ASYMPTOTICS OF POLYBALANCED METRICS UNDER RELATIVE STABILITY CONSTRAINTS

Toshiki MABUCHI*

(Received May 14, 2010, revised October 15, 2010)

Abstract

Under the assumption of asymptotic relative Chow-stability for polarized algebraic manifolds (M, L), a series of weighted balanced metrics $\omega_{m}, m \gg 1$, called polybalanced metrics, are obtained from complete linear systems $\left|L^{m}\right|$ on M. Then the asymptotic behavior of the weights as $m \rightarrow \infty$ will be studied.

1. Introduction

In this paper, we shall study relative Chow-stability (cf. [5]; see also [11]) for polarized algebraic manifolds (M, L) from the viewpoints of the existence problem of extremal Kähler metrics. As balanced metrics are obtained from Chow-stability on polarized algebraic manifolds, our relative Chow-stability similarly provides us with a special type of weighted balanced metrics called polybalanced metrics. As a crucial step in the program of [7], we here study the asymptotic behavior of the weights for such polybalanced metrics.

By a polarized algebraic manifold (M, L), we mean a pair of a connected projective algebraic manifold M and a very ample holomorphic line bundle L over M. For a maximal connected linear algebraic subgroup G of the $\operatorname{group} \operatorname{Aut}(M)$ of all holomorphic automorphisms of M, let $\mathfrak{g}:=$ Lie G denote its Lie algebra. Since the infinitesimal \mathfrak{g}-action on M lifts to an infinitesimal bundle \mathfrak{g}-action on L, by setting

$$
V_{m}:=H^{0}\left(M, L^{m}\right), \quad m=1,2, \ldots,
$$

we view \mathfrak{g} as a Lie subalgebra of $\mathfrak{s l}\left(V_{m}\right)$. We now define a symmetric bilinear form \langle,\rangle_{m} on $\mathfrak{s l}\left(V_{m}\right)$ by

$$
\langle X, Y\rangle_{m}=\operatorname{Tr}(X Y) / m^{n+2}, \quad X, Y \in \mathfrak{s l}\left(V_{m}\right),
$$

where the asymptotic limit of \langle,\rangle_{m} as $m \rightarrow \infty$ often plays an important role in the

[^0]study of K-stability. In fact one can show
$$
\langle X, Y\rangle_{m}=O(1)
$$
by using the equivariant Riemann-Roch formula, see [1] and [11]. Let T be an algebraic torus in $\mathrm{SL}\left(V_{m}\right)$ such that the corresponding Lie algebra $\mathfrak{t}:=\mathrm{Lie} T$ satisfies
$$
\mathfrak{t} \subset \mathfrak{g}
$$

Then by the T-action on V_{m}, we can write the vector space V_{m} as a direct sum of t-eigenspaces:

$$
V_{m}=\bigoplus_{k=1}^{v_{m}} V\left(\chi_{k}\right)
$$

where $V\left(\chi_{k}\right):=\left\{v \in V_{m} ; g \cdot v=\chi_{k}(g) v\right.$ for all $\left.g \in T\right\}$ for mutually distinct multiplicative characters $\chi_{k} \in \operatorname{Hom}\left(T, \mathbb{C}^{*}\right), k=1,2, \ldots, v_{m}$.

To study V_{m}, let ω_{m} be a Kähler metric in the class $c_{1}(L)_{\mathbb{R}}$, and choose a Hermitian metric h_{m} for L such that $\omega_{m}=c_{1}\left(L ; h_{m}\right)_{\mathbb{R}}$. We now endow V_{m} with the Hermitian L^{2} inner product on V_{m} defined by

$$
\begin{equation*}
(u, v)_{L^{2}}:=\int_{M}(u, v)_{h_{m}} \omega_{m}^{n}, \quad u, v \in V_{m} \tag{1.1}
\end{equation*}
$$

where $(u, v)_{h_{m}}$ denotes the pointwise Hermitian pairing of u, v in terms of h_{m}. Then by this L^{2} inner product, we have $V\left(\chi_{k}\right) \perp V\left(\chi_{k^{\prime}}\right), k \neq k^{\prime}$. Put $N_{m}:=\operatorname{dim} V_{m}$ and $n_{k}:=\operatorname{dim}_{\mathbb{C}} V\left(\chi_{k}\right)$. For each k, by choosing an orthonormal basis $\left\{\sigma_{k, i} ; i=1,2, \ldots, n_{k}\right\}$ for $V\left(\chi_{k}\right)$, we put

$$
B_{m, k}\left(\omega_{m}\right):=\sum_{i=1}^{n_{k}}\left|\sigma_{k, i}\right|_{h_{m}}^{2}
$$

where $|u|_{h_{m}}^{2}:=(u, u)_{h_{m}}$ for each $u \in V_{m}$. Then ω_{m} is called a polybalanced metric, if there exist real constants $\gamma_{m, k}>0$ such that

$$
\begin{equation*}
B_{m}^{\circ}\left(\omega_{m}\right)=\sum_{k=1}^{\nu_{m}} \gamma_{m, k} B_{m, k}\left(\omega_{m}\right) \tag{1.2}
\end{equation*}
$$

is a constant function on M. Here $\gamma_{m, k}$ are called the weights of the polybalanced metric ω_{m}. On the other hand,

$$
B_{m}^{\bullet}\left(\omega_{m}\right):=\sum_{k=1}^{v_{m}} B_{m, k}\left(\omega_{m}\right)
$$

is called the m-th asymptotic Bergman kernel of ω_{m}. A smooth real-valued function $f \in C^{\infty}(M)_{\mathbb{R}}$ on the Kähler manifold $\left(M, \omega_{m}\right)$ is said to be Hamiltonian if there exists a holomorphic vector field $X \in \mathfrak{g}$ on M such that $i_{X} \omega_{m}=\sqrt{-1} \bar{\partial} f$. Put $N_{m}^{\prime}:=$ $N_{m} / c_{1}(L)^{n}[M]$. In this paper, as the first step in [7], we shall show the following:

Theorem A. For a polarized algebraic manifold (M, L) and an algebraic torus T as above, assume that (M, L) is asymptotically Chow-stable relative to T. Then for each $m \gg 1$, there exists a polybalanced metric ω_{m} in the class $c_{1}(L)_{\mathbb{R}}$ such that $\gamma_{m, k}=1+O(1 / m)$, i.e.,

$$
\begin{equation*}
\left|\gamma_{m, k}-1\right| \leq \frac{C_{1}}{m}, \quad k=1,2, \ldots, v_{m} ; m \gg 1, \tag{1.3}
\end{equation*}
$$

for some positive constant C_{1} independent of k and m. Moreover, there exist uniformly C^{0}-bounded functions $f_{m} \in C^{\infty}(M)_{\mathbb{R}}$ on M such that

$$
\begin{equation*}
B_{m}^{\bullet}\left(\omega_{m}\right)=N_{m}^{\prime}+f_{m} m^{n-1}+O\left(m^{n-2}\right) \tag{1.4}
\end{equation*}
$$

and that each f_{m} is a Hamiltonian function on $\left(M, \omega_{m}\right)$ satisfying $i_{X_{m}} \omega_{m}=\sqrt{-1} \bar{\partial} f_{m}$ for some holomorphic vector field $X_{m} \in \mathfrak{t}$ on M.

In view of [8], this theorem and the result of Catlin-Lu-Tian-Yau-Zelditch ([3], [12], [13]) allow us to obtain an approach (cf. [7]) to an extremal Kähler version of Donaldson-Tian-Yau's conjecture. On the other hand, as a corollary to Theorem A, we obtain the following:

Corollary B. Under the same assumption as in Theorem A, suppose further that the classical Futaki character $\mathcal{F}_{1}: \mathfrak{g} \rightarrow \mathbb{C}$ for M vanishes on \mathfrak{t}. Then for each $m \gg 1$, there exists a polybalanced metric ω_{m} in the class $c_{1}(L)_{\mathbb{R}}$ such that $\gamma_{m, k}=1+O\left(1 / m^{2}\right)$. In particular

$$
B_{m}^{\bullet}\left(\omega_{m}\right)=N_{m}^{\prime}+O\left(m^{n-2}\right)
$$

2. Asymptotic relative Chow-stability

By the same notation as in the introduction, we consider the algebraic subgroup S_{m} of $\operatorname{SL}\left(V_{m}\right)$ defined by

$$
S_{m}:=\prod_{k=1}^{v_{m}} \operatorname{SL}\left(V\left(\chi_{k}\right)\right)
$$

where the action of each $\operatorname{SL}\left(V\left(\chi_{k}\right)\right)$ on V_{m} fixes $V\left(\chi_{i}\right)$ if $i \neq k$. Then the centralizer H_{m} of S_{m} in $\operatorname{SL}\left(V_{m}\right)$ consists of all diagonal matrices in $\operatorname{SL}\left(V_{m}\right)$ acting on each
$V\left(\chi_{k}\right)$ by constant scalar multiplication. Hence the centralizer $Z_{m}(T)$ of T in $\operatorname{SL}\left(V_{m}\right)$ is $H_{m} \cdot S_{m}$ with Lie algebra

$$
\mathfrak{z}_{m}(\mathfrak{t})=\mathfrak{h}_{m}+\mathfrak{s}_{m},
$$

where $\mathfrak{s}_{m}:=\operatorname{Lie} S_{m}$ and $\mathfrak{h}_{m}:=$ Lie H_{m}. For the exponential map defined by $\mathfrak{h}_{m} \ni X \mapsto$ $\exp (2 \pi \sqrt{-1} X) \in H_{m}$, let $\left(\mathfrak{h}_{m}\right)_{\mathbb{Z}}$ denote its kernel. Regarding $\left(\mathfrak{h}_{m}\right)_{\mathbb{R}}:=\left(\mathfrak{h}_{m}\right)_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$ as a subspace of \mathfrak{h}_{m}, we have a real structure on \mathfrak{h}_{m}, i.e., an involution

$$
\mathfrak{h}_{m} \ni X \mapsto \bar{X} \in \mathfrak{h}_{m}
$$

defined as the associated complex conjugate of \mathfrak{h}_{m} fixing $\left(\mathfrak{h}_{m}\right)_{\mathbb{R}}$. We then have a Hermitian metric $(,)_{m}$ on \mathfrak{h}_{m} by setting

$$
\begin{equation*}
(X, Y)_{m}=\langle X, \bar{Y}\rangle_{m}, \quad X, Y \in \mathfrak{h}_{m} . \tag{2.1}
\end{equation*}
$$

For the orthogonal complement \mathfrak{t}^{\perp} of \mathfrak{t} in \mathfrak{h}_{m} in terms of this Hermitian metric, let T^{\perp} denote the corresponding algebraic torus in H_{m}. We now define an algebraic subgroup G_{m} of $Z_{m}(T)$ by

$$
\begin{equation*}
G_{m}:=T^{\perp} \cdot S_{m} \tag{2.2}
\end{equation*}
$$

For the T-equivariant Kodaira embedding $\Phi_{m}: M \hookrightarrow \mathbb{P}^{*}\left(V_{m}\right)$ associated to the complete linear system $\left|L^{m}\right|$ on M, let $d(m)$ denote the degree of the image $\Phi_{m}(M)$ in the projective space $\mathbb{P}^{*}\left(V_{m}\right)$. For the dual space W_{m}^{*} of $W_{m}:=S^{d(m)}\left(V_{m}\right)^{\otimes n+1}$, we have the Chow form

$$
0 \neq \hat{M}_{m} \in W_{m}^{*}
$$

for the irreducible reduced algebraic cycle $\Phi_{m}(M)$ on $\mathbb{P}^{*}\left(V_{m}\right)$, so that the corresponding element $\left[\hat{M}_{m}\right]$ in $\mathbb{P}^{*}\left(W_{m}\right)$ is the Chow point for the cycle $\Phi_{m}(M)$. Consider the natural action of $\operatorname{SL}\left(V_{m}\right)$ on W_{m}^{*} induced by the action of $\operatorname{SL}\left(V_{m}\right)$ on V_{m}.

Definition 2.3. (1) $\left(M, L^{m}\right)$ is said to be Chow-stable relative to T if the orbit $G_{m} \cdot \hat{M}_{m}$ is closed in W_{m}^{*}.
(2) (M, L) is said to be asymptotically Chow-stable relative to T if $\left(M, L^{m}\right)$ is Chowstable relative to T for each integer $m \gg 1$.

3. Relative Chow-stability for each fixed \boldsymbol{m}

In this section, we consider a polarized algebraic manifold (M, L) under the assumption that $\left(M, L^{m}\right)$ is Chow-stable relative to T for a fixed positive integer m. Then we shall show that a polybalanced metric ω_{m} exists in the class $c_{1}(L)_{\mathbb{R}}$.

The space $\Lambda_{m}:=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu_{m}}\right) \in \mathbb{C}^{\nu_{m}} ; \sum_{k=1}^{\nu_{m}} n_{k} \lambda_{k}=0\right\}$ and the Lie algebra \mathfrak{h}_{m} are identified by an isomorphism

$$
\begin{equation*}
\Lambda_{m} \cong \mathfrak{h}_{m}, \quad \lambda \leftrightarrow X_{\lambda}, \tag{3.1}
\end{equation*}
$$

with $\left(\mathfrak{h}_{m}\right)_{\mathbb{R}}$ corresponding to the set $\left(\Lambda_{m}\right)_{\mathbb{R}}$ of the real points in Λ_{m}, where X_{λ} is the endomorphism of V_{m} defined by

$$
X_{\lambda}:=\bigoplus_{k=1}^{v_{m}} \lambda_{k} \operatorname{id}_{V\left(\chi_{k}\right)} \in \bigoplus_{k=1}^{v_{m}} \operatorname{End}\left(V\left(\chi_{k}\right)\right) \quad\left(\subset \operatorname{End}\left(V_{m}\right)\right)
$$

In terms of the identification (3.1), we can write the $\operatorname{Hermitian}$ metric $(,)_{m}$ on \mathfrak{h}_{m} in (2.1) in the form

$$
(\lambda, \mu)_{m}:=\sum_{k=1}^{v_{m}} \frac{n_{k} \lambda_{k} \bar{\mu}_{k}}{m^{n+2}}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu_{m}}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\nu_{m}}\right)$ are in $\mathbb{C}^{v_{m}}$. By the identification (3.1), corresponding to the decomposition $\mathfrak{h}_{m}=\mathfrak{t} \oplus \mathfrak{t}^{\perp}$, we have the orthogonal direct sum

$$
\Lambda_{m}=\Lambda(\mathfrak{t}) \oplus \Lambda\left(\mathfrak{t}^{\perp}\right),
$$

where $\Lambda(\mathfrak{t})$ and $\Lambda\left(\mathfrak{t}^{\perp}\right)$ are the subspace of Λ_{m} associated to \mathfrak{t} and \mathfrak{t}^{\perp}, respectively. Take a Hermitian metric ρ_{k} on $V\left(\chi_{k}\right)$, and for the metric

$$
\rho:=\bigoplus_{k=1}^{v_{m}} \rho_{k}
$$

on V_{m}, we see that $V\left(\chi_{k}\right) \perp V\left(\chi_{k^{\prime}}\right)$ whenever $k \neq k^{\prime}$. By choosing an orthonormal basis $\left\{s_{k, i} ; i=1,2, \ldots, n_{k}\right\}$ for the Hermitian vector space $\left(V\left(\chi_{k}\right), \rho_{k}\right)$, we now set

$$
\begin{equation*}
j(k, i):=i+\sum_{l=1}^{k-1} n_{l}, \quad i=1,2, \ldots, n_{k} ; k=1,2, \ldots, v_{m} \tag{3.2}
\end{equation*}
$$

where the right-hand side denotes i in the special case $k=1$. By writing $s_{k, i}$ as $s_{j(k, i)}$, we have an orthonormal basis

$$
\mathcal{S}:=\left\{s_{1}, s_{2}, \ldots, s_{N_{m}}\right\}
$$

for $\left(V_{m}, \rho\right)$. By this basis, the vector space V_{m} and the algebraic group $\operatorname{SL}\left(V_{m}\right)$ are identified with $\mathbb{C}^{N_{m}}=\left\{\left(z_{1}, \ldots, z_{N_{m}}\right)\right\}$ and $\operatorname{SL}\left(N_{m}, \mathbb{C}\right)$, respectively. In terms of \mathcal{S}, the Kodaira embedding Φ_{m} is given by

$$
\Phi_{m}(x):=\left(s_{1}(x): \cdots: s_{N_{m}}(x)\right), \quad x \in M .
$$

Consider the associated Chow norm $W_{m}^{*} \ni \xi \mapsto\|\xi\|_{\mathrm{CH}(\rho)} \in \mathbb{R}_{\geq 0}$ as in Zhang [14] (see also [4]). Then by the closedness of $G_{m} \cdot \hat{M}_{m}$ in W_{m}^{*} (cf. (2.2) and Definition 2.3), the Chow norm on the orbit $G_{m} \cdot \hat{M}_{m}$ takes its minimum at $g_{m} \cdot \hat{M}_{m}$ for some $g_{m} \in G_{m}$. Note that, by complexifying

$$
K_{m}:=\prod_{k=1}^{v_{m}} \operatorname{SU}\left(V\left(\chi_{k}\right)\right)
$$

we obtain the reductive algebraic group S_{m}. For each $\kappa \in K_{m}$ and each diagonal matrix Δ in $\mathfrak{s l}\left(N_{m}, \mathbb{C}\right)$, we put

$$
e(\kappa, \Delta):=\exp \{\operatorname{Ad}(\kappa) \Delta\}
$$

Then g_{m} is written as $\kappa_{1} \cdot e\left(\kappa_{0}, D\right)$ for some $\kappa_{0}, \kappa_{1} \in K_{m}$ and a diagonal matrix $D=$ $\left(d_{j}\right)_{1 \leq j \leq N_{m}}$ in $\mathfrak{s l}\left(N_{m}, \mathbb{C}\right)$ with the j-th diagonal element d_{j}. Put $g_{m}^{\prime}:=e\left(\kappa_{0}, D\right)$. In view of $\left\|g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}=\left\|g_{m} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}$ (cf. [10], Proposition 4.1), we obtain

$$
\begin{equation*}
\left\|g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)} \leq\left\|e\left(\kappa_{0}, t\left(X_{\lambda}+A\right)\right) \cdot g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}, \quad t \in \mathbb{C} \tag{3.3}
\end{equation*}
$$

for all $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu_{m}}\right) \in \Lambda\left(\mathfrak{t}^{\perp}\right)$ and all diagonal matrices $A=\left(a_{j}\right)_{1 \leq j \leq N_{m}}$ in \mathfrak{s}_{m}, where each a_{j} denotes the j-th diagonal element of A. We now write $a_{j(k, i)}$ as $a_{k, i}$ for simplicity. Put

$$
s_{j}^{\prime}:=\kappa_{0}^{-1} \cdot s_{j}, \quad b_{k, i}:=\lambda_{k}+a_{k, i}, \quad c_{k, i}:=\exp d_{j(k, i)} .
$$

Then we shall now identify V_{m} with $\mathbb{C}^{N_{m}}=\left\{\left(z_{1}^{\prime}, \ldots, z_{N_{m}}^{\prime}\right)\right\}$ by the orthonormal basis $\mathcal{S}^{\prime}:=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{N_{m}}^{\prime}\right\}$ for V_{m}. In view (3.2), we rewrite $s_{j}^{\prime}, z_{j}^{\prime}$ as $s_{k, i}^{\prime}, z_{k, i}^{\prime}$, respectively by

$$
s_{k, i}^{\prime}:=s_{j(k, i)}^{\prime}, \quad z_{k, i}^{\prime}:=z_{j(k, i)}^{\prime},
$$

where $k=1,2, \ldots, v_{m}$ and $i=1,2, \ldots, n_{k}$. By writing $b_{k, i}, c_{k, i}$ also as $b_{j(k, i)}, c_{j(k, i)}$, respectively, we consider the diagonal matrices B and C of order N_{m} with the j-th diagonal elements b_{j} and c_{j}, respectively. Note that the right-hand side of (3.3) is

$$
\left\|(\exp t B) \cdot C \cdot \kappa_{0}^{-1} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)},
$$

and its derivative at $t=0$ vanishes by virtue of the inequality (3.3). Hence, by setting $\Theta:=(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log \left(\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} z_{k, i}^{\prime}\right|^{2}\right)$, we obtain the equality (see for instance (4.4) in [4])

$$
\begin{equation*}
\int_{M} \frac{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} b_{k, i}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{\prime *}\left(\Theta^{n}\right)=0 \tag{3.4}
\end{equation*}
$$

for all $\lambda \in \Lambda\left(\mathfrak{t}^{\perp}\right)$ and all diagonal matrices A in the Lie algebra \mathfrak{s}_{m}, where $\Phi_{m}^{\prime}: M \hookrightarrow$ $\mathbb{P}^{*}\left(V_{m}\right)$ is the Kodaira embedding of M by \mathcal{S}^{\prime} which sends each $x \in M$ to $\left(s_{1}^{\prime}(x): s_{2}^{\prime}(x): \cdots: s_{N_{m}}^{\prime}(x)\right) \in \mathbb{P}^{*}\left(V_{m}\right)$. Here we regard

$$
s_{k, i}^{\prime}=\Phi^{\prime *} z_{k, i}^{\prime}
$$

Let $k_{0} \in\left\{1,2, \ldots, v_{m}\right\}$ and let $i_{1}, i_{2} \in\left\{1,2, \ldots, n_{k_{0}}\right\}$ with $i_{1} \neq i_{2}$. Using Kronecker's delta, we first specify the real diagonal matrix B by

$$
\lambda_{k}=0 \quad \text { and } \quad a_{k, i}=\delta_{k k_{0}}\left(\delta_{i i_{1}}-\delta_{i i_{2}}\right),
$$

where $k=1,2, \ldots, v_{m} ; i=1,2, \ldots, n_{k}$. By (3.4) applied to this B, and let $\left(i_{1}, i_{2}\right)$ run through the set of all pairs of two distinct integers in $\left\{1,2, \ldots, n_{k_{0}}\right\}$, where positive integer k_{0} varies from 1 to ν_{m}. Then there exists a positive constant $\beta_{k}>0$ independent of the choice of i in $\left\{1,2, \ldots, n_{k}\right\}$ such that, for all i,

$$
\begin{equation*}
\int_{M} \frac{\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{* *}\left(\Theta^{n}\right)=\beta_{k}, \quad k=1,2, \ldots, v_{m} \tag{3.5}
\end{equation*}
$$

Let k_{0}, i_{1}, i_{2} be as above, and let κ_{2} be the element in K_{m} such that

$$
\kappa_{2} z_{k_{0}, i_{1}}^{\prime}=\frac{1}{\sqrt{2}}\left(z_{k_{0}, i_{1}}^{\prime}-z_{k_{0}, i_{2}}^{\prime}\right), \quad \kappa_{2} z_{k_{0}, i_{2}}^{\prime}=\frac{1}{\sqrt{2}}\left(z_{k_{0}, i_{1}}^{\prime}+z_{k_{0}, i_{2}}^{\prime}\right)
$$

and that κ_{2} fixes all other $z_{k, i}$'s. Let κ_{3} be the element in K_{m} such that

$$
\kappa_{3} z_{k_{0}, i_{1}}^{\prime}=\frac{1}{\sqrt{2}}\left(z_{k_{0}, i_{1}}^{\prime}+\sqrt{-1} z_{k_{0}, i_{2}}^{\prime}\right), \quad \kappa_{3} z_{k_{0}, i_{2}}^{\prime}=\frac{1}{\sqrt{2}}\left(\sqrt{-1} z_{k_{0}, i_{1}}^{\prime}+z_{k_{0}, i_{2}}^{\prime}\right)
$$

and that κ_{3} fixes all other $z_{k, i}^{\prime}$'s. Now

$$
\left\|\kappa_{2} g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}=\left\|\kappa_{3} g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}=\left\|g_{m}^{\prime} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)},
$$

and note that

$$
2 z_{k_{0}, i_{1}}^{\prime} \bar{z}_{k_{0}, i_{2}}^{\prime}=\left(\left|\kappa_{2} z_{k_{0}, i_{2}}^{\prime}\right|^{2}-\left|\kappa_{2} z_{k_{0}, i_{1}}^{\prime}\right|^{2}\right)-\sqrt{-1}\left(\left|\kappa_{3} z_{k_{0}, i_{2}}^{\prime}\right|^{2}-\left|\kappa_{3} z_{k_{0}, i_{1}}^{\prime}\right|^{2}\right)
$$

Hence replacing g_{m}^{\prime} by $\kappa_{\alpha} g_{m}^{\prime}, \alpha=2,3$, in (3.3), we obtain the case $k^{\prime}=k^{\prime \prime}$ of the following by an argument as in deriving (3.5) from (3.3):

$$
\begin{equation*}
\int_{M} \frac{s_{k^{\prime}, i}^{\prime} \bar{s}_{k^{\prime \prime}, i^{\prime \prime}}^{\prime}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{\prime *}\left(\Theta^{n}\right)=0, \quad \text { if } \quad\left(k^{\prime}, i^{\prime}\right) \neq\left(k^{\prime \prime}, i^{\prime \prime}\right) \tag{3.6}
\end{equation*}
$$

Here (3.6) holds easily for $k^{\prime} \neq k^{\prime \prime}$, since for every element g of the maximal compact subgroup of T, we have:

$$
\begin{aligned}
\text { L.H.S. of (3.6) } & =\int_{M} g^{*}\left\{\frac{s_{k^{\prime}, i^{\prime}}^{\prime} \bar{s}_{k^{\prime \prime}, i^{\prime \prime}}^{\prime}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{\prime *}\left(\Theta^{n}\right)\right\} \\
& =\frac{\chi_{k^{\prime \prime}}(g)}{\chi_{k^{\prime}}(g)} \int_{M} \frac{s_{k^{\prime}, i^{\prime}}^{\prime} \bar{s}_{k^{\prime \prime}, i^{\prime \prime}}^{\prime}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{\prime *}\left(\Theta^{n}\right)
\end{aligned}
$$

Put $\beta:=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{v_{m}}\right) \in \mathbb{R}^{v_{m}}$ and $\beta_{0}:=\left(\sum_{k=1}^{v_{m}} n_{k} \beta_{k}\right) / N_{m}$, where β_{k} is given in (3.5). In view of $N_{m}=\sum_{k=1}^{v_{m}} n_{k}$, by setting $\underline{\beta}_{k}:=\beta_{k}-\beta_{0}$, we have

$$
\underline{\beta}:=\left(\underline{\beta}_{1}, \underline{\beta}_{2}, \ldots, \underline{\beta}_{v_{m}}\right) \in \Lambda_{m}
$$

Next for each $\lambda \in \Lambda\left(\mathfrak{t}^{\perp}\right)$, by setting $a_{k, i}=0$ for all (k, i), the equality (3.4) above implies $0=\sum_{k=1}^{v_{m}}\left(n_{k} \lambda_{k}\right) \beta_{k}$. From this together with the equality $\sum_{k=1}^{v_{m}} n_{k} \lambda_{k}=0$, we obtain $(\lambda, \underline{\beta})_{m}=0$, i.e.,

$$
\begin{equation*}
\underline{\beta} \in \Lambda(\mathfrak{t}) \tag{3.7}
\end{equation*}
$$

We now define a Hermitian metric h_{FS} (cf. [14]) for L^{m} as follows. Let u be a local section for L^{m}. Then ${ }^{1}$

$$
\begin{equation*}
|u|_{h_{\mathrm{FS}}}^{2}:=\frac{|u|^{2}}{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}} \tag{3.8}
\end{equation*}
$$

For the Hermitian metric $h_{m}:=\left(h_{\mathrm{FS}}\right)^{1 / m}$ for L, we consider the associated Kähler metric $\omega_{m}:=c_{1}\left(L ; h_{m}\right)_{\mathbb{R}}$ on M. In view of (3.5),

$$
\begin{align*}
\beta_{0} & =\frac{\sum_{k=1}^{v_{m}} n_{k} \beta_{k}}{N_{m}}=N_{m}^{-1} \int_{M} \Phi_{m}^{*}\left(\Theta^{n}\right) \tag{3.9}\\
& =N_{m}^{-1} m^{n} c_{1}(L)^{n}[M]=n!\left\{1+O\left(\frac{1}{m}\right)\right\} .
\end{align*}
$$

Then for $\gamma_{m, k}:=\beta_{k} / \beta_{0}$ and $\sigma_{k, i}:=c_{k, i} s_{k, i}^{\prime}\left(m^{n} \beta_{k}^{-1}\right)^{1 / 2}$, we have

$$
\begin{align*}
\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2} & =\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{\mathrm{FS}}}^{2} \tag{3.10}\\
& =\frac{m^{n}}{\beta_{0}} \sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|_{h_{\mathrm{FS}}}^{2}=\frac{m^{n}}{\beta_{0}}
\end{align*}
$$

[^1]By operating $(\sqrt{-1} / 2 \pi) \bar{\partial} \partial \log$ on (3.8), we obtain

$$
\begin{equation*}
\Phi_{m}^{\prime *}(\Theta)=c_{1}\left(L^{m} ; h_{\mathrm{FS}}\right)_{\mathbb{R}}=m c_{1}\left(L ; h_{m}\right)_{\mathbb{R}}=m \omega_{m} \tag{3.11}
\end{equation*}
$$

Then in terms of the Hermitian L^{2} inner product (1.1), we see from (3.5), (3.6), (3.8) and (3.11) that $\left\{\sigma_{k, i} ; k=1, \ldots, v_{m}, i=1, \ldots, n_{k}\right\}$ is an orthonormal basis for V_{m}. Moreover, (3.10) is rewritten as

$$
\begin{equation*}
B_{m}^{\circ}\left(\omega_{m}\right)=\frac{m^{n}}{\beta_{0}} \tag{3.12}
\end{equation*}
$$

where $B_{m}^{\circ}\left(\omega_{m}\right)$ is as in (1.2). Hence ω_{m} is a polybalanced metric, and the proof of Theorem A is reduced to showing (1.3) and (1.4). By summing up, we obtain

Theorem C. If $\left(M, L^{m}\right)$ is Chow-stable relative to T for a positive integer m, then the Kähler class $c_{1}(L)_{\mathbb{R}}$ admits a polybalanced metric ω_{m} with the weights $\gamma_{m, k}$ as above.

4. The asymptotic behavior of the weights $\gamma_{m, k}$

The purpose of this section is to prove (1.3). If $\underline{\beta}=0$, then we are done. Hence, we may assume that $\underline{\beta} \neq 0$. Consider the sphere

$$
\sum:=\left\{X \in \mathfrak{t}_{\mathbb{R}} ;\langle X, X\rangle_{0}=1\right\}
$$

in $\mathfrak{t}_{\mathbb{R}}:=\mathfrak{t} \cap\left(\mathfrak{h}_{m}\right)_{\mathbb{R}}$, where \langle,\rangle_{0} denotes the positive definite symmetric bilinear form on \mathfrak{g} as in [2]. Since all components $\underline{\beta}_{k}$ of $\underline{\beta}$ are real, we see from (3.7) that, in view of (3.1), $\lambda:=r_{m} \underline{\beta}$ satisfies

$$
\begin{equation*}
X_{\lambda} \in \sum \tag{4.1}
\end{equation*}
$$

for some positive real number r_{m}. Hence by writing $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu_{m}}\right)$, we obtain positive constants C_{2}, C_{3} independent of k and m such that (see for instance [5], Lemma 2.6)

$$
\begin{equation*}
-C_{2} m \leq \lambda_{k} \leq C_{3} m . \tag{4.2}
\end{equation*}
$$

Put $g(t):=\exp \left(t X_{\lambda}\right)$ and $\gamma(t):=\log \left\|g(t) \cdot C \cdot \kappa_{0}^{-1} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}, t \in \mathbb{R}$, by using the notation in Section 3. Since $g(t)$ commutes with $C \cdot \kappa_{0}^{-1}$, we see that $g(t)$ defines a holomorphic automorphism of $\Phi_{m}^{\prime}(M)$. In view of Theorem 4.5 in [4], it follows from Remark 4.6 in [4] that (cf. [14])

$$
\begin{equation*}
\dot{\gamma}(t)=\dot{\gamma}(0)=\sum_{k=1}^{v_{m}} n_{k} \lambda_{k} \beta_{k}, \quad-\infty<t<+\infty . \tag{4.3}
\end{equation*}
$$

Consider the classical Futaki invariant $\mathcal{F}_{1}\left(X_{\lambda}\right)$ associated to the holomorphic vector field X_{λ} on (M, L). Since M is smooth, this coincides with the corresponding DonaldsonFutaki's invariant for test configurations. Then by applying Lemma 4.8 in [6] to the product configuration of (M, L) associated to the one-parameter group generated by X_{λ} on the central fiber, we obtain (see also [1], [11])

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \dot{\gamma}(t)=C_{4}\left\{\mathcal{F}_{1}\left(X_{\lambda}\right)+O\left(\frac{1}{m}\right)\right\} m^{n} \tag{4.4}
\end{equation*}
$$

where $C_{4}:=(n+1)!c_{1}(L)^{n}[M]>0$. Hence by $\sum_{k=1}^{v_{m}} n_{k} \lambda_{k}=0$ and $\lambda=r_{m} \underline{\beta}$, it now follows from (4.3) and (4.4) that

$$
\begin{align*}
C_{4}\left\{\mathcal{F}_{1}\left(X_{\lambda}\right)+O\left(\frac{1}{m}\right)\right\} m^{n} & =r_{m}^{-1} \sum_{k=1}^{v_{m}} n_{k} \lambda_{k}^{2} \tag{4.5}\\
& =r_{m}^{-1} m^{n+2}\left\langle X_{\lambda}, X_{\lambda}\right\rangle_{m}
\end{align*}
$$

where by (4.1) above, (7) in [1] (see also [11]) implies $\left\langle X_{\lambda}, X_{\lambda}\right\rangle_{m} \geq C_{5}$ for some positive real constant C_{5} independent of m. Furthermore $\mathcal{F}_{1}\left(X_{\lambda}\right)=O(1)$ again by (4.1). Hence from (4.5), we obtain

$$
\begin{equation*}
r_{m}^{-1}=O\left(\frac{1}{m^{2}}\right) \tag{4.6}
\end{equation*}
$$

In view of (3.9), since $\underline{\beta}_{k}=r_{m}^{-1} \lambda_{k}$, (4.2) and (4.6) imply the required estimate (1.3) as follows:

$$
\gamma_{m, k}-1=\frac{\beta_{k}}{\beta_{0}}-1=\frac{\beta_{k}}{\beta_{0}}=O\left(\frac{1}{m}\right) .
$$

5. Proof of (1.4) and Corollary B

In this section, keeping the same notation as in the preceding sections, we shall prove (1.4) and Corollary B.

Proof of (1.4). For X_{λ} in (4.1), the associated Hamiltonian function $f_{\lambda} \in C^{\infty}(M)_{\mathbb{R}}$ on the Kähler manifold (M, ω_{m}) is

$$
f_{\lambda}=\frac{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \lambda_{k} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2}}{m \sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2}}=\frac{\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \lambda_{k}\left|c_{k, i} s_{k,,}^{\prime}\right|^{2}}{m \sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|^{2}},
$$

where by (4.2), when m runs through the set of all sufficiently large integers, the function f_{λ} is uniformly C^{0}-bounded. Now by (3.10),

$$
\begin{equation*}
\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \lambda_{k} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2}=\frac{m^{n+1} f_{\lambda}}{\beta_{0}} \tag{5.1}
\end{equation*}
$$

We now define a function I_{m} on M by

$$
\begin{equation*}
I_{m}:=\frac{r_{m}^{-1}}{\beta_{0}} \sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left\{1-\left(\gamma_{m, k}\right)^{-1}\right\} \lambda_{k} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2} \tag{5.2}
\end{equation*}
$$

Then by (1.3), (3.9), (3.10), (4.2) and (4.6), we easily see that

$$
\begin{equation*}
I_{m}=O\left(m^{-2} \sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2}\right)=O\left(m^{n-2}\right) \tag{5.3}
\end{equation*}
$$

By (3.10) together with (5.1) and (5.2), it now follows that

$$
\begin{aligned}
\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|\sigma_{k, i}\right|_{h_{m}}^{2} & =\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2}-\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left(\gamma_{m, k}-1\right)\left|\sigma_{k, i}\right|_{h_{m}}^{2} \\
& =\frac{m^{n}}{\beta_{0}}-\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \frac{\beta_{k}}{\beta_{0}}\left|\sigma_{k, i}\right|_{h_{m}}^{2} \\
& =\frac{m^{n}}{\beta_{0}}+I_{m}-\frac{r_{m}^{-1}}{\beta_{0}} \sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}} \lambda_{k} \gamma_{m, k}\left|\sigma_{k, i}\right|_{h_{m}}^{2} \\
& =\frac{m^{n}}{\beta_{0}}+I_{m}-\frac{r_{m}^{-1} m^{2}}{\beta_{0}^{2}} f_{\lambda} m^{n-1} .
\end{aligned}
$$

By (3.9), $m^{n} / \beta_{0}=N_{m}^{\prime}$. Moreover, by (4.6), $r_{m}^{-1} m^{2} / \beta_{0}^{2}=O(1)$. Since

$$
f_{m}:=-\frac{r_{m}^{-1} m^{2}}{\beta_{0}^{2}} f_{\lambda}, \quad m \gg 1,
$$

are uniformly C^{0}-bounded Hamiltonian functions on $\left(M, \omega_{m}\right)$ associated to holomorphic vector fields in \mathfrak{t}, in view of (5.3), we obtain

$$
B_{m}^{\bullet}\left(\omega_{m}\right)=\sum_{k=1}^{v_{m}} \sum_{i=1}^{n_{k}}\left|\sigma_{k, i}\right|_{h_{m}}^{2}=N_{m}^{\prime}+f_{m} m^{n-1}+O\left(m^{n-2}\right)
$$

as required.
Proof of Corollary B. Since the classical Futaki character \mathcal{F}_{1} vanishes on \mathfrak{t}, we have $\mathcal{F}_{1}\left(X_{\lambda}\right)=0$ in (4.5), so that

$$
r_{m}^{-1}=O\left(\frac{1}{m^{3}}\right)
$$

Then from (3.9) and $\underline{\beta}_{k}=r_{m}^{-1} \lambda_{k}$, by looking at (4.2), we obtain the following required estimate:

$$
\gamma_{m, k}-1=\frac{\beta_{k}}{\beta_{0}}=O\left(\frac{1}{m^{2}}\right) .
$$

Hence $B_{m}^{\bullet}\left(\omega_{m}\right)=\left\{1+O\left(1 / m^{2}\right)\right\} B_{m}^{\circ}\left(\omega_{m}\right)$. Integrating this over M by the volume form ω_{m}^{n}, in view of (3.12), we see that

$$
N_{m}^{\prime}=\left\{1+O\left(\frac{1}{m^{2}}\right)\right\} \frac{m^{n}}{\beta_{0}}
$$

Therefore, from (3.12) and $B_{m}^{\bullet}\left(\omega_{m}\right)=\left\{1+O\left(1 / m^{2}\right)\right\} B_{m}^{\circ}\left(\omega_{m}\right)$, we now conclude that $B_{m}^{\bullet}\left(\omega_{m}\right)=N_{m}^{\prime}+O\left(m^{n-2}\right)$, as required.

References

[1] S.K. Donaldson: Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), 453-472.
[2] A. Futaki and T. Mabuchi: Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199-210.
[3] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235-273.
[4] T. Mabuchi: Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), 563-582.
[5] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II, Osaka J. Math. 46 (2009), 115-139.
[6] T. Mabuchi: K-stability of constant scalar curvature polarization, arXiv:math.DG/0812.4093.
[7] T. Mabuchi: Relative stability and extremal metrics, in preparation.
[8] T. Mabuchi and Y. Nitta: K-stability and asymptotic Chow stability, in preparation.
[9] D. Mumford, J. Fogarty and F. Kirwan: Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34, Springer, Berlin, 1994.
[10] Y. Sano: On stability criterion of complete intersections, J. Geom. Anal. 14 (2004), 533-544.
[11] G. Székelyhidi: Extremal metrics and K-stability, Bull. Lond. Math. Soc. 39 (2007), 76-84.
[12] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130.
[13] S. Zelditch: Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), 317-331.
[14] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77-105.

Department of Mathematics Osaka University Toyonaka, Osaka, 560-0043 Japan

[^0]: 2010 Mathematics Subject Classification. Primary 14L24; Secondary 53C55.
 *Supported by JSPS Grant-in-Aid for Scientific Research (A) No. 20244005.

[^1]: ${ }^{1}$ In view of (3.8), there is some error in [4]. Actually, for the numerator of (5.7) in the paper [4], please read $\left(N_{m}+1\right)|s|^{2}$.

