if ”-
result. (But a particularity of our argument is that in the end we shall see that in the
situations of interest to us, no planes as in the statement ofthe following proposition
can exist!)

Proposition 3.3. If 6 is a plane which is tangent to S along a non-trivial curve0,
then S must lie on one side of6.

Proof. Since we already know that we may restrict attention to the outer sheet,
it will suffice to show that if some plane6 is tangent to the outer sheet ofS along
an entire curveG, then S must lie on one side of6.

We choose affine coordinates in the way done before such that6 D {� I �3 D 0}

and recall that under the assumptions of the proposition,S\ {� I �3 D 0} is an ellipse.
We also pick some open neighborhoodW in the (�1, �2)-plane of this ellipse as in
Remark 3.2 so that every point inW is the orthogonal projection onto6 of a uniquely
defined point (given in Remark 3.2), inSo. Let further U, V � 6 be the setsU D
{� 0 2 W I 9�3 > 0 s.t. (� 0, �3) 2 So}, V D {� 0 2 W I 9�3 < 0 s.t. (� 0, �3) 2 So}, where in
both cases the point�3 is given by Remark 3.2. By the definition ofW, we have then
that W D U[V[0. If we assume that both setsU and V are non-void (and this is the
exact meaning of the statement thatSo lies on both sides of6), then �U \ �V \W
is a closed curve inW contained in the quartic{� 0 2 R2

I p(� 0, 0) D 0}. (Here p is
written in the new coordinates and, with notations introduced above,p(� 0, 0)D Q(� 0).)
We have seen above that as a curve the latter is the ellipseG. Since G consists of
only one connected component, we must haveG D �U \ �V \ W. This means that
locally near any point ofG we must haveU on one side ofG \ 6 and V on the
other. (“Sides” are now taken inside6, whereas before they were “with respect” to
6. The argument is here as follows. We writeW as W

C

[W
�

[G, whereW
C

is the
intersection of the unbounded component of6 nG with W and W

�

is the intersection
of the bounded component of6 n G with W. If now for example bothW

C

\ U and
W
C

\V were non-void, then�U\�V would have points inW
C

nG, which is not true.)
If we consider a lineL which passes through some pointP 2 G and is transversal to
G, and if we consider a functionh defined in a neighborhood� in R2 of P such that
S is nearP the graph ofh, thenh must change sign alongL when we pass throughP.

Now we change coordinates still further to have thatL D {(�1, 0, 0)I �1 2 R}, S\
U D {� 2 U I �3 D h(� 0)}, h(�1, 0)< 0 for �1 < 0, j�1j small, h(�1, 0)> 0 for �1 > 0,
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�1 small. We can also assume, by rotatingL a little bit (if necessary) inside6 around
the projection ofP to 6, that L intersectsG in a second point. We now claim that
(�2h=��2

1 )(0)D 0, thus proving thatL has a contact of order 3 withS at P. In fact,
we know already thath(0)D (�h=��1)(0)D 0, so a change of sign of�1! h(�1, 0) is
only possible when (�2h=��2

1 )(0)D 0. This means that at 0L has a contact of order at
least 3 withS, which is not possible since we also have another point onL \ S with
contact of order at least two. We conclude that one of the setsU or V must be void
and thereforeS lies on one side of6.

We shall now use the exact form of our surface in a more direct way, but we shall
still argue along traditional lines, by intersectingS with some specially chosen planes.
For suitable choices of these planes we shall see that the fact that there are tangent
planes toS along curves, imposes some strong restrictions. These restrictions will in
the end be too strong to hold simultaneously.

The first family of planes with which we shall intersect is{� I �3 D �}, � 2 R,
thus obtaining the curves0

�

introduced above. We have seen that these curves are

nontrivial precisely whenj�j < 1=
p

c� 2b.
We also observe that the equation (2.6) can be solved explicitly for �1 or for �2

and that it is symmetric in�1, �2. Elementary considerations, together with the results
established in [7] give, under the assumptionb > 0, the following statements:

the outer component is not necessarily convex. However, if it has inflection points,
the number of inflection points is precisely 8, two in each quadrant of the plane. In
any given quadrant, the two inflection points are symmetric with respect to the diagonal
of the respective quadrant. We do not show how this statementcan be obtained from
the results in [7], since we shall prove a more precise statement in Section 4 below.

In particular, lines which are tangent to the outer curve in at least 2 distinct points
and for which the curve remains on one side of the line are perpendicular to the diag-
onal in the first and third quadrant and perpendicular to the anti-diagonal in the second
and fourth quadrant. (See Fig. 1.)

We now return to our main goal, which is the proof of Theorem 1.1. Let us then
assume that6 is tangent toS along an entire curveG. We assume that this curve has
a nontrivial portion in the first octant inR3. If we intersect with�3 D � with � > 0
chosen such that0

�

\ G is nontrivial, then6 \ {�3 D �} is a curve which is tangent
to S\ {�3 D �} in at least two points.

By the above, this is only possible if the line of tangency, when regarded in the
�

0-plane, is perpendicular to the diagonal and has exactly twopoints of tangency which
are symmetric with respect to the diagonal. If we now move� upwards, then we will
have for a while at any moment two points of intersection, until a moment when we
have only one point of intersection (remember that the curveof tangency is an el-
lipse, so the geometry of the situation is simple), which forsymmetry reasons must
be of form (�1, �2, �) with �1 D �2. (In every other situation we will have a pair
of points.) We conclude thatG has a nontrivial intersection with the plane�1 D �2
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Fig. 1. Line is tangent to outer curve at two points. The two
inflection points must lie between the two points of contact of
the tangent with the outer curve.

and by symmetry then also with the planes�1 D �3, �2 D �3. If we now argue by
symmetry then we can see that the normal to the tangent plane in question must be
(1=
p

3, 1=
p

3, 1=
p

3). (For additional details see [9].) On the other hand, the curve
S\ {� 2 R3

I �1 D �2} is quite simple, since (1.6) reduces for�1 D �2 to

(3.1) (1C (b� c)(2�2
1 C �

2
3 ))2
� b2(�2

1 � �
2
3 )2
D 0.

This can also be written as

(3.2)
[(1C (b� c)(2�2

1 C �
2
3 )) � b(�2

1 � �
2
3 )]

� [(1C (b� c)(2�2
1 C �

2
3 ))C b(�2

1 � �
2
3 )] D 0,

which shows that the curve3 D S\ {�1 D �2} is the union of the two ellipses

(3.3)
{(b� 2c)�2

1 C (2b� c)�2
3 C 1D 0, �1 D �2},

{(3b� 2c)�2
1 � c�2

3 C 1D 0, �1 D �2}.

We denote by30, respectively by300, the image of these ellipses under the projection
(�1, �2, �3)! (�1, �3). Thus3 is a curve inR3, whereas the30,300 are ellipses in the
(�1, �3)-plane. The two ellipses intersect in the points�2

1 D �

2
3 D 3�1(c � b)�1. If we

now denote byL the projection into the (�1,�3)-plane of the line6\{� I �1 D �2}, then
L should be a common tangent to these two ellipses and should have normal direction
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v D (1,�1=2)=k(1,�1=2)k. It is however not difficult to find the common tangent of
two explicitly given ellipses and to show that for our two ellipses the common tangent
cannot have the directionv, thus concluding the proof. (If the “common tangent” is
to have the given direction, then it must be of form�1 D �(1=2)�3C n for some con-
stant n. We need therefore show that there are no pointsP

C

D ( Q�1, Q�3), respectively
P
�

D ( Q�1, Q�3), on this line at which the line is tangent to30 at P
C

and tangent to300

at P
�

. The fact thatP
C

, P
�

are on the line gives the conditions

(3.4) Q

�1 D �
1

2
Q

�3C n, Q�1 D �
1

2
Q�3C n,

whereas the fact that they are on the ellipses gives

(3.5) (b� 2c) Q�2
C (2b� c) Q�3

2
C 1D 0, (3b� 2c) Q�1

2
� cQ�3

2
C 1D 0.

In addition we have two more conditions, which say that the line is tangent to the
ellipses atP

C

, respectivelyP
�

. We can express the latter by requiring for example
that the gradient of the equation for the ellipses calculated at the corresponding points
is proportional to the vector (1,�1=2). This gives us a mildly nonlinear system of 6
equations for the 5 unknownsn, Q�1, Q�2, Q�1, Q�2: there are only five unknowns since we
have already inserted the information that we know what the normal to the tangent
line must be. It is not difficult to see, by explicitly studying the system that it is not
compatible. For further details on how this is done, see [9],pp. 206–207.)

4. Inflection points of the curves�
�

In this section we study the existence of inflection points onthe curves0
�

, as-
suming b > 0. Part of the results of this section do not have the same level of inter-
est for applications to decay estimates in crystal theory than have those in the other
sections, but Proposition 4.6 (which requires roughly speaking half of the efforts we
make in the section) is needed in the proof of Theorem 1.2, andwe have also referred
to this section in the proof of Theorem 1.1. Another possiblemerit of the calculations
here is that we obtain a very explicit characterization of the shape of the curves0

�

, a
problem which has been studied in the engineering literature some time ago. (Cf. e.g.,
[11], [12].) As a preliminary remark we recall that forj�j < 1=

p

c� 2b the curves0
�

are nontrivial and consist of one or two closed connected components. More precisely,
when 1=

p

c < j�j < 1=
p

c� 2b then we have one closed connected curve and when
0 � j�j <

p

c, then we can write0
�

as 0
�

D 0

�,i [ 0�,o where the0
�,i [ 0�,o are

closed connected curves which we shall call the “inner”, respectively the “outer” com-
ponent. The terminology refers to the fact that if we regard0

�

as a curve inR2, by
identifying (� 0,�) with � 0, then0

�,i and0
�,o can be chosen so that0

�,i lies completely
in the bounded connected component ofR

2
n 0

�,o: see Fig. 2 for an example.
As seen above,0

�,i must be strictly convex. For this reason our arguments will re-
fer almost exclusively to0

�,o. (For simplicity we shall speak about the outer component
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Fig. 2. 0
�

consists of an inner and an outer component. It has a
number of symmetries.

also in cases when0
�

consists of only one connected component. In this case the
“outer” component is0

�

itself.) Inflection points are interesting in that they can not
appear if the Gaussian curvature ofS is strictly positive at the corresponding point
on S. Since the Gaussian curvature ofS is strictly positive at (0, 0, 1=

p

c� 2b), the
curves0

�

have no inflection points for� close to 1=
p

c� 2b. Geometric considera-
tions show that the0

�

will have inflection points when� is near the conically singular
values, which are�1=

p

3(c� b). It is also interesting to note that for� close to zero,
the situation will depend on the value ofb: for small values ofb the curves0

�

have
no inflection points, but for moderately large values, they will (as we shall see later
on in this section) have. We shall now make a quantitatively more precise analysis of
these statements.

Theorem 4.1. There is a calculable constantQc such that the plane sections0
�

can have inflection points for� > 0 only whenj� � 1=
p

3c� 3bj � Qcb.

REMARK 4.2. The value ofQc can be calculated noticing that we shall have in-
flection points on0

�

precisely when the sign of the quantity “D” introduced later on
in this section is positive. For details when this is the casesee Lemma 4.8 below.

Proof of Theorem 4.1 is based on the following theorem of H.G.Zeuthen:

Theorem 4.3 (1877. Cf. [14]. Also see [4].). A nonsingular quartic in the real
plane has at most eight real inflection points.
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This theorem has been used in a similar context already in [7]and actually the
argument below shall be based on an idea used in that paper. Wealso mention that
we could use that paper in a more direct way. However, calculations would remain
tedious also if we did so, and we prefer a direct study of0

�

in order not to obscure
the simple ideas which are underlying our results. Moreover,in order to obtain the
results in Lemma 4.8 later on we would need a considerable part of the calculations
we shall perform in exactly the form in which we shall do them and could not refer
to any corresponding part in [7].)

REMARK 4.4. The curve0
�

is singular exactly when�2
D (3c � 3b)�1. Since

we want to apply Zeuthen’s theorem, we shall therefore exclude this case in the follow-
ing considerations.

We start with some calculations related to the north-pole inthe (�1, �2)-plane of
0

�

. By this we mean the point on0
�,o with �1 D 0, �2 > 0. (The value of�2 will be

calculated in a moment.)
We shall now parameterize0

�,o locally near the pole by�1! (�1,h(�1)), for some
suitable functionh. (Also see (4.1) below.)

As a preparation we consider the following trivial abstractresult:

REMARK 4.5. a) LetT(t) be a fourth degree polynomial with real coefficients
of form

T(t) D �0t4
C �2t2

C �4,

with �0 > 0 such thatT(t) D 0 has a positive root� . Denote by Q� D max�i , where
the maximum is over the real roots�i of T . (There are at least two real roots.) Then
2�0 Q�

2
C �2 > 0.

b) If the �i are functions oft and h is a C2-function defined in a neighborhood of 0
such thath0(0)D 0, then the coefficient ofh00(0) in (d=dt)2(�0h4(t)C �2(t)h2(t)C �4)
at t D 0 is 2h(0)(2�0(0)h2(0)C �2(0)).

In fact, denote byQT(� ) the polynomial�0�
2
C �2� C �4. If � is a real root ofT ,

then � D � 2 is a positive root of QT(� ). But then 2�0 Q�
2
C �2 D 2�0� C �2 D

p

1 > 0
where1 D �

2
2 � 4�0�4 D �

2
0(�1 � �2)2 is the discriminant of QT and �i are the two

roots of QT . (We have to take the positive square root of1, since Q�2 is the bigger of
the two roots of QT .) Note that QT has two real roots, since its coefficients are real and
it has one positive root by assumption. This gives a). b) is trivial.

The first result we want to prove is

Proposition 4.6. h00(0) is negative for every admissible value of(b, c, �), i.e.,
when b< c=2,� < 1=

p

c� 2b.
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The proof of this result is by completely straightforward calculations. The reason
why we give it with details is that calculations are somewhattedious. The value of
h00(0) can be calculated by derivating the equation

(4.1)
(1C (b� c)(�2

1 C h2(�1)C �2))2

� b2(�4
1 C h4(�1)C �4

� �

2
1 h2(�1) � �2

1�
2
� h2(�1)�2) D 0

twice in �1 and putting�1 D 0 in the end. The calculation is simplified by the fact
that we know beforehand (sinceh is even) thath0(0) D 0 and that we need only the
values at�1 D 0. We then obtain (using (2.1), with the roles of�2 and �3 inverted)
the equation

(4.2) Ah(0)h00(0)C B D 0,

where

(4.3)
AD (�8bcC 4c2)h2(0)C 6b2

�

2
� 8�2bcC 4b� 4cC 4�2c2,

B D 4(1C (b� c)(h2(0)C �2))(b� c)C 2b2(h2(0)C �2).

Here� and h(0) are related by the fact that we must have (1C (b� c)(h(0)2C�2))2
�

b2(h4(0)C �4
� h2(0)�2) D 0, which gives forh2(0), as a first guess, the values

(4.4)
�2bC 2c� (2c2

C 3b2
� 4bc)�2

� b
p

4C (12c2
� 24bcC 9b2)�4

C 12(b� c)�2

2(c2
� 2bc)

.

Of course we are interested only in those triples (b, c, �)for which h2(0) is a positive
number, which means in particular that the expression

L(b, c, �) D 4C (12c2
� 24bcC 9b2)�4

C 12(b� c)�2

must be non-negative for (b, c, �) satisfying �2
� 1=(c � 2b). This is clear in that

we know from Section 2 that forj�j � 1=
p

c� 2b the equation (4.1) admits for every
�1 D 0 a positive solutionh(0). We also mention for later use that

(4.5) L

�

b, 1,
1

p

1� 2b

�

D

(b� 2)2

(1� 2b)2
, L

�

b, 1,
1

p

2� 3b

�

D 1.

We further observe that (4.4) gives us two values, one for the“plus”-sign and one
for the “minus”-sign. However since the denominator 2(c2

� 2bc) in (4.4) is positive
for the relevantb, c, and since we restrict attention tob � 0, the bigger of the two
values defined by (4.4), which is the one which corresponds tothe north pole, is when
the sign is “plus”. We shall work therefore from now on with this value ofh2(0).

We now return to the proof of Proposition 4.6. Sinceh(0)> 0, it is clear that the
proposition follows from the following lemma.
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Lemma 4.7. The expression A defined in(4.3) is always positive, and so is B.

Proof. The fact thatA is always positive follows from Remark 4.5. To establish
the sign of B, we have to evaluate 4(1C (b � c)(h2(0)C �2))(b � c) C 2b2(h2(0)C
�

2) when h2(0) is given by (4.4), the sign being again “C”. We can also writeB as
4(b� c)C (6b2

� 8bcC 4c2)(h2(0)C�2). When we insert the value ofh2(0) into this,
we obtain

(6b2
C4c2

�8bc)

�

�

1

2(c2
�2bc)

�

2c�2bC4bc�2
�2c2

�

2
�3b2

�

2

C

p

4b2
C12b3

�

2
C9b4

�

4
�12b2c�2

�24b3c�4
C12b2c2

�

4
�

C�

2

�

C4b�4c.

We have to show that this quantity is positive. Our task will be (a little bit) simplified
if we replace�2 by t and study the quantity
(4.6)

N(b, c, t)

D (6b2
C 4c2

� 8bc)

�

�

1

2(c2
� 2bc)

�

2c� 2bC 4bct� 2c2t � 3b2t

C

p

4b2
C 12b3t C 9b4t2

� 12b2ct � 24b3ct2
C 12b2c2t2

�

C t

�

C 4b� 4c

instead. The idea is to fixb, c and study the values of the functionst ! N(b, c, t)
for the appropriatet . The situation becomes notationally simpler if we assumec D
1. The value ofN for t D 0 is N(b, 1, 0)D 2b(2 � b)=(1 � 2b), which is positive
when 0� b < 1=2. As for the case whent D 1=(1� 2b), which is the biggest value
t can have for some givenb, we obtain, if we also take into account that by (4.5)
L(b,1,1=

p

1� 2b)D (2�b)2
=(1�2b)2, N(b,1,(1�2b)�1)D (6b2

�8bC4)[(2�4b)�1(2�
2bC4b=(1�2b)�2=(1�2b)�3b2

=(1�2b)Cb(�bC2)=(1�2b))C1=(1�2b)]C4b�4.
After some calculations this gives (again) thatN(b, 1, (1� 2b)�1) D 2b(2�b)=(1�2b).

The proof will now come to an end if we show that the functiont ! N(b, 1, t) is
positive when (d=dt)N(b, 1, t) D 0. The zeros of thet-derivative of N(b, 1, t) are the
same with the zeros of thet-derivative of the function (2(1� 2b))�1[4bt � 2t � 3b2t C
(4b2
C 12b3t C 9b4t2

� 12b2t � 24b3t2
C 12b2t2)1=2]C t and are also equal to the zeros

of t-derivative of the function

P(t) D �3b2t C
p

b2(4C 12bt C 9b2t2
� 12t � 24bt2

C 12t2).
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Clearly �t P(t) D 0 comes to

(4.7) 3b
p

4C 12bt C 9b2t2
� 12t � 24bt2

C 12t2
D 6bC 9b2t � 6� 24bt C 12t .

We divide both sides by 3 and square the result to obtain

(16� 64bC 9b4
C 88b2

� 48b3)t2
C (12b3

� 44b2
C 48b� 16)t C 4� 8bC 4b2

D b2(4C 12bt C 9b2t2
� 12t � 24bt2

C 12t2).

This is a second order polynomial equation which has the solutions t1 D 1=(2 � 3b),
t2 D 1=(2� b). Of these, onlyt1 is however also a solution of the equation (4.7), and
t2 is due to the fact that we squared both sides of the equality there. We have thus
found the point where�t N(b, 1, t) vanishes, namely att D 1=(2� 3b). It remains to
calculate the value ofN(b, 1, t) at t D 1=(2� 3b) and to check that it is positive. We
obtain in fact thatN(b, 1, 1=(2� 3b)) D 4b(1� 2b)=((1� 2b)(2� 3b)) D 4b=(2� 3b).
(The value ofL(b, 1, 1=(2� 3b)) is 1 by (4.5).)

As a next step in our geometric study of the curves0
�

we now study the curva-
tures at the points of0

�

lying on the diagonal, respectively on the anti-diagonal inR2.
We shall work out details for the diagonal{� 0 2 R2

I �1 D �2}. We have already used
above thatS\ {� 2 R3

I �1 D �2} is quite simple and also in the present calculations
this fact can be brought (in some partial calculations) to fruition. (Recall thatj�j ¤
1=
p

3c� 3b.) This seems easiest if we change variables setting�1 D sC t, �2 D t � s.
(The diagonal corresponds then tosD 0.) The equation (2.6) transforms to

(1C (b� c)((sC t)2
C (s� t)2

C �

2))2
� b2((sC t)4

C (s� t)4

C �

4
� (sC t)2(s� t)2

� (sC t)2
�

2
� (s� t)2

�

2) D 0,
(4.8)

which, when written in a more explicit way, is

(3b2
� 8bcC 4c2)t4

C (4b� 4c� 6b2s2
� 16bcs2

C 8c2s2
C 6b2

�

2
� 8bc�2

C 4c2
�

2)t2

C (1C (b� c)(2s2
C �

2))2
� b2(s4

� 2s2
�

2
C �

4) D 0.

(4.9)

To study curvature, we now write0
�

locally as the graph of some functions! �(s),
which means that we have to replacet by �(s) in (4.9). The implicit equation for�
is therefore

(3b2
� 8bcC 4c2)�(s)4

C (4b� 4c� 6b2s2
� 16bcs2

C 8c2s2
� 8bc�2

C 6b2
�

2
C 4c2

�

2)�(s)2

C (1C (b� c)(2s2
C �

2))2
� b2(s4

� 2s2
�

2
C �

4) � 0.

(4.10)
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Recall that here�corresponds to�3 and thatj�j < 1=
p

c� 2b.
The value of�(0) is easy to calculate in terms of�in that the equation (4.10)

factors forsD 0, as a consequence of (3.2), into

(4.11) (3b�2(0)C 1� c�2
� 2c�2(0))(b�2(0)C 2b�2

C 1� c�2
� 2c�2(0)).

This gives

(4.12) �

2(0)D
1� c�2

2c� 3b
or �

2(0)D
1C (2b� c)�2

2c� b
.

Since we are only interested in positive values for�(0), this makes sense only
when the expressions in (4.12) are positive for the� under consideration. This is trivial
for the second expression, but will only happen whenj�j � 1=

p

c in the case of the
first expression. (The geometric interpretation of these calculations is clear: since the
inner sheet is symmetric and convex, only the hyperplanes�3 D �with j�j � 1=

p

c
can have a nontrivial intersection with the interior sheet.Alternatively we may look at
the ellipses defined in (4.11).) We are also interested to understand which of the two
values (4.12) is bigger. Again we may look at the ellipses in (4.11) but we may also
argue analytically. Since both 2c� b and 2c� 3b are positive by the assumptions on
b, c, we have to evaluate the sign of (1� c�2)(2c� b)� (1C (2b� c)�2)(2c� 3b). The
sign of this is (since we assumeb � 0) equal to the sign of 1� (3c � 3b)�2, which
shows that

1� c�2

2c� 3b
�

1C (2b� c)�2

2c� b
when j�j �

1
p

3c� 3b
,

1� c�2

2c� 3b
�

1C (2b� c)�2

2c� b
when

1
p

3c� 3b
� j�j �

1
p

c� 2b
.

(4.13)

We shall denote by�1(0) the smaller of the two values and by�2(0) the bigger one.
Note that the point (0,�1(0)) lies then on the inner curve and (0,�2(0)) on the outer
curve. Since the inner curve is strictly convex, we are againforemost interested in
�2(0). According to the above,

(4.14)

�

2
2 (0)D

1� c�2

2c� 3b
when j�j �

1
p

3c� 3b
,

respectively �

2
2 (0)D

1C (2b� c)�2

2c� b
when j�j �

1
p

3c� 3b
.

We can now calculate� 00(0) by derivating (4.10) twice ins and settingsD 0 after-
wards. After some calculations, we obtain the equation

(4.15) C�(0)� 00(0)C D D 0,
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where

C D 4(3b2
� 8bcC 4c2)�2(0)C 2(4b� 4cC 6b2

�

2
� 8bc�2

C 4c2
�

2),

D D 8(1C (b� c)�2)(b� c)C 4b2
�

2
C (8(2b� 2c)(b� c) � 28b2)�2(0).

Lemma 4.8. When�2
D (3c � 3b)�1, then C vanishes. This corresponds to the

fact that0
�

has singular points in that case. When�2
¤ (3c�3b)�1, then C is always

positive. The sign of� 002 (0) will therefore be(�1)-times the sign of D when�(0) D
�2(0). The sign of� 002 (0) is:
I. In the case�2

< 1=(3c� 3b):
i) negative for b< 2c=9, when in addition�2

< (2c� 9b)=(6c2
� 21bcC 9b2),

ii) positive for b< 2c=9, when actually(2c � 9)=(6c2
� 21bcC 9b2) < �

2
<

1=(3c� 3b),
iii) positive for2c=9� b � c=3,
iv) and positive also for c=3< b < c=2.

II. In the case�2
> 1=(3c� 3b):

v) positive for1=(3c� 3b) � �2
< (2cC 5b)=(6c2

� 21bcC 9b2),
vi) negative for(2cC 5b)=(6c2

� 21bcC 9b2) � �2
< 1=(c� 2b).

We also mention as case
III. When�2

D (2c� 9b)=(6c2
� 21bcC 9b2), then � 002 (0)D 0.

Proof. The statement onC follows again from Remark 4.5. As forD, the prob-
lem is to study for a givenb the sign of

(4.16) 8(1C (b� c)�2)(b� c)C 4b2
�

2
C (8(2b� 2c)(b� c) � 28b2)�2

2 (0)

as a function of�. The sign of this is the same with the sign of

(4.17)
2(1C (b� c)�2)(b� c)C b2

�

2
C (4(b� c)2

� 7b2)�2
2 (0)

D (�3b2
� 8bcC 4c2)�2

2 (0)C 2b� 2cC 3b2
�

2
� 4bc�2

C 2c2
�

2.

We now insert the value of�2(0) into (4.17) and obtain

(4.18)

(�3b2
� 8bcC 4c2)(1� c�2)

2c� 3b
C (3b2

� 4bcC 2c2)�2
C 2b� 2c

D

�b(9b� 21�2bc� 2cC 6�2c2
C 9b2

�

2)

2c� 3b
,

in the first case in (4.14), respectively

(4.19)

(�3b2
� 8bcC 4c2)(1C 2b�2

� c�2)

2c� b
C (3b2

� 4bcC 2c2)�2
C 2b� 2c

D

�b(9b2
�

2
C 5bC 3bc�2

C 2c� 6c2
�

2)

2c� b
,
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in the second. The values of�2 for which these expressions vanish are when

E D 9b� 2c� 21bc�2
C 6c2

�

2
C 9b2

�

2
D 9b� 2cC (6c2

� 21bcC 9b2)�2
D 0

respectively when

F D 9b2
�

2
C 5bC 3bc�2

C 2c� 6c2
�

2
D 2cC 5bC (9b2

C 3bc� 6c2)�2
D 0,

which gives formally

�

2
D

2c� 9b

6c2
� 21bcC 9b2

, respectively �

2
D

2cC 5b

6c2
� 3bc� 9b2

.

Of course, and this is why we say “formally”, for this to make sense, the quantities
(2c� 9b)=(6c2

� 21bcC 9b2) and (2cC 5b)(6c2
� 3bc� 9b2) must be positive. We now

introduce the following quantities:

E0

D 9b� 2cC (6c2
� 21bcC 9b2)�, F 0

D 2cC 5bC (9b2
C 3bc� 6c2)�, � 2 R,

which correspond toE and F when we replace�2 by �. We then have:

REMARK 4.9. The quantitiesE0, F 0 are linear in�. They vanish when� D (2c�
9b)=(6c2

� 21bcC 9b2), respectively� D (2c C 5b)=(6c2
� 3bc � 9b2) and there is

a change of sign at those values. (We assume here that the quantities 6c2
� 21bcC

9b2, 6c2
� 3bc� 9b2 do not vanish.) The sign of� 002 (0) is that of E0(�) for � D �2),

respectivelyF 0(�), again for� D �2).

Note that 6c2
� 21bcC 9b2 vanishes forb D c=3, respectivelyb D 2c, whereas

6c2
� 3bc� 9b2 vanishes forbD �c respectivelybD 2c=3.
This means that in the region 0� b < c=2 (which is the region of interest for us)

(4.20) 6c2
� 21bcC 9b2 is positive precisely when b <

c

3

whereas

(4.21) 9b2
C 3bc� 6c2 is always negative.

Moreover (again when 0� b < c=2), the following statements hold:
(2c� 9b)=(6c2

� 21bcC 9b2) is a positive number precisely forb 2 (�1, 2c=9)[
(c=3, 2c),

(4.22)

2c� 9b

6c2
� 21bcC 9b2

�

1

3c� 3b
for b < c=3,

2c� 9b

6c2
� 21bcC 9b2

�

1

3c� 3b
for c=3< b < c=2,

1

3c� 3b
�

2cC 5b

6c2
� 3bc� 9b2

�

1

c� 2b
.
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(Thus for example (2cC 5b)=(6c2
� 3bc� 9b2) � 1=(c� 2b) is always true since (2cC

5b)(c� 2b) � (6c2
� 3bc� 9b2) D �4c2

C 4bc� b2 is always negative.)

We now discuss the sign ofE, F , in a number of situations which correspond
exactly to the regions mentioned in the statement of Lemma 4.8. (Note that the sign
of E, F is �1 times the sign ofD, so it is already the sign of� 002 (0). We should keep
in mind that� corresponds to�2.) The “case” III in Lemma 4.8 is of course clear.

I) The case�2
< 1=(3c� 3b). The relevant quantity isE.

a) b< 2c=9. In this case 6c2
� 21bcC 9b2, the coefficient of� in E0, is positive and

E0 is negative for� D �

2
< � D (2c � 9b)=(6c2

� 21bcC 9b2), respectively positive
when � < � < 1=(3c� 3b).
b) 2c=9 < b < c=3. In this case 6c2

� 21bcC 9b2 is still positive, andE0, changes
sign from� to C at � D (2c�9b)=(6c2

�21bcC9b2), which is negative.E is therefore
positive for all 0� �2

D � < 1=(3c� 3b).
c) c=3< b< c=2. In this case 6c2

�21bcC9b2 is negative, whereas (2c�9b)=(6c2
�

21bcC 9b2) is larger than 1=(3c� 3b). ThereforeE is positive for all 0� �2
D � <

1=(3c� 3b).
II) The case�2

� 1=(3c � 3b). We have to discuss the sign ofF . Since � 0 D
(2c C 5b)=(6c2

� 3bc � 9b2) � 1=(3c � 3b), and since�6c2
C 3bcC 9b2 is always

negative,F always has a change of sign from “C” to “�” at �2
D �

0.
We can now return to the proof of Theorem 4.1. In fact, we shallhave inflection

points precisely when� 002 (0) � 0. (Recall that� 002 (0) refers to the coordinates (s, t),
in which (0,�2(0)) is a point on the diagonal in the initial variables� 0.) This is a
consequence of Zeuthen’s theorem and can be proved with an argument used in a sim-
ilar situation in section 6 in [7]. We repeat the argument forthe convenience of the
reader. In fact, by symmetry (under reflection with respect to �1 D 0, �2 D 0, �1 D �2,
�1 D ��2) we see that if0

�

has some inflection point, then it also must have an in-
flection point in the region{� 0 I 0 < �2 � �1} and that, more generally, the number of
inflection points in each of the regions{� 0 I 0 < ��2 � ��1}, {� 0 I 0 < ��1 � ��2},
is the same. Since all in all there are 8 such regions in the plane, the number of in-
flection points in{� 0 I 0 < �2 < �1} must be zero or one: we use here the fact that
Zeuthen’s theorem limits the total number of inflection points to 8. Now, there is cer-
tainly one inflection point in this region when� 002 (0) > 0, since the sign ofh00(0) is
negative. (We recall that (0,h(0)) corresponded to the “north pole”. On the other hand,
there can be no inflection points in this region when� 002 (0) < 0, since in the opposite
case, we would have at least two inflection points in the region, which is excluded by
the remark just made. Also the case when� 002 (0)D 0 is easy: there is then an inflection
point on �1 D �2 and by Zeuthen’s theorem there can be no further inflection points in
0< �2 � �1.

REMARK 4.10. We shall say that0
�

is of “type I” if 0

�,o has no inflection
points and that it is of “type II” in the opposite case. Furthermore, we say that�0
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is a critical value if0
�

changes type at�0. It is a consequence of Lemma 4.8 that
for 2c � 9b > 0 the critical values are�2

D (2c � 9b)=(6c2
� 21bcC 9b2), respect-

ively �

2
D (2c C 5b)=(6c2

� 21bcC 9b2). At these values,� 002 (0) D 0 and � 002 (0) ¤
0nearby, with a change of sign at the critical values. For 2c � 9b < 0 all � with
�

2
< (2c� 9b)=(6c2

� 21bcC 9b2) are of type II.
Finally, if 0

�

is of type II and if� is not a critical value, then it has exactly one
inflection point in each of the sectors{� 0 2 R2

I 0< �2 < �1}, {� 0 2 R2
I 0< �1 < �2}.

Proof of Theorem 4.1: end. It is a consequence of Lemma 4.8 that 0
�

can have
inflection points only when�2 lies in the interval with endpoints at the critical values.
The conclusion of the theorem will follow therefore if we cancheck that the distance
of these critical values to 1=(3c� 3b) is of order� b. We have indeed

(4.23)
2c� 9b

6c2
� 21bcC 9b2

�

1

3c� 3b
D

2

3

b(�2cC 3b)

(2c2
� 7bcC 3b2)(c� b)

,

respectively

(4.24)
2cC 5b

6c2
� 3bc� 9b2

�

1

3c� 3b
D

2

3

b(2c� b)

(2c2
� bc� 3b2)(c� b)

.

Both are of order “b”, so the proof is complete.

5. The Hessian of�1C �2 at the conically singular points

In this section we shall use the notationP for the conically singular point on
S in the regionR3

C

D {� I � j � 0, j D 1, 2, 3}, i.e., P D (P1, P2, P3) with Pi D

1=
p

3c� 3b). We shall also writeP0 for (P1, P2) and denote, for the appropriate� 0,
by �

0

! �1(� 0), � 0 ! �2(� 0) the positive roots of� ! p(� 0, �) ordered in such a
way that �1(� 0) � �2(� 0). Our aim is to calculate curvature properties of the surface
SmeanD {� I �3 D [�1(� 0) C �2(� 0)]=2, j� 0 � P0

j < Æ}, Æ small. Smean is thus a sur-
face which locally nearP lies betweenSo and Si . There are two reasons why we are
interested in this study, one geometrical and one technical. The geometric reason is that

if we write � j , j D 1,2, as� j (� 0)D [�1(� 0)C�2(� 0)C(�1) j
p

(�2(� 0) � �1(� 0))2]=2, then

[
p

(�2(� 0) � �1(� 0))2]=2 describes (intuitively speaking) the conically singularbehavior
of S near P, whereas�1(� 0) C �2(� 0) describes the underlying smooth structure atP.
The curvature ofSmean thus shows us how muchS is bent if we disregard the con-
tribution of the conical singularity and we shall use the information we obtain in the
proof of Theorem 1.2. While this is for the moment only an intuitive assessment, it is
closely related to our technical interest in the curvature of Smean. In fact, the main mo-
tivation for a geometric study ofS is to understand the asymptotic behavior of Fourier
transforms of densities which live onQS as described in (1.1). Locally nearP we shall
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then have the two contributions

I j (x) D
Z

j�

0

�P0

j�Æ

ei (x1�1Cx2�2Cx3� j (� 0))h0j (�
0) d� 0, j D 1, 2,

for some functionsh0j . After a linear change of variables and a translation, and denoting
the new variables by� D (�0,�3), we may assume thatP D 0 and thatr

�

0(�1C�2)(0)D
0. The next step in the argument, at least if one is to follow the general line of argument
outlined in [1], is then to choose smooth coordinates (denoted again by�0) in a neigh-
borhood of 02 R2 in which [(�1 C �2)(�0)]=2 D �j�0j2. This is possible by the Morse
lemma if we can show that the Hessian of�1 C �2 in the initial variables� 0 at P0 is
negative definite: it is this information we want to obtain inthis section. We shall also
insist on explicit calculations, since we want to be able, atleast in principle, to deter-
mine thresholds for certain statements to hold. (For sufficiently smallb these properties
are obvious from the fact that the surface is then a small perturbation of a double sphere,
the perturbation being made of course within the class of surfaces of type “S”.)

The calculation of the HessianH of �1 C �2 at P0 leads to expressions which
are notationally complicated. We shall therefore prepare them by remaining as long as
possible in a more abstract setting. In the beginning of the argument we shall con-
sider three analytic functions� 0 ! A(� 0), � 0 ! B(� 0), � ! q(� ), defined in complex
neighborhoods of some pointP0

2 R

2, respectivelyP D (P0, P3) 2 R3. We shall as-
sume thatP3 is a double root of�3 ! �

2
3 C A(� 0)�3 C B(� 0) at � 0 D P0 and denote

q(� )[�2
3 C A(� 0)�3C B(� 0)] by f . When we return to our original situation,f shall be

the defining functionp of S and P the conically singular point considered above. We
want to calculate the derivatives of order less or equal thantwo of A and B at P0 in
terms of derivatives off . In fact, our main interest is for the Hessian ofA, but it turns
out that in order to calculate it, we also need the second derivatives of B. We can ob-
tain all this information by derivating the equalityf (� ) D q(� )(�2

3 C A(� 0)�3 C B(� 0))
and putting in the end� 0 D P0, �3 D P3. We obtain:
• q(P) D 2�1

�

2
�3

f (P) (by derivating twice in�3),
• �

�1 A(P0) D �
�1��3 f (P)=q(P) (by derivating once in�1 and once in�3),

• �

�3q(P) D 6�1
�

3
�3

f (P) (by derivating three times in�3),

• �

�1q(P)D 2�1
�

2
�3
�

�1 f (P)��
�3q(P)�

�1 A(P0) for (by derivating twice in�3 and once
in �1),
• �

�i �� j (P3A(P0)C B(P0)) D �
�i �� j f (P)=q(P) for i , j ¤ 3 (by derivating once in�i

and once in� j ),
• (P3��3q(P)Cq(P))�2

�i
A(P0)C �

�3q(P)�2
�i

B(P0) D �
�3
�

2
�i

f (P)�2�
�i q(P)�

�i A(P0) for
i ¤ 3 (by derivating twice in�i and once in�3),
• (P3��3q(P) C q(P))�

�1��2 A(P0) C �

�3q(P)�
�1��2 B(P0) D �

�1��2��3 f (P) �
�

�1q(P)�
�2 A(P0) � �

�2q(P)�
�1 A(P0) (by derivating once in each of the variables�1,

�2, �3).
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The quantities�
�i �� j A(P0), �

�i �� j B(P0), i D j D 1, 2, respectivelyi , j D 1, 2, there-
fore satisfy the systems:

(P3��3q(P)C q(P))�2
�i

A(P0)C �
�3q(P)�2

�i
B(P0)

D �

�3
�

2
�i

f (P) � 2�
�i q(P)�

�i A(P0),

P3�
2
�i

A(P0)C �2
�i

B(P0) D
�

2
�i

f (P)

q(P)
,(5.1)

(P3��3q(P)C q(P))�
�1��2 A(P0)C �

�3q(P)�
�1��2 B(P0)

D �

�1��2��3 f (P) � �
�1q(P)�

�2 A(P0) � �
�2q(P)�

�1 A(P0),

P3��1��2 A(P0)C �
�1��2 B(P0) D

�

�1��2 f (P)

q(P)
.(5.2)

We can extract from the last two sets of relations the following formulas for the
second derivatives ofA and B:

�

2
�i

A(P0) D
1

q(P)

�

�

�3�
2
�i

f (P) � 2�
�i q(P)�

�i A(P) �
�

�3q(P)�2
�i

f (P)

q(P)

�

,

�

2
�i

B(P0) D �
1

q(P)

�

P3(�
�3�

2
�i

f (P) � 2�
�i q(P)�

�i A(P))

�

(P3��3q(P)C q(P))�2
�i

f (P)

q(P)

�

,

�

�1��2 A(P0) D
1

q(P)

�

�

�1��2��3 f (P) � �
�1q(P)�

�2 A(P0) � �
�2q(P)�

�1 A(P0)

�

�

�3q(P)�
�1��2 f (P)

q(P)

�

,

�

�1��2 B(P0) D �
1

q(P)

�

P3(�
�1��2��3 f (P) � �

�1q(P)�
�2 A(P0) � �

�2q(P)�
�1 A(P0))

�

(P3��3q(P)C q(P))�
�1��2 f (P)

q(P)

�

.

(The determinant of the two systems which determine the values of �
�i �� j (A, B) is in

both casesq(P).)
We now apply this for the case whenf is the defining function ofS and when

P is the conically singular point ofS recalled at the beginning of the section. IfS
is given nearP by the graph of the two root functions� 0 ! �1(� 0), � 0 ! �2(� 0), then
we have

(5.3) p(� ) D q(� )(�3 � �1(� 0))(�3 � �2(� 0)) D q(� )(�2
3 C A(� 0)�3C B(� 0)),

whereq, AD ��1� �2, B D �1�2, are analytic functions in their respective variables,
defined nearP, respectively nearP0

D (1=
p

3c� 3b, 1=
p

3c� 3b). Since �1(P0) D
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�2(P0) D P3 D 1=
p

3c� 3b, we have that

(5.4) A(P0) D �
2

p

3c� 3b
, B(P0) D

1

3c� 3b
.

We next give the expressions of the derivatives ofp needed in the above calculations
for the case at hand:

�

2 p(� )

��

2
3

D 8(b� c)2
�

2
3 C 4(1C (b� c)(�2

1 C �
2
2 C �

2
3 ))(b� c)

� b2(12�2
3 � 2�2

1 � 2�2
2 ),

�

2 p(� )

��1��2
D 8(b� c)2

�1�2C 4b2
�1�2,

�

3 p(� )

��

3
3

D 24(b� c)2
�3 � 24b2

�3,

�

3 p(� )

��1��
2
3

D 8(b� c)2
�1C 4b2

�1,

�

3 p(P)

��1��2��3
D 0.

This leads to a complete knowledge of second and third order derivatives of p at P if
we also use some obvious symmetry relations:

�

2 p(P)

��

2
i

D

8(b� c)2

3c� 3b
C 4

�

1C
3(b� c)

3c� 3b

�

(b� c) �
8b2

3c� 3b

D

8c(c� 2b)

3(c� b)
, i D 1, 2, 3,

�

2 p(P)

��i �� j
D

4(2c2
� 4bcC 3b2)

3(c� b)
, if i ¤ j ,

�

3 p(P)

��i ��
2
j

D

4(2c2
� 4bcC 3b2)
p

3c� 3b
, if i ¤ j ,

�

3 p(P)

��

3
3

D

24c(c� 2b)
p

3c� 3b
.

We now obtain the following expressions for the values of thederivatives ofq and A,
respectivelyB:

q(P) D
4c(c� 2b)

3(c� b)
, �

�3q(P) D
4c(c� 2b)
p

3c� 3b
,

�

�1 A(P0) D �
�2 A(P0) D

4(2c2
� 4bcC 3b2)

3(c� b)

�

4c(c� 2b)

3(c� b)
D

2c2
� 4bcC 3b2

c(c� 2b)
,
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�

�1q(P) D
2(2c2

� 4bcC 3b2)
p

3c� 3b
�

4c(c� 2b)
p

3c� 3b

2c2
� 4bcC 3b2

c(c� 2b)

D �

2(2c2
� 4bcC 3b2)
p

3c� 3b
,

�

2
�1

A(P0) D �2
�2

A(P0) D
�3(�30b3cC 31b2c2

C 9b4
� 16bc3

C 4c4)(b� c)

c2
p

3c� 3b(2b� c)2

D

�3(�2cC b)(�2cC 3b)(3b2
� 2bcC c2)(b� c)

c2
p

3c� 3b(2b� c)2
,

�

�1��2 A(P0) D
�3(3b2

� 2bcC c2)(3b2
� 4bcC 2c2)(b� c)

c2
p

3c� 3b(2b� c)2
,

�

2
�1

B(P0) D �2
�2

B(P0) D �
9b4
� 30b3cC 23b2c2

� 8bc3
C 2c4

c2(2b� c)2
,

�

�1��2 B(P0) D �
3b2(3b2

� 4bcC 2c2)

c2(2b� c)2
.(5.5)

Proposition 5.1. The Hessian H of�1C�2 at P is negative definite for b< c=2.
Moreover, if we fix 0 < c0 < 1=2, then we can find c00 > 0, which in principle can be
effectively calculated in terms of c0, so that H� �c00 I when b� c0c.

In fact, the Hessian of�1C�2 is proportional to the Hessian of�A. Here�2
�1

A(P0)

is clearly positive and the determinant of the Hessian ofA is d[(2c� b)2(2c� 3b)2
�

(2c2
� 4bcC 3b2)2] D 12d(c � 2b)(c � b)2c, where d is a positive constant. This is

trivially positive whenb < c=2. The quantitative estimate follows looking at the ex-
pressions for the second derivatives ofA.

REMARK 5.2. It is an important feature of the Hessian that for smallb it is uni-
formly in b negative definite. This corresponds to the fact that the graph of (�1C�2)=2
is a smooth perturbation of a piece of a sphere.

6. The Hessian of the discriminant of the second order polynomial � ! d0�
2
C

d2� C d4 at P

With notations introduced in (2.1), the expression of the discriminant1 of the
polynomial in the title of the section at the conically singular point P is

(6.1)
1 D (d2)2

� 4d0d4 D [(3b2
C 2c2

� 4bc)j� 0j2C 2b� 2c]2

� 4c(c� 2b)[(1C (b� c)j� 0j2)2
� b2(�4

1 C �
4
2 � �

2
1�

2
2 )].

If �1,�2, are the positive roots ofp(� 0,�), then�1 D �
2
1, �2 D �

2
2, are the roots of� !

d0�
2
Cd2� Cd4. In particular,�1� �2 D (�1��2)(�1C�2). We are mostly interested in
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the Taylor expansion to second degree terms of1 at P0

D (1=
p

3c� 3b, 1=
p

3c� 3b)
with respect to the variables (�1, �2). To simplify calculations we shift the origin to
(1=
p

3c� 3b, 1=
p

3c� 3b), which can be done by performing the change of variables

(6.2) sD �1 � 1=
p

3c� 3b, t D �2 � 1=
p

3c� 3b.

Since j� j j � 1=
p

c� 2b we shall havejsj C jt j � 1=
p

c� 2bC 1=
p

3c� 3b.
After some calculations we now have

(6.3)
1 D

�

�42b2cs2t2
C 36bc2s2t2

� 12b2s2t C 32bc
p

3c� 3bs3
� 12b2

p

3c� 3bst2

C 32bc
p

3c� 3bt3
� 8c2

p

3c� 3bs2t � 8c2
p

3c� 3bst2C 18b3s2t2
� 33b2cs4

� 33b2ct4
C 36bc2t4

C 32bcs2
C 32bct2 � 24b2st� 16c2st� 12c3s4

� 12c3t4

C 16b
p

3c� 3bcst2 � 16c2t3
p

3c� 3b� 16c2s3
p

3c� 3bC 9b3t4
C 9b3s4

� 12b2s3
p

3c� 3b� 12b2t3
p

3c� 3bC 16bc
p

3c� 3bs2t C 36bc2s4

� 12b2s2
� 12b2t2

� 16c2s2
� 16c2t2

C 32bsct� 12c3s2t2
� b2

b� c
.

We see in particular that there are no terms of degree 0 or 1 in (s, t). In fact, we
obtain that1 is equal to

b2(16c2
� 32cbC 12b2)

c� b
(s2
C t2)C

b2(16c2
� 32cbC 24b2)

c� b
stC

b2O(j(s, t)j3)

c� b
,

for j(s, t)j ! 0, i.e., we calculate modulo terms of order 3. (The terms, summarized in
“ O(j(s, t)j3)”, but explicitly known from (6.3), also depend onb.) The Hessian QH of
the discriminant is thus

(6.4) QH D
b2

c� b

�

2(16c2
� 32cbC 12b2) 16c2

� 32cbC 24b2

16c2
� 32cbC 24b2 2(16c2

� 32cbC 12b2)

�

.

This is positively definite in the admissible regionb > 0, b < c=2 since both 16c2
�

32cbC 12b2 and the determinant ofQH are positive there. (The determinant ofQH is
26(b4

=(c� b)2)(12c4
� 48bc3

C 60c2b2
� 24cb3). It vanishes forc=b 2 {0, 1, 2}.)

With the notation (s, t)? D
�

s
t

�

we have proved:

Proposition 6.1. For every c0 < 1=2 there is an explicitly computable constant c00

such that if b< c0c, then we have thatj1� (1=2)h QH � (s, t)?, (s, t)?ij � c00b2
j(s, t)j3 for

(s, t) in some previously fixed bounded region.( QH � (s, t)? is the matrix QH multiplied
with the vector(s, t)?.)
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The exact structure of1 � (1=2)h QH � (s, t)?, (s, t)?i is interesting if we want to
obtain quantitatively sharp estimates. The following result can be read off from the
explicit expression of1:

REMARK 6.2. T(s, t)D ((c�b)=b2)(1� (1=2)h QH � (s, t)?, (s, t)?i) has the follow-
ing form:

p

3c� 3b[(�12b2
C 32bc� 16c2)(s3

C t3)C (16bc� 12b2
� 8c2)(s2t C st2)]

C (9b3
C 36bc2

� 33cb2
� 12c3)(s4

C t4)C (18b3
� 42b2cC 36bc2

� 12c3)s2t2.

This gives forcD 1, 0� b < 1=2, the following (somewhat rough) estimate:

(6.5) jT j � 28
p

3(jsj3C s2
jt j C jsjt2

C jt3
j)C 60(s4

C t4
C s2t2).

We shall from now on not any more carry terms of order 4 and explicit numerical
constants with us. They could be interesting if one wants to obtain sharp thresholds,
but we do not try to find these thresholds explicitly.

REMARK 6.3. It is an important feature here thatQH and the remainder term in
the right hand side of the preceding relation are uniformly small of orderb2.

7. Estimates nearP0

The results in the preceding two sections were mostly about the Hessians of�1C

�2 and of1, defined in section 6 atP0, with (P0, P3) the conically singular point ofS
in R

3
C

. We shall now look for similar information for points in a full, perhaps small,
neighborhood ofP0. Again we are interested in quantitative expressions, but we shall
not look for explicit sharp estimates. (In principle, such estimates can be obtained, but
lead to complicated formulas.) It also seems justified to normalize acoustical constants
in such a way thatcD 1.

The estimates themselves will depend on the size of� . We know already that on
S j� j j � 1=

p

c� 2b, which for cD 1 comes toj� j j � 1=
p

1� 2b. To keep 1=
p

1� 2b
bounded by some constant we shall often assume thatb � c0 for some constantc0 <
1=2. (A reasonable choice could be to work from the very beginning for b � 1=3.)

Our first remark is that we can estimate derivatives of any order of �1C�2 starting
from �1C�2D (�2

1C�
2
2C2�1�2)1=2 and noticing that with notations introduced in (2.1),

�

2
1C�

2
2 D�d2=d0 and�2

1�
2
2 D d4=d0. In particular,�2

1C�
2
2 and�2

1�
2
2 are polynomials in

�

0 with explicitly calculable coefficients. It follows that there is a (calculable) constant
� such that these coefficients can be estimated by 1=(1� 2b). From this we can now
estimate derivatives of�1 C �2 of any previously fixed order, provided we remain in
a region where�1 > Æ, �2 > Æ for some suitably fixedÆ > 0. Since we know from
(1.7) that j(� 0, �i (� 0))j > 1=

p

cD 1, this will be the case if we remain in a fixed open
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convex cone0 containing the singular point inR3
C

which intersects the plane�3 D 0
only at 0. Clearly,Æ can be calculated in terms of0.

REMARK 7.1. We assume that a closed convex cone0 containing the conically
singular point inR3

C

with 0 \ {� I �3 D 0} D {0} has been fixed. Then there is a con-
stant� such that forcD 1

(7.1)
X

j�j�5

j�

�

�

0

(�1(� 0)C �2(� 0))j �
�

p

1� 2b
whenever (� 0, � j (�

0)) 2 0, j D 1, 2.

In view of this remark, we can now estimate second derivatives of (�1 C �2)(� 0)
using Taylor’s formula atP0 and information about remainder terms. This is particu-
larly easy on the linesL(�,�) which pass throughP0 defined for some given direction
(�, �), �2

C �

2
D 1, by

(7.2) � !

�

�� C

1
p

3� 3b
, �� C

1
p

3� 3b

�

.

In fact we denote byM(�, �, � ) the function

(7.3) M(�, �, � ) D (�1C �2)

�

�� C

1
p

3� 3b
, �� C

1
p

3� 3b

�

,

and notice that (with� 2 R and H again the Hessian of�1C �2 at P0)

d2

d� 2
hH � (�� , �� )?, (�� , �� )?i D 2hH � (�, �)?, (�, �)?i.

Then we have, derivating Taylor’s formula up to terms of degree two for M at � D 0
twice, and using (7.1),

(7.4) 8�,8� with �

2
C�

2
D 1,

�

�

�

�

d2

d� 2
M(�, �, � ) � hH � (�, �)?, (�, �)?i

�

�

�

�

� c1j� j,

for somec1 > 0.
We have now studied�1C �2 and it remains to say a few words about the func-

tion �2 � �1. We have of course�2 � �1 D
p

1=(�1C �2)d0, with “
p

1” the positive
square root of1. (Recall that1 D d2

0(�2
1 � �

2
2)2.) In this notation we have mixed the

coordinates� 0 with the coordinates (s, t): the � j are functions of� 0, whereas1 is in
Section 6 a function of (s, t). However,� 0 is just a translation of (s, t), so we can ar-
gue for a moment using both coordinate systems simultaneously. Since1 vanishes to
order two atP0 (in the coordinates (s, t), P0 corresponds to the point (0, 0)), whereas
�1 C �2 does not vanish there,1=(�1 C �2)2 is a C1 function which vanishes of or-
der two at P0. Moreover, its Hessian atP0 is the one of1 divided by the number
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(�1(P0)C �2(P0))2
D 4=(3� 3b). (When we calculate the Hessian, we work of course

in one fixed sets of coordinates.)
We observe next that we have in view of Section 6

Proposition 7.2. Fix Qc < 1=2. There is d> 0 and for every b� Qc a positive
definite2�2 matrix QH such that with(s, t) denoting(�1�1=

p

3� 3b,�2�1=
p

3� 3b),

(�2 � �1)(� 0) D b
q

h

QH � (s, t)?, (s, t)?i C O(j(s, t)j3) if j(s, t)j � d.

The main idea in the following calculations is now that when restricted to the lines
L(�, �) (defined in (7.2)), the positive square root

p

1 of 1 is C1 smooth up to the
singular point. (Here we use that when we consider a positiveC1 function h defined
on (�Æ, Æ) which satisfiesh(0)D 0, h(t) > 0 for t ¤ 0, then

p

h is C1 on [0, Æ).)

Corollary 7.3. Fix Qc < 1=2. There are calculable constants ci > 0, i D 1, 2, 3,
such that if0 � b � Qc and if �, � are real numbers chosen with�2

C �

2
D 1, then

the function F(�, �, � ) D (�2 � �1)2(�� C 1=
p

3� 3b, �� C 1=
p

3� 3b) is of form
F(�, �, � ) D b2d(�, �)� 2

Cb2T(�, �, � ) for some function T which isC1 in � for � 2
[0, c1) and vanishes of order3 at � D 0. Here d(�,�) is for fixed�,� a constant� c2

and jT(�,�,� )j � c3j� j
3. It follows that (�2��1)(��C1=

p

3� 3b,��C1=
p

3� 3b)D
bj� j[
p

d(�, �)C b�(�, �, � )], where� is a C1 function for small� � 0 up to � D 0
which is bounded uniformly in(�, �) and vanishes at� D 0.

8. Proof of Theorem 1.2

For the convenience of the reader, we prove explicitly the following simple

REMARK 8.1. Let6 be aC2-surface given in a neighborhoodU of some point
Q D (Q0, Q3) as a graph of a function� 0 ! z(� 0) and assume that in the� 0-plane we
are given a lineL such that the plane curveKD {(� 0,z(� 0))I � 0 2 L, (� 0,z(� 0)) 2 U} has
no inflection point atQ. Then the Gaussian and mean curvatures of6 cannot vanish
simultaneously atQ.

To see why this is so, we may assume without loss of generalitythat Q D 0 and
that L is the �1-axis. Next, we consider, with notations which are standardin differ-
ential geometry (and are somewhat in conflict with the notations in the other parts of
the paper), the quantities:

Qp D
�z(Q)

��1
, Qq D

�z(Q)

��2
, Qr D

�

2z(Q)

��

2
1

, QsD
�

2z(Q)

��1��2
, Qt D

�

2z(Q)

��

2
2

.
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The Gaussian curvatureK and the mean curvatureKmean at Q are then given by the
quantities

K D
Qr Qt � Qs2

(1C Qp2
C Qq2)2

, KmeanD
Qr (1C Qq2) � 2 QpQq QsC Qt(1C Qp2)

2(
p

1C Qp2
C Qq2)3

,

and we know thatQr ¤ 0. If K D 0 we must haveQr Qt D Qs2. We claim that then
Qr Kmean¤ 0. In fact, the nominator inQr Kmean can be written asT D Qr2(1 C Qq2) �
2 QpQq QsQr C Qs2(1C Qp2) and there are no real (Qr , Qs) ¤ 0 for which T D 0.

We now turn to the proof of Theorem 1.2. We shall at first apply the results from
Section 4. Since the statements there distinguish between the cases 9b < 2c and 9b �
2c, and since we intend to work with some relatively smallb, we may assume that
9b < 2c.

We shall argue by contradiction and assume that for some fixed(b, c) there are
points onSo at which the Gaussian and the mean curvature both vanish. Forsymmetry
reasons, it is no loss of generality to assume that some of these points lie in the region
R

3
C

D {� 2 SI �1 � 0, �2 � 0, �3 � 0}. Actually, no such point can lie in one of
the planes�i D 0. (This is a consequence of the results in Section 4: we shallargue
for �1 D 0, the other cases being symmetrical. Consider then a point (0, �2, �) 2 So

and denote0
�

D {� 2 So I �3 D �} the curve associated with� in Section 4. Then
we know from that section that0

�

has no inflection point when�1 D 0 and therefore
(e.g., by Remark 8.1) the Gaussian and the mean curvature cannot vanish at (0,�2, �)
simultaneously.)

Actually, the same argument gives that points where the Gaussian and mean curva-
ture vanish simultaneously can only occur, if at all, when wehavej� j �1=

p

3c� 3bj �
Qcb, j D 1, 2, 3, whereQc is the constant in Theorem 4.1. We recall that this constant
is calculable. We conclude that if we fix some closed convex cone 0 which contains
the conically singular point inR3

C

, then there can be no points onR3
C

n 0 where the
Gaussian and the mean curvature vanish simultaneously provided b is sufficiently small.
(Once we have fixed0, we can calculateb in terms of0 and the constantQc.)

We must now exclude the possibility that there are points onSo on which both
curvatures vanish in0, where0 is some closed convex cone which contains the sin-
gular direction inR3

C

in its interior. Moreover, we are allowed to fix0 as we please in
the remaining part of the argument. We shall argue by checking that the plane curves

G(�,�, c0) D

��

��C

1
p

3�3b
,��C

1
p

3�3b
,�2

�

��C

1
p

3�3b
,��C

1
p

3�3b

��

I

j� j � c0
�

(which lie in So) have no inflection points ifc0 is fixed small enough. Once this is
done, we can then apply Remark 8.1 and can then conclude the argument with
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REMARK 8.2. Fix some smallc0 > 0. Then we can find a closed convex cone0
which contains the singular direction inR3

C

in its interior such that0 \ So �
S

�,� G(�, �, c0), the union being for�2
C �

2
D 1.

We are thus left with the study of inflection points of the curves G(�, �, c0). We
shall now rely on the results in Section 7, assuming, as we mayafter a normalization,
that cD 1, so the first condition onb shall beb< 2=9. SinceG(�, �, c0) is the graph
of the function�2 over (part of) the lineL(�, �) introduced in (7.2), it suffices then
to show that (d=d� )2

�2(�� C 1=
p

3� 3b, �� C 1=
p

3� 3b) ¤ 0 if the point (�� C
1=
p

3� 3b, �� C 1=
p

3� 3b, �2(�� C 1=
p

3� 3b, �� C 1=
p

3� 3b)) stays in0.
Here we write�2 as [�2C �1C (�2 � �1)]=2. Also recall the notationM(�, �, � )

for (�1C�2)(�� C1=
p

3� 3b,�� C1=
p

3� 3b)) (see (7.3)). In view of (7.4) we shall
have that (d=d� )2M(�,�,� )D hH � (�,�)?, (�,�)?iCO(j� j) for � ! 0 (with calculable
constants). It follows if we also use Proposition 5.1 that (d=d� )2M(�, �, � ) � �c1 for
some constantc1 > 0 if j� j � c2 andb is sufficiently small. Herec1,c2 are independent
of b onceb is small.

On the other hand, we can estimate (d=d� )2(�2��1) using Corollary 7.3. It is clear
in particular that (d=d� )2(�2 � �1)(�� C 1=

p

3� 3b, �� C 1=
p

3� 3b)j � Qcb if j� j �
c3. This shows that ifc0 is sufficiently small, then (d=d� )2

�2(�� C 1=
p

3� 3b, �� C
1=
p

3� 3b) is strictly negative for smallj� j � c0. This concludes the argument.

9. Final comments

We write, using the notationd for b�a, and dropping the assumption “aD �2b”,
(1.3) in the form

(9.1)
3
Y

jD1

(� 2
� cj� j2C d�2

j ) �
3
X

jD1

b�2
j (� 2
� cj� j2C d�2

jC1)(� 2
� cj� j2C d�2

jC2) D 0

(indices are counted modulo 3) and denote byq the polynomial in three variables ob-
tained when in (9.1) we put� D 1:

(9.2) q(� ) D
3
Y

jD1

(1� cj� j2C d�2
j ) �

3
X

jD1

b�2
j (1� cj� j2C d�2

jC1)(1� cj� j2C d�2
jC2).

In the arguments of this paper we have used in an essential waythat for a D �2b,
q splits into the product of two factors of lower degree. In this way our problems
reduced to studying algebraic surfaces defined by polynomials of degree 4, rather than
of degree 6. There are two other cases whenq given by (9.2) is known to split into a
product of two simpler factors: whenbD 0 and whenbD a. Indeed, whenbD 0, then
q is of form q(� ) D

Q3
jD1(1� cj� j2�a�2

j ) and whenbD a, (which corresponds to the
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isotropic case) thenq(� ) D (1� cj� j2)2(1� (cC b)j� j2). In these cases the geometry of
the slowness surface is of course trivial. We claim that apart from the above situations,
there are no other cases in whichq decomposes into factors of strictly lower degree.

To prove this, let us then start with a decomposition ofq in the form q D q1q2,
whereq1 andq2 have degrees strictly smaller than 6 and which are with real coefficients.
They cannot be of odd degree however, since real valued polynomials of odd degree have
an unbounded set of real zeros. We may thus assume that the degree of q1 is two and
that that ofq2 is 4. We assume thata ¤ b, b ¤ 0, a ¤ �2b, and restrictq to the
coordinate plane�3 D 0. It follows that we must haveq(� 0, 0)D q1(� 0, 0)q2(� 0, 0).

As a consequence of (9.2) there is, on the other hand, a natural decomposition of
q(� 0, 0) into a product of two factors, namely

q(� 0, 0)D (1� cj� 0j2) � q3(� 0),(9.3)

where

q3(� 0) D b�2
1 (1� cj� 0j2C d�2

2 )C b�2
2 (1� cj� 0j2C d�2

1 )

� (1� cj� 0j2C d�2
1 )(1� cj� 0j2C d�2

2 ).

We next want to see how these two decompositions ofq(� 0, 0) are related. We denote
{� 0 2 R2

I q1(� 0, 0)D 0} by S1, {� 0 2 R2
I q2(� 0) D 0} by S2 and {� 0 2 R2

I q3(� 0) D 0}

by S3. Here S1 is then an ellipse andS2, S3, are quartics. We shall also assume for the
moment that, in addition toa ¤ b, b ¤ 0, we havea ¤ �b and claim that 1� cj� 0j2

and q1(� 0, 0) must be proportional.
In fact, otherwise the ellipseS1 and the circle 1� cj� 0j2 D 0 could have only fi-

nitely many points in common and therefore, by density, 1� cj� 0j2 D 0, would imply
q3(� 0) D 0. A particular point on the circle 1�cj� 0j2 D 0 is � 00 D (1=

p

2c, 1=
p

2c) and
we haveq3(� 00)D �(1=4)(b2

�a2)=c. Since by our assumptions (which implya2
¤ b2),

this does not vanish we have then proved that 1�cj� 0j2D 0 andS1 have infinitely many
points in common and 1� cj� 0j2 and q1(� 01, 0) must therefore be proportional. In par-
ticular, q1(� ) contains no terms of type�1�2. The same is then true for mixed terms of
form �2�3, �3�1, and it follows easily thatq1(� ) and 1� cj� j2 are proportional, i.e., we
may assume that in (9.3), 1� cj� j2 is q1(� ). We can sum up what we have obtained
so far by saying that, whena ¤ �b, then the assumption “q D q1q2” implies that the
sphere{� I cj� j2�1D 0} is contained in the slowness surface. This is in fact what hap-
pens for the caseaD �2b, and there are no other cases (witha2

¤ b2) when it is true.
Indeed, for example the pointQ� D (1=

p

3c),1=
p

3c,1=
p

3c) satisfiescj Q� j2�1D 0, but is
not a point of the slowness surface: it is in fact a point on thespace diagonal�1D �2D

�3, and we already have calculated all points of the slowness surface on the space diag-
onals. They are (�1=

p

3c� d),�1=
p

3c� d,�1=
p

3c� d) (which are double points)
and the points (�1=

p

3c� dC 3b), �1=
p

3c� dC 3b, �1=
p

3c� dC 3b), and none
of them is equal toQ� , since we have ruled out the casesd D 0, d � 3b D 0. This
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concludes the argument if we assume thata ¤ �b and it remains to see what hap-
pens whena D �b. This case is still more elementary since thenq(� 0, 0) D (�1C
cj� 0j2)2((b� c)j� 0j2 � 1). q1 is then immediately seen to be one of the three factors in
this decomposition, and again it has no mixed terms of form�i � j , i ¤ j . We can then
continue the argument as above.
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