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Abstract
We develop a modification of the Zariski–van Kampen approachfor the com-

putation of the fundamental group of a trigonal curve with improper fibers. As an
application, we list the deformation families and compute the fundamental groups of
all irreducible maximizing simple sextics with a typeD singular point.

1. Introduction

1.1. Principal results. We attempt to develop a modification of the classical
Zariski–van Kampen approach [18] suitable to compute the fundamental group of a gen-
eralized trigonal curve, i.e., a trigonal curve withimproper fibers, at which the curve
meets the exceptional section. A similar question was addressed in [15], where the only
improper fiber was ‘hidden’ at infinity. Here, we consider thecase of arbitrarily many
improper fibers (up to two in the applications).

The basic tool used in Zariski–van Kampen’s method is the braid monodromy related
to an appropriate pencil. This concept was introduced by O. Chisini [4], [5], O. Zariski
[27], and E.R. van Kampen [18], and the term itself is probably due to B. Moishezon
[22], who has also introduced explicitly such notions as themonodromy at infinity, braid
monodromy factorization, and Hurwitz equivalence. For more details on the braid mono-
dromy techniques in general and its usage in the computationof the fundamental group
and other related invariants, as well as for the recent developments in the subject, we refer
to the excellent recent surveys by Vik.S. Kulikov [20] and A.Libgober [21]. Note though
that in this paper we are not concerned with the Hurwitz equivalence and merely use
a certain modification (see next paragraph) of the braid monodromy as a computational
tool. The Hurwitz equivalence of braid monodromy factorizations of a given element,
evenB3-valued and even those of algebro-geometric origin, seems to be a rather delicate
subject; for some new results and further references, see [16].

In order to keep the braid monodromy well defined,B3-valued, and easily com-
putable via skeletons (see Subsection 3.6), we pass to the associated genuine trigo-
nal curve and introduce the concept ofslopes, which compensate for the improper
fibers. We compute local slopes (Subsection 3.5), study their properties, and discuss
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the modifications that should be made to the braid relations (3.4.4) and relation at in-
finity (3.4.6) in the Zariski–van Kampen presentation of thefundamental group, see
Corollary 3.4.7.

As a simple application, in Subsection 3.7 we recompute the fundamental groups of
irreducible plane quintics with a double point. (These groups were originally found in
[7] and [2], but the computation via trigonal curves is much simpler and more straight-
forward; it could easily be computerized.)

1.2. Plane sextics. A more advanced example is the case of irreducible plane
sextics with a typeD singular point.

Recall that a plane sexticC � P2 is called simple if all its singular points are
simple, i.e., those of typesA p, Dq, E6, E7, or E8 (see e.g. [1] for the notation). The
total Milnor number�(C) of a simple sexticC does not exceed 19; if�(C) D 19, the
sextic is calledmaximizing. Maximizing sextics are rigid: if two such sextics are equi-
singular deformation equivalent, they are related by a projective transformation. Each
maximizing sextic is defined over an algebraic number field.

A sextic is said to be oftorus typeif its equation can be represented in the form
f 3
2 C f 2

3 D 0, where f2 and f3 are certain homogeneous polynomials of degree 2 and
3, respectively. Alternatively,C is of torus type if it is the ramification locus of a pro-
jection toP2 of a cubic surfaceV � P3. This property is invariant under equisingular
deformations. Each sexticC of torus type can be perturbed to a six cuspidal sextic,
see [27], hence the fundamental group�1(P2 n C) factors to the reduced braid groupNB3 WD B3=(�1�2)3 � Z2 � Z3 � PSL(2, Z); in particular, this group is never abelian
or finite.

In this paper, we study irreducible maximizing simple sextics with a typeD sin-
gular point and without typeE singular points. (Sextics with typeE points are the
subject of [11], [12], and [13].) We list the equisingular deformation families of such
sextics (Theorem 1.2.1) and compute their fundamental groups (Theorem 1.2.2). As in
the previous papers, the principal tool is the reduction of asextic with a triple singular
point to a generalized trigonal curve in61.

Theorem 1.2.1. There are38 deformation families of irreducible maximizing sim-
ple sextics with a typeD singular point and without typeE singular points, realizing
25 sets of singularities(seeTables 1and 2 in Section 4). One of the families is of
torus type(the set of singularitiesD5 � (A8 � 3A2), no. 27 in Table 2); the others
are not.

Theorem 1.2.1 is proved in Section 4. In principle, the statement can be obtained
by comparing the results of J.-G. Yang [26] (a list of all setsof singularities that can be
realized by an irreducible maximizing simple sextic) and I.Shimada [25] (a list of sets
of singularities represented by several deformation families), using the global Torelli
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theorem forK3-surfaces. The advantage of our approach is an explicit construction of
each sextic, which can further be used in the study of its geometry.

Theorem 1.2.2. Let C � P2 be an irreducible maximizing simple sextic with a
type D singular point. If C is of torus type, then �1(P2 n C) is the reduced braid
group NB3 D B3=(�1�2)3 � Z2 � Z3; otherwise, �1(P2 n C) D Z6.

If C has a typeE point, the statement follows from [11], [12], and [13]. Other
sextics as in Theorem 1.2.2 are considered in Section 5, using the models constructed
in Section 4 and the approach developed in Section 3. As an immediate consequence,
one obtains the following corollary.

Corollary 1.2.3. Let C0 be a perturbation of a sextic C as inTheorem 1.2.2. If
C0 is of torus type, then �1(P2 n C0) D NB3; otherwise, �1(P2 n C0) D Z6.

Recall that any induced subgraph of the combined Dynkin graph of a simple sextic
C can be realized by a perturbation ofC.

We do not treat systematically reducible curves, as that would require an enormous
amount of work. However, as a simple by-product, we do compute the groups of a few
maximizing deformation families and their perturbations,see Table 3 in Subsection 5.2
and Table 4 in Subsection 5.7. Perturbing, one obtains more irreducible sextics with
abelian groups, see Proposition 5.7.9. Altogether, the results of this and a few previous
papers suggest the following conjecture.

CONJECTURE 1.2.4. With the exception of the maximizing sextics realizing the
following three sets of singularities:
– 2E6� A4� A3 (two curves;�1 D SL(2, F5) Ì Z6, see [13]),
– E7� 2A4� 2A2 (one curve;�1 D SL(2, F19) Ì Z6, see [11]),
– E8� A4� A3� 2A2 (one curve;�1 D SL(2, F5)� Z12, see [12]),
the fundamental group�1 WD �1(P2 nC) of an irreducible simple sexticC � P2 that is
not of torus type and has a triple singular point is abelian.

(In the description of the groups,Ì stands for a semi-direct product and� stands
for a central product:SL(2, F5)� Z12 is the quotient ofSL(2, F5) � Z12 by the diago-
nal subgroupZ2 � CenterSL(2, F5) � Z2.) A proof of this conjecture would require a
detailed analysis of the degenerations, which would probably lead to reducible sextics,
and a computation of the groups of (some) reducible maximizing sextics with a type
D or type E7 singular point. Then, it would remain to apply Zariski’s epimorphism
theorem [27]. Even if the group of the degenerate curve is non-abelian, its presenta-
tion arising from the skeleton is very transparent and one can easily compute the extra
relations resulting from the perturbation, cf. Proposition 5.7.9 below and similar com-
putation in [11], [12], and [13].
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At this point, it is worth mentioning that the study of the degenerations of plane
sextics with simple singularities only reduces to a purely arithmetical problem about
adjacencies of their homological types: one needs to extendthe lattice embedding6�Zh � L, h2 D 2, corresponding to a given curve to an embedding60�Zh � L, where
L is a unimodular even lattice of signature (3, 19) and60 is a negative definite root
system of rank 19. The precise statement and a detailed proofare found in [24]. Ac-
cording to I. Shimada (private communication), one can expect a complete (computer
aided) list of all such degenerations in the nearest future.The understanding of adja-
cencies of simple sextics is of a certain independent interest as well: there do exist
sextics not admitting a degeneration to a maximizing one (irreducible or not), the only
known example being the set of singularities 9A2. (The fundamental group of this lat-
ter curve is known.)

After Theorem 1.2.2, there still remain five maximizing simple sextics of torus type
with unknown fundamental groups; their sets of singularities are

(A14� A2)� A3, (A14� A2)� A2� A1, (A11� 2A2)� A4,

(A8� A5� A2)� A4, (A8� 3A2)� A4� A1.

(We use the list of irreducible sextics of torus type found in[23]; maximizing sets
of singularities can also be extracted from [26]. Due to [25], (A8 � A5 � A2) � A4

is realized by a pair of complex conjugate curves, whereas the four remaining sets of
singularities define a single deformation family each.) Assuming that, up to complex
conjugation, eachnon-maximizing set of singularities is realized by at most one con-
nected deformation family of sextics of torus type (which isprobably true, but proof
is still pending), the groups of all such sextics are known. For details and further ref-
erences, see recent survey [14].

1.3. Contents of the paper. In Section 2, we introduce the terminology and re-
mind a few known results related to generalized trigonal curves. Section 3 deals with the
fundamental groups: we remind the general approach, due to Zariski and van Kampen
[18], specialize it to genuine trigonal curves (following [8]), and introduce slopes for
generalized trigonal curves. Then, we explain how the slopes and the global mono-
dromy can be computed and consider an example, applying the approach to irreducible
plane quintics. In Section 4, we enumerate the deformation families of sextics as in The-
orem 1.2.1 by describing the skeletons of their trigonal models; this description is used
in Section 5 in the computation of the fundamental groups.

2. Generalized trigonal curves

In this section, we mainly introduce the terminology and cite a few known results
related to (generalized) trigonal curves in Hirzebruch surfaces. Principal references are
[10] and [11].
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2.1. Hirzebruch surfaces. Recall that theHirzebruch surface6k, k > 0, is a ra-
tional geometrically ruled surface with anexceptional section ED Ek of self-intersection�k. The fibers of the ruling are referred to as the fibers of6k. The semigroup of classes
of effective divisors on6k is generated by the classes of the exceptional sectionE and
a fiber F ; one hasE2 D �k, F2 D 0, andE � F D 1.

Fix a Hirzebruch surface6k, k > 1. Denote byp W 6k ! P1 the ruling, and let
E � 6k be the exceptional section,E2 D �k. Given a pointb in the baseP1, we
denote byFb the fiber p�1(b). (With a certain abuse of the language, the points in
the baseP1 of the ruling are also referred to as fibers of6k.) Let FÆ

b be the ‘open
fiber’ Fb n E. Observe thatFÆ

b is a dimension 1 affine space overC; hence, one can
speak about lines, circles, angles, convexity, etc. inFÆ

b . In particular, one can define
the convex hullconvS of a subsetS� 6knE as the union of its fiberwise convex hulls:

convSD [
b2P1

conv(S\ FÆ
b ).

2.2. Trigonal curves. A generalized trigonal curveon a Hirzebruch surface6k

is a reduced curveB not containing the exceptional sectionE and intersecting each
generic fiber at three points. In this paper, we assume in addition that a trigonal curve
does not contain a fiber of6k as a component.

A singular fiberof a generalized trigonal curveB � 6k is a fiber F of 6k that is
not transversal to the unionB[ E. Thus, F is either the fiber over a critical value of
the restriction toB of the ruling6k ! P1 or the fiber through a point of intersection
of B and E. In the former case, the fiber is calledproper; in the latter case, the fiber is
called improper and the points of intersection ofB and E are calledpoints at infinity.
In general, the local branches ofB that intersect a fiberF outside of E are called
proper at F .

A (genuine) trigonal curve is a generalized trigonal curveB � 6k disjoint from
the exceptional section. One hasB 2 j3E C 3kFj; conversely, any reduced curveB 2j3E C 3kFj not containingE as a component is a trigonal curve.

We use the following notation for the topological types of proper fibers:
– QA0: a nonsingular fiber;
– QA�

0: a simple vertical tangent;

– QA��
0 : a vertical inflection tangent;

– QA�
1: a node ofB with one of the branches vertical;

– QA�
2: a cusp ofB with vertical tangent;

– QA p, p> 2, QDq, q > 4, QE6rC� , r > 1, � D 0,1,2, QJr, p, r > 2, p> 0: a singular point
of B of the same type (see [1] for the notation) with minimal possible local intersection
index with the fiber.
For ‘simple’ fibers of typesQA, QD, QE6, QE7, and QE8, this notation refers to the incidence
graph of (�2)-curves in the corresponding singular elliptic fiber; this graph is an affine
Dynkin diagram.
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REMARK 2.2.1. The topological classification of singular fibers of trigonal curves
is close to that for elliptic surfaces, see [19], except thatin this paper we admit curves
with non-simple singularities. It would probably be more convenient (but slightly less
transparent) to use an appropriate extension of Kodaira’s notation, for example Ir

p, IIr ,
III r , and IVr , with r D 0 and 1 referring, respectively, to the empty subscript and�
in [19]. Another alternative would be to extend the seriesQJr, p and QE6rC� to the values
r D 0 and 1. Among other advantages, in both cases an elementary transformation (see
Subsection 2.3 below) would merely increase the value ofr by 1. However, I chose to
retain the commonly accepted notation for the types of simple singularities.

The fibers of typesQA��
0 , QA�

1, and QA�
2 are calledunstable; all other singular fibers

are calledstable. A trigonal curve B is stable if so are all its singular fibers. (This
notion of stability differs from the one accepted in algebraic geometry; we refer to the
topological stability under equisingular deformations ofB. An unstable fiber may split
as follows: QA��

0 ! 2 QA�
0, QA�

1 ! QA1� QA�
0, or QA�

2 ! QA2� QA�
0, the splitting not changing

the topology of the pair (6k, B).)
The multiplicity multF of a singular fiberF of a trigonal curveB is the number of

simplest (i.e., typeQA�
0) fibers into whichF splits under deformations ofB. For the QA

type fibers, one has multQA0 D 0, mult QA�
0 D 1, mult QA��

0 D 2, mult QA�
1 D 3, mult QA�

2 D 4,

and mult QA p D pC 1 for p > 0. Each elementary transformation (see Subsection 2.3
below) contractingF increases multF by 6. The sum of the multiplicities of all sin-
gular fibers of a trigonal curveB � 6k equals 12k.

2.3. Elementary transformations. An elementary transformationof 6k is a bi-
rational transformation6k Ü 6kC1 consisting in blowing up a pointP in the excep-
tional section of6k followed by blowing down the fiberF through P. The inverse
transformation6kC1Ü 6k blows up a pointP0 not in the exceptional section of6kC1

and blows down the fiberF 0 through P0.
An elementary transformation converts a proper fiber as follows:

(1) QA0! QD4! QJ2,0! � � � ! QJr,0! � � � (not detected by thej -invariant);
(2) QA�

0 ! QD5! QJ2,1! � � � ! QJr,1! � � � ( j D1, ord j D 1);

(3) QA p�1! QDpC4! QJ2,p! � � � ! QJr, p! � � � (p > 2; j D 1, ord j D p);

(4) QA��
0 ! QE6! QE12! � � � ! QE6r ! � � � ( j D 0, ord j D 1 mod 3);

(5) QA�
1 ! QE7! QE13! � � � ! QE6rC1! � � � ( j D 1, ord j D 1 mod 2);

(6) QA�
2 ! QE8! QE14! � � � ! QE6rC2! � � � ( j D 0, ord j D 2 mod 3).

For the reader’s convenience, we also indicate the valuej D v and the ramification index
ord j of the j -invariant, see Subsection 2.4 below, which is invariant under elementary
transformations. In a neighborhood of the fiber, thej -invariant has the formvC tord j ifv D 0 or 1 or 1=tord j if v D 1.

Let QB � 6 Qk be a generalized trigonal curve. Then, by a sequence of elementary

transformations, one can resolve the points of intersection of QB and E and obtain a



FUNDAMENTAL GROUP OF A TRIGONAL CURVE 755

genuine trigonal curveB � 6k, k > Qk, birationally equivalent toQB. The trigonal curve
B obtained from QB by a minimal number of elementary transformations is calledthe
trigonal modelof QB.

REMARK 2.3.1. Alternatively, given a trigonal curveB � 6k with triple singu-
lar points, one can apply a sequence of inverse elementary transformations to obtain a
trigonal curveB0 � 6k0 , k0 6 k, birationally equivalent toB and with QA type singular
fibers only. This curveB0 is called in [10] thesimplified modelof B.

2.4. The j-invariant. The (functional) j -invariant jB W P1 ! P1 of a general-
ized trigonal curveB � 6k is defined as the analytic continuation of the function send-
ing a point b in the baseP1 of 6k representing a nonsingular fiberFb of B to the
j -invariant (divided by 123) of the elliptic curve coveringFb and ramified at the four
points of intersection ofFb and BC E. The curveB is called isotrivial if jB D const.
Such curves can easily be enumerated, see e.g. [10].

By definition, jB is invariant under elementary transformations. The valuesof jB

at the singular fibers ofB are listed in Subsection 2.3. The pointsb� P1 with jB(b)D
0 and ordb jB D 0 mod 3 or jB(b) D 1 and ordb jB D 0 mod 2 correspond to fibers
Fb admitting extra symmetries. AssumingFb proper (hence nonsingular), consider the
three points of intersection ofB and FÆ

b . Then
– the three points form an equilateral triangle ifjB(b) D 0, ordb jB D 0 mod 3;
– one of the points is at the center of the segment connecting the two others if
jB(b) D 1, ordb jB D 0 mod 2.

DEFINITION 2.4.1. A non-isotrivial trigonal curveB is calledmaximal if it has
the following properties:
(1) B has no singular fibers of typeQD4 or QJr,0, r > 2;
(2) j D jB has no critical values other than 0, 1, and1;
(3) each point in the pull-backj �1(0) has ramification index at most 3;
(4) each point in the pull-backj �1(1) has ramification index at most 2.

An important property of maximal trigonal curves is their rigidity, see [10]: any
small fiberwise equisingular deformation of such a curveB � 6k is isomorphic toB.
Any maximal trigonal curve is defined over an algebraic number field. Such curves are
classified by their skeletons, see Theorem 2.6.1 below.

A maximal trigonal curveB with simple singularities only can be characterized
in terms of its total Milnor number�(B) (i.e., the sum of the Milnor numbers of all
singular points ofB). The following criterion is proved in [11].
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Theorem 2.4.2. For a non-isotrivial genuine trigonal curve B� 6k with simple
singularities only one has

(2.4.3) �(B) 6 5k � 2� #{unstable fibers of B},

the equality holding if and only if B is maximal.

REMARK 2.4.4. The inequality in Theorem 2.4.2 may not hold isB has non-simple
singular points, as each elementary transformation producing a non-simple singular point
increases� by 6 while increasingk by 1.

2.5. Skeletons. The skeletonSkD SkB of a trigonal curveB � 6k is defined as
Grothendieck’sdessin d’enfantsof its j -invariant jB. More precisely, Sk is the planar
map j �1

B ([0, 1]) � S2 � P1. The pull-backs of 0 are called•-vertices, and the pull-
backs of 1 are calledÆ-vertices. The •- and Æ-vertices are calledessential; the other
vertices that Sk may have (due to the critical values ofjB in the interval (0, 1)) are
called unessential.

By definition, Sk is a graph in the base of the ruling6k ! P1, so that one can
speak about the fibers of6k represented by points of Sk. On the other hand, for the
classification statements, see e.g. Theorem 2.6.1 below, itis important that Sk is re-
garded as a graph in thetopological sphereS2; the analytic structure is given by the
skeleton itself via Riemann’s existence theorem.

The •-vertices of valency 1 mod 3 or 2 mod 3 andÆ-vertices of valency 1 mod 2
are calledsingular; they correspond to singular fibers of the curve of one of the types
2.3 (4)–(6). All other•- and Æ-vertices are callednonsingular.

After a small fiberwise equisingular deformation of a trigonal curve B one can
assume that its skeleton SkB has the following properties:
(1) all vertices of SkB are essential;
(2) each•-vertex has valency at most 3;
(3) eachÆ-vertex has valency at most 2.
A skeleton satisfying these conditions is calledgeneric. Note that any skeleton sat-
isfying condition (1) is a bipartite graph. For this reason,in the drawings below we
omit bivalentÆ-vertices, assuming that such a vertex is to be inserted in the middle of
each edge connecting two•-vertices. In particular, for a generic skeleton, only singular
monovalentÆ-vertices are drawn.

A region of a skeleton Sk� P1 is a connected component of the complementP1n
Sk. One can also speak aboutclosed regions, which are connected components of the
manifold theoretical cut ofP1 along Sk. (In general, a closed regionNR is not the
same as the closure of the corresponding open regionR.) We say that a regionR is
an m-gon (or an m-gonal region) if the boundary of the corresponding closed regionNR containsm •-vertices. For example, in Fig. 4 (b) below, the three regions marked
with �, �, and N� are monogons, whereas the outer region is a nonagon. In Fig. 4(c),
there are two monogons (marked with� and �) and two pentagons.
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Each regionR of SkB contains a finite number of singular fibers ofB, which can
be of one of the types 2.3 (1)–(3) (excludingQA0, which is not singular). One can use
a sequence of inverse elementary transformations and convert these fibers to theQA type
fibers starting the series. IfR is an m-gonal region, the total multiplicity of theseQA
type fibers equalsm.

2.6. Skeletons and maximal curves. The skeleton SkB of a maximal trigonal
curve B � 6k is necessarily generic and connected. (It follows that eachregion of SkB
is a topological disk.) Eachm-gonal regionR of SkB contains a single singular fiber
FR of B; its type is one of Section 2.3 (2) ifm D 1 or one of Section 2.3 (3) with
p D m if m > 2. Thus, the type ofFR is determined by its multiplicity. The other
singular fibers ofB are over the singular vertices of SkB; the type of such a singular
fiber Fv is also determined by its multiplicity (and the type and the valency ofv).

The function tsB sending each regionR to the multiplicity multFR and each sin-
gular vertexv to the multiplicity multFv is called thetype specification. It has the
following properties:
(1) tsB(m-gonal regionR) D mC 6s, s 2 Z>0;
(2) tsB(singular•-vertex v) D 2(valency ofv)C 6s, s 2 Z>0;
(3) tsB(singularÆ-vertex)D 3C 6s, s 2 Z>0;
(4) the sum of all values of tsB equals 12k.

The following statement is essentially contained in [10].

Theorem 2.6.1. The map B7! (SkB, tsB) establishes a bijection between the set
of isomorphism classes(equivalently, fiberwise equisingular deformation classes) of max-
imal trigonal curves in6k and the set of orientation preserving diffeomorphism classes
of pairs (Sk, ts),whereSk� S2 is a connected generic skeleton andts is a function on
the set of regions and singular vertices ofSk satisfying conditions(1)–(4) above.

REMARK 2.6.2. Often it is more convenient to replace tsB with the Z>0-valued
function tdB sending each region and singular vertex to the integers appearing in (1)–(3).
In term of tsB, the indexk of the Hirzebruch surface6k containingB is given as follows,
cf. [11]:

#� C #Æ(1)C #�(2)D 2
�
k �X tdB

�
,

where #� is the total number of•-vertices, #�(i ) is the number of∗-vertices of va-
lency i , and

P
tdB is the sum of all values of tdB. The singular points ofB are simple

if and only if tdB takes values in{0, 1}; in this case,
P

tdB is merely the number of
triple singular points ofB.
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3. The Zariski–van Kampen method

In Subsections 3.1–3.3, we briefly remind the classical Zariski–van Kampen ap-
proach [18] to the computation of the fundamental group of analgebraic curve and the
construction of [8], which makes the braid monodromy of a genuine trigonal curve al-
most canonically defined. In Subsection 3.4, we introduce the concept ofslopewhich
lets one treat a generalized trigonal curve in terms of its trigonal model and, in partic-
ular, keep the braid monodromyB3-valued and easily computable. In Subsections 3.5
and 3.6, we compute the local slopes and cite the results of [10] related to the global
braid monodromy of a trigonal curve in terms of its skeleton.Finally, in Subsection 3.7,
we consider a simple example, computing the groups of irreducible quintics.

3.1. Proper sections and braid monodromy. Fix a Hirzebruch surface6k, k>1,
and a genuine trigonal curveB�6k. The term ‘section’ below stands for a continuous
section of (an appropriate restriction of) the fibrationp W 6k!P1.

DEFINITION 3.1.1. Let1 � P1 be a closed (topological) disk. A partial section
sW 1! 6k of p is calledproper if its image is disjoint from bothE and convB.

The following statement is found in [8]; it is an immediate consequence of the
fact that the restrictionpW p�1(1) n (E[ convB)! 1 is a locally trivial fibration with
connected fibers and contractible base.

Lemma 3.1.2. Any disk1 � P1 admits a proper section sW 1 ! 6k. Any two
proper sections over1 are homotopic in the class of proper sections; furthermore, any
homotopy over a fixed point b2 1 extends to a homotopy over1.

Fix a disk 1 � P1 and let b1, : : : , br 2 1 be all singular and, possibly, some
nonsingular fibers ofB that belong to1. Denote Fi D p�1(bi ). We assume that all
these fibers are in the interior of1. Denote1℄ D1n{b1,:::,bl } and fix a pointb 21℄.
The restrictionp℄ W p�1(1℄) n (B[ E)! 1℄ is a locally trivial fibration with a typical
fiber FÆ

b n B, and any proper sectionsW 1 ! 6k restricts to a section ofp℄. Hence,
given a proper sections, one can define the group�F WD �1(FÆ

b nB,s(b)) and thebraid
monodromymW �1(1℄, b)! Aut�F . More generally, given a path W [0, 1]! 1℄ with (0)D b, one can define thetranslation homomorphismm W �F ! �1

�
FÆ (1) n B, s(b)

�
.

Denote by�b 2 �F the ‘counterclockwise’ generator of the abelian subgroupZ ��1(FÆ
b n convB) � �F . (In other words,�b is the class of a large circle inFÆ

b encom-
passing convB\ FÆ

b .) Since the fibrationp�1(1) n (convB[ E)! 1 is trivial, hence
1-simple,�b is invariant under the braid monodromy and is preserved by the transla-
tion homomorphisms. Thus, there is a canonical identification of the elements�b0 , �b00
in the fibers over any two pointsb0,b00 2 1℄; for this reason, we will omit the subscript
b in the sequel.
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In this paper, we reserve the terms ‘braid monodromy’ and ‘translation homo-
morphism’ for the homomorphismsm constructed above using aproper section s.
Under this convention, next lemma follows from Lemma 3.1.2 and the obvious fact
that the braid monodromy is homotopy invariant.

Lemma 3.1.3. The braid monodromymW �1(1℄, b)! Aut�F is well defined and
independent of the choice of a proper section over1 passing through s(b). Given a
path  in 1℄, the translation homomorphismm is independent of the choice of a
proper section passing through s( (0)) and s( (1)) up to conjugation by�.

3.2. The Zariski–van Kampen theorem. Pick a basis{�1, �2, �3} for �F and
a basis{1, : : : , r } for �1(1℄, b). Both FÆ

b n B and1℄ are oriented punctured planes,
and we usually assume that the bases are standard: each basiselement is represented
by the loop formed by the counterclockwise boundary of a small disk centered at a
puncture and a simple arc connecting this disk to the base point; all disks and arcs
are disjoint except at the common base point. With a certain abuse of the language,
we will refer to i (respectively,� j ) as the generator about thei -th singular fiber (re-
spectively, about thej -th branch) of B. We also assume that the basis elements are
numbered so that�1�2�3 D � and 1 � � � r is freely homotopic to the boundary�1.
Under this convention on the basis{�1,�2,�3}, the braid monodromy does indeed take
values in the braid groupB3 � Aut �F .

Using a proper sections, we can identify each generatori with a certain elem-
ent of the group�1(p�1(1℄) n (B [ E), s(b)); this element does not depend on the
choice of a section. The following presentation of the latter group is the essence of
Zariski–van Kampen’s method for computing the fundamentalgroup of a plane alge-
braic curve, see [18] for the proof and further details.

Theorem 3.2.1. In the notation above, one has

�1(p�1(1℄) n (B [ E), s(b))

D h�1, �2, �3, 1, : : : , r j  �1
i � j i D mi (� j ), i D 1, : : : , r , j D 1, 2, 3i,

wheremi D m(i ), i D 1, : : : , r .

3.3. The monodromy at infinity and relation at infinity. Let 1 � P1 be a
disk as above. Connecting�1 with the base pointb by a path in1℄ and traversing it
in the counterclockwise direction (with respect to the canonical complex orientation of1), one obtains a certain element [�1] 2 �1(1℄, b) (which depends on the choice of
the path above). The following two statements are proved in [8].
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Lemma 3.3.1. Assume that the interior of1 contains all singular fibers of B. Then,
for any�2�F , one hasm([�1])(�)D�k���k. In particular, the imagem([�1]) 2Aut�F

does not depend on the choices in the definition of[�1]; it is called the monodromy
at infinity.

Lemma 3.3.2. Assume that the interior of1 contains all singular fibers of B.
Then a presentation for the group

�1

 
6k n

 
B [ E [ r[

iD1

Fi

!
, s(b)

!

is obtained from that given byLemma 3.2.1by adding the so called relation at infinity1 � � � r�k D 1.

It remains to remind that patching back in a singular fiberFi results in an extra
relation i D 1. Hence, for agenuinetrigonal curveB, one has

(3.3.3) �1(6k n (B [ E)) D h�1, �2, �3 j mi D id, i D 1, : : : , r , �k D 1i,
where eachbraid relation mi D id, i D 1, : : : , r , should be understood as a triple of
relationsmi (� j ) D � j , j D 1, 2, 3.

3.4. Slopes. Now, let QB � 6 Qk be ageneralizedtrigonal curve, and letB � 6k

be its trigonal model. Denote byF1, : : : , Fr the singular fibers ofQB and let bi 2 P1

be the projection ofFi , i D 1, : : : , r . The birational transformation betweenQB and B
establishes a diffeomorphism

6 Qk n
 QB [ E [ r[

iD1

Fi

!
� 6k n

 
B [ E [ r[

iD1

Fi

!
I

hence, it establishes an isomorphism of the fundamental groups. Let Q0i be a small
analytic disk in6 QknE transversal toFi and disjoint from QB and from the other singular

fibers of QB, and let0i be the transform ofQ0i in 6k. We will call 0i a geometric slope
of QB at Fi . According to van Kampen’s theorem [18], patching back in the fiber Fi

results in an extra relation [� Q0i ] D 1 or, equivalently, [�0i ] D 1.
Fix a proper (with respect to the genuine trigonal curveB) sections over a disk1 � P1 containing the projectionp(0i ). Pick a base pointb0i 2 p(�0i ) and denote

F 0
i D p�1(b0i ) and  0i D [ p(�0i )]. As above, we can regard 0i both as an element of�1(1℄, b0i ) and, vias, as an element of�1(p�1(1℄) n (B [ E), s(b0i )). Furthermore, we

can assume that the basis elementi � �1(1℄, b) introduced in Subsection 3.2 has the
form i D �i �  0i � ��1

i , where�i is a simple arc in1℄ connectingb to b0i .
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Dragging the nonsingular fiberF 0
i along  0i and keeping two points in the image

of s and in0i , one can define therelative braid monodromy

mrel
i 2 Aut �1((F 0

i )
Æ n B, F 0

i \ 0i , s(b0i )).
DEFINITION 3.4.1. Thelocal slopeof a generalized trigonal curveQB at its sin-

gular fiber Fi is the elementκ0
i WD mrel

i (� ) � ��1 2 �1((F 0
i )
Æ n B, s(b0i )), where�i is any

path in (F 0
i )
Æ n B connectings(b0i ) and F 0

i \0i . The (global) slopeof QB at Fi (defined
by a standard basis elementi or, more precisely, by a path�i connecting the base
point b to a pointb0i ‘close’ to bi ) is the imageκi WD m�1�i

(κ0
i ) 2 �F .

The following two statements are immediate consequences ofthe definition.

Lemma 3.4.2. The slopeκi is defined by the curveQB and generatori up to
conjugation by� (due to the indeterminacy of the translation homomorphism, see
Lemma 3.1.3)and the transformationκi 7! mi (�)κi��1, � 2 �F (due to the choice
of path �i in the definition).

Lemma 3.4.3. In the fundamental group�1(p�1 p(�0i ) n (B[ E), s(b0i )), the con-
jugacy class containing[�0i ] consists of all elements of the form 0i κ0

i , whereκ0
i is a

local slope of QB at Fi .

Note that, in view of Lemma 3.4.2 and the relation ( 0i )�1� 0i D m( 0i )(�),
cf. Lemma 3.2.1, the elements 0i κ0

i do indeed form a conjugacy class.
As a consequence, in terms of the basis{�1,�2,�3,1,:::,r }, the relation [�0i ] D 1

resulting from patching the singular fiberFi in the original surface6 Qk becomesi D
κ
�1
i . Eliminating i , the relations �1

i � j i D mi (� j ), j D 1, 2, 3, cf. Lemma 3.2.1, turn
into the braid relations

(3.4.4) κi� jκ
�1
i D mi (� j ), j D 1, 2, 3, or Qmi D id,

where Qmi W � 7! κ
�1
i mi (�)κi is the twisted braid monodromy.

Clearly, if Fi is a proper fiber, then0i D Q0i and the path�i in the definition can
be chosen so thatκi D 1. In this caseQmi D mi is still a braid.

REMARK 3.4.5. In view of Lemma 3.4.2 and the fact that� is invariant under
mi , for each fixedi D 1, : : : , r the normal subgroup of�F defined by the relationsQmi D id does not depend on the choice of a particular slopeκi , and the projection of
κi to the quotient group�F= Qmi D id is a well defined element of this group (depending
on the curve QB and basis elementi only). In particular, each slope commutes with� (in the corresponding quotient), making irrelevant the ambiguity in the definition of
the translation homomorphisms, see Lemma 3.1.3.
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If all singular fibers are patched, hence all generatorsi are eliminated, the relation
at infinity takes the form

(3.4.6) �k D κr � � � κ1.

Finally, one obtains the following statement, cf. (3.3.3),expressing the fundamental
group �1(6 Qk n ( QB [ E)) in terms of the slopes and braid monodromy of thegenuine
trigonal curveB.

Corollary 3.4.7. For a generalized trigonal curveQB � 6 Qk one has

�1(6 Qk n ( QB [ E)) D h�1, �2, �3 j Qmi D id, i D 1, : : : , r , �k D κr � � � κ1i,
where each braid relationQmi D id, i D 1, : : : , r , should be understood as a triple of
relations Qmi (� j ) D � j , j D 1, 2, 3.

The following statement simplifies the computation of the groups.

Proposition 3.4.8. In the presentation given byCorollary 3.4.7,one can omit(any)
one of the braid relationsQmi D id.

Proof. First, show that the first relationQm1 D id can be omitted. Each braid rela-
tion Qmi D id, i D 1,: : : ,r , can be rewritten asκi� D mi (�)κi , � 2 �F . Hence, using all
but the first braid relations, one can rewrite the relation atinfinity (3.4.6) in the form�k D Nκ1 � � � Nκr , where Nκi D mr Æ � � � ÆmiC1(κi ) for i D 1, : : : , r �1 and Nκr D κr . On the
other hand, sincemr Æ � � � Æm1 is the conjugation by��k, see Lemma 3.3.1, the productQmr Æ � � � Æ Qm1 is the conjugation by��k Nκ1 � � � Nκr D 1. It is the identity, and the relationQm1 D id follows from Qm2 D � � � D Qmr D id.

Now, assume that the relation to be omitted isQmd D id for somed D 2, : : : , r .
Since � is invariant underm1, the relation Qm1 D id implies thatκ1 commutes with�. Then, due to (3.4.6), it also commutes withκr � � � κ2 and (3.4.6) is equivalent
to �k D κ1κr � � � κ2. Proceeding by induction and using onlyQm1 D � � � D Qmd�1 D
id, one can rewrite (3.4.6) in the form�k D κd�1 � � � κ1κr � � � κd, the right hand side
being a cyclic permutation ofκr � � � κ1. On the other hand, the cyclic permutation
{d, : : : , r , 1, : : : , d�1} is another standard basis for�1(1℄, b), with the same (but
rearranged) slopesκi and braid monodromiesmi , and with respect to this new basis
the braid relation to be omitted is the first one. Hence the statement follows from the
first part of the proof.

REMARK 3.4.9. A by-product of the previous proof is the fact that, modulo (all
but one) braid relations the slopesκr , : : : , κ1 cyclically commute, i.e., one has

κr � � � κ2κ1 D κd�1 � � � κ1κr � � � κd
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for each d D 2, : : : , r . In particular, if there are only two nontrivial slopes (which
is always the case in Section 5 below), their order in the relation at infinity (3.4.6)
is irrelevant.

3.5. Local slopes and braid relations. Given two elements�, � of a group
and a nonnegative integerm, introduce the notation

{�, �}m D
�

(��)k(��)�k, if mD 2k is even,
((��)k�)((��)k�)�1, if mD 2kC 1 is odd.

The relation{�, �}m D 1 is equivalent to�m D id, where� is the Artin generator of
the braid groupB2 acting on the free grouph�, �i. Hence,

(3.5.1) {�, �}m D {�, �}n D 1 is equivalent to {�, �}g.c.d.(m,n) D 1.

For the small values ofm, the relation{�, �}m D 1 takes the following form:
– mD 0: tautology;
– mD 1: the identification� D �;
– mD 2: the commutativity relation [�, �] D 1;
– mD 3: the braid relation��� D ���.

Let Fi be a typeQA p (type QA�
0 if pD 0) singular fiber of a trigonal curveB, and let

bi D p(Fi ) � 1 be its projection. Pick a simple arc�i W [0, 1]! 1 connecting the base
point b to bi and such that�i ([0, 1))� 1℄. We say that two consecutive generators� j ,� jC1 of �F , j D 1 or 2, collide at Fi (along �i ) if there is a Milnor ballM about the
point of non-transversal intersection ofB and Fi such that, for each sufficiently small� > 0, the images of� j and � jC1 under the translation along the restriction�i j[0,1��]

are represented by a pair of loops that differ only insideM, whereas the image of the
third generator is represented by a loop totally outsideM.

In Paragraphs 3.5.2–3.5.4 below, we pick a standard basis{�1, �2, �3} for �F and
assume that two consecutive elements of this basis collide at Fi along a certain path�i ;
then we use this path�i to construct a generatori about Fi as in Subsection 3.2. In
other words, it is�i that is used to define the global braid monodromymi and the slope
κi . All computations are straightforward, using local normalforms of the singularities
involved; we merely state the results.

We denote by�1, �2 the Artin generators of the braid groupB3 acting on the free
group �F D h�1, �2, �3i, so that�i W �i 7! �i�iC1��1

i , �iC1 7! �i , i D 1, 2.
Note that the slopeκi is only useful if the fiberFi is to be patched back in (as

otherwise the presentation for the group�1(6 Qk n ( QB [ E [ Fi [ � � � )) would contain
the original generatori rather thanκi ). For this reason, after a small equisingular
deformation of QBCE, one can assume thatQB is maximally transversal toFi at infinity.
We do make this assumption below.



764 A. DEGTYAREV

3.5.2. A proper fiber. Assume thatFi is a proper typeQA p (type QA�
0 if p D 0)

fiber of QB D B. Then one has:
(1) if �1 and�2 collide at Fi , thenmi D � pC1

1 andκi D 1, so that the braid relations
are {�1, �2} pC1 D 1;

(2) if �2 and�3 collide at Fi , thenmi D � pC1
2 andκi D 1, so that the braid relations

are {�2, �3} pC1 D 1.

3.5.3. A nonsingular branch at infinity. Assume thatFi is a type QA p singular

fiber (type QA�
0 if pD 0 or no singularity if pD �1) and a single smooth branch ofQB

intersectsE at Fi \ E with multiplicity q > 1. Then Fi is a type QA pC2q singular fiber
of B and one has:
(1) if �1 and�2 collide at Fi , thenmi D � pC2qC1

1 andκi D (�1�2)q, so that the braid
relations are{�1, �2} pC1 D [(�1�2)q, �3] D 1;

(2) if �2 and�3 collide at Fi , thenmi D � pC2qC1
2 andκi D (�2�3)q, so that the braid

relations are{�2, �3} pC1 D [�1, (�2�3)q] D 1.

3.5.4. A double point at infinity. Assume that QB has a typeA p singular point
at Fi \ E and intersectsE at this point with multiplicity 2q, 16 q 6 (pC 1)=2. Then
Fi is a type QA p�2q singular fiber ofB (with the same convention as in Paragraph 3.5.3
for the valuesp� 2q D 0 or �1) and one has:
(1) if �1 and �2 collide at Fi , then mi D � p�2qC1

1 and κi D �q
3 , so that the braid

relations are� p�2qC1
1 (� j ) D �q

3� j��q
3 , j D 1, 2;

(2) if �2 and �3 collide at Fi , then mi D � p�2qC1
2 and κi D �q

1 , so that the braid

relations are� p�2qC1
2 (� j ) D �q

1� j��q
1 , j D 2, 3.

(If p� 2q D �1, there is no collision andmi D id. In this case, the slope isκi D �q
j ,

where� j is the generator about the proper branch of the original curve QB.)

Now, assume thatQB has a typeA2p�1 singular point atFi \ E and the two branches
at this point intersectE with multiplicities p and pC q for someq > 1. ThenFi is a
type QA2q�1 singular fiber ofB, and one of the two branches ofB at its typeA2q�1 sin-

gular point inFi is distinguished: it is the transform of the proper branch ofQB. Choose
generators�1, �2, �3 so that�1 and�2 collide at Fi and�1 is the generator about the
distinguished branch ofB. Then

(3) mi D � 2q
1 and κi D (�1�2)q� p

1 , so that the braid relations are [� p
1 , �2] D 1 and

[(�1�2)q� p
1 , �3] D 1.

Finally, assume thatQB has a typeA2p singular point atFi \ E and intersectsE

at this point with multiplicity 2pC 1. Then Fi is a type QA�
1 singular fiber ofB and,

in an appropriate basis{�1, �2, �3}, such that�2 is the generator about the branch of
B transversal toFi , one has
(4) mi D �1�2�1 andκi D �1� pC1

2 , so that the braid relations are [�1, � pC1
2 ] D 1 and�3 D � p

2�1��p
2 .
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(a) (b)

Fig. 1. A marking (a) and a canonical basis (b).

3.5.5. A triple point at infinity. Assume that QB has a triple point atFi \ E
and consider the (generalized) trigonal curveQB0 obtained from QB by one elementary
transformation centered at this point. Then the transformQ00i of Q0i is still disjoint fromQB0 and thus can be used to define the slope ofQB; hence the slope ofQB at Fi equals
that of QB0. As a consequence, one has the following statement.

Corollary 3.5.6. For QB � 6 Qk and B00 � 6 QkC1 as above there is a canonical iso-

morphism�1(6 Qk n ( QB [ E)) D �1(6 QkC1 n ( QB0 [ E)).

3.6. Braid monodromy via skeletons. Let B � 6k be a trigonal curve, and let
Sk � P1 be its skeleton. Below, we cite a few results of [10] concerning the braid
monodromy ofB in terms of Sk. For simplicity, we assume that all•-vertices of Sk
are trivalent and all itsÆ-vertices are bivalent (hence omitted). An alternative descrip-
tion, including more general skeletons, is found in [15].

Recall that amarking at a trivalent•-vertex v of Sk is a counterclockwise order
e1, e2, e3 of the three edges adjacent tov, see Fig. 1 (a). We consider the indices
defined modulo 3, so thateiC3 D ei . The three points of intersection ofB and the
fiber Fv over v form an equilateral triangle. These points are in a canonical one-to-
one correspondence with the edgesei of Sk at v. Hence, a marking gives rise to a
canonical basis{�1, �2, �3} of the group�F D �1(FÆv n B), see Fig. 1 (b); this basis is
well defined up to simultaneous conjugation by a power of� D �1�2�3.

As in Subsection 3.5, let�1 and �2 be the Artin generators of the braid groupB3

acting onh�1,�2,�3i. Denote�3D ��1
1 �2�1 and extend indices to all integers via�i�3D�i . Note that the map (�i�1, �i ) 7! (�i , �iC1) is an automorphism ofB3. Recall also that

the center ofB3 is the cyclic subgroup generated by (�1�2)3 D (�2�3)3 D (�3�1)3.

3.6.1. The translation homomorphisms. Let u andv be two marked•-vertices
of Sk connected by a single edgee; to indicate the markings, we use the notation
eD [i , j ], where i and j are the indices ofe at u and v, respectively. Choosing a pair
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of canonical bases defined by the markings, one can identify the groups�1(FÆ
u nB) and�1(FÆv n B) with the ‘standard’ free grouph�1, �2, �3i and thus regard the translation

homomorphismme W �1(FÆ
u n B)! �1(FÆv n B) as an automorphism ofh�1, �2, �3i. It

is a braid. However, since both the bases and the homomorphism me itself are only
defined up to conjugation by� (unless a proper section is fixed, see Lemma 3.1.3),
this automorphism should be regarded as an element of the reduced braid groupNB3 DB3=(�1�2)3 � PSL(2,Z). On the other hand, this ambiguity does not affect the compu-
tation of the fundamental group, cf. Remark 3.4.5.

With the above convention, the translation homomorphismm[i , j ] 2 NB3 along an
edgeeD [i , j ] is given as follows:

m[i ,iC1] D �i , m[iC1,i ] D ��1
i , m[i ,i ] D �i�i�1�i , i 2 Z.

The translation homomorphismm 2 NB3 along a path composed by edges of Sk is
the composition of the contributions of single edges. If is a loop, the braid mono-
dromy m is a well defined element ofB3. It is uniquely recovered from its projection
to NB3 just described and itsdegree(i.e., the image inB3=[B3, B3] D Z); the latter is
determined by the number and the types of the singular fibers of B encompassed by .
More precisely, for a disk1 � P1 as in Subsection 3.1, the composed homomorphism�1(1℄) ! B3 ! Z sends a generatori about a singular fiberFi to the multiplicity
mult Fi , see Subsection 2.2.

3.6.2. The braid relations resulting from a region. Given a trivalent•-vertexv of Sk, one can define three (germs of) angles atv, which are represented by the
connected components of the intersection ofP1 n Sk and a regular neighborhood ofv
in P1. If v is marked, we denote these anglesb12, b23, andb31, according to the two
edges adjacent to an angle, see Fig. 1 (a). The position of a region R adjacent tov
with respect to the marking atv can then be described by indicating the angle(s) that

belong toR; for example, in Fig. 1 (a) one hasb12� R. Note that a region may contain
two or even all three angles atv, see e.g. the outer nonagon and the central vertex in
Fig. 4 (b) below.

Let 1 � P1 be a closed disk as in Subsection 3.1. Assume thatv 2 �1 and that1 n v � R, cf. the shaded area in Fig. 1 (a). Then1 intersects exactly one of the

three angles atv (in the figure this angle isb12). Takev D b for the base point and
let {�1, �2, �3} be a canonical basis for�F D �1(FÆv n B) defined by the marking atv.
The following three statements are straightforward; for details see [10].

Lemma 3.6.3. If a disk 1 as above intersects angleb12 (respectively, b23), then�1 and �2 (respectively, �2 and �3) collide at any type QA singular fiber of B in1
along any path contained in1.
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Lemma 3.6.4. If a disk1 as above intersects angleb12 (respectively, b23 or b31),
the braid monodromym W �1(1℄, v)! Aut �F takes values in the abelian subgroup ofB3 � Aut �F generated by the central element(�1�2)3 and �1 (respectively, �2 or �3).
If all singular fibers in1 are of type QA, then m takes values in the cyclic subgroup
generated by�1 (respectively, by �2 or �3).

More precisely, in Lemma 3.6.4, the value ofm on a type QA p�1 fiber (type QA�
0 if

p D 1) is � p
i (assuming that1 intersects the angle spanned byei and eiC1), and its

value on a typeQDqC4 fiber is (�1�2)3� q
i . The value at a non-simple singular fiber of

type QJr, p is (�1�2)3r� p
i .

Corollary 3.6.5. Assume that a region R ofSk adjacent to a marked vertexv
contains, among others, singular fibers of typesQA pi�1 ( QA�

0 if pi D 1), i D 1, : : : , s.
Denote pD g.c.d.(pi ). Then the braid relationsmi D id resulting from these fibers are
equivalent to a single relation as follows:
– {�1, �2} p D 1 if b12� R;

– {�2, �3} p D 1 if b23� R;

– {�1, �2�3��1
2 } p D 1 if b31� R.

In particular, if an m-gonal region R contains a single singular fiber, which is of typeQA, it results in a single braid relation as above with pD m.

REMARK 3.6.6. In Corollary 3.6.5, ifB is the trigonal model of a generalized
trigonal curve QB � 6 Qk and it is�1(6 Qk n ( QB[ E)) that is computed, one should assume

in addition that the fibers considered are proper forQB.

3.6.7. An irreducibility criterion. A markingof a skeleton Sk is a collection of
markings at all its trivalent•-vertices. A marking of a generic skeleton without singular
•-vertices is calledsplitting if it satisfies the following three conditions:
(1) the types of all edges, cf. 3.6.1, are [1, 1], [2, 3], or [3,2];
(2) an edge connecting a•-vertex v and a singularÆ-vertex has index 1 atv;

(3) if a region R contains angleb12 or b31 at one of its vertices, the multiplicities of
all singular fibers insideR are even.
(Note that, given (1) and (2), the last condition holds automatically if R contains a sin-
gle singular fiber, asR is necessarily a (2m)-gon.) The following criterion is essentially
contained in [10]; it is obtained by reducing the braid monodromy to the symmetric
group S3.

Theorem 3.6.8. A trigonal curve B� 6k with connected generic skeletonSkB is
reducible if and only ifSkB has no singular•-vertices and admits a splitting marking.
Each such marking defines a component of B that is a section of6k.
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(a) (b)

Fig. 2. Skeletons of plane quintics.

REMARK 3.6.9. A splitting marking defines a component ofB as follows: over
each•-vertex v, in a canonical basis{�1, �2, �3} defined by the marking,�1 is the
generator about the distinguished component.

3.7. Example: irreducible quintics. As a simple example of application of the
techniques developed in this section, we recompute the non-abelian fundamental groups
of irreducible plane quintics, see [7] and [2]. A more advanced example is the contents
of Section 5 below.

Let C � P2 be a quintic with the set of singularitiesA6�3A2 or 3A4. Blow up the
type A6 point (respectively, one of the typeA4 points) to obtain a generalized trigonal
curve QB � 61 and let B � 62 be the trigonal model ofQB. It is a maximal trigonal
curve with the combinatorial type of singular fibers 4QA2 or 2QA4�2 QA�

0; its skeleton Sk
is shown in Figs. 2 (a) and (b), respectively.

Let R be the region of Sk containing the only improper fiber ofQB. We choose for
the reference pointb the vertex shown in the figures in grey and take for{�1, �2, �3}

a canonical basis overb defined by the marking such thatb12� R. In both cases, the
only nontrivial slopeκ D �3 is given by Paragraph 3.5.4 (1), with (p, q) D (4, 1) or
(2, 1), respectively. According to Proposition 3.4.8, the fundamental group

�1 WD �1(P2 n C) D �1(61 n ( QB [ E))

is defined by the relation at infinity and the braid relations resulting from three (out of
four) regionsR, R1, R2 shown in the figures. Using Subsection 3.6, one obtains the
following relations: for the set of singularitiesA6� 3A2, see Fig. 2 (a):

�2 D �3, {�2, �3}3 D {�1, �2�3��1
2 }3 D 1,

(�1�2�1)�2(�1�2�1)�1 D �3�1��1
3 , (�1�2)�1(�1�2)�1 D �3�2��1

3 ,

and for the set of singularities 3A4, see Fig. 2 (b):

�2 D �3, {�2, �3}5 D {�2, ��1�1�}5, �1�2��1
1 D �3�1��1

3 , �1 D �3�2��1
3 .

In the former case, the group is known to be infinite, see [7], as it factors to infinite
Coxeter’s group (2, 3, 7), see [6]. In the latter case, usingGAP [17], one can see that
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�1 is a soluble group of order 320; one has

�1=� 01 D Z5, � 01=� 001 D (Z2)4, � 001 D (Z2)2,

where 0 stands for the commutant.
Certainly, this approach applies as well to other quintics with a double singular

point. In particular, one can easily show that the groups of all other irreducible quintics
are abelian.

4. Proof of Theorem 1.2.1

In Subsection 4.1, we replace a sextic as in the theorem with its trigonal model,
which is a maximal trigonal curve in an appropriate Hirzebruch surface. Then, in Sub-
sections 4.2 and 4.3, we enumerate the possible skeletons oftrigonal models; in view
of Theorem 2.6.1, this enumeration suffices to prove Theorem1.2.1.

4.1. The trigonal models. Recall that, due to [11], an irreducible maximizing
simple sextic cannot have a singular point of typeD2k, k > 2 or more than one singu-
lar point from the listA2kC1, k > 0, D2kC1, k > 2, or E7. Thus, a sextic as in The-
orem 1.2.1 has a unique typeD point, which is eitherD5 or Dp with odd p > 7. We
will consider the two cases separately.

Both Theorem 1.2.1 and Theorem 1.2.2 are proved by a reduction of sextics to
trigonal curves. A key rôle is played by the following two propositions.

Proposition 4.1.1. There is a natural bijection�, invariant under equisingular
deformations, between Zariski open and dense in each equisingular stratumsubsets of
the following two sets:
(1) plane sextics C with a distinguished typeDp, p> 7, singular point P and without
linear components through P, and
(2) trigonal curves B� 63 with a distinguished typeQA1 singular fiber FI and a dis-
tinguished typeQA p�7 ( QA�

0 if p D 7) singular fiber FII ¤ FI .
A sextic C is irreducible if and only if so is BD �(C), and C is maximizing if and
only if B is maximal and stable.

Proposition 4.1.2. There is a natural bijection�, invariant under equisingular
deformations, between Zariski open and dense in each equisingular stratumsubsets of
the following two sets:
(1) plane sextics C with a distinguished typeD5 singular point P and without linear
components through P, and
(2) trigonal curves B� 64 with a distinguished typeQA1 singular fiber FI and a dis-
tinguished typeQA3 singular fiber FII .
A sextic C is irreducible if and only if so is BD �(C), and C is maximizing if and
only if B is maximal and stable.



770 A. DEGTYAREV

The trigonal curveB D �(C) corresponding to a sexticC via Propositions 4.1.1
and 4.1.2 is called thetrigonal modelof C.

Proof of Propositions 4.1.1 and 4.1.2. LetC � P2 and P be a pair as in the state-
ment. Blow P up and denote byQB � 61 D P2(P) the proper transform ofC; it is a
generalized trigonal curve with two points at infinity. We let B D �(C) to be the trig-
onal model of QB. The inverse transformation consists in the passage fromB back toQB � 61 and blowing down the exceptional section of61.

The distinguished fibersFI and FII of B correspond to the two points ofQB at in-
finity (FI corresponding to the smooth branch ofC at P). It is straightforward that,
generically, the types of these fibers are as indicated in thestatements. If the original
sextic C is in a special position with respect to the pencil of lines through P, these
fibers may degenerate:FI may degenerate toQA�

1 or QAs, s> 1, and FII may degenerate

to QA��
0 (in Proposition 4.1.1 withp D 7) or to QAs, s> 3 (in Proposition 4.1.2). How-

ever, using theory of trigonal curves (perturbations of dessins), one can easily see that
any such curveB can be perturbed to a generic one, and this perturbation is followed
by equisingulardeformations of QB and C.

Since C and B are birational transforms of each other, they are either both re-
ducible or both irreducible. The fact that maximizing sextics correspond to stable max-
imal trigonal curves follows from Theorem 2.4.2: for a generic sexticC as in the state-
ments, one has�(B) D �(C) � 6 in Proposition 4.1.1 and�(B) D �(C) � 1 in Prop-
osition 4.1.2.

Let C be a sextic as in Theorem 1.2.1. SinceC is irreducible, it has a unique
type D point (see above), which we take for the distinguished pointP. Denote by
B � 6k, k D 3 or 4, the trigonal model ofC and let Sk be the skeleton ofB. Let,
further, RI and RII be the regions of Sk containing the distinguished singular fibers
FI and FII , respectively. Since we assume thatC has no typeE singular points,B
has no triple points (one has tdB � 0, see Remark 2.6.2) and hence Sk has exactly
2k •-vertices and has no singular vertices. Thus, due to Theorem2.6.1, the proof of
Theorem 1.2.1 reduces to the enumeration of 3-regular skeletons of irreducible curves
with a prescribed number of vertices and with a pair (RI , RII ) of distinguished regions.
This is done is Subsections 4.2 and 4.3 below.

4.2. The case Dp , p > 7. In this case, Sk has six•-vertices,RI is a bigon, and
RII is a (p� 6)-gon. Sincep is not fixed, one can take forRII any region of Sk other
than RI .

The bigonal regionRI looks as shown in grey in Fig. 3 (a); we will call this region
the insertion. RemovingRI from Sk and patching the two black edges in the figure to
a single edge results in a new 3-regular skeleton Sk0 with four •-vertices. Conversely,
starting from Sk0 and placing an insertion at the middle of any of its edges produces
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(a) (b)

Fig. 3. A bigonal (a) and bibigonal (b) insertions.

(a) (b) (c)

Fig. 4. A typeDp singular point,p > 7.

a skeleton Sk with six•-vertices and a distinguished bigonal region, which we take
for RI . Using Theorem 3.6.8, one can see that Sk is the skeleton of anirreducible
trigonal curve if and only if so is Sk0. There are three such skeletons (see e.g. [9]);
they are listed in Fig. 4. Starting from one of these skeletons and varying the posi-
tion of the insertion (shown in grey and numbered in the figure) and the choice of the
second distinguished regionRII , all up to symmetries of the skeleton, one obtains the
22 deformation families listed in Table 1. (Some rows of the table represent pairs of
complex conjugate curves, see comments below.)

4.2.1. Comments to Tables 1 and 2. Listed in the tables are combinatorial types
of singularities and references to the figures representingthe corresponding skeletons.
Equal superscripts precede combinatorial types shared by several items in the tables. The
‘Count’ column lists the numbers (nr , nc) of real curves and pairs of complex conjugate
curves, so that the total number of curves represented by a row is nr C 2nc. The last
two columns refer to the computation of the fundamental group and indicate the param-
eters used in this computation. (A parameter list is marked with a ∗ when the general
approach does not work quite well for a particular curve. In this case, more details are
found in the subsection referred to in the table.)

REMARK 4.2.2. Items 4 and 5 in Table 1 differ by the choice of the monogonal
region RII . We assume that nos. 4 and 5 correspond, respectively, to theregions marked
with � or �, N� in Fig. 4 (b). (In the latter case, the two choices differ by anorientation
reversing symmetry, i.e., the two curves are complex conjugate.) Similarly, we assume
that nos. 13 and 14 in the table correspond, respectively, tothe monogonal regions
marked with� and � in Fig. 4 (c).
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Table 1. Maximal sets of singularities with a typeDp point, p>7.

# Set of singularities Figure Count �1 Params
1 D11� A4� 2A2 4 (a) (1, 0) 5.2
2 D9� 2A4� A2 4 (a) (1, 0) 5.3 (5, 5I 3)
3 D19 4 (b)-1 (1, 0) 5.2
4 1D7� A12 4 (b)-1 (1, 0) 5.3 (13, –I 1)
5 1D7� A12 4 (b)-1 (0, 1) 5.4 (13, 13I 1)
6 D17� A2 4 (b)-2 (1, 0) 5.2
7 D9� A10 4 (b)-2 (1, 0) 5.2
8 D7� A10� A2 4 (b)-2 (0, 1) 5.5 (3, 11I 1)
9 D13� A6 4 (c)-1, N1 (0, 1) 5.2
10 D7� 2A6 4 (c)-1, N1 (0, 1) 5.4 (7, 7I 1)
11 D15� A4 4 (c)-2 (1, 0) 5.2
12 D11� A8 4 (c)-2 (1, 0) 5.3 (9, –I 5)
13 2D7� A8� A4 4 (c)-2 (1, 0) 5.3 (9, –I 1)
14 2D7� A8� A4 4 (c)-2 (1, 0) 5.5 ∗(9, –I 1)
15 D13� A4� A2 4 (c)-3 (1, 0) 5.2
16 D11� A6� A2 4 (c)-3 (1, 0) 5.4 (3, 7I 5)
17 D9� A6� A4 4 (c)-3 (1, 0) 5.2
18 D7� A6� A4� A2 4 (c)-3 (1, 0) 5.6 (3, 7I 1)

4.3. The case D5. In this case, Sk has eight•-vertices and two distinguished
regions, a bigonRI and a quadrilateralRII . If RI is adjacent toRII , then the two re-
gions form together an insertion shown in grey in Fig. 3 (b); we call this fragment a
bibigon. As in the previous subsection, removing the insertion and patching together
the two black edges, one obtains a 3-regular skeleton Sk0 with four •-vertices. The
new skeleton Sk0 represents an irreducible curve if and only if so does Sk; hence, Sk0
is one of the three skeletons shown in Fig. 4. Varying the position of the insertion,
one obtains items 19–26 in Table 2.

REMARK 4.3.1. Unlike Subsection 4.2, this time the insertion has a certain ori-
entation, which should be taken into account. For this reason, some positions shown
in Fig. 4 give rise to two rows in the table. Similarly, most positions shown in Fig. 7
below give rise to two rows in Table 4.

Otherwise (if RI is not adjacent toRII ), removing RI produces a skeleton Sk0 with
six •-vertices and a distinguished quadrilateral regionRII . Such skeletons can easily
be classified; they are shown in Fig. 6 (whereRII is the outer region of the skeleton).
Using Theorem 3.6.8, one can see that only one of these skeletons (the last one in
Fig. 6, also shown in Fig. 5) represents an irreducible curve. Varying the position of
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Fig. 5. A typeD5 singular point: irreducible curves.

Fig. 6. A typeD5 singular point: all curves.

Table 2. Maximal sets of singularities with a typeD5 point.

# Set of singularities Figure Count �1 Params
19 D5� A6� A4� 2A2 4 (a) (1, 0) 5.7 (7, 5, 3)
20 D5� A14 4 (b)-1 (0, 1) 5.7 (15, –, 1)
21 D5� A12� A2 4 (b)-2 (1, 0) 5.7 (13, 3, –)
22 3D5� A10� A4 4 (b)-2 (1, 0) 5.7 ∗(11, 5, –)
23 D5� A8� A6 4 (c)-1, N1 (0, 1) 5.7 ∗(9, 7, –)
24 3D5� A10� A4 4 (c)-2 (0, 1) 5.7 (11, –, 1)
25 4D5� A8� A4� A2 4 (c)-3 (1, 0) 5.7 (9, 3, –)
26 5D5� A6� 2A4 4 (c)-3 (1, 0) 5.7 (5, 7, –)
27 D5� (A8� 3A2) 5-1 (1, 0) 5.9
28 D5� A10� 2A2 5-2 (1, 0) 5.8 (11, –, 1)
29 4D5� A8� A4� A2 5-3, N3 (0, 1) 5.8 (5, 9, 3)
30 5D5� A6� 2A4 5-4 (1, 0) 5.8 (5, 5, 7)
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the bigonal insertionRI (shown in grey and numbered in Fig. 5), one obtains items
27–30 in Table 2.

REMARK 4.3.2. The classification in this subsection could as well beobtained
from [3], where all 3-regular skeletons with eight•-vertices are listed.

5. Proof of Theorem 1.2.2

We fix a sexticC � P2 as in the theorem and consider the fundamental group�1 WD �1(P2nC)D �1(61n( QB[E)), where QB�61 is the generalized trigonal curve ob-
tained by blowing up the typeD singular point ofC, cf. Subsection 4.1. The group�1

is computed on a case by case basis, using the approach of Section 3 and the skeletons
found in Section 4. (We retain the notationRI , RII for the two distinguished regions
containing the improper fibers.) Without further references, finite groups are treated us-
ing GAP [17]: in most cases, theSize function returns6, which suffices to conclude
that the group isZ6 (as so is its abelianization).

5.1. A singular point of type Dp , p > 7. We take for the reference fiberFb the
fiber over an appropriate vertexvI in the boundary ofRI and choose a canonical basis

{�1,�2,�3} in F corresponding to the marking atvI such thatb12� RI . Next, we choose
an appropriate vertexvII in the boundary ofRII and a canonical basis{�1, �2, �3} in

the fiber overvII corresponding to a marking atvII such thatb23� RII . The translation
homomorphisms fromvI to vII are computed below on a case by case basis.

According to 3.5.3 (1) and 3.5.4 (2), the slopes overRI and RII areκI D �1�2 and
κII D �1, respectively, and the corresponding braid relations are

(5.1.1) [�1�2, �3] D 1, � p�6
2 (� j ) D �1� j��1

1 , j D 2, 3.

Furthermore, in view of the first relation in (5.1.1), the relation at infinity (3.4.6)
simplifies to

(5.1.2) (�1�2)2�3
3 D �1.

These four relations are present in any group�1.

5.2. The case ofRII adjacent to RI . Assume that the regionRII is adjacent to the
insertionRI (nos. 1, 3, 6, 7, 9, 11, 15, and 17 in Table 1). ThenvI andvII can be chosen to
coincide, so that� j D � j , j D 1, 2, 3, and the relation at infinity (5.1.2) simplifies further
to �2�1�2�3

3 D 1. It follows that�3 commutes with�2�1�2; hence, in view of the first
relation in (5.1.1), one has [�3, �2] D [�3, �1] D 1. On the other hand,�1 D ��1

2 ��3
3 ��1

2

belongs to the abelian subgroup generated by�2 and�3. Thus, the group is abelian.
The argument above applies to a reducible maximizing sexticC as well, provided

thatC is covered by Proposition 4.1.1 (i.e.,C has a typeDp, p > 7, singular pointP and
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(a) (b)

(c) (d) (e)

Fig. 7. A typeDp singular point,p > 7: reducible curves.

has no linear components throughP) and the distinguished regionsRI , RII of the skeleton
Sk of the trigonal modelB of C are adjacent to each other. Such curves can easily be
enumerated similar to Subsection 4.2, by reducing Sk to a skeleton Sk0 with at most four
•-vertices (see e.g. [9] and Fig. 7; note that this time we do not require that Sk0 should have
exactly four•-vertices as we accept curvesB with QD type singular fibers). The resulting
sets of singularities are listed in Table 3.

REMARK 5.2.1. In Figs. 7 (c) and (e), in addition toRII one should also choose
one of the remaining regions to contain theQD type singular fiber (as one should have

Table 3. Some reducible sextics with abelian fundamental groups.

Set of singularities Figure
The splittingC3C C3

D14� A3� A2 7 (a)-1
D10� A7� A2 7 (a)-1
D16� A2� A1 7 (a)-4
D18� A1 7 (b)-2
D14� D5 7 (c)-1

The splittingC4C C2

D11� A5� A3 7 (a)-2
D11� A7� A1 7 (a)-3
D9� A7� A2� A1 7 (a)-5
D10� A9 7 (b)-1
D9� A9� A1 7 (b)-3
D10� D9 7 (c)-2
D9� D5� A5 7 (c)-2

Set of singularities Figure
The splittingC5C C1

D10� A5� A4 7 (a)-2
D14� A4� A1 7 (a)-3
D14� 2A2� A1 7 (a)-5
D16� A3 7 (b)-1
D16� A2� A1 7 (b)-3
D12� D7 7 (c)-2
D12� D5� A2 7 (c)-2

The splittingC3C C2C C1

D12� A5� 2A1 7 (d)-1
D12� 2A3� A1 7 (d)-2
D10� A5� A3� A1 7 (d)-2
D10� D8� A1 7 (e)
D10� D6� A3 7 (e)
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P
tdB D 1, see Remark 2.6.2). The degrees of the components ofC can be determined

using Theorem 3.6.8, which describes the components in terms of generators (see Re-
mark 3.6.9), and the abelianization of relation (5.1.2).

5.3. The case ofRI and RII connected by a single edge.Assume thatRI and
RII are connected by a single edge of the skeleton (nos. 2, 4, 12, and 13 in Table 1)
and choose verticesvI and vII so that this connecting edge is [vI , vII ]. Then the trans-
lation homomorphismm[3,1], see 3.6.1, is given by

(5.3.1) �1 D �2�3��1
2 , �2 D �2, �3 D (�2�3)�1�1(�2�3).

Furthermore, in addition to (5.1.1) and (5.1.2), one has thebraid relations

(5.3.2) {�1, �3}l D {�2, �3}m D 1

from the two regions adjacent toRI , see Corollary 3.6.5. (In most cases, these two
regions coincide. Since [�1�2, �3] D 1, see (5.1.1), the relation{�1, �2�3��1

2 }l D 1
given by the corollary is equivalent to{�1, �3}l D 1.) Trying the possible values of
(l , mI p), see Table 1, withGAP [17], one concludes that all four groups are abelian.

5.4. The case ofRI and RII connected by two edges. Assume thatRI and RII

are connected by a chain� of two edges (nos. 5, 10, and 16 in Table 1) and choose
reference verticesvI and vII at the two ends of� . The translation homomorphism
m[3,1] Æm[3,1] along � is given by

�1 D Æ�1�1Æ, �2 D �2, �3 D ��1Æ�.

whereÆ D �2�3��1
2 , and relations (5.1.1), (5.1.2), and (5.3.2) with the values of (l ,mI p)

given in Table 1 suffice to show that all three groups are abelian.

5.5. The case ofRI and RII connected by three edges. Assume thatRI and
RII are connected by a chain� of three edges (nos. 8 and 14 in Table 1) and choosevI and vII at the ends of� . Under an appropriate choice of� , the translation homo-
morphismm[2,1] Æm[3,1] Æm[3,1] is

�1 D Æ�1��2��1Æ, �2 D Æ�1�1Æ, �3 D ��1Æ�,

whereÆ D �2�3��1
2 . (To make this homomorphism uniform, for no. 8 we take forRII

the monogon marked with� in Fig. 4 (b). Since the two curves in no. 8 are complex
conjugate, their groups are isomorphic.)

For no. 8, relations (5.1.1), (5.1.2), and (5.3.2) with (l , mI p) D (3, 11I 1) suffice
to show that the group is abelian. For no. 14, one should also take into account the
relation {�1, �2}5 D 1 resulting from the pentagon adjacent toRII .
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(a) (b)

Fig. 8. Regions used in the computation.

5.6. The remaining case: no. 18 in Table 1. In this case, the regionsRI and
RII are connected by a chain� of four edges. ChoosingvI and vII at the ends of� ,
one obtains the translation homomorphismm[2,1] Æm[3,1] Æm[3,1] Æm[3,1] given by

(5.6.1) �1 D Æ�1��1
1 Æ��2��1Æ�1�1Æ, �2 D Æ�1��1

1 Æ�1Æ, �3 D ��1Æ�1�1Æ�,

where Æ D �2�3��1
2 . Relations (5.1.1), (5.1.2), and (5.3.2) with (l , mI p) D (3, 7I 1)

suffice to show that the group is abelian.

5.7. A singular point of type D5, a bibigonal insertion. In the case of a type
D5 singular point, choose a pair of reference verticesvI and vII and canonical bases
{�1, �2, �3} over vI and {�1, �2, �3} over vII similar to Subsection 5.1.

If the skeleton Sk ofB has a bibigonal insertion,vI and vII can be chosen to
coincide, see Fig. 8 (a), so that one has� j D � j , j D 1, 2, 3. According to 3.5.3,
the slopes overRI and RII are κI D �1�2 and κII D (�2�3)2, respectively, the braid
relations become

(5.7.1) [�1�2, �3] D [�1, (�2�3)2] D 1,

and the relation at infinity (3.4.6) simplifies to

(5.7.2) �3�3 D (�2�3)2.

Besides,�1 has extra relations

(5.7.3) {�1, �3}l D {�2, ��1�1�}m D {�2, ��1�2�3��1
2 �}n D 1

resulting from thel -, m-, and n-gonal regions marked in the figure.
From the second relation in (5.7.1) it follows that (�2�3)2 commutes with�;

then (5.7.2) implies that (�2�3)2 also commutes with�3 and hence with�2. Thus,
(�2�3)2 is a central element and we replace�1 with its quotient G WD �1=(�2�3)2.
(Otherwise, the coset enumeration may fail inGAP.) Using GAP [17], we show that
G D Z2; then �1 is a central extension of a cyclic group, hence abelian.

In most cases, for the conclusion thatG D Z2 it suffices to use relations
(5.7.1)–(5.7.3) with the values of parameters (l , m, n) listed in Table 2. For nos. 22
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and 23 in Table 2, one should also take into account the relations

�2 D ��1�2��1�2�3��1
2 ���1

2 � (for no. 22),

�2 D ��1�2��1�1���1
2 � (for no. 23)

resulting from appropriate monogonal regions of Sk.
This computation applies as well to a reducible maximizing sextic C, provided that

it is covered by Proposition 4.1.2, the skeleton Sk of the trigonal modelB of C has
a bibigonal insertion, andC splits into two components (Figs. 7 (a)–(c) and Table 4;
the latter condition assures that the abelianizationG=[G, G] is finite). This time, the
central element (�2�3)2 has infinite order in the abelianization�1=[�1, �1] and hence
one has [�1, �1] D [G, G].

Table 4. Some reducible sextics with a typeD5 point.

Set of singularities Figure Params [�1, �1]
The splittingC3C C3 (G=[G, G] D Z4� Z3)

D5� A7� A5� A2 7 (a)-1 (6, 8, 3I –, –) SL(2, F7)
D5� A9� A3� A2 7 (a)-1 (10, 4, 3I –, –) {1}

D5� A11� A2� A1 7 (a)-4 (12, 12, 1I –, –) {1}

D5� A13� A1 7 (b)-2 (14, 14, 1I –, –) {1}

D14� D5 7 (c)-1 ∗(–, –, 1I –, –) {1}

2D5� A9 7 (c)-1 (10, 10, 1I –, –) Z5

The splittingC4C C2 (G=[G, G] D Z2� Z2)
D5� 2A5� A4 7 (a)-2 (6, 5, 6I –, –) see 5.7.6
D5� A9� A4� A1 7 (a)-3, N3 (10, 5, 2I –, –) {1}

D5� A9� 2A2� A1 7 (a)-5 (10, 3, 10I –, 2) {1}

D5� A11� A3 7 (b)-1 (12, 4, 12I –, 1) Z4

D5� A11� A2� A1 7 (b)-3 (12, 3, 12I –, 2) see 5.7.7
D12� D5� A2 7 (c)-2 (–, 3, –I –, 1) {1}

D7� D5� A7 7 (c)-2 (8, –, 8I –, 1) Z4

2D5� A7� A2 7 (c)-2 (8, 3, 8I –, –) see 5.7.8
The splittingC5C C1 (G=[G, G] D Z8)

D5� A6� A5� A3 7 (a)-2 (7, 4, 6I –, –) {1}

D5� A7� A6� A1 7 (a)-3, N3 (7, 8, 2I –, –) {1}
D5� A7� A4� A2� A1 7 (a)-5 (5, 8, 8I 2, –) {1}

D5� A9� A5 7 (b)-1 (6, 10, 10I 1, –) {1}

D5� A9� A4� A1 7 (b)-3 (5, 10, 10I 2, –) {1}

D10� D5� A4 7 (c)-2 (5, –, –I 1, –) {1}

D9� D5� A5 7 (c)-2 (–, 6, 6I 1, –) {1}

2D5� A5� A4 7 (c)-2 (5, 6, 6I –, –) {1}
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For some curves, we also take into account the additional relations

(5.7.4) {��1Æ�, Æ�1�1Æ}k0 D 1 or {��2��1, Æ�1�1Æ}k00 D 1,

Æ D �2�3��1
2 , resulting from thek0- and k00-gonal regions marked in Fig. 8 (a). As

usual, we always skip the relations corresponding to a region of Sk containing a typeQD singular fiber ofB (as these relations differ from those indicated above).
For most curves, relations (5.7.1)–(5.7.4) with the valuesof (l , m, nI k0, k00) given

in Table 4 suffice to identify�1, either because the group is already abelian or due to
Proposition 3.4.8. The few special cases are discussed below.

5.7.5. The set of singularities D14�D5. To show that�1 is abelian, one needs
to take into account the additional relation

(�2�3)�2(�2�3)�1 D �Æ��1

resulting from the other monogonal region of Sk.

5.7.6. The set of singularities D5 � 2A5 � A4. In this case,GAP [17] shows
that the commutant [�1, �1] is one of the five perfect groups of order 7680. I do not
know which of the five groups it is.

5.7.7. The set of singularities D5 � A11 � A2 � A1. One has [�1, �1] D Z.
Although [�1, �1] is infinite, it can be simplified using theGAP commands

P := PresentationNormalClosure(g, Subgroup(g, [g.1/g.2]));

SimplifyPresentation(P);

which return a presentation with a single generator and no relations.

5.7.8. The set of singularities 2D5 � A7 � A2. One has

� 01=� 001 D Z� Z3

and

� 001 D Q8 WD {�1,�i , � j , �k} � H,

where we abbreviate� 01 D [�1,�1] and � 001 D [� 01,� 01]. The first statement is straightfor-
ward. For the second one, consider the normal closureH of �1��1

2 in G. It is an order
3 subgroup ofG0 and one hasH=[H, H ] D Z. Hence [H, H ] D [G0, G0] D G00. Sim-
plifying the presentation ofH given by GAP in the same way as in Paragraph 5.7.7,
one obtains two generators�2, �3 and three relations

�4
3 D 1, �2

3��1
2 �2

3�2 D 1, ��2
2 ��1

3 �2��1
3 �2�3 D 1.
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From the first two relations it follows that�2
3 is a central element. Then the third one,

rewritten in the form�3
2 D (�2��1

3 )3�2
3 , implies that�3

2 is also central. Since the image
of �3

2 in H=[H, H ] has infinite order, [H, H ] is equal to the commutant of the quotient
H=�3

2 . The latter group is finite and its commutant isQ8.

Proposition 5.7.9. Let C be one of the sextics listed inTables 3and 4, and let
C0 be an irreducible perturbation of C preserving the distinguished typeD5 singular
point. Then�1(P2 n C0) D Z6.

Proof. It suffices to consider one of the seven sexticsC in Table 4 that have non-
abelian groups. Since the distinguished typeD5 point is preserved, the perturbation of
C is followed by a perturbationB! B0 of its trigonal model, or a perturbationQB! QB0
of the generalized trigonal curve in61 D P2(P) which is actually used in the compu-
tation of �1: one can assume that a proper typeA2r�1 or D2r�1 singular pointQ of QB
is perturbed so that the intersectionQB0 \ MQ is connected, whereMQ is a Milnor ball
about Q.

If the point Q that is perturbed is of typeD2r�1, the inclusion homomorphism�1(MQ n QB)! �1(61 n QB) is onto (asMQ contains all three generators in a fiber suf-

ficiently close toQ). On the other hand, for any perturbationQB! QB0 with QB0 \ MQ

connected, the group�1(MQ n QB0) is abelian (see [16]; the maximal perturbation with
the connectedness property isD2r�1! A2r�2.)

If Q is of type A2r�1, the group of QB0 is found similar to that of QB: it suffices to
replace the corresponding (necessarily even) parameter(s) in (l ,m,nIk0,k00), see Table 4,
with its maximal odd divisor. Considering curves and parameters one by one and using
GAP [17], one concludes that all groups are abelian.

5.8. Other curves not of torus type. In all three cases (nos. 28–30 in Table 2),
the distinguished regionsRI and RII are connected by a single edge, see Fig. 5. Choose
verticesvI , vII introduced in Subsection 5.7 as shown in Fig. 8 (b). Then the translation
homomorphism fromvI to vII is given by (5.3.1). Hence, the braid relations fromRI

and RII and the relation at infinity become

[�1�2, �3] D [(��1�1��2)2, �3] D 1

and

�3�3 D (�2��1�1�)2,

respectively. Consider also the relations

{�1, �3}l D {�2, �3}m D {��1
2 �1�2, ��1�2�}n D 1

resulting from thel -, m-, and n-gonal regions marked in Fig. 8 (b). Using the values
of (l , m, n) given in Table 2, one concludes that all three groups are abelian.
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5.9. The curve of torus type (no. 27 in Table 2). The skeleton Sk is the one
shown in Fig. 5, with the bigonal insertion labelled with 1. Take for vI and vII , re-
spectively, the upper vertex of the insertion and the centerof the large circle in the
figure. Then a complete set of relations for�1 is

[�1�2, �3] D {�2, �3}3 D {�1, �3}9 D 1,

[(�1�2)2, �3] D {�2, �3} D {�1, �2�3��1
2 }3 D 1,

�3�3 D (�1�2)2,

where �1, �2, �3 are as in (5.6.1). (We use the marking atvII such thatb12 � RII .
Along an appropriate path of length 4, the translation homomorphism fromvI to vII is
m[2,1] Æm[3,1] Æm[3,1] Æm[3,1].) Using theGAP commands

P := PresentationNormalClosure(g, Subgroup(g, [g.1/g.3]));

SimplifyPresentation(P);

one finds that [�1, �1] is a free group on two generators. Since there is a canon-
ical (perturbation) epimorphism�1 � NB3 and all groups involved are residually finite,
hence Hopfian, the above epimorphism is an isomorphism. (This approach to using
GAP [17] to treat a group ‘suspected’ to be isomorphic toNB3 was suggested to me by
E. Artal Bartolo.)

ACKNOWLEDGEMENTS. I am grateful to E. Artal Bartolo, who helped me to
identify the groupNB3 of the sextic of torus type in Theorem 1.2.2.

References
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