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Abstract
Let R be a left and right Noetherian ring. We introduce the notibthe torsion-
free dimension of finitely generateld-modules. For anyr > 0, we prove thatR is
a Gorenstein ring with self-injective dimension at masf and only if every finitely
generated lefR-module and every finitely generated rigRtmodule have torsionfree
dimension at mosh, if and only if every finitely generated left (or righ2-module
has Gorenstein dimension at mast For anyn > 1, we study the properties of the

finitely generatedR-modulesM with Ext,(M, R) = 0 for any 1<i < n. Then we
investigate the relation between these properties andefhingective dimension oRR.

1. Introduction

Throughout this paperR is a left and right Noetherian ring (unless stated other-
wise) and modR is the category of finitely generated leR-modules. For a mod-
ule M e modR, we use pd M, fdg M, idg M to denote the projective, flat, injective
dimension ofM, respectively.

For anyn > 1, we denote"rR = {M € modR | Ext,(rM, rR) = 0 for any 1<
i <n} (resp."Rgr = {N € modR% | Exth(NRr, Rg) = O for any 1<i < n}), and
J‘RR = ﬂnzl J‘“RR (resp.LRR = mnzl J‘”RR).

For any M € modR, there exists an exact sequence:

f
PL—>Phb—>M-—>0
in mod R with P, and P; projective. Then we get an exact sequence:
f*
0->M"-Py — P —>TrM—>0

in modR°P, where ¢)* = Hom(—,R) and TrM = Cokerf * is thetransposeof M ([1]).
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Auslander and Bridger generalized the notions of finitelyagated projective modules
and the projective dimension of finitely generated moduss®bows.

DerINITION 1.1 ([1]). LetM € modR.
(1) M is said to haveGorenstein dimension zeib M € *grR and TrM € *Rg.
(2) For a non-negative integar the Gorenstein dimensioof M, denoted by G-dimM,
is defined as ifih > 0 | there exists an exact sequence>0M, — - -- — M; — Mg —
M — 0 in modR with all M; having Gorenstein dimension zéroWe set G-ding M
infinity if no such integer exists.

Huang introduced in [7] the notion of the left orthogonal dimsion of modules as
follows, which is “simpler” than that of the Gorenstein dinsgon of modules.

DEFINITION 1.2 ([7]). For a moduleM € modR, the left orthogonal dimension
of a moduleM € modR, denoted by'grR-dimg M, is defined as irfih > 0| there exists
an exact sequence-8 X, — --- — X; — Xg — M — 0 in modR with all X; € 1grR}.
We set'gR-dimg M infinity if no such integer exists.

Let M € modR. It is trivial that “gR-dimg M < G-dimg M. On the other hand,
by [14], we have that-rR-dimg M # G-dimg M in general.

Recall thatR is called aGorenstein ringif id g R = idree R < 0o. The following re-
sult was proved by Auslander and Bridger in [1, Theorem 420¢n R is a commuta-
tive Noetherian local ring. Hoshino developed in [4] Auslanand Bridger's arguments
and applied obtained the obtained results to Artinian algebThen Huang generalized
in [7, Corollary 3] Hoshino’s result with the left orthogdndimension replacing the
Gorenstein dimension of modules.

Theorem 1.3 ([4, Theorem] and [7, Corollary 3]). The following statements are
equivalent for an Artinian algebra R.
(1) R is Gorenstein.
(2) Every module iftmod R has finite Gorenstein dimension.
(3) Every module inmodR and every module imod R have finite left orthogonal
dimension.

One aim of this paper is to generalize this result to left agttrNoetherian rings.
On the other hand, note that the left orthogonal dimensiomadules is defined by the
least length of the resolution composed of the modulesgR, which are the modules
satisfying one of the two conditions in the definition of muhaving Gorenstein di-
mension zero. So, a natural question is: If a new dimensiomadules is defined by
the least length of the resolution composed of the modulésfiag the other condi-
tion in the definition of modules having Gorenstein dimenszero, then can one give
an equivalent characterization of Gorenstein rings sintidathe above result in terms
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of the new dimension of modules? The other aim of this papep igive a positive
answer to this question. This paper is organized as follows.

In Section 2, we give the definition af-torsionfree modules, and investigate the
properties of such modules. We prove that a module in Ras n-torsionfree if and
only if it is an n-syzygy of a module in-"gR.

In Section 3, we introduce the notion of the torsionfree disien of modules.
Then we give some equivalent characterizations of Gorgnsiegs in terms of the
properties of the torsionfree dimension of modules. Théofahg is the main result
in this paper.

Theorem 1.4. For any n> 0, the following statements are equivalent.
(1) R is a Gorenstein ring withidg R = idger R < n.
(2) Every module i'fmod R has Gorenstein dimension at most n.
(3) Every module ifTmod R°P has Gorenstein dimension at most n.
(4) Every module ifmod R and every module imod R°P have torsionfree dimension
at most n.
(5) Every module irmodR and every module imodR°P have left orthogonal dimen-
sion at most n.

In Section 4, for anyn > 1, we first prove that every module ifvgR is torsion-
less (in this casei"grR is said to have theéorsionless properlyif and only if every
module in "R is oo-torsionfree, if and only if every module if"rR has torsion-
free dimension at most, if and only if everyn-torsionfree module in mo® is oo-
torsionfree, if and only if everyn-torsionfree module in mo&° is in *Rg, if and
only if "Rg = *Rg. Note that if ickw R < n, then ‘"gR has the torsionless prop-
erty. As some applications of the obtained results, we tig@® when the converse of
this assertion holds true. Assume thmatind k are positive integers anthrR has the
torsionless property. IR is gn(k) or gn(k)°? (see Section 4 for the definitions), then
idrer R<n+k—1. As a corollary, we have that if jdR < n, then ik R =idre R<n
if and only if 1"gR has the torsionless property.

In view of the results obtained in this paper, we pose in 8ach the following
two questions: (1) Is the subcategory of nieatonsisting of modules with torsionfree
dimension at mosh closed under extensions or under kernels of epimorphis@s# (
idrer R < N, does then every modul®l € modR has torsionfree dimension at mas?

2. Preliminaries

Let M € modR and n > 1. Recall from [1] thatM is called n-torsionfree if
TrM e 1'Rg; and M is called oo-torsionfreeif M is n-torsionfree for alln. We
use To(modR) (resp. T(modR)) to denote the subcategory of m&dconsisting of
all n-torsionfree modules (respo-torsionfree modules). It is well-known tha#l is
l-torsionfree (resp. 2-torsionfree) if and only M is torsionless (resp. reflexive)
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(see [1]). Also recall from [1] thaM is called ann-syzygy module (ofA), denoted by
Q"(A), if there exists an exact sequencesOM — P_; — .-+ —> P —> Pp—> A— 0
in modR with all P, projective. In particular, seR°(M) = M. We useQ"(modR)
to denote the subcategory of m&dconsisting of alln-syzygy modules. It is easy to
see that7,(modR) € Q"(modR), and in general, this inclusion is strict when> 2
(see [1]).

Jans proved in [13, Corollary 1.3] that a module in ni®ds 1-torsionfree if and
only if it is an 1-syzygy of a module int:gR. We generalize this result as follows.

Proposition 2.1. For any n> 1, a module inmodR is n-torsionfree if and only
if it is an n-syzygy of a module itrgR.

Proof. Assume thaM € modR is an n-syzygy of a moduleA in ‘"grR. Then
there exists an exact sequence:

f
O M->P1—>-->P >P—>A-=>0
in modR with all P projective. Let
Pii1—>Ph—>M—=0

be a projective presentation ® in modR. Then the above two exact sequences yield
the following exact sequence:

O—-A—>P — =P —>PF,,—>TrM -0

f
By the exactness oP,y 1 — Py — --- — Py — Py, we get that TM € *"Rg. Thus M
is n-torsionfree.
Conversely, assume th& € modR is n-torsionfree and

P]_E) P01>M—>O

is a projective presentation dfl € modR. Then we get an exact sequence:
0>M S pr L P TrM -0

in mod R°P. Let

Pnsa h h ho
S Q= - —> Qg —> M* >0

be a projective resolution oM* in modR°. Then we get a projective resolution

of Tr M:

hns1 h hy 7*ho g
i —>Qp—>-+—> Q— Py — P/ ->TrM — 0.
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BecauseM is n-torsionfree, TM € “"Rg and we get the following exact sequence:

g** himx** h hi_
0— (TrM)* — P* — Py* —— Qj — -~ —> Q;_; — Cokerh; ; — 0.

. A h *h
It is easy to see thaM =~ Cokerg**. By the exactness of,_1 L Qo LY

Py LR Py, we get that Coke’_, € ‘"grR. The proof is finished. ]
As an immediate consequence, we have the following

Corollary 2.2. For any n> 1, an n-torsionfree module imodR is a 1-syzygy
of an (n — 1)-torsionfree module A irmodR with Ae 11gR. In particular an oo-
torsionfree module iModR is a 1-syzygy of amnco-torsionfree module T itmodR
with T € L1RR.

We also need the following easy observation.

Lemma 2.3. For any n> 1, both 7,(modR) and 7(modR) are closed under
direct summands and finite direct sums.

3. Torsionfree dimension of modules

In this section, we will introduce the notion of the torsiced dimension of mod-
ules in modR. Then we will give some equivalent characterizations oféastein rings
in terms of the properties of this dimension of modules.

We begin with the following well-known observation.

f
Lemma 3.1 ([1, Lemma 3.9]). Let0 - A— B — C — 0 be an exact sequence

in modR. Then we have exact sequenfes- C* — B* — A* — Cokerf* — 0 and

0 — Cokerf* - TrC — TrB — Tr A — 0 in mod R°P.

The following result is useful in this section.

Proposition 3.2. Let

f
O-M—->T,—>Tgo—>A—=>0

be an exact sequence modR with both § and T; in 7(modR). Then there exists
an exact sequence

O M—->P—->T—->A->0

in modR with P projective and Te 7(modR).



26 C. HUANG AND Z.Y. HUANG

Proof. Let
f
O->M->T,>Tho—>A—->0
be an exact sequence in mBdwith both Ty and T; in 7(modR). By Corollary 2.2,

there exists an exact sequence-0T; - P — W — 0 in modR with P projective
and W € 11RR N T(modR). Then we have the following push-out diagram:

0 0
0 M Ty Imf ——0
|
0 M P B 0
W=—==W
0 0

0 0
0 Im f To A 0
|
0 B T A 0
W——W
0 0

BecauseW € 11gR, we get an exact sequence:
O—-TrW—-TrT —>TrTop—0

by Lemma 3.1 and the exactness of the middle column in theeatd@mgram. Because
both W and Ty are in 7(modR), both Trw and TrTy are intRg. So TrT is also in
1Rg and hencel € T(modR). Connecting the middle rows in the above two diagrams,
then we get the desired exact sequence. ]

Now we introduce the notion of the torsionfree dimension afdoles as follows.
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DEeFINITION 3.3. For a moduleM € modR, the torsionfree dimensionf M, de-
noted by7-dimg M, is defined as irfh > 0| there exists an exact sequence>0X,, —
-+ —> X1 = Xp —> M — 0 in modR with all X; € T(modR)}. We set7-dimg M
infinity if no such integer exists.

Let M € modR. It is trivial that 7-dimg M < G-dimg M. On the other hand, by
[14], we have thatT-dimg M # G-dimg M in general.

Proposition 3.4. Let M € modR and n> 0. If 7-dimgM < n, then there exists an
exact sequend@— H - T — M — 0in modR withpdgH <n—1and T € 7T(modR).

Proof. We proceed by induction om If n =0, thenH =0 andT = M give
the desired exact sequence.nlf= 1, then there exists an exact sequence:

0O—-Tq1—-To—>M-—=>0

in modR with both To and Ty in T € T(modR). Applying Proposition 3.2, withA = 0,
we get an exact sequence:
0->P—->Ti->M-=0

in modR with P projective andT; € 7(modR).
Now supposen > 2. Then there exists an exact sequence:

0O-Th—>Th1—>+—>Tg—>M-—=>0

in modR with all T; € T(modR). SetK = Im(Ty — Tp). By the induction hypothesis,
we get the following exact sequence:

0->P,—>P1—>P2—>->P->T >K-=>0

in modR with all B projective andT, € T(modR). SetN = Im(P, — T,). By Prop-
osition 3.2, we get an exact sequence:

O N—->P-T—>M-=>0
in modR with P; projective andl € 7(modR). Thus we get the desired exact sequence:
O—-Ph->P1—-Po—>-—>P>T—>M=>0
and the assertion follows. Ll

Christensen, Frankild and Holm proved in [2, Lemma 2.17} thamodule with
Gorenstein dimension at most can be embedded into a module with projective di-
mension at mosh, such that the cokernel is a module with Gorenstein dimenzevo.
The following result extends this result.
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Corollary 3.5. Let M e modR and n> 0. If 7-dimg M < n, then there exists
an exact sequence8 - M - N — T — 0 in modR with pdz N < n and T €
LR N T(ModR).

Proof. LetM € modR with 7-dimg M < n. By Proposition 3.4, there exists an
exact sequence & H - T" - M — 0 in modR with pdgH <n—-1andT’ ¢
T(modR). By Corollary 2.2, there exists an exact sequence 0’ - P - T — 0
in modR with P projective andT € ‘1gRN 7T(modR). Consider the following push-
out diagram:

0 0
0 H T M 0
|
0 H P N 0
T—=T
0 0
Then the third column in the above diagram is as desired. ]

The following result plays a crucial role in proving the ma@sult in this paper.

Theorem 3.6. For any n> 0, if every module irmodR has torsionfree dimension
at most n thenidrs R < n.

To prove this theorem, we need some lemmas. We use Rital denote the cat-
egory of left R-modules.

Lemma 3.7 ([11, Proposition 1]). igde R =supfdg E | E is an injective module
in Mod R} = fdg Q for any injective cogenerator Q fdviod R.

Lemma 3.8. For any n> 0, idre R < n if and only if every module imodR
can be embedded into a module Mod R with flat dimension at most n.

Proof. Assume that igh R < n. Then the injective envelope of any module in
modR has flat dimension at most by Lemma 3.7, and the necessity follows.

Conversely, lete be any injective module in MoR. Then by [15, Exercise 2.32],
E = "ﬂlia M;, where{M; | i € |} is the set of all finitely generated submodules of

E and | is a directed index set (in which the quasi-order is defined by | if and
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only if Mj < Mj, the homomorphisniij: M; — M; is the canonical embedding). By

assumption, for any € I and M; € modR, we have an exact sequence-0M,; 54N
with Nj € Mod R and fck N; < n.
PutK =[N andli={j €| | M; < M;} for anyi € |. SinceR is a left and right
iel
Noetherian ring, any direct product of flat modules is stiit.flSo fck K < n. Define
B = [1 fx with
kel
fi — akAL, if kel,
K70, if k¢l

for anyi,k € I. Then 0— M,; 2 K is exact for anyi € |. For anyi < j (determined
by Mi < M;j), we have the following commutative and exact diagram:

where g} = [T, he with

1y, if kel
hk_{o, it kel

foranyk € |. Itis clear thaf K ,(pi]-} is a direct system of the constant modHle It follows
from [15, Theorem 2.18] that we get a monomorphism-CE(= "Lnna M;) — Ii_rn)iel K.
Because the functor Tor commutes w@)ilierlnby [15, Theorem 8.11], fﬁ“ﬂm K <n.

So fdr E < n and hence igr R < n by Lemma 3.7. ]
Proof of Theorem 3.6. By assumption and Corollary 3.5, weshbat every mod-
ule in modR can be embedded into a module in n@ith projective dimension at most

n. Then by Lemma 3.8, we get the assertion. O

Lemma 3.9. For any M € modR and n= 0, 1rR-dimg M < n if and only if
Exty' (M, R) =0 for any i > 1.

Proof. For anyM € modR, consider the following exact sequence:

o> Wy Wi > > Wg—>M—=0
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in modR with all W, in 1gkR. Then we have that Eigg(lm(Wn — Wh1), R) =
ExtX(M,R) for anyi > 1. So ImW, — W,_1) € 'R if and only if Ext}" (M, R) =
0 for anyi > 1, and hence the assertion follows. O

Proposition 3.10. For any n> 0, every module irmnodR has left orthogonal di-
mension at most n if and only ifir R < n.

Proof. By Lemma 3.9, we have thatdR < n if and only if Ext’Qj‘(M, R)=0
for any M € modR andi > 1, if and only if tgRR-dimg M < n for any M € modR. [

Proof of Theorem 1.4. (1¥ (2)+ (3) follows from [10, Theorem 3.5].

(2) = (1) Let M be any module in mo&. Then by assumption, we have that
G-dimg M < n and 7-dimg M < n. So itke R < n by Theorem 3.6. On the other
hand, becausérR-dimg M < G-dimg M, idg R < n by Proposition 3.10.

Symmetrically, we get (3 (1).

(4)= (1) By Theorem 3.6 and its symmetric version.

(2)+ (3)= (4) BecauseT-dimg M < G-dimg M and 7-dimge N < G-dimges N
for any M € modR and N € mod R°?, the assertion follows.

(1) <« (5) By Proposition 3.10 and its symmetric version. ]

4. The torsionless property and self-injective dimension

The following result plays a crucial role in this section, iehh generalizes [4,
Lemma 4], [8, Lemma 2.1] and [13, Theorem 5.1].

Proposition 4.1. For any n> 1, the following statements are equivalent.
(1) *"grR C T1(MmodR). In this case *"gR is said to have the torsionless property.
(2) +"rR € T(ModR).
(3) Every module in*"rR has torsionfree dimension at most n.
(4) Tn(modR) = T(modR).
(5) 7n(modR%) C 1Rg.
(6) L”RR = LRR.

Proof. (2)= (1) and (2)= (3) are trivial, and (1)< (6) follows from [8,
Lemma 2.1]. Note thatM and TrTrM are projectively equivalent for anyl €
modR or modR°P. Then it is not difficult to verify (2)< (5) and (4)& (6). So it
suffices to prove (1} (2) and (3)= (2).

(1) = (2) Assume thatVl € *"grR. Then M is torsionless by (1). So, by Prop-
osition 2.1, we have an exact sequence>xOM — Py — M; — 0 in modR with Py
projective andM; € “1grR, which yields thatM; € +~1zR. Then M; is torsionless by
(1), and again by Proposition 2.1, we have an exact sequepred/ — P; —> My, — 0
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in modR with Py projective andM, € “1gR, which yields thatM; € *n+2zR. Repeating
this procedure, we get an exact sequence:

O M->P—->P—----—>P —--

in modR with all P, projective and ImP, — P ;) € tni+1zR C Li+1gR, which implies
that M is co-torsionfree by Proposition 2.1.

(3)= (2) Assume thaM € +'gR. Then7-dimgM < n by assumption. By Prop-
osition 3.4, there exists an exact sequence:

Q) O-H—->T—>M-=0

in modR with pds H <n—1 andT € 7T(modR). BecauseM € ‘xR, the sequence (1)
splits, which implies thaM € 7(modR) by Lemma 2.3. []

Similarly, we have the following result.

Proposition 4.2. The following statements are equivalent.
(1) +RR C Ti(modR). In this case1gR is said to have the torsionless property.
(2) trRR € T(ModR).
(3) Every module in‘gR has finite torsionfree dimension.
(4) T(modR°P) C +Rg.

Let N € modR°P and

50 81 52 5i 5”1
0>NI2IESES...5F 25 ...

be an injective resolution oN. For a positive integen, recall from [3] that an in-
jective resolution as above is calledtimately closedat n if Im §, = @'jnzo W;, where
eachW; is a direct summand of &, with i; <n. By [8, Corollary 2.3], if R has a
ultimately closed injective resolution &t or idgee R < n, then<"zR (and hence'grR)
has the torsionless property.

The following result generalizes [16, Lemma A], which sgathat itk R = idg R
if both of them are finite.

Corollary 4.3. If n = min{t | “grR has the torsionless propejtand m= min{s |
LsRg has the torsionless propeitythen n= m.

Proof. We may assume that< m. Let N € *"Rg. Then N € *Rg (S *"RR)
by Proposition 4.1. SN € 7(modR°?) and ‘"Rr has the torsionless property by the
symmetric version of Proposition 4.1. Thas> m by the minimality ofm. The proof
is finished. O
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In the following, we will investigate the relation betweemettorsionless property
and the self-injective dimension dR. We have seen that if g R < n, then 1"gR
has the torsionless property. In the rest of this section,wileinvestigate when the
converse of this assertion holds true.

Proposition 4.4. Assume that m and n be positive integers &fit{mod R°P) C
To(modR%P). If LnxR has the torsionless propertthenidge R < m.

Proof. LetM € Q"(modR°P). Then M e 7,(modR°P) by assumption. Because
1=:R has the torsionless property by assumptibhe *Rg by Proposition 4.1. Then
it is easy to verify that ige R < m. O

Assume that
0->rR=> IR > IR >+ > I'(R) > -+
is a minimal injective resolution ogR.

Lemma 4.5. If txR has the torsionless propertd!_, 1'(R) is an injective co-
generator forMod R.

Proof. For anySe modR, we claim that Hora(S, B, I'(R)) # 0. Otherwise,
we have that EX(S, R) & Homg(S, I'(R)) = 0 for any 0<i <n. So Se “wR and
henceS is reflexive by assumption and Proposition 4.1, which yiglgg S~ S** = 0.
This is a contradiction. Thus we conclude tl@{‘=O I'(R) is an injective cogenerator
for Mod R. [l

Proposition 4.6. idrw» R < oo if and only if LreR has the torsionless property for
some n> 1 and fdr ;. I'(R) < oo.

Proof. The sufficiency follows from Lemmas 4.5 and 3.7, anel tiecessity fol-
lows from Proposition 4.1 and Lemma 3.7. O

For anyn,k> 1, recall from [9] thatR is said to begn (k) if Ext e, (Exts ¥(M, R), R) =
0 foranyM € modR and 1<i <nand 0<j <i — 1; andR is said to beg,(k)°P
if RO is gn(k). It follows from [12, 6.1] thatR is gn(k) (resp.gn(k)°P) if fd ges 1'(RP)
(resp. fk I'(R)) <i + k for any 0<i <n—1.

Theorem 4.7. Assume that n and k are positive integers angdR has the tor-
sionless property. If R isygk) or g,(k)°?, thenidre R <n -+ k —1.

Proof. Assume that"grR has the torsionless property.
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If Ris gn(k), then 2"*1(modR) € T,(modR) = 7 (modR) by [9, Theorem 3.4]
and Proposition 4.1, which implies that the torsionfree @tision of every module in
modR is at mostn + k— 1. So icke R <n+k —1 by Theorem 3.6.

If Ris gn(K)°P, then Q"**~1(modRP) C 7,(modR°P) by the symmetric version of
[9, Theorem 3.4], which implies igh R < n+ k — 1 by Proposition 4.4. O

By Proposition 4.1 and Proposition 4.6 or Theorem 4.7, we édiately get the
following

Corollary 4.8. If fdr @_, I'(R) < n, thenidr» R < n if and only if *"rR has
the torsionless property.

Recall that the Gorenstein symmetric conjecture statdsidheR = idrr R for any
Artinian algebraR, which remains still open. Hoshino proved in [5, Propositi®.2]
that if idg R < 2, then ik R = idre R < 2 if and only if 12grR has the torsionless prop-
erty. As an immediate consequence of Theorem 4.7, the fuolpworollary generalizes
this result.

Corollary 4.9. For any n> 1, if idg R <n, thenidg R =idre» R < n if and only
if t"zR has the torsionless property.

Proof. The necessity follows from Proposition 4.1. We nextvp the sufficiency.
If idr R <n, then foke P, 1'(R°P) < n by Lemma 3.7, which implies thaR is gn(n)
by [12, 6.1]. Thus ige <2n—1 by Theorem 4.7. It follows from [16, Lemma A] that
idrer R < n. O

5. Questions

In view of the results obtained above, the following two disess are worth being
studied.

Note that both the subcategory of mBdconsisting of modules with Gorenstein
dimension at mosh and that consisting of modules with left orthogonal dimensat
mostn are closed under extensions and under kernels of epimanphiSo, it is natural
to ask the following

QUESTION 5.1. Is the subcategory of mdriconsisting of modules with torsion-
free dimension at most closed under extensions or under kernels of epimorphisms? |
particular, Is7(modR) closed under extensions or under kernels of epimorphisms?

For anyn > 1, 7,(modR) is not closed under extensions by [6, Theorem 3.3]. On
the other hand, we have the following
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Claim. If 1Rg has the torsionless propertyhen the answer t@Question 5.1is
positive.

In fact, if tRr has the torsionless property, then, by the symmetric versib
Proposition 4.2, we have thgf(modR) € “gR and every module iff (modR) has
Gorenstein dimension zero. So the torsionfree dimensiahtla@ Gorenstein dimension
of any module in modR coincide, and the claim follows.

By the symmetric version of [8, Corollary 2.3], R has a ultimately closed in-
jective resolution an or idg R < n, then the condition in the above claim is satisfied.
This fact also means that the above claim extends [6, Coyolleb].

It is also interesting to know whether the converse of Theo86 holds true. That
is, we have the following

QUESTION 5.2. Does ige R < n imply that every moduleM € modR has tor-
sionfree dimension at most?

Claim. When n= 1, the answer toQuestion 5.2is positive.

Assume that i R < 1 and Q—> K ->P—- M — 0is an exact sequence in
modR with P projective. Then Ex.(Tr K, R) = 0 for anyi > 2. Notice thatK is
torsionless, so Ext,(Tr K, R) = 0 andK € T(modR), which implies7-dimg M < 1.

Consequently the claim is proved.
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