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Abstract
Ozeki and Takeuchi [14] introduced the notion of Condition Aand Condition B

to construct two classes of inhomogeneous isoparametric hypersurfaces with four
principal curvatures in spheres, which were later generalized by Ferus, Karcher and
Münzner to many more examples via the Clifford representations; we will refer to
these examples of Ozeki and Takeuchi and of Ferus, Karcher and Münzner collec-
tively as OT-FKM type throughout the paper. Dorfmeister andNeher [5] then em-
ployed isoparametric triple systems [3, 4], which are algebraic in nature, to prove that
Condition A alone implies the isoparametric hypersurface is of OT-FKM type. Their
proof for the case of multiplicity pairs{3, 4} and {7, 8} rests on a fairly involved
algebraic classification result [9] about composition triples.

In light of the classification [2] that leaves only the four exceptional multipli-
city pairs {4, 5}, {3, 4}, {7, 8} and {6, 9} unsettled, it appears that Condition A may
hold the key to the classification when the multiplicity pairs are{3, 4} and {7, 8}.
Thus Condition A deserves to be scrutinized and understood more thoroughly from
different angles.

In this paper, we give a fairly short and rather straightforward proof of the result
of Dorfmeister and Neher, with emphasis on the multiplicitypairs {3, 4} and {7, 8},
based on more geometric considerations. We make it explicitand apparent that the
octonion algebra governs the underlying isoparametric structure.

1. Introduction

An isoparametric hypersurfaceM in the sphereSn is one whose principal curva-
tures and their multiplicities are fixed. We shall not dwell on the history and devel-
opment of the beautiful isoparametric story, and shall leave it to, e.g., [2], and the
references therein. Through Münzner’s work [12, 13] one knows that such a hyper-
surface can be characterized by a homogeneous polynomialF W RnC1 ! R of degree
g D 1, 2, 3, 4 or 6, satisfying

jrF j2(x) D g2jxj2g�2, (1F)(x) D (m2 �m1)g2 jxjg�2

2

for two natural numbersm1 and m2. The interpretation ofm1 and m2 is that if we ar-
range the principal curvatures�1 > � � � > �g with multiplicities m1, : : : , mg, respectively,
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thenmi D miC2 with index mod (g); therefore, which one ism1 or m2 is only a matter
of convention, by changingF to �F if necessary.F is called the Cartan–Münzner poly-
nomial, whose restrictionf to Sn has values in the interval [�1, 1]. f �1(c), �1< c< 1,
is a one-parameter family of isoparemetric hypersurfaces to which M belongs. The fam-
ily degenerates to two connected submanifoldsMC WD f �1(1) and M� WD f �1(�1),
called the focal submanifolds ofM, of codimensionm1 C 1 andm2 C 1, respectively.

In the case wheng D 4, Ozeki and Takeuchi [14] introduced what they called Con-
ditions A and B to construct two classes of inhomogeneous isoparametric hypersurfaces.
Later on, using representations of the symmetric Clifford algebrasC0

m1C1 (following the
notation of [8]), Ferus, Karcher and Münzner [7] generalizedtheir work to construct many
more isoparametric hypersurfaces inS2(m1Cm2)C1; we will refer to these examples of Ozeki
and Takeuchi and of Ferus, Karcher and Münzner collectively as OT-FKM type throughout
the paper. The OT-FKM hypersurfaces are of multiplicities{m1, m2}, where

(1) m2 D kÆ(m1) �m1 � 1

for some integerk > 0, and Æ(m1) is the dimension of an irreducible module of the
skew-symmetric Clifford algebraCm1�1 (following the notation of [8]). These multi-
plicities, with the exception of{m1, m2} D {2, 2} or {4, 5}, turn out to be exactly the
multiplicities of isoparametric hypersurfaces in spheresby the work of Stolz [16]. We
will refer to (1) as the multiplicity formula. The author andhis collaborators recently
established in [2] that ifm2 � 2m1 � 1, then the isoparametric hypersurface is of OT-
FKM type with m1 and m2 given in (1). This leaves open only the cases in which the
multiplicities {m1, m2} D {4, 5}, {3, 4}, {7, 8} or {6, 9} by the multiplicity formula; we
refer to them as the exceptional multiplicity pairs.

One peculiar feature of the exceptional multiplicity pairsis that they are the only
pairs for which incongruent examples of OT-FKM type admitm1 > m2 in (1). A
deeper reason for this phenomenon manifests in [2], where itis shown that the condi-
tion m2 � 2m1 � 1 warrants that an ideal generated by certain (complexified)compo-
nents of the 2nd fundamental form is reduced, i.e., has no nilpotent elements, at any
point of MC. The reducedness property no longer holds, as seen by the examples of
OT-FKM type, when it comes to the exceptional multiplicity pairs.

The aforementioned examples of Ozeki and Takeuchi are of multiplicities (m1,m2)D
(3, 4k), (7, 8k) of OT-FKM type. For the construction, Ozeki and Takeuchi first imposed
Condition A on the isoparametric hypersurface. That is, they stipulated that at some point
x of MC, the shape operatorsSn of MC in all normal directionsn have the same kernel.
Then they imposed Condition B, which says that at the same point x the components of
the (cubic) 3rd fundamental form are linearly spanned by thecomponents of the (quad-
ratic) 2nd fundamental form, with coefficients being linearfunctions of the coordinates
of the tangent space toMC at x.

Through the work of Ferus, Karcher and Münzner [7], one knows that Condition B
always holds for the OT-FKM type. Moreover, for the OT-FKM type, Condition A is
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true at some points on the focal submanifold of the smaller codimension in the case
of the exceptional multiplicity pair{3, 4} or {7, 8}.

Dorfmeister and Neher then showed [5] that in fact ConditionA alone implies that
the isoparametric hypersurface is of OT-FKM type. It seems therefore that Condition A
holds the key to the unsettled cases when the multiplicity pairs are {3, 4} and {7, 8}.
Condition A thus deserves to be scrutinized and understood more thoroughly from dif-
ferent angles.

Dorfmeister and Neher’s approach was via the isoparametrictriple systems [3, 4],
which are algebraic in nature. The proof also relies on the fairly involved algebraic
classification result [9] about composition triples.

In this paper, we give a fairly short and rather straightforward proof of the result of
Dorfmeister and Neher, with emphasis on the multiplicity pairs {3, 4} and{7, 8}, based
on more geometric considerations. We make it explicit and apparent that the governing
force of isoparametricity is the octonion algebra.

In Section 2, we review the octonion algebra whose left and right multiplications
by the standard purely imaginary basis elementse1, : : : , e7, with e0 understood to be
the multiplicative identity, give rise to the two inequivalent Clifford representationsJa

and J 0a, 1� a � 7, of C7 on R8. We also review normalized orthogonal multiplications
on RnC1, which are those bilinear binary operationsx Æ y such thatjx Æ yj D jxjjyj
and e0 Æ y D y for all x, y 2 RnC1, where (e0, : : : , en) is the standard basis. InO we
characterize all the normalized orthogonal multiplications as eitherx Æ y D (x(y N�))�
or x Æ y D �(( N�y)x), where� is a unit vector inO with the octonion multiplication
employed on the right hand side. In particular, restrictingto H, the associativity of the
quaternions impliesx Æ y D xy, or D yx for all x, y 2 H. At this point, we introduce
the angle� by setting� D cos(�)e0 C sin(�)e for some purely imaginary unite.

In Section 3 we recall the expansion formula and Condition A of Ozeki and Takeuchi,
and show that at a pointx 2 MC of Condition A, the 2nd fundamental form components
can be assumed to bepa(U, U ) D 2hea A, Bi, 1 � a � 7, associated with the standard
octonion multiplication, up to an appropriate choice of bases of the eigenspaces of the
shape operatorS of MC at x. Here,U D A � B � C and A, B, C are, respectively,
eigenvectors ofS with eigenvalues 1,�1, 0.

Section 4 introduces two points,x# 2 MC and x� 2 M�, related tox 2 MC of
Condition A, referred to as the mirror points ofx. Here, x# is also of Condition A,
whose 2nd fundamental form components are given byp#

a(V, V) D 2hea Æ A, Bi, 1�
a � 7, for a tangent vectorV at x# with the same eigenvector componentsA and B as
above, whereÆ is some normalized orthogonal multiplication on the octonion algebra.
Furthermore, the 2nd fundamental matrices atx� are appropriate combination of those
at x and x#, so that the 2nd fundamental formp� at x� can be succinctly expressed
in terms ofÆ and the octonion multiplication to readp�(W, W) D �p2(X ZCY Æ Z),
where W D X � Y � Z is the eigenvector decomposition of the shape operator of a
tengent vectorW at x� with eigenvalues 1,�1, 0, respectively.
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In Section 5 we first present the octonion setup of the isoparametric hypersurfaces
constructed by Ferus, Karcher and Münzner. Our expression isslightly more general
than that given in [6] to account for all possible normalizedorthogonal multiplicationsÆ at x# as indicated above. We show that, for the hypersurfaces constructed by Ferus,
Karcher and Münzner, we can in fact perturb the original mirror point x� with arbitrary� to one at which� D 0 or � , i.e., at which eitheraÆbD ab or aÆbD ba for all a,b 2O, so that up to isometry there are only two such hypersurfaces. We calculate the 3rd
fundamental form atx� to beq�(W,W,W)D X(YÆZ)�YÆ(X Z) with W D X�Y�Z
the same eigenvector decomposition atx� as before. We then introduce the octonion
setup of the isoparametric hypersurface constructed by Ozeki and Takeuchi. This is a
hypersurface of both Conditions A and B at the pointx of Condition A, where the
3rd fundamental form is not linear in all variables, whereasconverting tox� the 3rd
fundamental formq� turns out to beq�(W, W, W) D (XY � Y X)Z (the orthogonal
multiplication Æ at x# coincides with the octonion multiplication in this case). The fact
that q� is linear in the eigenvector componentsX, Y, Z in both Ozeki–Takeuchi and
Ferus–Karcher–Münzner examples points to that it will be simpler to look at the 3rd
fundamental form atx�.

Section 6 paves the way for the classification of the 3rd fundamental form atx�,
and hence of the isoparametric hypersurface of Condition A,by verifying first that at
x� the 3rd fundamental formq�(W, W, W), for a tangent vectorW D X�Y� Z with
eigenvector decomposition as before, is indeed only linearin X, Y and Z; therefore,
we may denoteq� by q�(X, Y, Z) instead to treat it as a multilinear form. We observe,
by the eighth identity of the ten equations of Ozeki and Takeuchi [14, pp. 529–530]
defining an isoparametric hypersurface, that at leastjq�(X, Y, Z)j D jX(Y Æ Z) � Y Æ
(X Z)j. We then prove several identities ofq�(X, Y, Z) about what happens when one
interchanges the variablesX, Y, Z, based on the fifth of the ten equations of Ozeki and
Takeuchi. These properties together enable us to classify,up to an ambiguity of sign,
of the important special caseq�(X, Y, e0) that the remaining classification hinges on.

In Section 7, we prove that, if� ¤ 0 and� , then the aforementioned ambiguity
of sign can be removed and the isoparametric hypersurface must be of the type con-
structed by Ferus, Karcher and Münzner, so that the classification is reduced to the case
when � D 0 or � , where the ambiguity of sign persists to an advantage. The classifi-
cation is first done for the quaternionic case. The octonion case then follows naturally
from that the octonion algebra is two (twisted) copies of thequaternion algebra. The
sign choices then differentiate the example constructed byOzeki and Takeuchi from
the two by Ferus, Karcher and Münzner.

Lastly, we remark that in [10], [11], Miyaoka proves exactly that Condition A
holds for either focal submanifold, when the number of principal curvatures is six, to
show that such isoparametric hypersurfaces are homogeneous.
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2. The octonion algebra and Clifford representations

Let H be the quaternion algebra with the standard basis 1,i , j , k. The octonion
algebraO is H�H with the multiplication

(a, b)(c, d) D (ac� Ndb, daC bNc),

where overline denotes quaternionic conjugation. Forx D (a, b) 2 O, the conjugate of
x is Nx WD ( Na, �b), and the real and imaginary parts ofx are (x � Nx)=2, respectively.
The inner product

(2) hx, yi WD x NyC y Nx
2

satisfies

(3)

h Nx, Nyi D hx, yi,
hxy, zi D hy, Nxzi D hx, zNyi,

x( Nyz)C y( Nxz) D (zx) NyC (zy) Nx D 2hx, yiz.

In particular, first of all, the above formulae are the rules to follow when we inter-
change two objects in the octonion multiplication. Secondly, when x and y are per-
pendicular and purely imaginary inO, they satisfy

xyD �yx, x(yz) D �y(xz), (zx)y D �(zy)x(4)

for all z 2 O. As a consequence of (4), if we let� WD (0, 1)2 O, the standard ortho-
normal basis

(5) (e0, e1, : : : , e7) WD (1, i , j , k, �, i �, j �, k�)
gives rise to orthogonal matricesJ1, : : : , J7 over O, where Ji (z) D ei z, 1 � i � 7,
such that

Ji Jk C Jk Ji D �2Æik Id.

Similarly, the orthogonal matricesJ 01, : : : , J 07, where J 0i (z) D zei , satisfies

J 0i J 0k C J 0k J 0i D �2Æik Id.

Recall [8] that the Clifford algebraCn (respectively,C0
n) is the algebra overR

generated byE1, : : : , En subject to only the conditions that (Ei )2 D �1 (respectively,
(Ei )2 D 1) and Ei E j D �E j Ei for i ¤ j . The structure ofCn (respectively,C0

n, to be
displayed later) is well known [8],



138 Q.-S. CHI

n 1 2 3 4 5 6 7 8
Cn C H H�H H(2) C(4) R(8) R(8)� R(8) R(16)

subject to the periodicity conditionCnC8 D Cn 
 R(16), of which the most important
ones for our purposes areC2 D H, C3 D H � H, C6 D R(8), the matrix ring of size
8-by-8 overR, and C7 D R(8)� R(8). The generatorsE1, : : : , En projected to each
irreducible summand ofCn, n D 2, 3, 6, 7, give rise ton matricesT1, : : : , Tn in R(4)
for C2 and C3, and inR(8) for C6 and C7, satisfying (Ti )2 D �Id and Ti Tj D �Tj Ti

for i ¤ j . TheseTi makeR4 andR8 into irreducibleCn-modules. Forn D 2, 6, there
is only one such irreducible module as the number of irreducible summands ofCn is
one, whereas forn D 3, 7, there are two inequivalent such irreducible modules asthe
number of irreducible summands ofCn is two. T1, : : : , Tn are called representations of
Cn on the appropriate Euclidean spaces.

The upshot is that the octonion (respectively, quaternionic) left and right multipli-
cations generated above, i.e.,J1,:::, J7 vs. J 01,:::, J 07 (respectively,J1, J2, J3 vs. J 01, J 02, J 03)
are precisely the inequivalent representations ofC7 on R8 (respectively,C3 on R4).
These two representations are inequivalent asJ1 � � � J7 D �Id whereasJ 01 � � � J 07 D Id
(respectively,J1J2J3 D �Id whereasJ 01J 02J 03 D Id).

Now the subalgebra ofC7 linearly spanned by the even products of the Clifford
generators is isomorphic toC6 ' R(8) having a single irreducible summand. We see
J1J7, J2J7, : : : , J6J7 and J 01J 07, J 02J 07, : : : , J 06J 07 are equivalent representations ofC6. That
is, there is an orthogonal matrixU overR8 such thatU�1Ji J7U D J 0i J 07 for 1� i � 6.
A similar discussion also holds true forH by forgettinge4, : : : , e7, sinceC2 D H. As
an application, we prove the following to be employed later.

Lemma 1. Let mD 3, 7. Let Aa, 1 � a � m, be (mC 1)-by-(mC 1) matrices
satisfying

(6) Aa Atr
b C Ab Atr

a D 2ÆabId.

Then there are two orthogonal matrices P, Q 2 O(mC 1) for which Ea WD P�1AaQ
satisfy Em D Id, and for 1� a, b � m� 1,

EaEb C EbEa D �2Æab Id.

Proof. Clearly we can find two orthogonal matricesP andQ such thatP�1AmQD
Id. (Take, e.g.,P D Id and Q D (Am)�1.) Seta D m. Then (6) reduces to

EbEtr
b D Id,

Eb C Etr
b D 0,

for 1� b � m� 1. This says exactly thatEb, 1� b � m� 1, are orthogonal matrices
satisfying (Eb)2 D �Id and EbEc D �EcEb for 1� b¤ c � m� 1.
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Corollary 1. Conditions and notations as inLemma 1,then we may pick orthog-
onal P and Q so that Aa D P JaQ�1, 1� a � m.

Proof. As mentioned earlierCm�1 is generated byJ1Jm, : : : , Jm�1Jm. SinceC2 DH and C6 D R(8), we know all the Clifford representations are equivalent. Thus, there
is an O 2 O(mC 1) such thatEa D O Ja JmO�1 for 1 � a � m� 1. Changing theP
and Q in the above lemma toP O and QO, we may assume now thatEa D Ja Jm,
1� a � m� 1. But then changing the (new)P to P J�1

m , we see that we may assume
Eb D Jb for 1� b � m.

Recall [8] that a binary operationÆ defined onRmC1 is called anorthogonal multi-
plication if jx Æ yj D jxjjyj for all x, y 2 RmC1. Let e0, e1, : : : , em be the standard basis
of RmC1. We sayÆ is normalized if e0 Æ x D x for all x 2 RmC1; we call (RmC1, Æ)
a normed algebra. It is well known that ifÆ is normalized, then the orthogonal maps
Ui (x) D ei Æ x, 1 � i � m, satisfy Ui U j C U j Ui D �2Æi j Id for all 1 � i , j � m. In
particular,RmC1 is a Cm-module, which is the case only whenmD 1, 3, 7. Conversely,
if we have suchUi , 1� i � m, we let U0 D Id, then ei Æ ej WD Ui (ej ), 0� i , j � m,
extended by linearity, gives a normalized orthogonal multiplication with e0 Æ x D x for
all x. We identifyRmC1 with C, H or O, respectively, formD 1, 3, 7.

Lemma 2. Notation as above, for all z, then there is an orthogonal transform-
ation T such that

(7)
ea Æ T(z) D T(eaz) or

D T(zea)

for 1� a � m and for all z in the normed algebra; moreover, there is a unit vector�
such that T(z) D z� in the former case, or T(z) D �z in the latter. It follows that

x Æ y D (x(y N�))�
in the former case, or

x Æ y D �(( N�y)x)

in the latter. In particular, (2) and (3) remain true forÆ.
Proof. Let Ua(x) WD ea Æ x. There is an orthogonal matrixT such that either

Ua D T JaT�1, or Ua D T J0aT�1, 1� a � m. The first statement follows.



140 Q.-S. CHI

To prove the second statement, we may assumeea ÆT(z) D T(eaz) without loss of
generality. Then by the first statement just established, weobtain

hT(u) Æ T(v), wi D hT(u), w Æ T(v)i D hu, wvi D huNv, wi,
so that

T(u) Æ T(v) D uNv.

In particular, setting� WD T(e0) we derive

T(u) D u Æ �.

But then the identityhuv, wi D hu Æ T(v), T(w)i implies

huv, wi D hu Æ (v Æ �), w Æ �i,
so that when we setv D N� we deduce

hu, w�i D hu, w Æ �i D hu, T(w)i
for all u, w. That is, T(w) D w�.

In particular, in the former case without loss of generality, we obtain

x Æ y D x Æ T(T�1(y)) D T(xT�1(y)) D (x(y N�))�.

REMARK 1. It follows by the associativity ofH that x Æ y D xy or D yx for all
x, y 2 H.

Now decompose� as

� D cos(�)e0 C sin(�)e

for some� and some purely imaginary unite.

Lemma 3. We assume xÆ y D (x(y N�))�. When orthonormal a, b 2 Im(O) are
such that(ab)eD �e0, then aÆ bD ab. On the other hand, when a, b and ab are all
perpendicular to e, we have

a Æ bD cos(2�)abC sin(2�)(ab)e.
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Proof. Let us first recall equation (4) above to be employed inthe following cal-
culations. We assumeabD e without loss of generality. ThenbNeD Na, so that

a Æ bD (a(b N�))�
D (a(cos(�)bC sin(�) Na))�
D (cos(�)eC sin(�)e0)(cos(�)e0 C sin(�)e)

D eD ab.

When a, b, and ab are all perpendicular toe, we observe that

a Æ bD (a(b N�))�
D (cos(�)ab� sin(�)a(be))�
D (cos(�)ab� sin(�)a(be))(cos(�)e0 C sin(�)e)

D (cos2(�) � sin2(�))abC 2 sin(�) cos(�)(ab)e,

where we invoke (4) to writea(be) D �(ab)e and (a(be))eD ab.

In passing, let us briefly remark that the table forC0
n,

n 1 2 3 4 5 6 7 8
C0

n R� R R(2) C(2) H(2) H(2)�H(2) H(4) C(8) R(16)

subject to the periodicity conditionC0
nC8 D C0

n 
 R(16), gives that the dimension of
an irreducible module of the Clifford algebraC0

mC1, m � 1, is 2Æ(m), where Æ(m) is
the dimension of an irreducible module ofCm�1. We haveÆ(m C 8) D 16Æ(m) andÆ(m) D 1, 2, 4, 4, 8, 8, 8, 8 formD 1, : : : , 8, respectively.

3. The expansion formula of Ozeki and Takeuchi

Let M be an isoparametric hypersurface with four principal curvatures in the sphere.
To fix our notation, we letVC, V� and V0 be the eigenspaces of the shape operator of
MC in the normal directionn0 associated with the eigenvalues 1,�1 and 0, of dimension
m2, m2, m1, respectively. Let us agree that objects of these eigenspaces are indexed by�, � and p, respectively, so that, typical vectors (coordinates) ofVC, V� and V0 are
denoted bye�, e�, ep (x�, y�, zp), respectively, etc.

With this understood, the 2nd fundamental matricesSa of MC in the normal dir-
ection na, 0� a � m1, upon fixing orthonormal basese�, e�, ep, are

(8) S0 D
0
� Id 0 0

0 �Id 0
0 0 0

1
A, Sa D

0
� 0 Aa Ba

Atr
a 0 Ca

Btr
a Ctr

a 0

1
A, 1� a � m1,
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where Aa W V� ! VC, Ba W V0 ! VC and Ca W V0 ! V�.
Ozeki and Takeuchi [14, pp. 523–530] obtained the expansionformula for the

Cartan–Münzner polynomialF of M as follows.

(9)

F(t x C yC w) D t4 C (2jyj2 � 6jwj2)t2 C 8

 
m1X

aD0

pawa

!
t

C jyj4 � 6jyj2jwj2 C jwj4 � 2
m1X

aD0

(pa)2 C 8
m1X

aD0

qawa

C 2
m1X

a,bD0

hr pa, r pbiwawb.

Here, x is a point on MC, y is tangent toMC at x, and w is normal to MC with
coordinateswi with respect to the chosen orthonormal normal basisn0, n1, : : : , nm1

at x. Moreover, pa(y) (respectively,qa(y)) is the a-th component of the 2nd (respect-
ively, 3rd) fundamental form ofMC at x. Furthermore,pa and qa are subject to ten
equations [14, pp. 529–530], of which the first three assert that, sinceSn, the 2nd fun-
damental matrix ofMC in any unit normal directionn, has eigenvalues 1,�1, 0 with
fixed multiplicities, it must be that (Sn)3 D Sn. From this we can derive [15, p. 45]

(10)

Aa Atr
b C Ab Atr

a C 2(Ba Btr
b C BbBtr

a ) D 2ÆabId,

Atr
a Ab C Atr

b Aa C 2(CaCtr
b C CbCtr

a ) D 2ÆabId,

Btr
a Bb C Btr

b Ba D Ctr
a Cb C Ctr

b Ca,

for a ¤ b.
A point x 2 MC is said to be ofCondition A [14] if the kernel of Sn is V0 for all

n, which amounts to the same as saying the matricesBa D Ca D 0 for all 1� a � m1

in (8), so that (10) now reads

(11) Aa Atr
a D Id, Aa Atr

b C Ab Atr
a D 0, Atr

a Ab C Atr
b Aa D 0,

for 1 � a ¤ b � m1. It follows that the symmetric 2nd fundamental matricesSa, 0�
a � m1, satisfy

(Sa)2 D Id, SaSb D �SbSa, 8a ¤ b(12)

when they are restricted toVC�V�. In other words, (12) asserts thatVC�V� ' R2m2

is a C0
m1C1-module. Hence, by the passing remark at the end of the preceding section,

we seem2 D kÆ(m1) for somek; thus among (m1, m2) D (2, 2), (4, 5), (5, 4), only the
first is possible. (In fact, Ozeki and Takeuchi established,in their outline [15, p. 54] of
the classification of the (2, 2) case that had been indicated by Cartan without proof [1],
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that Condition A holds on one of the focal submanifolds, fromwhich there follows the
classification.) But then the multiplicity formulam1 C m2 C 1 D sÆ(m1) for somes,
with (m1, m2) ¤ (2, 2), (4, 5), (5, 4), impliesm1C1D (s� k)Æ(m1), so thatm1 D 1, 3 or
7. In particular, form1 D 3 or 7 we always havem2 � 2(m1C 1) whenm2 ¤ m1C 1,
whereas clearlym2 � 2m1 � 1 for m1 D 1; therefore, by the result in [2]M is of
the type of multiplicity (m1, m2) constructed by Ozeki and Takeuchi [14] when either
m1 D 1 or m2 ¤ m1 C 1.

Thus from now on, we assumem2 D m1 C 1 with m1 D 3, 7. Then (11) and
Corollary 1 give the following.

Corollary 2. At a point x2 MC of Condition A we may assume, by picking ap-
propriate bases for VC and V�, that Aa D Ja, 1� a � m1.

Proof. The matricesP and Q are for the basis changes inVC and V�.

4. Mirror points on MC and M�
Assume Condition A atx 2 MC when (m1, m2) D (3, 4) or (7, 8). As above, let

n0,n1,: : : ,nm1 be an orthonormal normal basis atx. We decompose the tangent space to
MC at x into the eigenspacesVC,V�,V0, with coordinatesx�, y�,zp as aforementioned,
of the shape operatorSn0. Traversing along the great circle spanned byx and n0 by
length�=2, we end up again onMC at n0 with x as a normal vector. Accordingly, set
x# WD n0 2 MC and n#

0 WD x normal to MC at x#. Then the eigenspacesV#C, V#�, V#
0 of

Sn#
0

with eigenvalues 1,�1,0 are [2, p. 15], respectively,VC,V�,n?0 WD span(n1, : : : ,nm1).

Moreover,Rx � V0 is the normal space toMC at x#.

Lemma 4. x# 2 MC is also of Condition A.

Proof. Although a straightforward proof can be given by the formulae on p. 15
of [2], we choose to give one based on the expansion formula (9). Sincex is of Con-
dition A, we know pa, 0 � a � m1, are quadratic forms inx� and y� only. If we
denote, atx#, all the involved quantities in (9) with an additional #, then t# D w0,w#

0 D t , w#
1 D z1, : : : , w#

m1
D zm1. The 3rd term of (9) atx#, which is

8

 
m1X

aD0

p#
aw#

a

!
t#,

is what determines the 2nd fundamental form atx#.
One obtainsp#

0 D p0 by the fact thatp0w0t D p0w#
0t#, which is part of the 3rd

term of (9) at x, and no other terms contributew0t of the 1st degree. Furthermore,
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expanding 8q0w0 in z1, : : : , zm1, we have

(13)
8q0w0 D 8(H1z1 C � � � C Hm1zm1)w0

D 8(H1w#
1 C � � � C Hm1w#

m1
)t#,

whereH1,:::,Hm1 are quadratic forms only inx� and y�, becauseq0 is homogeneous of
degree 1 in allx�, y�, zp [14, Lemma 15 (ii), p. 537]. No other terms of (9) contribute
z1w0, : : : , zm1w0 of the 1st degree. It follows thatp#

1 D H1, : : : , p#
m1
D Hm1. Hence,

x# is of Condition A as well.

In (8), we use an additional # to indicate the corresponding quantities in the 2nd
fundamental matrices atx#.

REMARK 2. Actually, Lemma 4 proves more. It shows that in factq0 determines
A#

a, 1� a � m1, whose entries are the coefficients ofHa=2, 1� a � m1.

Next, let

x� D x C n0p
2

, n�0 D x � n0p
2

.

Then x� 2 M�. We decompose the tangent space toM� at x� into the eigenspaces
V�C, V�� , V�

0 , of the shape operatorSn�0 with eigenvalues 1,�1, 0, respectively. Again,
we use an additional� to denote all involved quantities atx�.

Lemma 5. We have
(1) At x�, there holds V�C D n?0 , V�� D V0, V�

0 D V�, and the normal space to M� at
x� is Rn�0 � VC.
(2) The second fundamental matrices at x� 2 M� are given by the m1 C 1 (D m2)
matrices

S�a WD
0
� 0 0 B�

a

0 0 C�
a

(B�
a )tr (C�

a )tr 0

1
A,

where 1 � a � m1 C 1, m1 D 3, 7, and B�a (respectively, C�
a ) is the m1-by-(m1 C 1)

matrix formed by stacking together, in order, the a-th row of each of the m1 matrices�A1=p2,:::,�Am1=p2 (respectively, �A#
1=p2,:::,�A#

m1
=p2) at x (respectively, at x#).

Proof. Again we explore (9) with a slight modification. Namely, since (9) is with
respect toMC while x� 2 M�, we must consider the expansion of�F at x� in order
to apply (9). From the definition ofx� and n�0, we seet D (t� C w�

0)=p2 andw0 D
(t� � w�

0)=p2.
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The collection of (t�)2 terms for �F will reveal the tangent and normal space
at x�. But these terms come from the first two terms, 8p0w0t , �6jyj2(w0)2, jwj4 and
2hr p0, r p0iw2

0 in the expansion ofF . As a result, the 2nd term in the expansion of�F at x� is

(t�)2

 
2

 X
� y2� CX

p

z2
p CX

a�1

w2
a

!
� 6

 
(w�

0)2 CX
� x2�

!!
,

where as beforex�, y�, zp, wa parametrizeVC, V�, V0 and the normal space toMC
at x. On the other hand, the collection ofw�

0 t�, which comes from the same terms,
gives p�0 so that we end up with

p�0 DX
a�1

w2
a �X

p

z2
p.

Hence, the first statement follows.
We denote the Euclidean coordinates ofV�C,V�� ,V�

0 and the normal spaceRn�0�VC
at x� by x�� , y��, z�p and w�

a , respectively. Then the first statement saysx�� D w�,
y�� D z�, 1� �, � � m1, and z�p D yp, w�

a D xa, 1� a, p � m1 C 1.
The collection of the termsw�

1 t� D x1t�, : : : ,w�
m2

t� D xm2t
�, with coefficients being

quadratic forms iny�, zp, wa, a � 1, gives rise to the 2nd fundamental form ofM�
at x�. But these terms come only from 8

�P
a�1 pawa

�
t�=p2 obtained by the third term

of (9), and from 8q0t�=p2 obtained by the eighth term in (9). Combining them yields,
by (13),

8
X
�
 X

a,� 2A��ay�wa

!
x�p

2
C 8

X
�
 X

a,� 2A#��ay�za

!
x�p

2
,

where Aa D (A��a), A#
a D (A#��a). This is the 2nd statement, where the negative sign

accounts for considering�F at x�.
Recall by Corollary 2 we may assumeAa D Ja, 1 � a � m1, at a point x of

Condition A. We now understand the structure ofA#
a, 1� a � m1.

Lemma 6. Let e0, e1, : : : , em1 be the standard basis ofRm2 ' H or O. ThenhA#
a(e0), e0i D 0 for all 1� a � m1. In particular, we may assume A#

a(e0) D ea for all
1� a � m1; as a result, (A#

a)tr (e0) D �ea. It follows that we may further assume that
A#

a are skew-symmetric, i.e., that A#
a, 1� a � m1, form a Clifford system.

Proof. SinceAa D Ja, 1 � a � m1, the second item in Lemma 5 says that the
a-th column of B�

a is zero, 1� a � m1. Now, the third equation of (10) applied to the
point x� 2 M� says

(14) (B�
a )tr B�

b C (B�
b )tr B�

a D (C�
a )trC�

b C (C�
b )trC�

a ,
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which implies that thea-th column ofC�
a is also zero, 1� a �m1, when we setaD b

in the equation. Equivalently, this means the diagonal ofA#
a, 1� a � m1, is zero. So,

(15) hA#
a(eb), ebi D 0, 1� a � m1, 0� b � m1.

Sinceva WD A#
a(e0), 1� a � m1, are perpendicular to each other by the third equation

of (11) and Lemma 4, we deduce therefore thatva, 1� a � m1, spane?0 . Thus, there is
an orthogonal matrix( �ab ) of size m1-by-m1 such that

P
b �abvb D ea. The matricesP

b �abA#
b, 1� a � m1, which are theA-blocks of the 2nd fundamental matrices cor-

responding to the new normal basisn00 WD n#
0, n0a WDP

b�abn#
b, 1� a �m1, at x# 2 MC,

will serve as the newA#
a mappinge0 to ea. Thus without loss of generality we may

now assumeA#
a(e0) D ea, 1� a � m1.

In coordinates, (14) assumes the form

(16)
m1X

aD1

(A��a A��a C A��a A��a) D m1X
bD1

(A#��b A#��b C A#��b A#��b).

Hence, if we pick� D � D 0 and� D � D a, 1 � a � m1, we see by the fact that
Aa D Ja, 1� a � m1, that the product of the (a, 0)-entry and the (0,a)-entry of A#

a is�1, so that the latter is�1 since the former is 1. This forces all other entries of the
first row of A#

a to be zero asA#
a is orthogonal. In conclusion, (A#

a)tr (e0) D �ea. That
is, A#

a is skew-symmetric in the first row and column, 1� a � m1.
SinceA#

a, 1� a �m1, leavehe0,eai? invariant and since the group of automorphism
of H andO, which areSO(3) andG2, respectively, are transitive on the unit sphere ofe?0 ,
we see that any purely imaginary unit vectore can serve ase1. Therefore,hA#

a(e), ei D 0
by (15). It follows thatA#

a restricted onhe0, eai? is also skew-symmetric. In particular,
(11) says thatA#

a, 1� a � m1, form a Clifford system.

DEFINITION 1. For notational ease, we letA#
0 D Id. We define a normalized or-

thogonal multiplicationÆ on Rm2 by ea Æ eb D A#
a(eb) for 0� a, b � m1, and extend it

by linearity.

We can now determine the 2nd fundamental form atx� 2 M�.

Proposition 1. For (m1, m2) D (7, 8), the 2nd fundamental formp� at x� 2 M�
is given by

(17) p�(W, W) D �p2(X ZC Y Æ Z)

for a tangent vector WD X � Y � Z at x�, where X2 V�C ' Im(O), the purely
imaginary part ofO, Y 2 V�� ' Im(O), Z 2 V�

0 ' O, and p� lives in the normal
space to M�, which isRn�0 � VC ' R�O.
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For (m1, m2) D (3, 4), one has the same formula by forgetting the orthogonalcom-
plement ofH in O.

Proof. It is an immediate consequence of the second item in the statement of
Lemma 5, which can be rephrased ashB�

a (ep), e�i D he�ep, eai and hC�
a (ep), e�i Dhe� Æ ep, eai.

Henceforth, we will mainly study the structure of isoparametric hypersurfaces in
the case when (m1, m2) D (7, 8).

5. Octonion realization of the isoparametric hypersurfaces of OT-FKM type

5.1. Isoparametric hypersurfaces constructed by Ferus Karcher and Münzner.
Let R32 be the direct sum of four copies ofO. We identify (0, 0,�e0, 0) with x 2 MC;
{(0, 0,Y, 0)W Y 2 Im(O)} with V0 D V�� ; (0, e0, 0, 0) with n0 2 MC; and {(0, X, 0, 0)W
X 2 Im(O)} with V�C. We identify V� D V�

0 with (Z, 0, 0, Z), Z 2 O, and identify
VC, which is the normal subspace perpendicular ton�0 at x�, with (W, 0, 0,�W). The
notation here is in accordance with Lemma 5 and Proposition 1.

Consider the orthogonal transformations

(18)
P�1 W (A, X, Y, B) 7! (A, �X, Y, �B),

Pa W (A, X, Y, B) 7! (�Xea, �ANea, �B Æ Nea, �Y Æ ea)

for 0� a � 7. It is immediate thatPi Pj C Pj Pi D 2Æi j Id, �1� i , j � 7. Therefore, the
symmetric Clifford systemP�1, P0, : : : , P7 over M� generates an isoparametric hyper-
surfaceM constructed by Ferus, Karcher and Münzner [6], [7].

It is readily checked that

(19)
hPa((Z, X, Y, Z)), (Z, X, Y, Z)i
D 2hX ZC Y Æ Z, eai,

and hP�1((Z, X, Y, Z)), (Z, X, Y, Z)i D �jXj2C jYj2. That is, rescalingZ, �Pi , �1�
i � 7, restricted to the tangent space toM� at x� give exactly the 2nd fundamental
form by Proposition 1.

Recall M� is said to be ofCondition B [14] at x� if

(20) q�b D
m1X

aD�1

rabp�a ,

where rab D �rba, �1 � a, b � m1; here, we setq��1 D 0 and p��1 D jXj2 � jYj2.
An isoparametric hypersurface of OT-FKM type satisfies Condition B; it is well known
[7] that

(21) rab(v) D hPa(v), nbi,
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wherev is tangent to the focal submanifold, which isM� in our case, defined by the
symmetric Clifford matricesPa as the zero locus ofhPa(x), xi D 0, �1 � a � 7, and
na are the normal basis elements. Withna D (ea, 0, 0,�ea)=p2 andv D X C Y C Z,
it is straightforward to findrab D hea, Xeb � Y Æ ebi and so

(22) q�(W, W, W) D X(Y Æ Z) � Y Æ (X Z),

for a tangent vectorW D X�Y� Z at x�, in the case of isoparametric hypersurfaces
constructed by Ferus, Karcher and Münzner.

5.2. Perturbing the mirror point x�.

Proposition 2. There is a point x� on M� of the isoparametric hypersurfaces
constructed by Ferus, Karcher and Münzner at which either aÆ bD ab or aÆ bD ba
for all a, b 2 O, up to an isometry of the ambient Euclidean space.

Proof. Similar to Lemma 2 we can apply an orthogonal transformationU such that

U (z) Æ ea D U (zea) or U (eaz)

for all a, z. With x# D (0, e0, 0, 0) andn# D (0, 0,n, 0) for n D �U (e0), the normal
space toM� at x�n WD (x# C n#)=p2 is spanned by

P�1(x�n ) D (0,�e0, �U (e0), 0)=p2,

and

Pa(x�n ) D (�ea, 0, 0,U (ea))=p2, 0� a � 7,

whereas the tangent vectors, being perpendicular tox�n and the normal vectors, are thus
of the form (Z, X, U (Y), U (Z)); therefore,

�hPa((Z, X, U (Y), U (Z)), (Z, X, U (Y), U (Z))i
D �2hX ZC Y Z, eai or �2hX ZC ZY, eai,

for 0 � a � 7, give that the 2nd fundamental form atx�n is �p2(X Z C Y Z), or�p2(X ZC ZY) after rescalingZ.

5.3. Isoparametric hypersurfaces of the type constructed by Ozeki and
Takeuchi. Let R32 be identified as the direct sum of four copies ofO. Let x D
(0, 0, e0, 0) and atx identify VC as the first copy,V� as the second copy and the
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normal space as the fourth copy ofO in R32. Lastly, identify the imaginary part of
the third copy ofO as V0 at x. Define

P0 W (u, v, z, w) 7! (u, �v, w, z),

Pa W (u, v, z, w) 7! (eav, �eau, eaw, �eaz)

for 1� a � 7. A calculation similar to the above one gives that the symmetric Clifford
systemP0, P1, : : : , P7 over MC defines an isoparametric hypersurface M, wherex 2 MC
is of Condition A whose 2nd fundamental form is

p0 D juj2 � jvj2, pa D 2hea, uNvi, 1� a � 7.

In particular, the orthogonal multiplicationÆ at x# coincides with the octonian multi-
plication. By [14, 15], [7], we knowx is also of Condition B. Indeed, with the nor-
mal basisnb D (0, 0, 0,eb) and a tangent vectorx D (u, v, z, 0), whereu, v 2 O and
z2 Im(O), we calculate by (20) to deducer0b D hz,ebi, 1� b� 7 andrabD�heaz,ebi,
0� a ¤ b � 7. From this we obtain by (21)

q0 D 2hz, uNvi,
qa D hz, eai(juj2 � jvj2 � 2hu, Nvi) � 2hzea, uNvi,

for 1� a � 7 [14, p. 556].
Since q0 gives A#

a, 1 � a � 7, by Remark 2, we seeAa D A#
a D Ja, 1 � a � 7.

On the other hand, Remark 4, to be given later, gives that

q� D m1X
aD0

waq�a D h2z(uNv) � 2hu, viz, wi
with w DPm1

aD0waea. The identificationX D w 2 V�C ' Im(O), Y D�z2 V�� ' Im(O),
Z D �v 2 V�

0 , and W D u in the normal space tox� 2 M� derives that, for a tangent
vector U D X � Y � Z and a normal vectorW at x�,

hq�(U, U, U ), Wi
D h2Y(W NZ) � 2hW, ZiY, Xi D h�2(Y X)Z � 2hX, YiZ, Wi
D h2(XY)Z C 2hX, YiZ, Wi D h(XY)Z � (Y X)Z, Wi.

We thus arrive at

q�(U, U, U ) D (XY� Y X)Z

for a tangent vectorU D X�Y� Z at x�. The fact that the 3rd fundamental form at
x of Condition A in the example of Ozeki and Takeuchi is not linear in all variables
whereas the 3rd fundamental form is linear atx�, in the cases of both Ozeki–Takeuchi
and Ferus–Karcher–Münzner, in all variables points to that it will be simpler to look
at the mirror pointx� instead.
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6. The 3rd fundamental form at a mirror point on M�
Henceforth, we concentrate onx� 2 M�. It is understood (m1, m2) D (7, 8). In co-

ordinate calculations we usex�� ,y��,z�p to denote coordinates ofV�C,V�� ,V�
0 , respectively,

so that X DPm1�D1 x��e�, Y DPm1�D1 y��e�, and Z DPm1
pD0 z�pep.

Lemma 7. At x� 2 M�, we have q�0 D 0.

Proof. This follows from Remark 2. There, we see thatq0 at x 2 MC determines
A#

a, 1� a � m1, and vice versa. Hence, ifAa D 0, 1� a � m1, then (16) derives that
A#

a D 0, 1� a � m1, so thatq0 D 0. Now replaceF by �F and x# by x� and observe
that A�a D 0, 1� a � m1 by the second item of Lemma 5.

Now that q�0 D 0, there will be no confusion for us to change our notation from
now on to renameq�1 , : : : , q�m2

, wherem2 D m1 C 1, at x� to be q�0 , : : : , q�m1
, so that

the 3rd fundamental form can be written asq� D Pm1
aD0 q�a ea in accordance with the

standard octonion basise0, e1, : : : , em1.

Lemma 8. At x� 2 M�, the 3rd fundamental formq� satisfies

(23) jq�(U, U, U )j D jX(Y Æ Z) � Y Æ (X Z)j
for a tangent vector UD X � Y � Z at x�.

Proof. Recall the identity for an isoparametric hypersurface [14, p. 530]

(24) 16jq�j2 D 16G(jXj2 C jYj2 C jZj2) � jrGj2,

where G D Pm1
aD�1(p�a )2, that an isoparametric hypersurface must satisfy. It is under-

stood thatp��1 D jXj2 � jYj2.
For the isoparametric hypersurfaces of the type constructed by Ferus, Karcher and

Münzner, we know the left hand side of (24) isjX(Y Æ Z) � Y Æ (X Z)j by (22). On
the other hand, the right hand side of (24) depends only on the2nd fundamental form,
which is exactly�p2(X Z C Y Æ Z) for the type constructed by Ferus, Karcher and
Münzner by (19) and in general by Proposition 1.

REMARK 3. When m1 D 1, the underlying normed algebra isC. Therefore,
Lemma 8 impliesq� D 0.

When m1 D 2, Ozeki and Takeuchi established [15, p. 54, Case (B1)] that one can
choose appropriate coordinates so thatp� is identical with that of the homogeneous
example. The same argument as in Lemma 8 then implies thatq� D 0 as it is so for
the homogeneous example [15, p. 41], so that the isoparamentric hypersurface is exactly
the homogeneous one.
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Proposition 3. For 0� a � m1 at x�, we have q�a DP��p q��p
a x�� y��z�p for some

coefficients q��p
a . That is, q� is homogeneous of degree1 in X, Y, Z.

Proof. We record the equation from Ozeki and Takeuchi [15, p.529], with respect
to �F , that

(25) hr p�i , rq�j i C hr p�j , rq�i i D 0

for all �1� i ¤ j � m1. Picking i D �1 and j D a, we get

(26) hr p��1, rq�a i D 0

sinceq��1 D 0 by Lemma 7. Note thatp��1 DP�(x�� )2 �P�(y��)2.

For the component
P�� p q�� p

a x��x��z�p of q�a , where�,� are in the same index range

over V�C, the left hand side of (26) gives 4
P�� p q�� p

a x��x��z�p (Euler’s identity for homo-

geneous polynomials). Similarly for the component
P�pq q�pq

a x��z�pz�q, where p, q are

in the same index range overV�
0 , the left hand side of (26) derives 2

P�pq q�pq
a x��z�pz�q,

etc. The vanishing of the right hand side of (26) therefore shows that all those com-
ponents, exactly two of whose coordinates are in the same index range, are zero. The
same reasoning gives zero to the components whose coordinates are either all in the�-
range, or all in the�-range (overV�� ). The only component of repeated ranges not ac-
counted for by this procedure is thus of the form

P
pqr qpqr

a z�pz�qz�r with p, q, r in the
same index range. However, Lemma 15 (i) of [14, p. 537] asserts that such components
cannot exist.

REMARK 4. q� at x� 2 M� is determined by collecting the part ofq at x 2 MC
linear in all variables. Explicitly, sinceq� is of degree 1 inX,Y,Z, the term 8

Pm1
aD0q�aw�

a

is of the form 8
P��pa q��p

a x�� y��z�pw�
a , which is also linear inx�, y�, zp, wa. This is

because by our convention,x�, y�, zp, wa parametrize, respectively,VC, V�, V0 and the
normal space tox 2 MC; we know by the first item of Lemma 5 thatx�� D w�, y�� D z�,
1� �, � � m1, andz�p D yp, w�

a D xa, 1� a, p � m2. However, a glance at (9) shows
that the only term ofF that contributes to items linear inx�, y�, zp, wa comes from
8
Pm1

aD1 qawa.

We denoteq� by q�(X, Y, Z), where X 2 V�C, Y 2 V�� and Z 2 V�
0 ; thanks to

Proposition 3 we see thatq� is a multilinear form inX, Y, Z. We extendq�(X, Y, Z)
by requiring thatq�(e0, Y, Z) D 0 and q�(X, e0, Z) D 0 for all X, Y 2 O. This is
well-defined as the right hand side of (23) is 0 if eitherX D e0 or Y D e0. With this
extension (23) continues to hold.
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Lemma 9. For 0� a, p � m1 and X, Y 2 O, we have

(27)

hq�(X, Y, ea), eai D 0,

hq�(X, Y, e0), Xi D hq�(X, Y, e0), Yi D 0,

hq�(ea, Y, ep), eai D �hq�(ea Nep, Y, e0), eai,
hq�(X, ea, ep), eai D �hq�(X, ea Æ Nep, e0), eai,
hq�(ea, Y, ea), epi D �hq�(ep Nea, Y, e0), eai,
hq�(X, ea, ea), epi D �hq�(X, ep Æ Nea, e0), eai.

Proof. Settingi D a, j D b in (25) and considering the homogeneous part inY
and Z only, we obtain

m1X
�D0

hq�(e�, Y, Z), eaihe�Z, ebi
C hq�(e�, Y, Z), ebihe�Z, eai D 0.

Equivalently, it is

(28)

m1X
�D0

hq�(e�, Y, ep), eaihe�eq, ebi
C m1X

�D0

hq�(e�, Y, eq), eaihe�ep, ebi
C m1X

�D0

hq�(e�, Y, ep), ebihe�eq, eai
C m1X

�D0

hq�(e�, Y, eq), ebihe�ep, eai D 0.

Setting q D a D b in (28), we see the first and the third sums on the left are 0,
since they are simplified tohq�(e0, Y, ep), eai. Hence we obtainhq�(e�, Y, ea), eai D 0,
wheree� is parallel toea Nep for any p. Sinceea Nep runs throughe0, : : : , em1 when we
vary p, we seehq�(e�, Y, ea), eai D 0 for all �. That is,

(29) hq�(X, Y, ea), eai D 0

for all X, Y, ea. In particular, the first identity of (27) is true.
On the other hand, settinga D b and p D q D 0 we deduce the identityhq�(ea, Y, e0), eai D 0 for all a, which implies that

(30) hq�(X, Y, e0), Xi D 0
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for all X 2 Im(O), because any unit imaginaryX can serve asea, for some a ¤
0, since the group of automorphism of the normed algebra is transitive on the unit
imaginary sphere. It follows from (30), (29) fora D 0, and q�(e0, Y, Z) D 0 thathq�(X, Y, e0), Xi D 0 for all X, Y 2 O. Hence, the second identity of (27) is true.

The third identity of (27) follows from settinga D b and q D 0.
The fifth identity comes from settingp D b and q D 0 and employing (29).
The fourth and sixth identities are derived from an equationsimilar to (28) when,

in (25), we look at the homogeneous part inX and Z only.

Corollary 3. For X, Y 2 Im(O),

hq�(X, Y, Z), Zi D 0, Z 2 Im(O) or Z D e0,

hq�(X, Y, e0), Xi D hq�(X, Y, e0), Yi D 0,

hq�(X, Y, Z), Xi D �hq�(X NZ, Y, e0), Xi, Z 2 O,

hq�(X, Y, Z), Yi D �hq�(X, Y Æ NZ, e0), Yi, Z 2 O,

hq�(X, Y, X), Zi D hq�(Z X, Y, e0), Xi, Z 2 O,

hq�(X, Y, Y), Zi D hq�(X, Z Æ Y, e0), Yi, Z 2 O.

Proof. It follows from the identities, in order, of Lemma 9 and the transitivity of
the automorphism group ofO on its imaginary unit sphere.

In fact, we can strengthen the first identity of Corollary 3 asfollows.

Lemma 10.

(31) hq�(U NV , Y, V), Wi D �hq�(W NV , Y, V), Ui,
where U,Y,W 2O and V is either e0 or purely imaginary. In particular, hq�(X,Y,Z),Wi
is skew-symmetric for Z and W inO. Moreover, hq�(X, Y, e0), Zi is skew-symmetric in
all X, Y, Z 2 O.

Proof. Settingp D q in (28), we obtain

hq�(eb Nep, Y, ep), eai D �hq�(ea Nep, Y, ep), ebi.
The first statement follows.

SettingU D e0 and X WD W NV for a purely imaginaryV , we obtain

(32)
hq�(X, Y, V), e0i D hq�(V, Y, V), XVi

D �hq�(X, Y, e0), Vi,
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where the last equality follows from the fifth identity of Corollary 3.
The second statement is a consequence of (32) and the first identity of Corollary 3,

which says thathq�(X, Y, Z), Wi is skew-symmetric inZ and W when Z and W are
purely imaginary.

The third statement follows from anti-symmetrizing theX and Y slots of the two
equations, respectively, of the second identity of Corollary 3.

Corollary 4. For W 2 O, we have

hq�(X, Y, W), XWi D 0 and hq�(X, Y, W), Y Æ Wi D 0,

so that anti-symmetrizing we get

hq�(X, Y, U ), XVi D �hq�(X, Y, V), XUi,
hq�(X, Y, U ), Y Æ Vi D �hq�(X, Y, V), Y ÆUi

for U, V 2 O.

Proof. SettingU D XW for W 2 Im(O), we derive from (31)

hq�(X, Y, W), XWi D hq�(U NW, Y, W), Ui
D �hq�(U NW, Y, W), Ui D 0.

We next calculatehq�(X, Y, e0), XWi for a purely imaginaryW. By the skew
symmetry ofhq�(X, Y, e0), Zi for all X, Y, Z 2 O,

hq�(X, Y, e0), XWi D hq�(XW, Y, X), e0i
D �hq�( NW NX, Y, X), e0i D hq�(e0 NX, Y, X), NWi
D �hq�(X, Y, X), NWi D hq�(X, Y, X), Wi,

which cancelshq�(X, Y, W), Xi for an imaginaryW. Putting all these together, it fol-
lows that

(33) hq�(X, Y, W), XWi D 0

for all W 2 O.
Likewise, hq�(X, Y, W), Y Æ Wi D 0 for all W 2 O by a similar argument.

REMARK 5. In fact, the first two identities of Corollary 4 establish that hp�,q�i D
0 by (17). This is the seventh of the ten equations of Ozeki andTakeuchi [14, p. 530]
defining an isoparametric hypersurface.

We now come to a crucial observation. Recall the angle� given before Lemma 3.
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Proposition 4. Assume� ¤ 0 and � . Let R(X, Y) WD q�(X, Y, e0). Then

R(X, Y) D XY� Y Æ X,

if e is perpendicular to X, Y and XY, while

R(X, Y) D �(XY� Y Æ X)

if XY is parallel to e.

Proof. By Lemma 8 we seejR(Z, Z)j D jZ Z � Z Æ Zj D 0, so thatR(Z, W) is
skew-symmetric inZ and W.

We may assumeX,Y 2 Im(O) are orthonormal vectors such thatX,Y andXY are all
perpendicular toe, wheree is given before Lemma 3. Thene0, X,Y, XY,e, Xe,Y e, (XY)e
form an octonion basis ofO. It follows that R(X,Y) is a linear combination of the above
basis elements. We know

hR(X, Y), e0i D hR(X, Y), Xi D hR(X, Y), Yi D 0

by the first two identities of Corollary 3. Therefore, we conclude

(34) R(X, Y) D a(XY)C f eC c(Xe)C d(Y e)C b((XY)e)

for some functionsa, b, c, d, f defined in the Stiefel manifoldM of orthonormal
2-frames over Im(O).

Let X D g�1(X0),Y D g�1(Y0) andeD g�1(e0) for any automorphismg of O. Then

(g � R)(X0, Y0) WD g(R(g�1(X0), g�1(Y0))) D g(R(X, Y))

D a(X0Y0)C f e0 C c(X0e0)C d(Y0e0)C b((X0Y0)e0).
The interpretation is that (g � R)(X0, Y0) is R(X, Y) relative to the new octonion basis
e0, g�1(e1), : : : , g�1(e7) with coordinatesX0, Y0 and e0. Since any such (X, Y, e) can be
(g�1(X0), g�1(Y0), g�1(e0)) for a fixed (X0, Y0, e0) (think of it as (e1, e2, e4)) as we vary
g, we see thata, b, c, d, f are all constant. But then homogenizingX and Y in (34)
shows thatcD d D 0 for (polynomial) degree reason, and, moreover, thatf D 0 since
R(X,Y) is skew-symmetric. So now

(35) R(X, Y) D a(XY)C b((XY)e).

To determinea and b, we note that by Lemma 10

hR(U, V), Wi D hq�(U, V, e0), Wi
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is skew-symmetric in all variables. Hence the 3rd identity of Corollary 3 gives

hR(X, Y), XYi D hq�(X, Y, X), Yi,
while the 4th identity of Corollary 3 gives

hR(X, Y), Y Æ Xi D �hq�(X, Y, X), Yi.
Adding these two equations, incorporating Lemma 3 and bearing in mind thata DhR(X, Y), XYi and bD hR(X, Y), (XY)ei, we obtain

a(1� cos(2�)) � b sin(2�) D 0.

But then

a2 C b2 D jR(X, Y)j2 D jXY� Y Æ Xj2 D 2C 2 cos(2�)

results in

a D �(1C cos(2�)), bD � sin(2�).

(The signs fora and b agree.) By changinge to �e, we may assume the sign is posi-
tive. It follows that

R(X, Y) D (1C cos(2�))XYC sin(2�)(XY)eD XY� Y Æ X.

In the case when the orthonormal imaginaryX and Y are such thatXY D e, we
form an octonian basise0, X, Y, e, W, W X, WY, We. We have, sinceX ÆY D XYD e
by Lemma 3 and sinceR(X, Y) is skew-symmetric, that

hR(X, Y), Wi D hR(W, X), Yi D hW X� X Æ W, Yi D 0

by the previous case. In other words,R(X, Y) is in the span ofe0 and e sincehR(X, Y), Xi D hR(X, Y), Yi D 0. Write

R(X, Y) D aeC be0.

Now, b D hR(X, Y), e0i D 0 by skew symmetry. Moreover, sincejR(X, Y)j D jXY �
Y Æ Xj D 2, we seea D �2 and

R(X, Y) D �2eD �2XY D �(XY� Y Æ X).

Corollary 5. R(X, Y) D XY� Y X if � D 0 and R(X, Y) D 0 if � D � .
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Proof. e is arbitrary in (35) when� D 0 or � . Hence the real numberbD 0, so
that R(X, Y) D aXY. In the case when� D � we havea Æ b D ba for all a, b andjR(X, Y)j D jXY � Y Æ Xj D 0. So a D 0. For � D 0, i.e., whena Æ b D ab for all
a, b, jR(X, Y)j D 2jXjjYj. So, a D �2. Since changingX, Y, Z to �X,�Y,�Z leaves
the 2nd fundamental form fixed and changes the 3rd fundamental form by a sign, we
may choose the positive sign.

7. Classification of q�
We have seen in Lemma 8 that the 3rd fundamental formq� satisfies

(36) jq�(X, Y, Z)j D jX(Y Æ Z) � Y Æ (X Z)j.
We now prove that there are only three possibilities forq�.

Theorem 1. Up to isometry, the possibleq� are either

q�(X, Y, Z) D (XY� Y X)Z

constructed by Ozeki and Takeuchi, where Æ coincides with the octonion multiplica-
tion, or

q�(X, Y, Z) D X(Y Æ Z) � Y Æ (X Z)

constructed by Ferus, Karcher and Münzner, where either aÆbD ab or aÆbD ba for
all a, b 2 O.

The proof of Theorem 1 consists of a series of lemmas and corollaries in the
following subsections.

7.1. The case when� ¤ 0 and � .

Lemma 11. Suppose� ¤ 0 and � . Let X and Y be purely imaginary and per-
pendicular vectors inO and let W be in the orthogonal complement of the quaternion
algebraA generated by X and Y . Then

q�(X, Y, W) D X(Y Æ W) � Y Æ (XW)

if e is perpendicular toA, while

q�(X, Y, W) D �(X(Y ÆW) � Y Æ (XW))

if XY is parallel to e; here, the sign agrees with that of R(X, Y).
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Proof. We may assumeX, Y are unit vectors. SupposeX, Y and XY are all per-
pendicular toe. Complete it to an octonion basise0, X, Y, XY, e, Xe, Y e, (XY)e of O.
The third identity in Corollary 3 and Proposition 4 imply that

hq�(X, Y, e), Xi D hR(X, Y), Xei D hXY� Y Æ X, Xei
D 2 sin(2�)h(XY)e, Xei D 0.

Likewise, the fourth identity in Corollary 3 and Proposition 4 imply

hq�(X, Y, e), Yi D hR(X, Y), Y Æ ei D hXY� Y Æ X, Y Æ ei D 0.

Meanwhile,

hq�(X, Y, e), e0i D �hq�(X, Y, e0), ei D �hXY� Y Æ X, ei D 0.

On the other hand,

hq�(X, Y, e), Xei D hq�(X, Y, e), Y ei D 0

by the first two identities of Corollary 4. Lastly,hq�(X,Y,e),ei D 0 by the first identity
of Corollary 3. In conclusion,

(37) q�(X, Y, e) D a(XY)C b((XY)e).

To determinea andb, settingU D e andV D Y in the 3rd equation in Corollary 4,
we deduce

(38)

hq�(X, Y, e), XYi D �hq�(X, Y, Y), Xei
D hq�(X, Y, e0), (Xe) Æ Yi
D hXY� Y Æ X, (Xe) Æ Yi D sin(2�).

In the same vein,

hq�(X, Y, e), Y Æ Xi D �hq�(X, Y, X), Y Æ ei
D hq�(X, Y, e0), (Y Æ e)Xi D hXY� Y Æ X, (Y Æ e)Xi
D hXY� Y Æ X, (Y e)Xi D sin(2�),

while its left hand side simplifies to

hq�(X, Y, e), Y Æ Xi D hq�(X, Y, e), cos(2�)Y XC sin(2�)(Y X)ei
D � cos(2�) sin(2�) � sin(2�)hq�(X, Y, e), (XY)ei
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by (38). So, when� ¤ �=2, we end up with

hq�(X, Y, e), (XY)ei D �(1C cos(2�)),

which is exactly

q�(X, Y, e) D X(Y Æ e) � Y Æ (Xe).

We then use the third identity of Corollary 4 to see that

q�(X, Y, W) D X(Y Æ W) � Y Æ (XW).

for W D Xe, Y e, (XY)e, and hence for allW perpendicular toA.
When � D �=2, a straightforward calculation gives

(39) jq�(X, Y, e)j D jX(Y Æ e) � Y Æ (Xe)j D 1C cos(2�) D 0,

so that once more

q�(X, Y, e) D X(Y Æ e) � Y Æ (Xe) (D 0).

In the case whenXY D e, we know R(X, Y) D �(XY � Y X) D �2e. We form
an octonian basise0, X, Y, e, W, W X, WY, We. Then

hq�(X, Y, W), e0i D �hR(X, Y), Wi D h�2e, Wi D 0,

hq�(X, Y, W), Xi D hR(X, Y), W Xi D 0,

hq�(X, Y, W), Yi D hR(X, Y), W Æ Yi D 0,

hq�(X, Y, W), Wi D 0,

hq�(X, Y, W), XWi D hq�(X, Y, W), Y Wi D 0,

where the last identity follows from Corollary 4. It followsthat

q�(X, Y, W) D a(XY)C b(W(XY))

for somea, b 2 R. But then for (polynomial) degree reasona D 0. Since

X(Y Æ W) � Y Æ (XW) D 2 cos(2�)W(XY),

we see by (23) that

q�(X, Y, W) D �(X(Y Æ W) � Y Æ (XW)).
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Corollary 6. Suppose� ¤ 0 and � . Let X and Y be purely imaginary and per-
pendicular vectors inO and let W be in the quaternion algebraA generated by X
and Y . Then

(40) q�(X, Y, W) D X(Y Æ W) � Y Æ (XW)

if e is perpendicular toA, while

(41) q�(X, Y, W) D �(X(Y Æ W) � Y Æ (XW))

if XY is parallel to e; here, the sign agrees with that of R(X, Y).

Proof. The proof follows the same line of thoughts as in the preceding lemma.
Thus we shall only indicate the essential point.

We first assume thate is perpendicular toA so that by the preceding lemma

(42) q�(X, Y, Z) D X(Y Æ Z) � Y Æ (X Z)

for Z perpendicular toA. Then as before we construct an octonion basise0, X, Y, XY, e,
Xe, Y e, (XY)e. We knowhq�(X,Y,X),e0i D �hR(X,Y),Xi D 0 andhq�(X,Y,X),Xi D 0.
By the 5th identity of Corollary 3,

hq�(X, Y, X), Yi D hR(X, Y), XYi
D hXY� Y Æ X, XYi D 1C cos(2�).

For Z perpendicular toA, we use (42) to see

hq�(X, Y, X), Zi D �hq�(X, Y, Z), Xi D h(Ze)(XY), Xi,
so that we derive

(43) hq�(X, Y, X), ei D hq�(X, Y, X), Xei D hq�(X, Y, X), (XY)ei D 0,

while

(44) hq�(X, Y, X), Y ei D � sin(2�).

Therefore, we conclude

(45) q�(X, Y, X) D (1C cos(2�))Y � sin(2�)Y eD X(Y Æ X) � Y Æ (X X).

(Note thatq� D 0 if � D �=2.) WhenXYD e, we form the octonion basise0, X, Y, e,
W, XW, Y W, (XY)W and we haveR(X, Y) D �2XY andq�(X, Y, Z) D �(X(Y Æ Z)�
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YÆ(X Z)) for Z perpendicular toA. We seehq�(X,Y,X),Yi D �2 andhq�(X,Y,X),Zi D
0 for all Z perpendicular toA. Hence

q�(X, Y, X) D �2Y D �(X(Y Æ X) � Y Æ (X X)).

Theorem 2. Suppose� ¤ 0 and � . For all X, Y 2 O and all Z 2 O we have

(46) q�(X, Y, Z) D X(Y Æ Z) � Y Æ (X Z).

Thus the hypersurfaces are of the type constructed by Ferus, Karcher and Münzner.

Proof. Lemma 11 and Corollary 6 only deal with the case when the imaginaryX
and Y are perpendicular inq�(X, Y, Z), which leaves an undetermined sign. We now
remove the sign by considering the case whenX D Y.

Let X, Y 2 Im(O) be orthonormal such thate is perpendicular toX, Y and XY.
Then the circlesX(t) WD cos(t)XC sin(t)Y and Y(t) WD � sin(t)XC cos(t)Y satisfy that
X(t), Y(t), X(t)Y(t) are perpendicular toe. Differentiating (40) att D 0, we obtain

q�(Y, Y, W) � q�(X, X, W)

D �(X(X Æ W) � X Æ (XW))C (Y(Y Æ W) � Y Æ (Y W)).

Note that

(47) jq�(X, X, Z)j D jsin(2�)(X((X Z)e) � (X(X Z))e)j ¤ 0

unless� D �=2. Homogenizing and comparing polynomial types, we get

q�(X, X, W) D X(X Æ W) � X Æ (XW)

when � ¤ �=2. On the other hand, when� ¤ �=2, we fix the sameX and choose a
Y such thatXY D e, differentiating (41) gives

q�(X, X, W) D �((X(X Æ W) � X Æ (XW)).

Therefore, the sign must be positive when� ¤ �=2.
When � D �=2, the formula (47) impliesq�(X, X, Z) D 0 for all X, Z 2 O, and

so q� is skew-symmetric inX and Y. So, a priori the sign is undetermined. However,
by (39) and (45) we have seenq�(X,Y,Z)D 0 for all Z whene is perpendicular toX,Y
and XY. The sign is ambiguous only in the case whenXYD e. Now, seteD e4. Then
since any two different imaginary basis elementsea,eb ¤ e4 satisfy eithereaeb D e4, or
ea, eb and eaeb are all perpendicular toe4, the analysis in Lemma 11 and Corollary 6
provides a recipe for writing downq�(X, Y, Z) explicitly as follows.

q�(X, Y, Z) D �X
(xi y j ei (Æ(ej Z)) � y j xi ej Æ (ei Z)),
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where i , j � 1 run over the indexes whereei ej e4 D �e0.
Since changingX, Y, Z to �X, �Y, �Z retains the 2nd fundamental form and

changes the 3rd fundamental form by a sign, we might as well choose the positive sign.
Therefore, in any event, the 3rd fundamental form is the desired form given by (46).

Proposition 2 implies that we can always perturb to find a mirror point x� 2 M� at
which � D 0 or � , even when initailly the choice ofx� produces an angle� different
from 0 and� . Therefore, the classification is reduced to the case when� D 0 or � .

7.2. The case when� D 0 or � . By Corollary 5, we knowR(X,Y)D XY�Y X
for � D 0 and R(X, Y) � 0 for � D � .

Corollary 7. Suppose aÆ bD ab, 8a, b. For X, Y 2 Im(O), we have

hq�(X, Y, Z), Zi D 0,

hq�(X, Y, e0), Xi D hq�(X, Y, e0), Yi D 0,

hq�(X, Y, Z), Xi D 2hX, YihX, Zi � 2jXj2hY, Zi,
hq�(X, Y, Z), Yi D �2hX, YihY, Zi C 2jYj2hX, Zi.

Proof. This follows fromR(X, Y) D XY� Y X and Corollary 3.

Corollary 8. If the normed algebra isH, then Theorem 1is true.

Proof. By Remark 1, eithera Æ bD ab or D ba for all a, b 2 H.
CASE 1. a Æ bD ba, 8a, b.
Then by (36),jq�(X,Y, Z)j D jX(ZY)� (X Z)Yj D 0 by the associativity ofH. So,

q� D 0D X(Y Æ Z) � Y Æ (X Z).

The hypersurface is of the type constructed by Ferus, Karcher and Münzner by
Section 5.1.

CASE 2. a Æ bD ab, 8a, b.
Let X, Y be mutually orthogonal and purely imaginary. We setZ D XY. Then

the first, third and fourth identities of Corollary 7 implyq�(X, Y, Z) is perpendicular
to X, Y, Z; therefore,q�(X, Y, Z) is parallel toe0. Let q�(X, Y, Z) D �2cjXj2jYj2e0

for some constantc. By identity (36) we obtain the identityjq�(X, Y, Z)j D 2jXj2jYj2;
we see thereforecD �1. Thus,

q�(X, Y, Z) D �2cjXj2jYj2e0 D 2cZ ZD c(XY� Y X)Z.
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Meanwhile,

q�(X, Y, e0) D R(X, Y) D (XY� Y X)e0.

Corollary 7 also yields

q�(X, Y, X) D 2jXj2 D (XY� Y X)X,

q�(X, Y, Y) D �2jYj2X D (XY� Y X)Y.

Putting all these together, we arrive at

q�(X, Y, W) D (XY� Y X)W, or

q�(X, Y, W) D (XY� Y X)W � hW, XY� Y Xie0,
(48)

wherec D 1 for the first equation andc D �1 for the second. Although we have de-
rived the formulae assuming thatX andY are perpendicular, the same formulae remain
true for any two imaginaryX and Y sinceq�(U, V, W) is skew-symmetric inU, V .

If cD 1, then

q�(X, Y, W) D X(Y Æ W) � Y Æ (XW).

So the hypersurface is of the type constructed by Ferus, Karcher and Münzner by Sec-
tion 5.1. It satisfies (33)

(49) hX(Y ÆW) � Y Æ (XW), XWi D 0.

We showc D �1 is impossible. Assume otherwise. Then since such an isoparametric
hypersurface must also satisfy (33), we would conclude

0D hq�(X, Y, W), XWi
D hX(Y Æ W) � Y Æ (XW), XWi � hW, XY� Y Xie0, XWi
D hW, XY� Y XihW, Xi ¤ 0

by (49). This is a contradiction.

To finish Theorem 1 in the octonion case, we break it into two cases.
CASE 1. a Æ bD ab, 8a, b.
Identity (36) shows thatjq�(X, X, Z)j D 0, 8X, Z 2 O, so thatq�(X, Y, Z) is

skew-symmetric inX, Y, 8X, Y 2 O.
Let X, Y ¤ 0 be perpendicular and purely imaginary andW be in the orthogonal

complement ofA, the quaternion algebra generated byX and Y. We know by (37)
and (38) thatq�(X, Y, W) D �2((XY)W), if X, Y and XY are all perpendicular toe,
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and the same formula holds ifXY D e, where the signs might not be related a priori
in the two cases. We assume first that the signs are identical.Namely,

q�(X, Y, W) D 2c((XY)W),

wherecD 1 or cD �1 for all W perpendicular toA. If cD 1, then

q�(X, Y, W) D (XY� Y X)W,

which remains true for any two purely imaginaryX and Y not necessarily perpendicu-
lar to each other, asq� is skew-symmetric inX, Y. It follows that

q�(X, Y, Z) D (XY� Y X)Z

for any Z 2O, as it is also true forZ 2A by Corollary 8, where we use (43) and (44)
to see thatq�(X, Y, Z) 2 A for Z 2 A. This is the isoparametric hypersurface con-
structed by Ozeki and Takeuchi.

If cD �1, then

q�(X, Y, W) D �2(XY)W D X(Y W) � Y(XW),

so that there holds

q�(X, Y, Z) D X(Y Z) � Y(X Z) D X(Y Æ Z) � Y Æ (X Z)

for any X,Y, Z 2O, as it is true forZ 2A by Corollary 8. These are the isoparametric
hypersurfaces constructed by Ferus, Karcher and Münzner.

We need to remove the case whenq�(X, Y, W) D 2((XY)W) if X, Y, and XY are
all perpendicular toe, whereasq�(X, Y, W) D �2((XY)W) when XY D e. Assuming
this is the case. Then Corollary 8 implies

q�(X, Y, W) D (XY� Y X)WC h(X, Y, W),

where h(X, Y, W) D �4eW? if XY D e. As seen in Corollary 8, the existence of an
isoparametric hypersurface with such aq� would imply

hh(X, Y, W), XWi D hq�(X, Y, W) � (XY� Y X)W, XWi D 0.

But then if we seteD e4 and W D e2, we get

hh(X, Y, W), XWi ¤ 0.

This is a contradiction.
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CASE 2. a Æ bD ba, 8a, b.
Note that againjq�(U, U, Z)j D jU (ZU)� (U Z)U j D 0, 8U, Z 2 O, so thatq� is

skew-symmetric in the first two slots.
If cD 1, then

q�(X, Y, W) D 2(XY)W D X(WY) � (XW)Y,

so that

q�(X, Y, Z) D X(ZY) � (X Z)Y D X(Y Æ Z) � Y Æ (X Z)

for any X, Y, Z 2 O, as q� D 0 on A.
If cD �1, thenq� only differs from the previous case by a negative sign. Chang-

ing X, Y, Z to �X, �Y, �Z converts it to the previous case.
This completes the classification of Theorem 1.

REMARK 6. In the octonion case, the two isoparametric hypersurfaces with q� D
X(Y Æ Z)�Y Æ (X Z) constructed by Ferus, Karcher and Münzner are of Condition Bat
x� 2 M�. In contrast, the hypersurface withq� D (XY� Y X)Z is not of Condition B
at x�; however, it is of both Conditions A and B atx 2 MC constructed by Ozeki
and Takeuchi.

In the quaternionic case, however, (XY � Y X)Z D X(Y Z) � Y(X Z), so that we
have only two different such isoparametric hypersurfaces,where the example of Ozeki
and Takeuchi of multiplicities (3,4) of Conditions A and B atx 2 MC is also of Condi-
tion B at x� 2 M�. The other isoparametric hypersurface is of Condition B atx� 2 M�
with q� D X(ZY)� (X Z)Y D 0; it is the homogeneous example of multiplicities (4, 3).
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