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Abstract

Ozeki and Takeuchi [14] introduced the notion of ConditioreAd Condition B
to construct two classes of inhomogeneous isoparametiperbyrfaces with four
principal curvatures in spheres, which were later genezdliby Ferus, Karcher and
Munzner to many more examples via the Clifford represematiave will refer to
these examples of Ozeki and Takeuchi and of Ferus, Karcteeivimzner collec-
tively as OT-FKM type throughout the paper. Dorfmeister afeher [5] then em-
ployed isoparametric triple systems [3, 4], which are atg&bin nature, to prove that
Condition A alone implies the isoparametric hypersurfaczefi OT-FKM type. Their
proof for the case of multiplicity pair$3, 4 and {7, 8} rests on a fairly involved
algebraic classification result [9] about composition &

In light of the classification [2] that leaves only the fourceptional multipli-
city pairs {4, 5}, {3, 4}, {7, 8 and {6, 9} unsettled, it appears that Condition A may
hold the key to the classification when the multiplicity gaare{3, 4 and {7, 8.
Thus Condition A deserves to be scrutinized and understooi rtihoroughly from
different angles.

In this paper, we give a fairly short and rather straightfandvproof of the result
of Dorfmeister and Neher, with emphasis on the multipligigirs {3, 4 and {7, 8},
based on more geometric considerations. We make it explitdt apparent that the
octonion algebra governs the underlying isoparametrigcgire.

1. Introduction

An isoparametric hypersurfacel in the sphereS" is one whose principal curva-
tures and their multiplicities are fixed. We shall not dwefl the history and devel-
opment of the beautiful isoparametric story, and shall de@vto, e.g., [2], and the
references therein. Through Munzners work [12, 13] one kndhat such a hyper-
surface can be characterized by a homogeneous polyndmi@®"*! — R of degree
g=1, 2, 3,4 or 6, satisfying

»Ix]972
2

IVF2(x) = g?|x|*97%, (AF)(x) = (mz —my)g

for two natural numbersn; andm,. The interpretation ofn; andm;, is that if we ar-
range the principal curvatures > - -- > Ag with multiplicities my, ..., mg, respectively,
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thenm; = m;;, with index mod §); therefore, which one is; or m; is only a matter
of convention, by changin§ to —F if necessaryF is called the Cartan—Munzner poly-
nomial, whose restrictiorf to S” has values in the intervat[L, 1]. f~(c), -1 <c <1,

is a one-parameter family of isoparemetric hypersurfaceshich M belongs. The fam-
ily degenerates to two connected submanifoMs := f~1(1) and M_ := f1(—1),
called the focal submanifolds dfl, of codimensiorm; 4+ 1 andm, + 1, respectively.

In the case wheig = 4, Ozeki and Takeuchi [14] introduced what they called Con-
ditions A and B to construct two classes of inhomogeneoysaisometric hypersurfaces.
Later on, using representations of the symmetric CliffdgearasC{, . ; (following the
notation of [8]), Ferus, Karcher and Miinzner [7] generalitteslr work to construct many
more isoparametric hypersurfacess™tm)+1: we will refer to these examples of Ozeki
and Takeuchi and of Ferus, Karcher and Miinzner collective@BFKM type throughout
the paper. The OT-FKM hypersurfaces are of multiplicities, m,}, where

(1) my = k5(m1) —-m—1

for some integek > 0, ands(m,) is the dimension of an irreducible module of the
skew-symmetric Clifford algebr&,,,_1 (following the notation of [8]). These multi-
plicities, with the exception ofm;, my} = {2, 2} or {4, 5}, turn out to be exactly the
multiplicities of isoparametric hypersurfaces in sphebgsthe work of Stolz [16]. We
will refer to (1) as the multiplicity formula. The author armis collaborators recently
established in [2] that ifm, > 2m; — 1, then the isoparametric hypersurface is of OT-
FKM type with m; and m, given in (1). This leaves open only the cases in which the
multiplicities {mq, my} = {4, 5}, {3, 4}, {7, 8} or {6, 9} by the multiplicity formula; we
refer to them as the exceptional multiplicity pairs.

One peculiar feature of the exceptional multiplicity passthat they are the only
pairs for which incongruent examples of OT-FKM type admif > m, in (1). A
deeper reason for this phenomenon manifests in [2], wheireshown that the condi-
tion my, > 2m; — 1 warrants that an ideal generated by certain (complexifetpo-
nents of the 2nd fundamental form is reduced, i.e., has mteiht elements, at any
point of M,. The reducedness property no longer holds, as seen by tmepks of
OT-FKM type, when it comes to the exceptional multiplicitgirs.

The aforementioned examples of Ozeki and Takeuchi are dipficities (m,m,) =
(3, 4k), (7, &) of OT-FKM type. For the construction, Ozeki and Takeuclstfimposed
Condition A on the isoparametric hypersurface. That isy 8tgulated that at some point
x of M, the shape operatof$, of M. in all normal directions have the same kernel.
Then they imposed Condition B, which says that at the sammt paihe components of
the (cubic) 3rd fundamental form are linearly spanned bycbmponents of the (quad-
ratic) 2nd fundamental form, with coefficients being lindanctions of the coordinates
of the tangent space tdl, at x.

Through the work of Ferus, Karcher and Minzner [7], one kndves Condition B
always holds for the OT-FKM type. Moreover, for the OT-FKM g&pCondition A is
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true at some points on the focal submanifold of the smallelinmension in the case
of the exceptional multiplicity paif3, 4} or {7, 8}.

Dorfmeister and Neher then showed [5] that in fact Condi#oalone implies that
the isoparametric hypersurface is of OT-FKM type. It seehesdfore that Condition A
holds the key to the unsettled cases when the multiplicifyspare {3, 4} and {7, 8}.
Condition A thus deserves to be scrutinized and understooet ihoroughly from dif-
ferent angles.

Dorfmeister and Neher's approach was via the isoparametple systems [3, 4],
which are algebraic in nature. The proof also relies on theyfénvolved algebraic
classification result [9] about composition triples.

In this paper, we give a fairly short and rather straightfandvproof of the result of
Dorfmeister and Neher, with emphasis on the multiplicityrp43, 4 and{7, 8}, based
on more geometric considerations. We make it explicit anobegnt that the governing
force of isoparametricity is the octonion algebra.

In Section 2, we review the octonion algebra whose left agttrimultiplications
by the standard purely imaginary basis elemests . ., e;, with ey understood to be
the multiplicative identity, give rise to the two inequieat Clifford representationgd,
and J, 1<a <7, of C; on R8 We also review normalized orthogonal multiplications
on R"1, which are those bilinear binary operatiors y such that|x o y| = |x|]y|
andeyoy =y for all x, y € R"™?, where €, ..., e) is the standard basis. I® we
characterize all the normalized orthogonal multiplicaticas eitherx o y = (x(ya))«
or xoy = a((ay)x), wherea is a unit vector inQO with the octonion multiplication
employed on the right hand side. In particular, restrictiod, the associativity of the
guaternions impliex oy = xy, or = yx for all x, y € H. At this point, we introduce
the angled by settingae = cos@)ep + sin@)e for some purely imaginary uni.

In Section 3 we recall the expansion formula and Conditiorf ®zeki and Takeuchi,
and show that at a point € M. of Condition A, the 2nd fundamental form components
can be assumed to bg (U, U) = 2(e, A, B), 1 < a < 7, associated with the standard
octonion multiplication, up to an appropriate choice ofdsasf the eigenspaces of the
shape operatoB of M, atx. Here,U = A@® B & C and A, B, C are, respectively,
eigenvectors ofs with eigenvalues 1+-1, 0.

Section 4 introduces two points* € M, and x* € M_, related tox € M, of
Condition A, referred to as the mirror points &f Here, x* is also of Condition A,
whose 2nd fundamental form components are givenpb{V/, V) = 2(e, o A, B), 1 <
a <7, for a tangent vectov at x* with the same eigenvector componertsand B as
above, where> is some normalized orthogonal multiplication on the oabonalgebra.
Furthermore, the 2nd fundamental matricescatare appropriate combination of those
at x and x*, so that the 2nd fundamental forpi* at x* can be succinctly expressed
in terms ofo and the octonion multiplication to reapt(W, W) = —v/2(XZ + Y o 2),
whereW = X @ Y & Z is the eigenvector decomposition of the shape operator of a
tengent vectoW at x* with eigenvalues 11, 0, respectively.
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In Section 5 we first present the octonion setup of the isopatiac hypersurfaces
constructed by Ferus, Karcher and Munzner. Our expressiatightly more general
than that given in [6] to account for all possible normalizathogonal multiplications
o at x* as indicated above. We show that, for the hypersurfacestrooiesd by Ferus,
Karcher and Minzner, we can in fact perturb the original mipoint x* with arbitrary
6 to one at whichv =0 or =z, i.e., at which eitheaob = ab or acb = ba for all a,b €
O, so that up to isometry there are only two such hypersurfadés calculate the 3rd
fundamental form ak* to be g*(W,W,W) = X(YoZ)—Yo(XZ) with W= XdYHZ
the same eigenvector decompositionxdtas before. We then introduce the octonion
setup of the isoparametric hypersurface constructed byiCzed Takeuchi. This is a
hypersurface of both Conditions A and B at the poinbf Condition A, where the
3rd fundamental form is not linear in all variables, whereasverting tox* the 3rd
fundamental formg* turns out to beg*(W, W, W) = (XY — Y X)Z (the orthogonal
multiplication o at x* coincides with the octonion multiplication in this caseheTfact
that g* is linear in the eigenvector components Y, Z in both Ozeki—Takeuchi and
Ferus—Karcher—Munzner examples points to that it will bepgémto look at the 3rd
fundamental form ak*.

Section 6 paves the way for the classification of the 3rd foretgal form atx™,
and hence of the isoparametric hypersurface of ConditiomyAyerifying first that at
x* the 3rd fundamental forng™(W, W, W), for a tangent vectoWW = X @Y & Z with
eigenvector decomposition as before, is indeed only lineax, Y and Z; therefore,
we may denote* by q*(X,Y, Z) instead to treat it as a multilinear form. We observe,
by the eighth identity of the ten equations of Ozeki and Takel(l4, pp.529-530]
defining an isoparametric hypersurface, that at lé@stX, VY, Z)| = |[X(Y o Z)—-Y o
(X2)|. We then prove several identities gf(X, Y, Z) about what happens when one
interchanges the variables, Y, Z, based on the fifth of the ten equations of Ozeki and
Takeuchi. These properties together enable us to claggfp an ambiguity of sign,
of the important special casg (X, Y, &) that the remaining classification hinges on.

In Section 7, we prove that, # # 0 andx, then the aforementioned ambiguity
of sign can be removed and the isoparametric hypersurfacg baiof the type con-
structed by Ferus, Karcher and Munzner, so that the cladsifices reduced to the case
when @ = 0 or &, where the ambiguity of sign persists to an advantage. Tassifi-
cation is first done for the quaternionic case. The octoniasecdhen follows naturally
from that the octonion algebra is two (twisted) copies of tluaternion algebra. The
sign choices then differentiate the example constructedbgki and Takeuchi from
the two by Ferus, Karcher and Munzner.

Lastly, we remark that in [10], [11], Miyaoka proves exactlyat Condition A
holds for either focal submanifold, when the number of ggat curvatures is six, to
show that such isoparametric hypersurfaces are homoggneou
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2. The octonion algebra and Clifford representations

Let H be the quaternion algebra with the standard basis jl,k. The octonion
algebra© is H & H with the multiplication

(a, b)(c, d) = (ac—db, da + bg),

where overline denotes quaternionic conjugation. ¥et (a, b) € O, the conjugate of
X is X := (&, —b), and the real and imaginary parts wfare k £ X)/2, respectively.
The inner product

@) (x,y) = X
2
satisfies
X, 9) =y,
3) (xy, z) = (y, X2) = (X, zy),

X(¥2) + y(X2) = (zx)y + (zy)X = 2(x, y)z.

In particular, first of all, the above formulae are the rulesfdllow when we inter-
change two objects in the octonion multiplication. Secgndihen x and y are per-
pendicular and purely imaginary i@, they satisfy

(4) Xy =-=yX X(y2 =-y(x2), (zXy=—(zy)x

for all ze @. As a consequence of (4), if we let:= (0, 1) € O, the standard ortho-
normal basis

(5) (e, €1, ...,6):= (1,10, ],k €,ie, je, ke)
gives rise to orthogonal matriced, ..., J; over O, where Ji(2) =gz 1<i <7,
such that

J I + IJi = 28 Id.
Similarly, the orthogonal matriced;, . .., J;, where J/(z) = zg, satisfies
Ji/"]li + 'Jlé“]i/ = _28”( Id

Recall [8] that the Clifford algebraC, (respectively,C/) is the algebra ovelR
generated byEy, ..., E, subject to only the conditions thaE()?> = —1 (respectively,
(E)>=1) and E; E; = —E;E fori # j. The structure ofC, (respectively,C;, to be
displayed later) is well known [8],
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n|1]2] 3 4 5 | 6 7 8
C|C |H | H®H| HQ) | C@) | R@B) | RB)®R(8) | R(16)

subject to the periodicity conditio@n.s = C, ® R(16), of which the most important
ones for our purposes af@, = H, C; = H @ H, Cs = R(8), the matrix ring of size
8-by-8 overR, and C; = R(8) @ R(8). The generator&k,, ..., E, projected to each
irreducible summand o€, n = 2, 3, 6, 7, give rise tc matricesTy, ..., T, in R(4)
for C, and Cs, and inR(8) for Cg and C;, satisfying {I;)?> = —Id andTiT; = -T;T,
for i # j. TheseT, makeR* andR® into irreducibleC,-modules. Fom = 2, 6, there
is only one such irreducible module as the number of irrddacsummands o€, is
one, whereas fon = 3, 7, there are two inequivalent such irreducible moduleshas
number of irreducible summands 6%, is two. Ty, ..., T, are called representations of
C, on the appropriate Euclidean spaces.

The upshot is that the octonion (respectively, quaterojolaft and right multipli-
cations generated above, i.6s,...,J7 vs. J;,..., J; (respectively,J;, J», J3 vs. J;, 35, J3)
are precisely the inequivalent representationsCefon R® (respectively,Cs on R%).
These two representations are inequivalentas- - J; = —Id whereasJ;--- J; = Id
(respectively,J; J, J3 = —Id whereasJ; J;J; = Id).

Now the subalgebra o€, linearly spanned by the even products of the Clifford
generators is isomorphic 8¢ ~ R(8) having a single irreducible summand. We see
Wz, bdz,..., Jdr and 3| 35, Iy, ..., JiJ; are equivalent representations @f. That
is, there is an orthogonal matrlt over R® such thatu 13 J,U = JJ;for1<i=<6.

A similar discussion also holds true f@t by forgettingey, .. ., e, sinceC, = H. As
an application, we prove the following to be employed later.

Lemma 1. Let m=3,7 Let A, 1<a<m, be(m+ 1)-by{m + 1) matrices
satisfying

(6) ALAL + AAl = 25,pld.

Then there are two orthogonal matrices ® € O(m + 1) for which E, := P71A,Q
satisfy B, =1Id, and for1 <a,b<m-1,

EaEp + EpEa = —264p 1.

Proof. Clearly we can find two orthogonal matridesand Q such thatP 1A, Q =
Id. (Take, e.g.P =Id andQ = (An)L.) Seta = m. Then (6) reduces to
EpEp = Id,
Ep + Ef =0,

for 1 <b <m-—1. This says exactly thaE,, 1 <b <m—1, are orthogonal matrices
satisfying Ep)? = —Id and E,E. = —EcE, for 1<b#c<m-1. O
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Corollary 1. Conditions and notations as inbemma 1,then we may pick orthog-
onal P and Q so that A= PLQ % 1<a<m.

Proof. As mentioned earlie€,,_; is generated byl Jn, ..., Jn_1Jm. SinceC, =
H and Cs = R(8), we know all the Clifford representations are equivalérhus, there
is an O € O(m + 1) such thatE, = 01, J,07! for 1 <a < m—1. Changing theP
and Q in the above lemma td® O and QO, we may assume now thd, = J;Jn,
1<a<m-1. But then changing the (new) to P J;!, we see that we may assume
Ep=Jyforl<b<m. L]

Recall [8] that a binary operation defined onR™** is called anorthogonal multi-
plication if |xoy| = |x||y| for all x,y € R™1. Letey,ey,...,&e, be the standard basis
of R™?1, We sayo is normalizedif eyo x = x for all x € R™%; we call R™?, o)

a normed algebra. It is well known that 4¢f is normalized, then the orthogonal maps
U(X) =8 oXx, 1 =i =m, satisfyUjU; + U;U; = =2§;;Id for all 1 <i, j =m. In
particular,R™* is a C,-module, which is the case only whem= 1,3,7. Conversely,
if we have suchU;, 1 <i <m, we letUp = Id, theng oej := Ui(g)), 0=<1i, ] <m,
extended by linearity, gives a normalized orthogonal rplittation with ey o x = x for

all x. We identify R™? with C, H or O, respectively, fom =1, 3, 7.

Lemma 2. Notation as abovefor all z, then there is an orthogonal transform-
ation T such that

€ 0T(2) =T(eg2) or

7
@ =T(z&)

for 1 <a<m and for all z in the normed algelranoreoverthere is a unit vector
such that Tz) = za in the former caseor T(z) = az in the latter. It follows that

Xoy = (x(ya))a
in the former casgeor
Xoy =a((@y)x)

in the latter. In particulay (2) and (3) remain true foro.

Proof. LetU,(X) := e; o X. There is an orthogonal matriX such that either
Ua=T&T L orUy =TT L 1<a=<m. The first statement follows.
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To prove the second statement, we may assagrel (z) = T(e,z) without loss of
generality. Then by the first statement just establishedphbtain

(T(U) o T(v), w) = (T(u), wo T(v)) = (U, wo) = (uv, w),

so that
T(u) o T(v) = uw.

In particular, settingx := T(ey) we derive
Tu)=uoa.
But then the identity(uv, w) = (uo T(v), T(w)) implies
(uv, w) = (Uo (voa), woa),
so that when we set = @ we deduce
(U, wa) = (U, woa) = (u, T(w))

for all u, w. That is, T(w) = wa.
In particular, in the former case without loss of generaltye obtain

xoy=xoT(TTHY) = TXT(y)) = (x(y&))e. =

REMARK 1. It follows by the associativity ofl thatx oy = xy or = yx for all
X,y € H.

Now decomposer as
o = cosP)e + sin@)e
for some# and some purely imaginary ungé
Lemma 3. We assume x y = (X(ya))a. When orthonormal gb € Im(Q) are
such that(ab)e = +ey, then aob = ab. On the other handvhen gb and ab are all

perpendicular to gwe have

aob = cos(®)ab+ sin(d)(ab)e.
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Proof. Let us first recall equation (4) above to be employethefollowing cal-
culations. We assumab = e without loss of generality. Thebé = &, so that

aob = (a(ba))x
= (a(cosP)b + sin)a))«
= (cosp)e + sin()ep)(cosP) e + sin@)e)
=e=abh.
When a, b, andab are all perpendicular te, we observe that
aob = (a(ba))x

= (cosP)ab— sin@)a(be))x

= (cosp)ab — sin@)a(be))(cosp) ey + sin@P)e)

= (cog(9) — sir(9))ab + 2 sin@) cosp)(ab)e,

where we invoke (4) to write(be) = —(ab)e and @(be))e = ab. []

In passing, let us briefly remark that the table @,

n 1 2 3 4 5 6 7 8
C,|RoR | R(2) | C(2) | H(2) | H(2)® H(2) | H(4) | C(8) | R(16)
subject to the periodicity conditio€),s = C/ ® R(16), gives that the dimension of

an irreducible module of the Clifford algebq@;, ,, m > 1, is 25(m), wheres(m) is
the dimension of an irreducible module @, ;. We haves(m + 8) = 165(m) and
§(m)y=1,2,4,4,8,8,8,8 fom=1,...,8, respectively.

3. The expansion formula of Ozeki and Takeuchi

Let M be an isoparametric hypersurface with four principal ctunes in the sphere.
To fix our notation, we letv,, V_ and V, be the eigenspaces of the shape operator of
M. in the normal directiomg associated with the eigenvalues-1, and 0, of dimension
my, My, My, respectively. Let us agree that objects of these eigeaspaie indexed by
«, u and p, respectively, so that, typical vectors (coordinates)Vof V_ and V;, are
denoted bye,, €,, € (Xs, Yy, Zp), respectively, etc.

With this understood, the 2nd fundamental matri&sof M, in the normal dir-
ectionn,, 0 < a < my, upon fixing orthonormal bases,, e,, e,, are

ld 0 O 0 Ax B
8) Syz(o —Id O), Siz(Afar 0 Ca), l<a=m,

0 0 0 BY Cr 0
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where Ay: V- — V., By: Vo = V. andCy: Vo — V.

Ozeki and Takeuchi [14, pp.523-530] obtained the expan$iomula for the
Cartan—Munzner polynomidr of M as follows.

my
Fax+y+uo=t%+awﬁ—mm6€+8<§:mwgt

a=0
my my
©) + ly[* = 6ly[[w]® + [w[* =2 ) (pa)* +8) _ Gawa
a=0 a=0

my

+2 ) (Vpa, Vpo)waws.
a,b=0

Here, x is a point onM,, y is tangent toM, at x, and w is normal to M, with
coordinatesw; with respect to the chosen orthonormal normal bawsisni, ..., Nm,
at x. Moreover, pa(y) (respectively,ga(y)) is the a-th component of the 2nd (respect-
ively, 3rd) fundamental form oM, at x. Furthermore,p, and g, are subject to ten
equations [14, pp.529-530], of which the first three as$et, tsinceS,, the 2nd fun-
damental matrix ofM, in any unit normal directiom, has eigenvalues %1, 0 with
fixed multiplicities, it must be that$,)® = S,. From this we can derive [15, p. 45]

ALAY + AL AL + 2(B,Bf + BpBY) = 264pld,
(10) A A, + Al A, 4 2(CaCl + CpCl) = 28,p1d,
BY Bp + By Ba = CJCp + Cj Ca,

for a # b.

A point x € M, is said to be ofCondition A[14] if the kernel of S, is V, for all
n, which amounts to the same as saying the matrBgs- C; =0 forall 1<a<m;
in (8), so that (10) now reads

(11) AAT =1d, AAT + AGAY =0, ATA,+ ATA, =0,

for 1 <a # b <mj. It follows that the symmetric 2nd fundamental matricgs 0 <
a < my, satisfy

(12) (S)=1d, $%=-% Va#b

when they are restricted td, @ V_. In other words, (12) asserts thdi @ V_ ~ R2™

is a Cy, . ,-module. Hence, by the passing remark at the end of the prereséction,
we seem, = k§(my) for somek; thus among rf;, my) = (2, 2), (4, 5), (5, 4), only the
first is possible. (In fact, Ozeki and Takeuchi establishedheir outline [15, p.54] of
the classification of the (2,2) case that had been indicage@dstan without proof [1],
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that Condition A holds on one of the focal submanifolds, fratnich there follows the
classification.) But then the multiplicity formulm; + m; + 1 = s§(my) for somes,
with (mg, mp) # (2, 2), (4,5), (5,4), impliesn; + 1 = (s—k)d(m,), so thatm; = 1,3 or
7. In particular, form; = 3 or 7 we always haven, > 2(m; + 1) whenm, # my + 1,
whereas clearlyn, > 2m; — 1 for my = 1; therefore, by the result in [2M is of
the type of multiplicity (;, mp) constructed by Ozeki and Takeuchi [14] when either
mp =1 orm; #mg + 1.

Thus from now on, we assum@, = m; + 1 with m; = 3, 7. Then (11) and
Corollary 1 give the following.

Corollary 2. At a point xe M, of Condition Awe may assumdy picking ap-
propriate bases for V and V., that Ay = J3, 1 <a <m;y.

Proof. The matrice® and Q are for the basis changes \n. and V_. []

4. Mirror points on M, and M_

Assume Condition A akk € M, when n;, my) = (3, 4) or (7, 8). As above, let
No,N1,...,Nm, be an orthonormal normal basis»at We decompose the tangent space to
M, at x into the eigenspaceg.,V_, Vo, with coordinates,, y,,z, as aforementioned,
of the shape operatd®,,. Traversing along the great circle spannedoynd ng by
length/2, we end up again oM at ng with x as a normal vector. Accordingly, set
x*:=ng € M; andnj := x normal toM at x*. Then the eigenspacas’, V¥ V{ of
Sy with eigenvalues 11,0 are [2, p. 15], respectively/,, V_,ng := spanQiy,...,Nm,).
Moreover,Rx @ V, is the normal space tM, at x*.

Lemma 4. x* € M, is also of Condition A

Proof. Although a straightforward proof can be given by tbenrfulae on p.15
of [2], we choose to give one based on the expansion formylaSi@cex is of Con-
dition A, we know p,;, 0 < a < my, are quadratic forms ix, andy, only. If we
denote, atx”, all the involved quantities in (9) with an additional #, th&" = wy,
wh=t, wi=2z,...,w =2z, The 3rd term of (9) ak”, which is

my
8(2 pgwg>t#,
a=0

is what determines the 2nd fundamental formxét
One obtainsp] = po by the fact thatpowot = powjt”, which is part of the 3rd
term of (9) atx, and no other terms contributeot of the 1st degree. Furthermore,
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expanding 8owyp in z, . .., zZm,, We have

8gowo = 8(H1zy + ++ + + Hm, Zm,)wo

(13)
= 8(H1wf +oeee Hmlwﬁl)t#,

whereHy,...,Hy, are quadratic forms only i®, andy,, becausej, is homogeneous of
degree 1 in allx,, y,, zp [14, Lemma 15 (i), p.537]. No other terms of (9) contribute
Zywo, - . ., Zmwo Of the 1st degree. It follows thap{ = Hy, ..., pf, = Hm,. Hence,
x* is of Condition A as well. O

In (8), we use an additional # to indicate the correspondingntjties in the 2nd
fundamental matrices at”.

REMARK 2. Actually, Lemma 4 proves more. It shows that in fggtdetermines
A% 1< a<m, whose entries are the coefficients ldf/2, 1 < a < m,.

Next, let
. X+no . X—ng

NV

Then x* € M_. We decompose the tangent spaceMa at x* into the eigenspaces
Vi, V*, Vg, of the shape operatdg,; with eigenvalues 151, 0, respectively. Again,
we use an additionak to denote all involved quantities at*.

Lemma 5. We have
(1) At x*, there holds V¥ = ng, V* =V, Vj = V_, and the normal space to Mat
X* is Rnf & V.
(2) The second fundamental matrices at &« M_ are given by the m+ 1 (= myp)
matrices

0 0 B
S:=| o 0o c:|,
(B;)tr (C;)tr 0

wherel <a=<m;+1 m = 3,7 and B (respectivelyC}) is the m-by{(m; + 1)
matrix formed by stacking togethen order, the a-th row of each of the imatrices
—A1/V2,...,—An, /2 (respectively— A/ v/2,...,.— A, /+/2) at x (respectivelyat x¥).

Proof. Again we explore (9) with a slight modification. Nage&dince (9) is with
respect toM, while x* € M_, we must consider the expansion -ef at x* in order
to apply (9). From the definition ok* and n}, we seet = (t* + w})/+/2 and wg =

(t* —wg)/v2.
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The collection of {*)? terms for —F will reveal the tangent and normal space
at x*. But these terms come from the first two termgg®ot, —6|y|?(wo)?, |w|* and
2(Vpo, Vpo)w3 in the expansion of. As a result, the 2nd term in the expansion of
—F at x* is

er(( e 2 Do) -ofwir - D))
a>1 o
where as before,, y,., zp, wa parametrizeV,, V_, Vo and the normal space tM.

at x. On the other hand, the collection afjt*, which comes from the same terms,
gives p; so that we end up with

PG =) wi —Zz

a>1

Hence, the first statement follows.

We denote the Euclidean coordinates\gf,V*,Vy and the normal spadgng @V,
at x* by x;, y;, z; and wg, respectively Then the first statement sags= w,,
Y. =2, 1=«, M<ml,andz_yp, r=Xa 1<a p=m+1

The collection of the termsy;t™ = xlt yeenwi U= Xm,t*, with coefficients being
quadratic forms iny,, z,, wa, @ > 1, gives rise to the 2nd fundamental form bf_
at x*. But these terms come only frorT(Eazl pawa)t*/ﬁ obtained by the third term
of (9), and from 8t*/+/2 obtained by the eighth term in (9). Combining them yields,

by (13),
SZ<ZZA<mayuwa) +82<ZZ ¢ YuZa )i‘/‘%

where Ax = (Ayua), AL = ( Wa) This is the 2nd statement, where the negative sign
accounts for consideringF at x* O

Recall by Corollary 2 we may assun®&, = J;, 1 < a < my, at a pointx of
Condition A. We now understand the structure Aff, 1 < a < m,.

Lemma 6. Let &, €y, ..., ey be the standard basis &™ ~ H or O. Then
(A¥(ep), &) = 0 for all 1 <a < m;. In particular, we may assume “fe;) = e, for all
1<a<m; as a result (A?)"(ey) = —e,. It follows that we may further assume that
A are skew-symmetrid.e, that A, 1 < a < my, form a Clifford system.

Proof. SinceA; = J;, 1 < a < mqy, the second item in Lemma 5 says that the
a-th column of B} is zero, 1< a < m;. Now, the third equation of (10) applied to the
point x* € M_ says

(14 (B2)"By + (By)"By = (C2)"Cp + (Cy)"Cy
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which implies that thea-th column ofC; is also zero, & a <m;, when we sea=Db
in the equation. Equivalently, this means the diagonalpf 1 < a < my, is zero. So,

(15) (Ai(en). &) =0, 1<a<m, 0<b=<m.

Sincev, := A¥(epy), 1 < a < my, are perpendicular to each other by the third equation
of (11) and Lemma 4, we deduce therefore thatl < a < my, spamy. Thus, there is
an orthogonal matriX 6a ) Of size my-by-m; such that) ", 6apvp, = €5. The matrices
>b eabAﬁ, 1 < a < my, which are theA-blocks of the 2nd fundamental matrices cor-
responding to the new normal basig:=nj, n, ;=Y fapnf, 1<a <my, atx* € My,
will serve as the newA? mappinge; to e,. Thus without loss of generality we may
now assumeA’(ep) = e, 1<a<m.

In coordinates, (14) assumes the form

my my
b=1

a=1

Hence, if we picke = un =0 andg =v =a, 1 <a <m;, we see by the fact that
As = Ja, 1< a < my, that the product of thea( 0)-entry and the (Ga)-entry of A is
—1, so that the latter is-1 since the former is 1. This forces all other entries of the
first row of A% to be zero asA’ is orthogonal. In conclusion,Af)" (e) = —e,. That
is, Ag‘ is skew-symmetric in the first row and column=<la < m;.

Since A%, 1< a < my, leave(ey, e,)* invariant and since the group of automorphism
of H andO, which areS O(3) andGy, respectively, are transitive on the unit spherepf
we see that any purely imaginary unit vecéocan serve as;. Therefore,(A%(e),e) =0
by (15). It follows thatA? restricted on(ep, €,)" is also skew-symmetric. In particular,
(11) says that\?, 1 < a < my, form a Clifford system. ]

DEFINITION 1. For notational ease, we I = Id. We define a normalized or-
thogonal multiplicationo on R™ by e, o &, = Af(e,) for 0 < a, b < my, and extend it
by linearity.

We can now determine the 2nd fundamental fornxage M_.

Proposition 1. For (my, mp) = (7, 8), the 2nd fundamental fornp* at x* € M_
is given by

(17) P (W, W) = —v2(XZ +Y 0 2)
for a tangent vector W= X @ Y @ Z at x*, where Xe V] ~ Im(0), the purely

imaginary part of @, Y € V* ~ Im(Q), Z € V§ ~ O, and p* lives in the normal
space to M, which isRn; @V, ~R & O.



CONDITION A 147

For (m;, mp) = (3,4), one has the same formula by forgetting the orthogooai-
plement of H in O.

Proof. It is an immediate consequence of the second item énstatement of
Lemma 5, which can be rephrased &85 (ep), €,) = (€.€p, €) and (C;(ep), €,) =
(€. 0 €p, €a). O

Henceforth, we will mainly study the structure of isoparamicehypersurfaces in
the case whennf;, m;) = (7, 8).

5. Octonion realization of the isoparametric hypersurface of OT-FKM type

5.1. Isoparametric hypersurfaces constructed by Ferus Kazther and Minzner.
Let R3? be the direct sum of four copies @. We identify (0, 0—ep, 0) with x € M;
{(0,0,Y,0): Y € Im(Q)} with Vo = V*; (0, &, 0, 0) withng € M, ; and {(0, X, 0O, 0):
X € Im(0)} with Vi. We identify V_ = Vy with (Z,0,0,Z), Z € O, and identify
V4, which is the normal subspace perpendiculangoat x*, with (W, 0, 0,—W). The
notation here is in accordance with Lemma 5 and Proposition 1

Consider the orthogonal transformations

P_i: (A, XY, B)—~ (A, =X, Y, —B),

(18)
Pa: (A! X; Y! B) = (_X%v _Aéav _B o éay _Y o ea)

for 0<a<7. Itisimmediate thaP, P; + P; P = 2§;;ld, =1 <i, j < 7. Therefore, the
symmetric Clifford systemP_1, Py, ..., P; over M_ generates an isoparametric hyper-
surfaceM constructed by Ferus, Karcher and Munzner [6], [7].

It is readily checked that

(Pal(Z, X, Y, 2)), (Z, X, Y, Z))

19)
=2(XZ+YoZ, ey),
and (P_1((Z, X, Y, 2)), (Z, X,Y, Z)) = —|X|>+|Y|?. That is, rescalingZ, —P,, —1 <
i <7, restricted to the tangent space Mb at x* give exactly the 2nd fundamental
form by Proposition 1.
Recall M_ is said to be ofCondition B[14] at x* if

my
(20) 45 = ) fabP;,
a=—1
whereray = —fpa, —1 < @, b < my; here, we seg*; = 0 and p*;, = IX]2 = |Y]2.

An isoparametric hypersurface of OT-FKM type satisfies Giord B; it is well known
[7] that

(21) ran(v) = (Pa(v), Np),
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where v is tangent to the focal submanifold, which N_ in our case, defined by the
symmetric Clifford matricesP,; as the zero locus ofP,(x),x) =0, -1 <a <7, and
n, are the normal basis elements. With = (e, 0, 0,—€,)/+/2 andv = X + Y + Z,

it is straightforward to find,p = (€5, Xg — Y o g,) and so

(22) g (W, W, W) = X(Y 0 Z) — Y 0 (X2),

for a tangent vectolWW = X @Y & Z at x*, in the case of isoparametric hypersurfaces
constructed by Ferus, Karcher and Minzner.

5.2. Perturbing the mirror point x*.

Proposition 2. There is a point X on M_ of the isoparametric hypersurfaces
constructed by FerysKarcher and Minzner at which eithersb = ab or aob = ba
for all a, b € O, up to an isometry of the ambient Euclidean space.

Proof. Similar to Lemma 2 we can apply an orthogonal tramsé&tionU such that
U(z)ocea =U(za) or U(e2)

for all a, z. With x* = (0, ey, 0, 0) andn” = (0, O,n, 0) for n = —U(gp), the normal
space toM_ at x* := (x* + n*)/+/2 is spanned by

P_1(x}) = (0, —€, —U (e0), 0)//2,

and
Pa(X) = (—€a, 0,0,U(ea))/v2, 0<a <7,

whereas the tangent vectors, being perpendiculag; tand the normal vectors, are thus
of the form @, X, U(Y), U(2)); therefore,

—(Pa((Z, X, U(Y), U(2)), (Z, X, U(Y), U(2)))
=-2(XZ+YZe) or —2(XZ+ ZY, ey,

for 0 < a < 7, give that the 2nd fundamental form &t is —v2(XZ + Y 2), or
—/2(XZ + ZY) after rescalingZ. O

5.3. Isoparametric hypersurfaces of the type constructed Y Ozeki and
Takeuchi. Let R% be identified as the direct sum of four copies @f Let x =
(0, 0,e&y, 0) and atx identify V, as the first copy,V_ as the second copy and the
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normal space as the fourth copy 6f in R%2, Lastly, identify the imaginary part of
the third copy ofO asV; at x. Define

Po: (u, v, z, w) = (U, —v, w, 2),
Pa: (U, v, Z, w) > (v, —€3U, Eaw, —€42)

for 1 <a < 7. A calculation similar to the above one gives that the symm¢€lifford
systemPy, Py,..., P; over M, defines an isoparametric hypersurface M, where M.
is of Condition A whose 2nd fundamental form is

|2

po=[u>—|v%, pa=2(e,ud), 1<a<T.

In particular, the orthogonal multiplication at x* coincides with the octonian muilti-
plication. By [14, 15], [7], we knowx is also of Condition B. Indeed, with the nor-
mal basisn, = (0, 0, 0,,) and a tangent vectox = (u, v, z, 0), whereu, v € @ and

z € Im(Q), we calculate by (20) to deducg, = (z,&,), 1<b <7 andrap = —(€:2,&),
0<a#b<7. From this we obtain by (21)

do = 2(z, uv),
Ga = (2 €a)(|u]® — |v]?* — 2(u, D)) — 2(z&, ud),
for 1<a <7 [14, p.556].

Sinceqo gives A%, 1 <a <7, by Remark 2, we sed, = Al = J,, 1<a=<7.
On the other hand, Remark 4, to be given later, gives that

q' = Z waly = (2z(uv) — 2(u, v)z, w)
a=0

with w = "™ jwae,. The identificationX = w € Vi~Im(0), Y =-zeV*~Im(0),
Z=—v eV, andW = u in the normal space t&* € M_ derives that, for a tangent
vectorU = X @Y & Z and a normal vectoW at x*,

(0*(U, U, U), W)
= (2Y(WZ) — 2(W, Z)Y, X) = (—=2(Y X)Z — 2(X, Y)Z, W)
= (2(XY)Z + 2(X, Y)Z, W) = ((XY)Z — (Y X)Z, W).

We thus arrive at
q"(U,U,U) = (XY -YX)Z

for a tangent vectol) = X @Y & Z at x*. The fact that the 3rd fundamental form at
x of Condition A in the example of Ozeki and Takeuchi is not ¢inén all variables
whereas the 3rd fundamental form is linearxat in the cases of both Ozeki—Takeuchi
and Ferus—Karcher—Miinzner, in all variables points to thatili be simpler to look
at the mirror pointx* instead.
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6. The 3rd fundamental form at a mirror point on M_

Henceforth, we concentrate ofif € M_. It is understoodrfy, m;) = (7, 8). In co-
ordinate calculations we us€,y;,z; to denote coordinates of,V*, V', respectively,

so thatX = Za 1 Xie,, Y = ZH 1Y€, andZ = Zp 0 Zp€p-
Lemma 7. At x* € M_, we have ¢ = 0.

Proof. This follows from Remark 2. There, we see thatat x € M, determines
Aﬁ, 1 <a<m, and vice versa. Hence, #; = 0, 1< a < m;y, then (16) derives that
Al =0, 1<a=<my, so thatgy = 0. Now replaceF by —F and x* by x* and observe
that A5 =0, 1< a < m; by the second item of Lemma 5. O

Now thatqg; = O, there will be no confusion for us to change our notatiornmfro
now on to renamey, ..., Gy, wheremy = m; + 1, atx* to beqg, ..., gy, , so that
the 3rd fundamental form can be written @5 = > ., gie, in accordance with the
standard octonion basey, ey, . . ., en,.

Lemma 8. At x* € M_, the 3rd fundamental forng* satisfies
(23) |g*(U, U, U)| = [X(Y 0 Z) =Y o (X 2)]
for a tangent vector U= X @Y @ Z at x*.

Proof. Recall the identity for an isoparametric hyperstef§l4, p.530]
(24) 169*[> = 16G(|X|* + [Y> + |Z|*) — |[VG]?,

where G = Zm _1(pa)2, that an isoparametric hypersurface must satisfy. It isetnd
stood thatp*; = |X|?—|Y|2.

For the isoparametric hypersurfaces of the type constiucyeFerus, Karcher and
Munzner, we know the left hand side of (24) [X(Y o Z) — Y o (X2Z)| by (22). On
the other hand, the right hand side of (24) depends only or2tisefundamental form,
which is exactly—+/2(XZ + Y o Z) for the type constructed by Ferus, Karcher and
Minzner by (19) and in general by Proposition 1. ]

REMARK 3. Whenm; = 1, the underlying normed algebra &. Therefore,
Lemma 8 impliesq* = 0.

Whenm; = 2, Ozeki and Takeuchi established [15, p.54, Cd&g](that one can
choose appropriate coordinates so tpatis identical with that of the homogeneous
example. The same argument as in Lemma 8 then impliesgthat 0 as it is so for
the homogeneous example [15, p. 41], so that the isoparamégpersurface is exactly
the homogeneous one.
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o

Proposition 3. For 0 <a <m; at x*, we have § = prqa“px;y;z;g for some
coefficients §'P. That is g* is homogeneous of degrdein X, Y, Z.

Proof. We record the equation from Ozeki and Takeuchi [152B], with respect
to —F, that

(25) (Vpl, vay) +(Vpj, Vg*) =0
forall =1 <i # j <m;. Pickingi = -1 and j = a, we get
(26) (Vp'y, Vag) =0

sinceq*; = 0 by Lemma 7. Note thap?; = 3", (x3)* — 3, (V).

o,

For the componenzwpqa‘s”x;‘x;z; of g}, whereca, g are in the same index range
over V7, the left hand side of (26) givesgaﬂpqgﬁpx;‘x;z; (Euler’s identity for homo-
geneous polynomials). Similarly for the compon@g{pq quqx;‘z’;)z;, where p, q are
in the same index range ovey, the left hand side of (26) derivesXZlO[pq qg"’qx;z;;z;,
etc. The vanishing of the right hand side of (26) thereforewshthat all those com-
ponents, exactly two of whose coordinates are in the samexinghge, are zero. The
same reasoning gives zero to the components whose coasliagd either all in the-
range, or all in theu-range (oveV*). The only component of repeated ranges not ac-
counted for by this procedure is thus of the fopm,, a8 zyz;z with p, g, r in the
same index range. However, Lemma 15 (i) of [14, p.537] asgbet such components

cannot exist. O

REMARK 4. qg* at x* € M_ is determined by collecting the part gfat x € M,

linear in all variables. Explicitly, sincg* is of degree 1 inX,Y, Z, the term & 2", w
is of the form 8Y,, .. Ga’ "X}y Zyw;, which is also linear inx,, Yy, zp, wa. This is

because by our conventior,, y,, zp, wa parametrize, respectively,,, V_, Vp and the
normal space ta € M. ; we know by the first item of Lemma 5 thaf = w,, y;; = z,,
l1<a,u=my andz; = yp, w; =Xa, 1 = a, p = my. However, a glance at (9) shows
that the only term ofF that contributes to items linear ix,, y,, zp, wa cOmes from
8 Zgil JaWa.

We denoteg™ by g*(X, Y, Z), where X € VI, Y € V* and Z € Vj; thanks to
Proposition 3 we see that" is a multilinear form inX, Y, Z. We extendg*(X, Y, Z)
by requiring thatg*(ep, Y, Z) = 0 and q*(X, ey, Z) = 0 for all X,Y € @. This is
well-defined as the right hand side of (23) is O if eithér= e or Y = e5. With this
extension (23) continues to hold.
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Lemma 9. ForO<a,p=<m; and XY € O, we have

(q*(x! Y! ea)l %) = O;

(A" (X, Y, &), X) = (q"(X, Y, &), Y) =0,
(d%(ea, Y, €p), €a) = —(0*(€a€p, Y, &), €a),

(27)
(a*(X, €a, €p), €a) = —(4"(X, €a 0 &p, &), €a),
(d%(ea, Y, €a), €p) = —(0*(ep€a, Y, €0), €a),

(

q*(xv eal ed)v ep) = _(q*(X! ep o éau eO)v ed)

Proof. Settingi = a, ] = b in (25) and considering the homogeneous parlin
and Z only, we obtain

my

D e Y. 2), &) (e Z, &)
a=0

Equivalently, it is

my

D (A" (e, Y. €p), €a) (€8, &)

a=0

+ ) (07 (en, Y, €9), €a) (€p, &)

(28) =0

+ ) (7@ Vs ), @) (e, €)
a=0

+ ) (0" (e V. &), @) (€48p, &) = 0.

a=0

Settingg = a = b in (28), we see the first and the third sums on the left are 0,
since they are simplified t¢g*(ey, Y, €p), €1). Hence we obtaifq*(e,, Y, €a), €) =0,
whereeg, is parallel toe,&, for any p. Sincee,&, runs throughey, ..., em, when we
vary p, we see(q*(&,, Y, €), &) = 0 for all «. That is,

(29) (@ (X,Y,€),e)=0

for all X, Y, e,. In particular, the first identity of (27) is true.
On the other hand, setting = b and p = q = 0 we deduce the identity
(d*(ea, Y, &), €a) = 0 for all a, which implies that

(30) (@*(X, Y, &), X) =0
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for all X € Im(Q), because any unit imaginar can serve as,, for somea #
0, since the group of automorphism of the normed algebraaissitive on the unit
imaginary sphere. It follows from (30), (29) fax = 0, andq*(ep, Y, Z) = O that
(a*(X, Y, &), X} =0 for all X,Y € @. Hence, the second identity of (27) is true.

The third identity of (27) follows from setting = b andq = 0.

The fifth identity comes from setting = b andg = 0 and employing (29).

The fourth and sixth identities are derived from an equationilar to (28) when,
in (25), we look at the homogeneous partXnand Z only. []

Corollary 3. For X,Y € Im(0),

(9*(X,Y,2),Z) =0, Zelm(Q) or Z = ey,
(@*(X, Y, &), X) = (q°(X, Y, &), Y) =0,

(@ (X,Y, Z), X) = ={a"(XZ, Y, &), X), Z€O,
@ (X, Y, 2),Y)y=—(q*(X,Yo Z,&)Y), ZecO,
(@ (X, Y, X), Z) =(a"(ZX, Y, &), X), Z €O,
"X, Y, Y),Z) =(q*(X,ZoY,&),Y), ZeO.

Proof. It follows from the identities, in order, of Lemma 9dathe transitivity of
the automorphism group a® on its imaginary unit sphere. []

In fact, we can strengthen the first identity of Corollary 3fakows.

Lemma 10.
(31) (q*(U\7, Y1 V)v W) = _(q*(Wv! Y! V), U)v
where UY,W € O and V is either g or purely imaginary. In particular(gq*(X,Y, Z),W)
is skew-symmetric for Z and W @. Moreover (q*(X, Y, &), Z) is skew-symmetric in
all X,vY,Ze0.

Proof. Settingp = g in (28), we obtain

(q*(eﬁépi Y1 ep)! ea) = _<q*(&dép! Y! ep)v 90)

The first statement follows.
SettingU = e and X := WV for a purely imaginaryV, we obtain
(@"(X, Y, V), &) = (q"(V, Y, V), XV)

(32)
=—(q°(X, Y, &), V),



154 Q.-S. QI

where the last equality follows from the fifth identity of @dary 3.

The second statement is a consequence of (32) and the fingitydef Corollary 3,
which says thafq*(X, Y, Z), W) is skew-symmetric inZ and W when Z and W are
purely imaginary.

The third statement follows from anti-symmetrizing teand Y slots of the two
equations, respectively, of the second identity of Corglia 0J

Corollary 4. For W € O, we have
(X, Y, W), XW) =0 and (g*(X,Y,W),YoW)=0,

so that anti-symmetrizing we get
(q*(X1 Y! U)v XV) = _(q*(X, Yr V)y XU)y
(@*(X,Y,U),YoV)=—=(g(X,Y, V), YoU)

for U,V € O.

Proof. Settingd = XW for W € Im(Q), we derive from (31)
(@ (X, Y, W), XW) = (q*(UW, Y, W), U)
=—(q*(UW, Y, W),U) =0.

We next calculate{g*(X, Y, &), XW) for a purely imaginaryW. By the skew
symmetry of (q*(X, Y, &), Z) for all X,Y, Z € O,
(@"(X, Y, &), XW) = (q"(XW, Y, X), eo)
= _(q*(V_V)_(v Y! X), &)) = (q*(eo)_(v Y! X)! V_V)
= _(q*(X1 Y1 X)v V_V> = (q*(xv Y! X), W)v

which cancels(g*(X, Y, W), X) for an imaginaryW. Putting all these together, it fol-
lows that

(33) (" (X, Y, W), XW) =0

for all W € O.
Likewise, (g*(X, Y, W), Y o W) = 0 for all W € O by a similar argument. [

REMARK 5. In fact, the first two identities of Corollary 4 establistat (p*,q*) =
0 by (17). This is the seventh of the ten equations of Ozeki Balctuchi [14, p.530]
defining an isoparametric hypersurface.

We now come to a crucial observation. Recall the amglgiven before Lemma 3.
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Proposition 4. Assume&) # 0 and 7. Let RX,Y) :=qg*(X, Y, ). Then
R(X,Y)=XY—-YoX,
if e is perpendicular to XY and XY, while
R(X, Y) = £(XY =Y o X)
if XY is parallel to e.

Proof. By Lemma 8 we sefR(Z, Z)| =|Z2Z—-Z o Z| = 0, so thatR(Z, W) is
skew-symmetric inZ and W.

We may assum,Y € Im(Q) are orthonormal vectors such théty and XY are all
perpendicular t@, wheree is given before Lemma 3. Them, X,Y, XY,e, Xe Ye (XY)e
form an octonion basis dd. It follows that R(X,Y) is a linear combination of the above
basis elements. We know

(R(X,Y), &) = (R(X,Y), X) = (R(X,Y),Y) =0
by the first two identities of Corollary 3. Therefore, we chte
(34) R(X,Y) = a(XY) + fe+c(Xe) +d(Ye + b((XY)e)
for some functionsa, b, ¢, d, f defined in the Stiefel manifold\1 of orthonormal
2-frames over ImQ).

Let X = g~(X’),Y = g~}(Y’) ande = g~1(¢) for any automorphisng of ©. Then

(g- R(X, Y) := g(R(@(X), g 1Y) = g(R(X, Y))
=a(X'Y') + f& + c(X'€) +d(Y'€) + b((X'Y)€).
The interpretation is thatg(- R)(X’, Y’) is R(X, Y) relative to the new octonion basis
€, g71(e1), ..., g7 1(e;) with coordinatesX’, Y’ and €. Since any suchX, Y, e) can be
(071X, g7X(Y"), g~X(€)) for a fixed (X', Y’, &) (think of it as €, &, &)) as we vary
g, we see thag, b, ¢, d, f are all constant. But then homogenizidXgandY in (34)

shows thatc = d = 0 for (polynomial) degree reason, and, moreover, that O since
R(X,Y) is skew-symmetric. So now

(35) R(X,Y) = a(XY) + b((XY)e).
To determinea and b, we note that by Lemma 10

(R(U, V), W) = (q"(U, V, &), W)
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is skew-symmetric in all variables. Hence the 3rd identityCorollary 3 gives
(ROX,Y), XY) = (g"(X, Y, X), Y),
while the 4th identity of Corollary 3 gives
(R(X,Y), Yo X)=—(q"(X,V, X), Y).

Adding these two equations, incorporating Lemma 3 and bgain mind thata =
(R(X,Y), XY) andb = (R(X, Y), (XY)e), we obtain

a(l —cos(?)) —bsin(x) = 0.

But then
a2+ b? = |R(X, Y)|? = |XY =Y o X|? =2+ 2cos(?)

results in

a= x(1+ cos(®)), b= =£sin(®).

(The signs fora andb agree.) By changing to —e, we may assume the sign is posi-
tive. It follows that

R(X,Y) = (14 cos(D))XY + sin(P)(XY)e= XY —-Yo X.
In the case when the orthonormal imaginafyand Y are such thatXY = e, we
form an octonian basisy, X, Y, e, W, WX, WY, We We have, sinceXoY = XY =¢€
by Lemma 3 and sinc®(X, Y) is skew-symmetric, that

(R(X, Y), W) = (R(W, X), Y) = (WX—XoW,Y)=0

by the previous case. In other wordR(X, Y) is in the span ofey; and e since
(R(X,Y), X) = (R(X,Y),Y) =0. Write

R(X,Y) = ae+ be,.

Now, b = (R(X, Y), &) = 0 by skew symmetry. Moreover, sing&(X, Y)| = |XY —
Y o X| =2, we seea = +2 and

R(X,Y) = £2e = £2XY = £(XY — Y o X). O

Corollary 5. R(X,Y)=XY-YX ifd =0and RX,Y)=0if 6 = =.



CONDITION A 157

Proof. e is arbitrary in (35) wher® = 0 or . Hence the real numbdry = 0, so
that R(X, Y) = aXY. In the case whed = = we havea o b = ba for all a, b and
IR(X,Y)|=|XY=YoX|=0. Soa=0. For6 =0, i.e., whenaob = ab for all
a, b, |IR(X,Y)| =2|X||Y|. So,a = £2. Since changin,Y, Z to —X, -Y,—Z leaves
the 2nd fundamental form fixed and changes the 3rd fundaimfarta by a sign, we
may choose the positive sign. O

7. Classification of d

We have seen in Lemma 8 that the 3rd fundamental fqfnsatisfies
(36) 9*(X,Y, Z)] = [X(Y 0 Z) =Y o (X 2Z)|.
We now prove that there are only three possibilities dor
Theorem 1. Up to isometrythe possibleg* are either
a“(X,Y, Z) = (XY =Y X)Z

constructed by Ozeki and Takeuckihere o coincides with the octonion multiplica-
tion, or

q (XY, Z) = X(Y 0 Z)—Y o (X2)

constructed by FeryKarcher and Minznewhere either @b = ab or acb = ba for
all a,be 0.

The proof of Theorem 1 consists of a series of lemmas and laged in the
following subsections.

7.1. The case wherd # 0 and «.

Lemma 11. Suppose # 0 and 7. Let X and Y be purely imaginary and per-
pendicular vectors in® and let W be in the orthogonal complement of the quaternion
algebra A generated by X and Y. Then

g (X, Y, W) = X(Y o W) — Y o (XW)
if e is perpendicular taA, while

9K, Y, W) = H(X(Y 0 W) — Y o (XW))

if XY is parallel to e herg the sign agrees with that of (KX, Y).
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Proof. We may assum, Y are unit vectors. Suppose, Y and XY are all per-
pendicular toe. Complete it to an octonion basgs, X, Y, XY, e, Xe Yeg (XY)e of O.
The third identity in Corollary 3 and Proposition 4 imply tha

(g"(X, Y, e), X) = (R(X,Y), Xe) = (XY —-Yo X, Xe
= 2sin(@){((XY)e, Xe) =0.

Likewise, the fourth identity in Corollary 3 and Propositid imply
(g*(X,Y,6),Y) =(R(X,Y),Yoe) = (XY—-Yo X,Yoe) =0.
Meanwhile,
@* (X, Y,e), &) =—(q*(X, Y, &), € = —(XY—-YoX,e) =0.
On the other hand,
(@*(X, Y, €), X&) = (g°(X,Y,e),Ye =0

by the first two identities of Corollary 4. Lastlyg*(X,Y,€),e) = 0 by the first identity
of Corollary 3. In conclusion,

(37) g (X, Y, e) = a(XY) + b((XY)e).

To determinea andb, settingU =e andV =Y in the 3rd equation in Corollary 4,
we deduce

(" (X, Y, e), XY) =—(q*(X,V,Y), Xe
(38) =(q"(X, Y, &), (X&) oY)
= (XY =Yoo X, (X&oY)=sin®).
In the same vein,
(a*(X, Y, €), Yo X)=—(q"(X,Y, X),Yoe)
= (q"(X, Y, &), (Y o ©)X) = (XY =Y o X, (Y o €)X)
= (XY =Y o X, (YOX) = sin(®),
while its left hand side simplifies to

(" (X, Y,e),YoX)=(q*(X,Y, €), cos(D)Y X + sin(D)(Y X)e)
= — cos(D) sin(P) — sin(PV)(q*(X, Y, €), (XY)e)
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by (38). So, wherv # /2, we end up with
(9" (X, Y, e), (XY)e) = —(1 + cos(D)),

which is exactly
g*(X,Y,e) = X(Yoe) — Y o(Xe).

We then use the third identity of Corollary 4 to see that
g (X, Y, W) = X(Y o W) — Y o (XW).

for W = Xe Yeg (XY)e, and hence for alW perpendicular taA.
When 6 = /2, a straightforward calculation gives

(39) [g*(X,Y,€)| = |X(Yoe)—Yo(Xeg| =1+ cos(P) =0,
so that once more
a*(X,Y,e) = X(Yoe)—Yo(Xe (=D0).

In the case wherXY = e, we know R(X, Y) = £(XY =Y X) = £2e. We form
an octonian basisy, X, Y, e, W, WX WY, We Then

(@*(X, Y, W), &) = —(R(X, Y), W) = (£2e, W) =0,
(@ (X, Y, W), X) = (R(X, Y), WX) =0,
(@ (X, Y, W), Y) = (R(X, Y), Wo Y) =0,
(@"(X, Y, W), W) =0,
(@ (X, Y, W), XW) = (g*(X, Y, W), YW) = 0,

where the last identity follows from Corollary 4. It followthat
g* (X, Y, W) = a(XY) + b(W(XY))
for somea, b € R. But then for (polynomial) degree reasan= 0. Since
X(Y o W) —Y o (XW) = 2 cos(B)W(XY),
we see by (23) that

g (X, Y, W) = £(X(Y o W) — Y o (XW)). O
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Corollary 6. Suppose # 0 and . Let X and Y be purely imaginary and per-
pendicular vectors inO and let W be in the quaternion algebrd generated by X
and Y. Then
(40) a (X, Y, W) = X(Y o W) —Y o (XW)
if e is perpendicular taA, while
(41) a (X, Y, W) = £(X(Y o W) =Y o (XW))
if XY is parallel to € here the sign agrees with that of (K, Y).

Proof. The proof follows the same line of thoughts as in theceding lemma.
Thus we shall only indicate the essential point.

We first assume tha is perpendicular tod so that by the preceding lemma
(42) g*(X,Y,Z)=X(YoZ)—Y o (X2)
for Z perpendicular tod. Then as before we construct an octonion bagi, Y, XY, e,

Xe Ye (XY)e. We know(q*(X,Y, X),e) = —(R(X,Y),X) = 0 and{g*(X,Y, X),X) = 0.
By the 5th identity of Corollary 3,

(@*(X, Y, X), Y) = (R(X,Y), XY)
= (XY =Yoo X, XY) =1+ cos(D).

For Z perpendicular ta4, we use (42) to see
(@ (X, Y, X), Z) = =(a"(X, Y, Z), X) = ((Z&)(XY), X),
so that we derive
(43) (@ (X, Y, X), &) = (q°(X, Y, X), X&) = (g*(X, Y, X), (XY)e) =0,
while
(44) @ (X, Y, X), Y& = —sin(2).
Therefore, we conclude
(45) g (X, Y, X) = (1 + cos(@))Y —sin(B)Ye= X(Y o X) =Y o (XX).

(Note thatq* = 0 if & = 7/2.) WhenXY = e, we form the octonion basig, X, Y, g,
W, XW, YW, (XY)W and we haveR(X,Y) = £2XY andg*(X,Y,Z) = £(X(Yo Z)—



CONDITION A 161

Y o(X 2)) for Z perpendicular tod. We see(q*(X,Y, X),Y) = £2 and(q*(X,Y,X),Z) =
0 for all Z perpendicular ta4d. Hence

a* (X, Y, X) = £2Y = £(X(Y o X) — Y o (X X)). O

Theorem 2. Suppose # 0 and . For all X,Y € O and all Ze O we have
(46) g* (X, Y, Z) = X(Yo Z) =Y o (X 2).

Thus the hypersurfaces are of the type constructed by F&asher and Minzner.

Proof. Lemma 11 and Corollary 6 only deal with the case whenittaginary X
and Y are perpendicular ig*(X, Y, Z), which leaves an undetermined sign. We now
remove the sign by considering the case whég= Y.

Let X,Y € Im(Q) be orthonormal such that is perpendicular toX, Y and XY.
Then the circlesX(t) := cost) X + sint)Y and Y(t) := —sin(t) X 4+ cost)Y satisfy that
X(t), Y(t), X(t)Y(t) are perpendicular te. Differentiating (40) att = 0, we obtain

g (Y, Y, W) — g“(X, X, W)
= —(X(X o W) — X o (XW)) + (Y(Y o W) — Y o (Y W)).
Note that
(47) 19%(X, X, Z)| = [sin(@)(X((X2)e) = (X(X2))e)| # 0
unless® = /2. Homogenizing and comparing polynomial types, we get
g (X, X, W) = X(X 0 W) — X o (XW)

when @ # /2. On the other hand, wheth # /2, we fix the sameX and choose a
Y such thatXY = e, differentiating (41) gives

9o (X, X, W) = £((X(X o W) — X o (XW)).

Therefore, the sign must be positive whesz /2.

When 6 = /2, the formula (47) implieg*(X, X, Z) = 0 for all X, Z € O, and
soq* is skew-symmetric inX andY. So, a priori the sign is undetermined. However,
by (39) and (45) we have seeri(X,Y,Z) = 0 for all Z whene is perpendicular toX,Y
and XY. The sign is ambiguous only in the case whéN = e. Now, sete =e,. Then
since any two different imaginary basis elemeatss, # e, satisfy eithere,e, = €4, or
€., & and e;g, are all perpendicular te,, the analysis in Lemma 11 and Corollary 6
provides a recipe for writing down*(X, Y, Z) explicitly as follows.

a (X, Y, Z) = + > _(qya(o(e 2)) - yjxie o (82)),
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wherei, j > 1 run over the indexes whemgeje; = +e&.
Since changingX, Y, Z to —X, =Y, —Z retains the 2nd fundamental form and
changes the 3rd fundamental form by a sign, we might as welbd the positive sign.
Therefore, in any event, the 3rd fundamental form is therddsorm given by (46).
0J

Proposition 2 implies that we can always perturb to find a anipoint x* € M_ at
which & = 0 or r, even when initailly the choice of* produces an anglé different
from 0 andz. Therefore, the classification is reduced to the case when0 or x.

7.2. The case whe® =0 or . By Corollary 5, we knowR(X,Y) = XY-Y X
for6 =0 andR(X,Y)=0 for6 = .

Corollary 7. Suppose ab = ab, Va, b. For X, Y € Im(Q), we have
(q*(X, Y, Z), Z) = 0;
(q*(X, Yr eO)! X) = (q*(xv Yr &J)! Y) = 01
(q*(xv Y! Z)! X) = 2<X1 Y)<x1 Z) - 2|X|2<Y1 Z)v
@ (X, Y, 2),Y) = =2(X, Y)Y, Z) + 2|Y3(X, Z).

Proof. This follows fromR(X, Y) = XY —Y X and Corollary 3. O
Corollary 8. If the normed algebra i€, then Theorem 1lis true.

Proof. By Remark 1, eitheaob = ab or = ba for all a, b € H.
CAse l. aob=ba, Va,b.
Then by (36),]g*(X,Y, Z)| = | X(ZY)—=(XZ)Y| = 0 by the associativity oH. So,

g-=0=X(YoZ)—Yo(X2).

The hypersurface is of the type constructed by Ferus, Karemel Minzner by
Section 5.1.

CASE 2. aob=ab, va,b.

Let X, Y be mutually orthogonal and purely imaginary. We 2et= XY. Then
the first, third and fourth identities of Corollary 7 imply*(X, Y, Z) is perpendicular
to X, Y, Z; therefore,q*(X, Y, Z) is parallel toey. Let q*(X, Y, Z) = —2c¢|X|?|Y|%&
for some constant. By identity (36) we obtain the identityg*(X, Y, Z)| = 2| X|?|Y|?;
we see therefore = +1. Thus,

(X, Y, Z) = —2¢|X|?|Y|?ey = 2cZZ = (XY — Y X)Z.
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Meanwhile,
g (X,V, &) = R(X,Y) = (XY =Y X)ep.

Corollary 7 also yields

q (X, Y, X) = 2| X|? = (XY =Y X)X,
a (X, Y,Y) = =2|]Y]?X = (XY = Y X)Y.

Putting all these together, we arrive at

g (X, Y, W) = (XY -YX)W, or

(48)
wherec = 1 for the first equation and = —1 for the second. Although we have de-
rived the formulae assuming that andY are perpendicular, the same formulae remain
true for any two imaginaryX andY sinceq*(U, V, W) is skew-symmetric inJ, V.

If c =1, then

g (X, Y, W) = X(Y o W) — Y o (XW).

So the hypersurface is of the type constructed by Ferus,hi€arand Miinzner by Sec-
tion 5.1. It satisfies (33)

(49) (X(Y 0 W) =Y o (XW), XW) = 0.

We showc = —1 is impossible. Assume otherwise. Then since such an igopeiric
hypersurface must also satisfy (33), we would conclude

0= (q*(X, Y, W), XW)
= (X(Y o W) — Y o (XW), XW) — (W, XY — Y X)eg, XW)
= (W, XY =Y X} (W, X) #0

by (49). This is a contradiction. []

To finish Theorem 1 in the octonion case, we break it into tweesa

Case 1. aob=ab, Va,h.

Identity (36) shows thatg*(X, X, Z)| = 0, VX, Z € O, so thatg*(X, Y, Z) is
skew-symmetric inX, Y, VX, Y € Q.

Let X, Y # 0 be perpendicular and purely imaginary awtbe in the orthogonal
complement ofA, the quaternion algebra generated X¥yand Y. We know by (37)
and (38) thatg*(X, Y, W) = £2((XY)W), if X,Y and XY are all perpendicular te,
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and the same formula holds XY = e, where the signs might not be related a priori
in the two cases. We assume first that the signs are idenbizahely,

g (X, Y, W) = 2¢c((XY)W),
wherec =1 or c = —1 for all W perpendicular tod. If ¢ =1, then
g (X, Y, W) = (XY =Y X)W,

which remains true for any two purely imagina¥/ andY not necessarily perpendicu-
lar to each other, ag* is skew-symmetric inX, Y. It follows that

q (X, Y, Z) = (XY = Y X)Z

for any Z € O, as it is also true foZ € A by Corollary 8, where we use (43) and (44)
to see thatg*(X, Y, Z) € A for Z € A. This is the isoparametric hypersurface con-
structed by Ozeki and Takeuchi.

If c=—1, then

a (X, Y, W) = —2(XY)W = X(Y W) — Y(XW),
so that there holds
g (X, Y,Z) = X(Y2) —Y(XZ) = X(YoZ)—Yo(X2)

for any X,Y,Z € Q, as it is true forZ € A by Corollary 8. These are the isoparametric
hypersurfaces constructed by Ferus, Karcher and Minzner.

We need to remove the case whgt(X, Y, W) = 2((XY)W) if X,Y, and XY are
all perpendicular toe, whereasq*(X, Y, W) = —2((XY)W) when XY = e. Assuming
this is the case. Then Corollary 8 implies

a* (X, Y, W) = (XY = Y X)W + h(X, Y, W),

whereh(X, Y, W) = —4eW* if XY =e. As seen in Corollary 8, the existence of an
isoparametric hypersurface with suchg& would imply

(h(X, Y, W), XW) = (g*(X, Y, W) — (XY =Y X)W, XW) = 0.
But then if we sete = e, and W = e,, we get
(h(X, Y, W), XW) # 0.

This is a contradiction.
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CASE 2. aob=ba, Va,b.

Note that againg*(U, U, Z2)| = |U(ZU)—-(UZ2)U| =0, VYU, Z € O, so thatg* is
skew-symmetric in the first two slots.

If ¢ =1, then

g (X, Y, W) = 2(XY)W = X(WY) — (XW)Y,

so that
a (X, Y, Z) = X(ZY) = (X2)Y = X(Y 0 Z) =Y o (X 2)

forany X,Y,Z € O, asq* =0 on A.

If ¢ =—1, theng* only differs from the previous case by a negative sign. Chang
ing X, Y, Z to —X, =Y, —Z converts it to the previous case.

This completes the classification of Theorem 1.

REMARK 6. In the octonion case, the two isoparametric hypersusfadth q* =
X(YoZ)—Yo(XZ) constructed by Ferus, Karcher and Miinzner are of Conditicat B
x* € M_. In contrast, the hypersurface witft = (XY —Y X)Z is not of Condition B
at x*; however, it is of both Conditions A and B at € M, constructed by Ozeki
and Takeuchi.

In the quaternionic case, howeveXY — Y X)Z = X(Y Z) — Y(XZ), so that we
have only two different such isoparametric hypersurfagdsre the example of Ozeki
and Takeuchi of multiplicities (3,4) of Conditions A and Bt M, is also of Condi-
tion B atx* € M_. The other isoparametric hypersurface is of Condition B*ag M_
with g* = X(ZY)—(X2)Y = 0; it is the homogeneous example of multiplicities (4, 3).
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