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Abstract
We develop a modification of the Zariski-van Kampen approfachthe com-
putation of the fundamental group of a trigonal curve withpioper fibers. As an
application, we list the deformation families and compute fundamental groups of
all irreducible maximizing simple sextics with a tyj® singular point.

1. Introduction

1.1. Principal results. We attempt to develop a modification of the classical
Zariski—van Kampen approach [18] suitable to compute tineldmental group of a gen-
eralized trigonal curve, i.e., a trigonal curve witihproper fibers at which the curve
meets the exceptional section. A similar question was adérkin [15], where the only
improper fiber was ‘hidden’ at infinity. Here, we consider ttase of arbitrarily many
improper fibers (up to two in the applications).

The basic tool used in Zariski—van Kampen’s method is thalbrenodromy related
to an appropriate pencil. This concept was introduced by [@si@i [4], [5], O. Zariski
[27], and E.R. van Kampen [18], and the term itself is propatle to B. Moishezon
[22], who has also introduced explicitly such notions asrtt@odromy at infinity, braid
monodromy factorization, and Hurwitz equivalence. For endetails on the braid mono-
dromy techniques in general and its usage in the computafidtine fundamental group
and other related invariants, as well as for the recent dpwetnts in the subject, we refer
to the excellent recent surveys by Vik.S. Kulikov [20] andl4bgober [21]. Note though
that in this paper we are not concerned with the Hurwitz esjaivce and merely use
a certain modification (see next paragraph) of the braid mi@mmy as a computational
tool. The Hurwitz equivalence of braid monodromy factoti@as of a given element,
evenBs-valued and even those of algebro-geometric origin, seerbg @ rather delicate
subject; for some new results and further references, e [1

In order to keep the braid monodromy well defind&-valued, and easily com-
putable via skeletons (see Subsection 3.6), we pass to SuEiaked genuine trigo-
nal curve and introduce the concept sibpes which compensate for the improper
fibers. We compute local slopes (Subsection 3.5), study th@iperties, and discuss
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the modifications that should be made to the braid relati@».4) and relation at in-
finity (3.4.6) in the Zariski-van Kampen presentation of fa@edamental group, see
Corollary 3.4.7.

As a simple application, in Subsection 3.7 we recompute thedmental groups of
irreducible plane quintics with a double point. (These gowere originally found in
[7] and [2], but the computation via trigonal curves is mudahder and more straight-
forward; it could easily be computerized.)

1.2. Plane sextics. A more advanced example is the case of irreducible plane
sextics with a typeD singular point.

Recall that a plane sexti€ c P? is called simpleif all its singular points are
simple, i.e., those of typeA,, Dq, Es, E7, Or Eg (see e.g. [1] for the notation). The
total Milnor numberw(C) of a simple sexticC does not exceed 19; ji(C) = 19, the
sextic is calledmaximizing Maximizing sextics are rigid: if two such sextics are equi-
singular deformation equivalent, they are related by aeutdje transformation. Each
maximizing sextic is defined over an algebraic number field.

A sextic is said to be oforus typeif its equation can be represented in the form
f23 + f32 = 0, where f, and f; are certain homogeneous polynomials of degree 2 and
3, respectively. AlternativelyC is of torus type if it is the ramification locus of a pro-
jection toP? of a cubic surfaceV c P3. This property is invariant under equisingular
deformations. Each sexti€ of torus type can be perturbed to a six cuspidal sextic,
see [27], hence the fundamental gromg(P? \ C) factors to the reduced braid group
Bs := B3/(0102)° = Z» % Z3 = PSL(2, Z); in particular, this group is never abelian
or finite.

In this paper, we study irreducible maximizing simple sextivith a typeD sin-
gular point and without typee singular points. (Sextics with typ& points are the
subject of [11], [12], and [13].) We list the equisingularfalenation families of such
sextics (Theorem 1.2.1) and compute their fundamentalpgrd@iheorem 1.2.2). As in
the previous papers, the principal tool is the reduction seztic with a triple singular
point to a generalized trigonal curve ;.

Theorem 1.2.1. There are38 deformation families of irreducible maximizing sim-
ple sextics with a typ® singular point and without typ& singular points realizing
25 sets of singularitiegsee Tables 1and 2 in Section 4) One of the families is of
torus type(the set of singularitieDs & (Ag @ 3A5), no. 27 in Table 2);the others
are not.

Theorem 1.2.1 is proved in Section 4. In principle, the st&tet can be obtained
by comparing the results of J.-G. Yang [26] (a list of all setsingularities that can be
realized by an irreducible maximizing simple sextic) anéhimada [25] (a list of sets
of singularities represented by several deformation fas)i using the global Torelli



FUNDAMENTAL GROUP OF A TRIGONAL CURVE 751

theorem forK 3-surfaces. The advantage of our approach is an explicgtagstion of
each sextic, which can further be used in the study of its gdgm

Theorem 1.2.2. Let C C P? be an irreducible maximizing simple sextic with a
type D singular point. If C is of torus typethen =1(P? \ C) is the reduced braid
group Bz = B3/(0102)° = Z, x Z3; otherwise m1(P? \ C) = Zg.

If C has a typeE point, the statement follows from [11], [12], and [13]. Othe
sextics as in Theorem 1.2.2 are considered in Section 5g ukim models constructed
in Section 4 and the approach developed in Section 3. As arediate consequence,
one obtains the following corollary.

Corollary 1.2.3. Let C be a perturbation of a sextic C as ihheorem 1.2.2If
C’ is of torus typethen 71(P?\ C’) = Bs3; otherwise m1(P?\ C') = Zg.

Recall that any induced subgraph of the combined Dynkinlgfpa simple sextic
C can be realized by a perturbation 6f

We do not treat systematically reducible curves, as thatidvaequire an enormous
amount of work. However, as a simple by-product, we do comple groups of a few
maximizing deformation families and their perturbatiosse Table 3 in Subsection 5.2
and Table 4 in Subsection 5.7. Perturbing, one obtains nroeelicible sextics with
abelian groups, see Proposition 5.7.9. Altogether, theltsesf this and a few previous
papers suggest the following conjecture.

CONJECTURE1.2.4. With the exception of the maximizing sextics realigithe
following three sets of singularities:
— 2B ® A4 Az (two curves;t; = SL(2, Fs) x Zg, see [13]),
— E7@ 2A4 & 2A;, (one curve;r; = SW(2,F19) X Zg, See [11]),
— Eg® Ay P Az ® 2A;, (one curve;m; = SW(2,Fs) © Z1o, See [12]),
the fundamental group; := 7, (P?\ C) of an irreducible simple sexti€ C P? that is
not of torus type and has a triple singular point is abelian.

(In the description of the groupsy stands for a semi-direct product aad stands
for a central productSL(2, Fs) ® Z1, is the quotient ofSL(2, Fs) x Z1, by the diago-
nal subgroupz, C CenterSL(2, Fs) x Z,.) A proof of this conjecture would require a
detailed analysis of the degenerations, which would priybkgad to reducible sextics,
and a computation of the groups of (some) reducible maximgizgextics with a type
D or type E; singular point. Then, it would remain to apply Zariski’'s eyirphism
theorem [27]. Even if the group of the degenerate curve isatmiian, its presenta-
tion arising from the skeleton is very transparent and omeezsily compute the extra
relations resulting from the perturbation, cf. Propositi®.7.9 below and similar com-
putation in [11], [12], and [13].
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At this point, it is worth mentioning that the study of the degrations of plane
sextics with simple singularities only reduces to a purdifighmetical problem about
adjacencies of their homological types: one needs to exteadattice embeddin@ &
Zh C L, h? = 2, corresponding to a given curve to an embeddifigs Zh C L, where
L is a unimodular even lattice of signature (3, 19) andis a negative definite root
system of rank 19. The precise statement and a detailed preofound in [24]. Ac-
cording to I. Shimada (private communication), one can ekecomplete (computer
aided) list of all such degenerations in the nearest futlitee understanding of adja-
cencies of simple sextics is of a certain independent isteas well: there do exist
sextics not admitting a degeneration to a maximizing ormeducible or not), the only
known example being the set of singularitie&,9 (The fundamental group of this lat-
ter curve is known.)

After Theorem 1.2.2, there still remain five maximizing slmpextics of torus type
with unknown fundamental groups; their sets of singulesitare

(A A) D A3, ADA) DA B A, (A11D 2A5) & Ay,
(AsDAs D A) DAL (AsD3A2) DALD AL

(We use the list of irreducible sextics of torus type found[23]; maximizing sets
of singularities can also be extracted from [26]. Due to [2B]s & As ® Ap) d Ay
is realized by a pair of complex conjugate curves, whereasfdabr remaining sets of
singularities define a single deformation family each.) uksig that, up to complex
conjugation, eacmorrmaximizing set of singularities is realized by at most oma&-c
nected deformation family of sextics of torus type (whichpi®bably true, but proof
is still pending), the groups of all such sextics are knowar &etails and further ref-
erences, see recent survey [14].

1.3. Contents of the paper. In Section 2, we introduce the terminology and re-
mind a few known results related to generalized trigonabesir Section 3 deals with the
fundamental groups: we remind the general approach, duaitiskZ and van Kampen
[18], specialize it to genuine trigonal curves (following]), and introduce slopes for
generalized trigonal curves. Then, we explain how the slogied the global mono-
dromy can be computed and consider an example, applyingpiv@ach to irreducible
plane quintics. In Section 4, we enumerate the deformatarilies of sextics as in The-
orem 1.2.1 by describing the skeletons of their trigonal etgdthis description is used
in Section 5 in the computation of the fundamental groups.

2. Generalized trigonal curves

In this section, we mainly introduce the terminology anc @t few known results
related to (generalized) trigonal curves in Hirzebruchfamgs. Principal references are
[10] and [11].
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2.1. Hirzebruch surfaces. Recall that theHirzebruch surfacezy, k = 0, is a ra-
tional geometrically ruled surface with @axceptional section E Ei of self-intersection
—k. The fibers of the ruling are referred to as the fiber&pf The semigroup of classes
of effective divisors onzy is generated by the classes of the exceptional se&i@md
a fiber F; one hasE? = —k, F2 =0, andE - F = 1.

Fix a Hirzebruch surfac&y, k > 1. Denote byp: Xx — P! the ruling, and let
E C Xk be the exceptional sectiorE? = —k. Given a pointb in the baseP!, we
denote byFy the fiber p~X(b). (With a certain abuse of the language, the points in
the baseP? of the ruling are also referred to as fibers Bf.) Let FZ be the ‘open
fiber F, \ E. Observe thats; is a dimension 1 affine space over, hence, one can
speak about lines, circles, angles, convexity, etcFin In particular, one can define
the convex hullconvS of a subsetSC X\ E as the union of its fiberwise convex hulls:

convS = |_J conv(Sn Fy).

beP!

2.2. Trigonal curves. A generalized trigonal curven a Hirzebruch surfac&y
is a reduced curveB not containing the exceptional sectidh and intersecting each
generic fiber at three points. In this paper, we assume intiaddiat a trigonal curve
does not contain a fiber afx as a component.

A singular fiberof a generalized trigonal curvB C Xk is a fiber F of Xy that is
not transversal to the unioB U E. Thus, F is either the fiber over a critical value of
the restriction toB of the ruling Xx — P! or the fiber through a point of intersection
of B andE. In the former case, the fiber is callpdoper, in the latter case, the fiber is
called improper and the points of intersection & and E are calledpoints at infinity
In general, the local branches & that intersect a fibeF outside of E are called
proper at F.

A (genuing trigonal curveis a generalized trigonal curvB C Xy disjoint from
the exceptional section. One h&@se |3E + 3kF|; conversely, any reduced cuni e
|3E + 3kF| not containingE as a component is a trigonal curve.

We use the following notation for the topological types obper fibers:

- Ao: a nonsingular fiber;

- A’g: a simple vertical tangent;

— Aj*: a vertical inflection tangent;

— A} anode ofB with one of the branches vertical;

— A} a cusp ofB with vertical tangent;

— ApPp=2Dq, 924 Egie, r=1,¢=0,1,2J 1 =2, p=0: asingular point
of B of the same type (see [1] for the notation) with minimal pbksiocal intersection
index with the fiber.

For ‘simple’ fibers of typesA, D, Eg, E7, andEg, this notation refers to the incidence
graph of £2)-curves in the corresponding singular elliptic fiber;staraph is an affine
Dynkin diagram.
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REMARK 2.2.1. The topological classification of singular fibersrianal curves
is close to that for elliptic surfaces, see [19], except thathis paper we admit curves
with non-simple singularities. It would probably be morengenient (but slightly less
transparent) to use an appropriate extension of Kodaimatation, for example'J, 11",
', and IV, with r = 0 and 1 referring, respectively, to the empty subscript and
in [19]. Another alternative would be to extend the seﬁe@ and INEBHG to the values
r =0 and 1. Among other advantages, in both cases an elemerdasfdrmation (see
Subsection 2.3 below) would merely increase the value b§ 1. However, | chose to
retain the commonly accepted notation for the types of snghgularities.

The fibers of typesAi*, A%, andAj are calledunstable all other singular fibers
are calledstable A trigonal curve B is stableif so are all its singular fibers. (This
notion of stability differs from the one accepted in algébrgeometry; we refer to the
topological stability under equisingular deformations&f An unstable fiber may split
as follows: A}* — 2A%, Ar — A; @ A}, or Ay — A, @ A}, the splitting not changing
the topology of the pair Xk, B).)

The multiplicity multF of a singular fiberF of a trigonal curveB is the number of
simplest (i.e., type&g}) fibers into whichF splits under deformations dB. For theA
type fibers, one has mly = 0, multA} = 1, multA}* = 2, multA} = 3, multA; = 4,
and muI'rAp = p+ 1 for p > 0. Each elementary transformation (see Subsection 2.3
below) contractingF increases mulE by 6. The sum of the multiplicities of all sin-
gular fibers of a trigonal curv® C Xy equals 1R.

2.3. Elementary transformations. An elementary transformationf ¥y is a bi-
rational transformatior:y --> 1 consisting in blowing up a poinP in the excep-
tional section of%y followed by blowing down the fibelr through P. The inverse
transformationXy,; --> Xk blows up a pointP’ not in the exceptional section dfy 1
and blows down the fibeF’ through P’.

An elementary transformation converts a proper fiber a®vidl
(1) Ag— D4 — Jy0— -+ — Jo— - (not detected by thg-invariant);

(2) Ay > Ds —>Jdp1— -+ = 1= (j =00, ordj = 1);

() Ap1—=Dpu—dap—--—=dp—=- (p=2j =00, ordj = p);

(4) Ai* > Eg —>Epp—---—>Eg —--- (j =0, ordj = 1 mod 3);

(5) At 5E; >E;3— - > Egi1—--- (j =1, ordj = 1 mod 2);

(6) A} »Eg—>Ey—>-+—Eg2— -+ (j =0, ordj = 2 mod 3).

For the reader’s convenience, we also indicate the vakgey and the ramification index
ord j of the j-invariant, see Subsection 2.4 below, which is invariardernelementary
transformations. In a neighborhood of the fiber, jR@variant has the formy + t°d1 if
v=0or1or ¥t if v = oo.

Let B C >y be a generalized trigonal curve. Then, by a sequence of alenye
transformations, one can resolve the points of interseatibB and E and obtain a
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genuine trigonal curvéd C Xy, k > k, birationally equivalent td8. The trigonal curve
B obtained fromB by a minimal number of elementary transformations is cateel
trigonal modelof B.

REMARK 2.3.1. Alternatively, given a trigonal curvB C Xy with triple singu-
lar points, one can apply a sequence of inverse elementamgfarmations to obtain a
trigonal curveB’ C Xy, k' <k, birationally equivalent toB and with A type singular
fibers only. This curveB’ is called in [10] thesimplified modebf B.

2.4. Thej-invariant. The (functiona) j-invariant jg: P' — P! of a general-
ized trigonal curveB C Xy is defined as the analytic continuation of the function send-
ing a pointb in the baseP! of X, representing a nonsingular fib&, of B to the
j-invariant (divided by 13) of the elliptic curve covering, and ramified at the four
points of intersection of, and B + E. The curveB is calledisotrivial if jg = const.
Such curves can easily be enumerated, see e.g. [10].

By definition, jg is invariant under elementary transformations. The vahfe$g
at the singular fibers oB are listed in Subsection 2.3. The poifitg P* with jg(b) =
0 and ord jg = 0 mod 3 orjg(b) =1 and ord jg = 0 mod 2 correspond to fibers
Fp admitting extra symmetries. Assumirig, proper (hence nonsingular), consider the
three points of intersection d8 and F;. Then
— the three points form an equilateral triangleji(b) = 0, ord, jg = 0 mod 3;

— one of the points is at the center of the segment connecliagtwo others if
js(b) =1, ord, jg = 0 mod 2.

DEFINITION 2.4.1. A non-isotrivial trigonal curveB is called maximalif it has
the following properties:
(1) B has no singular fibers of typBs or J; o, I = 2;
(2) j = jg has no critical values other than 0, 1, and
(3) each point in the pull-back=1(0) has ramification index at most 3;
(4) each point in the pull-back='(1) has ramification index at most 2.

An important property of maximal trigonal curves is theigidity, see [10]: any
small fiberwise equisingular deformation of such a cuBsec Ty is isomorphic toB.
Any maximal trigonal curve is defined over an algebraic nunfledd. Such curves are
classified by their skeletons, see Theorem 2.6.1 below.

A maximal trigonal curveB with simple singularities only can be characterized
in terms of its total Milnor numbeg(B) (i.e., the sum of the Milnor numbers of all
singular points ofB). The following criterion is proved in [11].
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Theorem 2.4.2. For a non-isotrivial genuine trigonal curve B Xy with simple
singularities only one has

(2.4.3) u(B) < 5k — 2 — #{unstable fibers of B
the equality holding if and only if B is maximal.

REMARK 2.4.4. The inequality in Theorem 2.4.2 may not hol@ikas non-simple
singular points, as each elementary transformation pinguec non-simple singular point
increasest by 6 while increasing by 1.

2.5. Skeletons. The skeletonSk = Skg of a trigonal curveB C X is defined as
Grothendieck'sdessin ¢enfantsof its j-invariant jg. More precisely, Sk is the planar
map jg1([0, 1]) ¢ S =~ PL. The pull-backs of 0 are called-vertices and the pull-
backs of 1 are called-vertices The e- and o-vertices are calleeéssential the other
vertices that Sk may have (due to the critical valuesjgfin the interval (0, 1)) are
called unessential

By definition, Sk is a graph in the base of the rulilly — P!, so that one can
speak about the fibers dfy represented by points of Sk. On the other hand, for the
classification statements, see e.g. Theorem 2.6.1 belois, iihportant that Sk is re-
garded as a graph in thepological sphereS?; the analytic structure is given by the
skeleton itself via Riemann’s existence theorem.

The e-vertices of valency 1 mod 3 or 2 mod 3 anelertices of valency 1 mod 2
are calledsingular, they correspond to singular fibers of the curve of one of {ped
2.3 (4)—(6). All othere- and o-vertices are calleshonsingular

After a small fiberwise equisingular deformation of a trigbrcurve B one can
assume that its skeleton Skas the following properties:

(1) all vertices of Sk are essential;

(2) eache-vertex has valency at most 3;

(3) eacho-vertex has valency at most 2.

A skeleton satisfying these conditions is callgeneric Note that any skeleton sat-
isfying condition (1) is a bipartite graph. For this reasam,the drawings below we
omit bivalento-vertices, assuming that such a vertex is to be insertedemtiudle of
each edge connecting twevertices. In particular, for a generic skeleton, only silag
monovalento-vertices are drawn.

A region of a skeleton Sk- P! is a connected component of the complemht,
Sk. One can also speak abatlbsed regionswhich are connected components of the
manifold theoretical cut ofP! along Sk. (In general, a closed regid® is not the
same as the closure of the corresponding open regignWe say that a regiomR is
an m-gon (or an m-gonal regioi if the boundary of the corresponding closed region
R containsm e-vertices. For example, in Fig. 4 (b) below, the three regiomarked
with «, B, and 8 are monogons, whereas the outer region is a nonagon. In Hig), 4
there are two monogons (marked withand 8) and two pentagons.
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Each regionR of Skg contains a finite number of singular fibers Bf which can
be of one of the types 2.3 (1)—(3) (excludifg, which is not singular). One can use
a sequence of inverse elementary transformations and ttahese fibers to thé type
fibers starting the series. R is an m-gonal region, the total multiplicity of thesa
type fibers equalsn.

2.6. Skeletons and maximal curves. The skeleton Sk of a maximal trigonal
curve B C Xy is necessarily generic and connected. (It follows that eagion of Sk
is a topological disk.) Eacim-gonal regionR of Skg contains a single singular fiber
Fr of B; its type is one of Section 2.3 (2) ih = 1 or one of Section 2.3 (3) with
p=mif m=>= 2. Thus, the type ofFg is determined by its multiplicity. The other
singular fibers ofB are over the singular vertices of $kthe type of such a singular
fiber F, is also determined by its multiplicity (and the type and tlaency of v).

The function tg sending each regioR to the multiplicity multFr and each sin-
gular vertexv to the multiplicity multF, is called thetype specification It has the
following properties:

(1) tsz(m-gonal regionR) = m+ 6s, S € Zxo;
(2) tsg(singulare-vertex v) = 2(valency ofv) + 6s, s € Zo;
(3) tsg(singularo-vertex)= 3+ 6s, S € Zxo;
(4) the sum of all values of gsequals 1R.
The following statement is essentially contained in [10].

Theorem 2.6.1. The map B— (Skg, tsg) establishes a bijection between the set
of isomorphism class&equivalently fiberwise equisingular deformation clasye$ max-
imal trigonal curves inXy and the set of orientation preserving diffeomorphism @ass
of pairs (Sk, ts),whereSk ¢ S is a connected generic skeleton atsds a function on
the set of regions and singular vertices $i satisfying conditiong1)—<(4) above.

REMARK 2.6.2. Often it is more convenient to replacg tsith the Z--valued
function tds sending each region and singular vertex to the integgpearing in (1)—(3).
In term of ts;, the indexk of the Hirzebruch surfac&y containingB is given as follows,
cf. [11]:

e+ #o(1) + #.(2) = 2(k— Y td),

where # is the total number of-vertices, #(i) is the number of«-vertices of va-
lencyi, and)_tdg is the sum of all values of ¢l The singular points 0B are simple
if and only if tdg takes values in0, 1}; in this case,Y_ tdg is merely the number of
triple singular points ofB.
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3. The Zariski-van Kampen method

In Subsections 3.1-3.3, we briefly remind the classical skarvan Kampen ap-
proach [18] to the computation of the fundamental group oflebraic curve and the
construction of [8], which makes the braid monodromy of augjea trigonal curve al-
most canonically defined. In Subsection 3.4, we introdueedbncept ofslope which
lets one treat a generalized trigonal curve in terms of igoiral model and, in partic-
ular, keep the braid monodronB;-valued and easily computable. In Subsections 3.5
and 3.6, we compute the local slopes and cite the resultsQjfrilated to the global
braid monodromy of a trigonal curve in terms of its skeletBmally, in Subsection 3.7,
we consider a simple example, computing the groups of itk quintics.

3.1. Proper sections and braid monodromy. Fix a Hirzebruch surfac&y, k> 1,
and a genuine trigonal curv® C Xx. The term ‘section’ below stands for a continuous
section of (an appropriate restriction of) the fibration =, — P*.

DEFINITION 3.1.1. LetA c P! be a closed (topological) disk. A partial section
s: A — Xy of pis calledproper if its image is disjoint from bothE and convB.

The following statement is found in [8]; it is an immediatensequence of the
fact that the restrictiorp: p~1(A)\ (E UconvB) — A is a locally trivial fibration with
connected fibers and contractible base.

Lemma 3.1.2. Any diskA C P! admits a proper section:sA — X,. Any two
proper sections oveA are homotopic in the class of proper sectipfisrthermore any
homotopy over a fixed point & A extends to a homotopy ovey.

Fix a disk A ¢ P! and lethy, ..., b € A be all singular and, possibly, some
nonsingular fibers o8 that belong toA. Denote F; = p~*(ly). We assume that all
these fibers are in the interior @f. DenoteA® = A\ {by,...,ln} and fix a pointb € A,
The restrictionp®: p~1(A%)\ (B U E) — A’ is a locally trivial fibration with a typical
fiber Fg \ B, and any proper sectios: A — X restricts to a section op*. Hence,
given a proper sectiog, one can define the group: := m1(FS \ B,s(b)) and thebraid
monodromym: (A%, b) — Autzg. More generally, given a path: [0, 1] — A* with
y(0) = b, one can define theanslation homomorphism, : 7 — m1(F; ) \ B, s(h)).

Denote byp, € ¢ the ‘counterclockwise’ generator of the abelian subgrdug:
m1(Fg \ convB) C #¢. (In other words,py is the class of a large circle ifS encom-
passing conB N F¢.) Since the fibrationp~1(A) \ (convB U E) — A is trivial, hence
1-simple, pp is invariant under the braid monodromy and is preserved kyttansla-
tion homomorphisms. Thus, there is a canonical identificatf the elementey, oy
in the fibers over any two points,b” € A*; for this reason, we will omit the subscript
b in the sequel.
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In this paper, we reserve the terms ‘braid monodromy’ andngftation homo-
morphism’ for the homomorphisms: constructed above using roper section s.
Under this convention, next lemma follows from Lemma 3.1 dhe obvious fact
that the braid monodromy is homotopy invariant.

Lemma 3.1.3. The braid monodromyn: 71(A*, b) — Autmg is well defined and
independent of the choice of a proper section oxeipassing through @). Given a
path ¥ in A*, the translation homomorphism, is independent of the choice of a
proper section passing through(;50)) and gy (1)) up to conjugation byp.

3.2. The Zariski-van Kampen theorem. Pick a basis{ai, ay, a3} for 7 and
a basis{yi, ..., y} for 71(A% b). Both Fg \ B and A* are oriented punctured planes,
and we usually assume that the bases are standard: eachelessent is represented
by the loop formed by the counterclockwise boundary of a bmiisk centered at a
puncture and a simple arc connecting this disk to the baset;pall disks and arcs
are disjoint except at the common base point. With a certhirse of the language,
we will refer to y; (respectivelywj) as the generator about theth singular fiber (re-
spectively, about thg-th branch) ofB. We also assume that the basis elements are
numbered so thatyaoaz = p and y; - - -y is freely homotopic to the boundayA.
Under this convention on the badig;, a2, a3}, the braid monodromy does indeed take
values in the braid grouf; C Aut zf.

Using a proper sectios, we can identify each generater with a certain elem-
ent of the groupri(p~3(A%) \ (B U E), s(b)); this element does not depend on the
choice of a section. The following presentation of the lateoup is the essence of
Zariski—-van Kampen’'s method for computing the fundamegtalup of a plane alge-
braic curve, see [18] for the proof and further details.

Theorem 3.2.1. In the notation abovieone has

m(p~H(A%) \ (B U E), s(b))
= (o, 02,03, v, .- W | Yty =mi(e), i =1,...,r, j=1,2,3,

wherem; = m(y), i =1,...,r.

3.3. The monodromy at infinity and relation at infinity. Let A C P! be a
disk as above. ConnectinpA with the base poinb by a path inA* and traversing it
in the counterclockwise direction (with respect to the caca complex orientation of
A), one obtains a certain elemetA] € w1(A¥, b) (which depends on the choice of
the path above). The following two statements are provedjn [
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Lemma 3.3.1. Assume that the interior af contains all singular fibers of B. Then
for any« e r, one hasn([0 A])(«) = pXap~X. In particular, the imagem([9A]) € Aut ¢
does not depend on the choices in the definitiofjoaf]; it is called the monodromy
at infinity.

Lemma 3.3.2. Assume that the interior oA contains all singular fibers of B.
Then a presentation for the group

m(zk\ (B vEU(J Fi>, s(b))
i=1

is obtained from that given byemma 3.2.1by adding the so called relation at infinity
k
yi-onpt=1

It remains to remind that patching back in a singular filBgrresults in an extra
relationy; = 1. Hence, for agenuinetrigonal curveB, one has

(3.3.3) (2 \ (BUE)) = (a1, az, a3 |mi =id, i =1,...,r, pk=1),

where eaclbraid relationm; =id, i = 1,...,r, should be understood as a triple of
relationsm; («j) = «j, j =1, 2, 3.

3.4. Slopes. Now, let B C ; be ageneralizedtrigonal curve, and leB C X
be its trigonal model. Denote bk, ..., F the singular fibers oB and leth; € P!
be the projection ofF, i =1,...,r. The birational transformation betwedh and B
establishes a diffeomorphism

ER\<|§UEUUH>EEk\(BUEUUFi>;

i=1 i=1

hence, it establishes an isomorphism of the fundamentalpgto LetT; be a small
analytic disk inX; \ E transversal td~ and disjoint fromB and from the other singular
fibers of B, and letl’; be the transform of} in . We will call T} a geometric slope
of B at F. According to van Kampen’s theorem [18], patching back ia fiber F
results in an extra relatiord[] = 1 or, equivalently, §TI';] = 1.

Fix a proper (with respect to the genuine trigonal cuBjesections over a disk
A C P! containing the projectiorp(Tj). Pick a base poinb/ € p(aI';) and denote
F/ = p (b)) andy/ = [p(dT})]. As above, we can regarg’ both as an element of
m1(A%, b)) and, vias, as an element of1(p(A%) \ (B U E), s(b)). Furthermore, we
can assume that the basis elemgnt 71(A%, b) introduced in Subsection 3.2 has the
form yi = ¢ -y - ¢ L, whereg; is a simple arc inA* connectingb to b.
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Dragging the nonsingular fibeff/ along y' and keeping two points in the image
of s and inT, one can define theslative braid monodromy

m® e Aut 7y ((F/)° \ B, F/ N T, s(b))).

DEFINITION 3.4.1. Thelocal slopeof a generalized trigonal curvB at its sin-
gular fiberF is the elementy := mi’e'(f;‘)-fl e mi((F)°\ B, s(b)), whereg; is any
path in ()°\ B connectings(b)) and F/ NT;. The @lobal) slope of B at F; (defined
by a standard basis elemept or, more precisely, by a path connecting the base
point b to a pointh] ‘close’ to by) is the images; = mgl(%{) € 7.

The following two statements are immediate consequencekeotiefinition.

Lemma 3.4.2. The slopes is defined by the curv&® and generatory; up to
conjugation byp (due to the indeterminacy of the translation homomorphisee
Lemma 3.1.3)and the transformatiorss — m;(B)» 8%, B € n¢ (due to the choice
of path& in the definitio).

Lemma 3.4.3. In the fundamental groupr1(p~tp(dT) \ (B U E), s(b)), the con-
jugacy class containingoI’;] consists of all elements of the forpis, where 4 is a

local slope ofB at F.

Note that, in view of Lemma 3.4.2 and the relatiop))(18y’ = m(y/)(B),
cf. Lemma 3.2.1, the elemenis s do indeed form a conjugacy class.

As a consequence, in terms of the bgsig,az,a3,v1,...,14}, the relation §I] =1
resulting from patching the singular fib&; in the original surfacex; becomesy, =
s L. Eliminating 4, the relationsy, lajy = mi(«;), j = 1,2,3, cf. Lemma 3.2.1, turn
into the braid relations

(3.4.4) st =mi(e), j=1,2,3, or m =id,

wherem; : o %i‘lmi ()74 is the twisted braid monodromy
Clearly, if F; is a proper fiber, thew’; = I and the path; in the definition can
be chosen so that; = 1. In this casem; = m; is still a braid.

REMARK 3.4.5. In view of Lemma 3.4.2 and the fact thatis invariant under
m;, for each fixedi = 1,...,r the normal subgroup ofrr defined by the relations
m; = id does not depend on the choice of a particular slepeand the projection of
2 to the quotient grouprr /m; = id is a well defined element of this group (depending
on the curveB and basis elemeng; only). In particular, each slope commutes with
p (in the corresponding quotient), making irrelevant the myuity in the definition of
the translation homomorphisms, see Lemma 3.1.3.
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If all singular fibers are patched, hence all generagprare eliminated, the relation
at infinity takes the form

(3.4.6) o =54 -y

Finally, one obtains the following statement, cf. (3.3.8xpressing the fundamental
group w1 (X \ (B U E)) in terms of the slopes and braid monodromy of trenuine
trigonal curveB.

Corollary 3.4.7. For a generalized trigonal curvé c > one has
1S\ (BUE)) = (a1, az, a3 | iy = id, i =1,...,1, p" =34 ++31),

where each braid relatiomm; =id, i = 1,...,r, should be understood as a triple of
relationsm;(«j) = «aj, j =1,2,3

The following statement simplifies the computation of theups.

Proposition 3.4.8. In the presentation given b@orollary 3.4.7,0ne can omi{any)
one of the braid relationsy = id.

Proof. First, show that the first relation; = id can be omitted. Each braid rela-
tionm; =id, i =1,...,r, can be rewritten asja = mj(«)s, o € 7g. Hence, using all
but the first braid relations, one can rewrite the relationnéhity (3.4.6) in the form
P =3a---%, where =m;o---omj 1(s5) fori =1,...,r —1 and = s4. On the
other hand, sincen, o---omy is the conjugation by ¥, see Lemma 3.3.1, the product
W, o---omy is the conjugation by ¥ --- 7% = 1. It is the identity, and the relation
my = id follows fromm, =--- =m; =id.

Now, assume that the relation to be omittednig = id for somed = 2,...,r.
Since p is invariant undermy, the relationm; = id implies thats; commutes with
p. Then, due to (3.4.6), it also commutes with --- s, and (3.4.6) is equivalent
to pX = s34 -+ 2. Proceeding by induction and using onfiy; = -+ = Mg =
id, one can rewrite (3.4.6) in the form* = s¢q_1--- 504 - - - 24, the right hand side
being a cyclic permutation ofs --- 5. On the other hand, the cyclic permutation
{(Ydv - -+ ¥» Y1, - - ., Vd—1} iS another standard basis fag (A%, b), with the same (but
rearranged) slopes; and braid monodromiesy;, and with respect to this new basis
the braid relation to be omitted is the first one. Hence theestant follows from the
first part of the proof. ]

REMARK 3.4.9. A by-product of the previous proof is the fact that,dwlo (all
but one) braid relations the slopes, . .., s cyclically commute, i.e., one has

My st MM = M1 M1 Y
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for eachd = 2,...,r. In particular, if there are only two nontrivial slopes (whi
is always the case in Section 5 below), their order in theticrlaat infinity (3.4.6)
is irrelevant.

3.5. Local slopes and braid relations. Given two elementsy, 8 of a group
and a nonnegative integen, introduce the notation

(@B (Ba) K, if m=2k is even,
e, Bm = ((a,B)ka)((,Ba)k,B)’l, if m=2k+1 is odd.

The relation{«, B}m = 1 is equivalent toc™ = id, whereo is the Artin generator of
the braid grougB, acting on the free grougw, 8). Hence,

(3.5.1) {a, B}m = {a, BIn =1 s equivalent to {«, Blgcd.mn = 1.

For the small values ofn, the relation{«, 8}m = 1 takes the following form:
— m=0: tautology;

— m=1: the identificatione = B;

— m= 2: the commutativity relationd], 8] = 1,

— m= 3: the braid relationxBa = Bap.

Let F be a typeAp (type Aé if p=0) singular fiber of a trigonal curvB, and let
bi = p(F) C A be its projection. Pick a simple agg: [0, 1] = A connecting the base
point b to by and such that; ([0, 1)) C A®. We say that two consecutive generatars
aj41 of g, j =1 or 2, collide at K (along ¢;) if there is a Milnor ballM about the
point of non-transversal intersection 8f and F; such that, for each sufficiently small
€ > 0, the images oty; and «j,1 under the translation along the restrictigno 1
are represented by a pair of loops that differ only insMe whereas the image of the
third generator is represented by a loop totally outdidle

In Paragraphs 3.5.2—-3.5.4 below, we pick a standard Hasjsr,, a3} for 7 and
assume that two consecutive elements of this basis coltide along a certain patl;;
then we use this patly to construct a generatgf aboutF as in Subsection 3.2. In
other words, it i that is used to define the global braid monodromyand the slope
. All computations are straightforward, using local norrf@ms of the singularities
involved; we merely state the results.

We denote by, o, the Artin generators of the braid grol§g acting on the free
group g = {ay, a2, a3), SO thato;: a; > aiai+1ai_l, A, i =1,2.

Note that the slopes is only useful if the fiberF; is to be patched back in (as
otherwise the presentation for the gromp(X; \ (BUEUF U---)) would contain
the original generatoy; rather thans;). For this reason, after a small equisingular
deformation ofB + E, one can assume th& is maximally transversal t&; at infinity.
We do make this assumption below.
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3.5.2. A proper fiber. Assume thatF is a proper type&p (type Ag if p=20)
fiber of B = B. Then one has:
(1) if ¢y anday collide atF, thenm; = olp+l and >4 = 1, so that the braid relations
are {a, oo} pr1 = 1,
(2) if ap andag collide atF, thenm; = 02p+1 and s = 1, so that the braid relations
are {az, asz}ps1 = 1.

3.5.3. A nonsingular branch at infinity. Assume that~ is a typeAp singular
fiber (typeAf; if p=0 or no singularity ifp = —1) and a single smooth branch Bf
intersectskE at F; N E with multiplicity g = 1. ThenF; is a typeApﬂeI singular fiber
of B and one has:

(1) if & anda;, collide atF;, thenm; = o™ and 34 = (ay2)9, so that the braid
relations are{ay, az} pr1 = [(102)9, 3] = 1,
(2) if a2 andas collide atF;, thenm; = 02" and 34 = (apw3)9, so that the braid

relations are{ay, az}pr1 = [a1, (203)?] = 1.

3.5.4. A double point at infinity. Assume thatB has a typeA, singular point
at F; N E and intersectE at this point with multiplicity 2, 1<q < (p+1)/2. Then
F is a typeAp_zq singular fiber ofB (with the same convention as in Paragraph 3.5.3
for the valuesp —2q = 0 or —1) and one has:

(1) if a1 and a, collide at Fi, thenm; = o”7*! and s = oJ, so that the braid
relations arer” " Ha)) = adajaz?, j = 1, 2;
(2) if ap and a3 collide at F;, thenm; = O_2p72q+l and 54 = of, so that the braid
relations ares,” " (a)) = adaja; %, j = 2, 3.

(If p—2q = -1, there is no collision aneh; = id. In this case, the slope ig = a?,
whereq;j is the generator about the proper branch of the original @y

Now, assume thaB has a typeA,,_; singular point at N E and the two branches
at this point intersecg with multiplicities p and p 4+ g for someq > 1. ThenF is a
type qu_l singular fiber ofB, and one of the two branches Bf at its typeAy;—1 sin-
gular point inF; is distinguished: it is the transform of the proper branctBofChoose
generatorsy;, ap, a3 SO thata; anda, collide atF and «; is the generator about the
distinguished branch dB. Then
R m = olzq and »4 = (1az)%af, so that the braid relations aref], a;] = 1 and
[(alaz)qaf, ag] = 1.

Finally, assume thaB has a typeA,, singular point atF N E and intersectsE
at this point with multiplicity 20 + 1. ThenF is a typeA’{ singular fiber ofB and,
in an appropriate basigy;, a2, a3}, such thato, is the generator about the branch of
B transversal toF;, one has
(4) m; = 010201 and s = ayaf ™, so that the braid relations ares «b*'] = 1 and

o3 = afo{lo{;p.



FUNDAMENTAL GROUP OF A TRIGONAL CURVE 765
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(b)

Fig. 1. A marking (a) and a canonical basis (b).

3.5.5. A triple point at infinity. Assume thatB has a triple point at~ N E
and consider the (generalized) trigonal cuiBé obtained fromB by one elementary
transformation centered at this point. Then the transfﬁ(nmf I3 is still disjoint from
B’ and thus can be used to define the slopeBothence the slope oB at F; equals
that of B’. As a consequence, one has the following statement.

Corollary 3.5.6. For B C X and B’ C X, ; as above there is a canonical iso-
morphismzy(S¢ \ (B U E)) = m1(Zg,, \ (B' U E)).

3.6. Braid monodromy via skeletons. Let B C X be a trigonal curve, and let
Sk c P! be its skeleton. Below, we cite a few results of [10] conamgnthe braid
monodromy ofB in terms of Sk. For simplicity, we assume that aivertices of Sk
are trivalent and all its-vertices are bivalent (hence omitted). An alternativecdps
tion, including more general skeletons, is found in [15].

Recall that amarking at a trivalente-vertex v of Sk is a counterclockwise order
e, &, e; of the three edges adjacent t9 see Fig. 1 (a). We consider the indices
defined modulo 3, so that ;3 = . The three points of intersection @& and the
fiber F, over v form an equilateral triangle. These points are in a canbrooe-to-
one correspondence with the edggsof Sk atv. Hence, a marking gives rise to a
canonical basis{a, 2, a3} of the groupre = 71(F; \ B), see Fig. 1 (b); this basis is
well defined up to simultaneous conjugation by a powep Gf ajaoas.

As in Subsection 3.5, let; and o, be the Artin generators of the braid groiBg
acting on{u1,a2,a3). Denoteos = a{logal and extend indices to all integers vip.3 =
oi. Note that the mapo{_1, o) + (0i, 0j+1) IS an automorphism dBz. Recall also that
the center of; is the cyclic subgroup generated by )3 = (0203)° = (0301)3.

3.6.1. The translation homomorphisms. Let u andv be two markede-vertices
of Sk connected by a single edge to indicate the markings, we use the notation
e=1i, j], wherei and j are the indices o€ at u andv, respectively. Choosing a pair
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of canonical bases defined by the markings, one can idemigygtoupsr,(F; \ B) and
m1(Fy \ B) with the ‘standard’ free grougaa, az, az) and thus regard the translation
homomorphismme: m1(FS \ B) — m1(F; \ B) as an automorphism ofy, oz, a3). It
is a braid. However, since both the bases and the homomarphisitself are only
defined up to conjugation by (unless a proper section is fixed, see Lemma 3.1.3),
this automorphism should be regarded as an element of theeddraid grougs =
B3/(0102)% = PSL(2,Z). On the other hand, this ambiguity does not affect the compu
tation of the fundamental group, cf. Remark 3.4.5.

With the above convention, the translation homomorphisg;; € B; along an
edgee =[i, j] is given as follows:

Miji+1] = 0, M{iy1i] = o 4, mii] = 0i0i_10i, i € Z.

The translation homomorphism, < B3 along a pathy composed by edges of Sk is
the composition of the contributions of single edgesy lis a loop, the braid mono-
dromym, is a well defined element d8s. It is uniquely recovered from its projection
to B; just described and itdegree(i.e., the image inBz/[Bs, B3] = Z); the latter is
determined by the number and the types of the singular fiblleE® encompassed by.
More precisely, for a disk\ C P! as in Subsection 3.1, the composed homomorphism
m1(A%) — Bz — Z sends a generatgr about a singular fibeF; to the multiplicity
mult F;, see Subsection 2.2.

3.6.2. The braid relations resulting from a region. Given a trivalente-vertex
v of Sk, one can define three (germs of) anglesvatvhich are represented by the
connected components of the intersectiorPdf\ Sk and a regular neighborhood of
in PL. If v is marked, we denote these anglﬁ& 23, and31, according to the two
edges adjacent to an angle, see Fig. 1 (a). The position ofjianrdR adjacent tov
with respect to the marking at can then be described by indicating the angle(s) that
belong toR; for example, in Fig. 1 (a) one hd2 c R. Note that a region may contain
two or even all three angles at see e.g. the outer nonagon and the central vertex in
Fig. 4 (b) below.

Let A c P! be a closed disk as in Subsection 3.1. Assume thatdA and that
A\ v C R, cf. the shaded area in Fig. 1 (a). Thenintersects exactly one of the
three angles at (in the figure this angle ii\Z). Takev = b for the base point and
let {a1, a2, a3} be a canonical basis forr = 71(F; \ B) defined by the marking ai.

The following three statements are straightforward; foraie see [10].

Lemma 3.6.3. If a disk A as above intersects angle2 (respectively 23), then
ay and oy (respectively o, and «3) collide at any typeA singular fiber of B inA
along any path contained in.
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Lemma 3.6.4. If a disk A as above intersects angle2? (respectively 23 or 31),
the braid monodromyn: m1(A%, v) — Aut g takes values in the abelian subgroup of
Bs; C Aut 7 generated by the central elemefatio,)® and oy (respectivelyo, or o3).

If all singular fibers in A are of typeA, then m takes values in the cyclic subgroup
generated by (respectivelyby o, or o3).

More precisely, in Lemma 3.6.4, the value wfon a typeAp_l fiber (typeA{; if
p=1)is oip (assuming thatA intersects the angle spanned gyand e ;), and its
value on a type|5q+4 fiber is (<7102)3oiq. The value at a non-simple singular fiber of
type jr,p is (0102)% 0.

Corollary 3.6.5. Assume that a region R &k adjacent to a marked vertex
contains among otherssingular fibers of types&pi_l (Af; if pp=1),i=1,...,s.
Denote p= g.c.d.(). Then the braid relationsy; = id resulting from these fibers are
equivalent to a single relation as follows
- H{ap,a}p=1if 12c R;

— {ap a3}y =1if 23C R;

— {ag, a3y, = 1if 31C R.

In particular, if an m-gonal region R contains a single singular fibehich is of type
A, it results in a single braid relation as above with=pm.

REMARK 3.6.6. In Corollary 3.6.5, ifB is the trigonal model of a generalized
trigonal curveB C g and it is nl(ER\(E? U E)) that is computed, one should assume
in addition that the fibers considered are proper Bor

3.6.7. Anirreducibility criterion. A markingof a skeleton Sk is a collection of
markings at all its trivalene-vertices. A marking of a generic skeleton without singular
e-vertices is calledsplitting if it satisfies the following three conditions:

(1) the types of all edges, cf. 3.6.1, are [1, 1], [2, 3], or4B,

(2) an edge connecting &vertex v and a singular-vertex has index 1 at;

(3) if a region R contains anglefz or 31 at one of its vertices, the multiplicities of
all singular fibers insideR are even.

(Note that, given (1) and (2), the last condition holds awttically if R contains a sin-

gle singular fiber, aR is necessarily a (R)-gon.) The following criterion is essentially
contained in [10]; it is obtained by reducing the braid mawody to the symmetric

group Ss.

Theorem 3.6.8. A trigonal curve BC X with connected generic skelet@kg is
reducible if and only ifSkg has no singulare-vertices and admits a splitting marking.
Each such marking defines a component of B that is a sectidiy of
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Ry | Ry ’ Rl@

R
(@) (b)

Fig. 2. Skeletons of plane quintics.

REMARK 3.6.9. A splitting marking defines a component Bfas follows: over
eache-vertex v, in a canonical basi$ai, ap, a3} defined by the markingg; is the
generator about the distinguished component.

3.7. Example: irreducible quintics. As a simple example of application of the
techniques developed in this section, we recompute theabetian fundamental groups
of irreducible plane quintics, see [7] and [2]. A more adwthexample is the contents
of Section 5 below.

Let C C P? be a quintic with the set of singularitie®s ®3A, or 3A,. Blow up the
type Ag point (respectively, one of the typ&, points) to obtain a generalized trigonal
curve B C ¥; and letB C %, be the trigonal model oB. It is a maximal trigonal
curve with the combinatorial type of singular fiberBdor 2A, @ 2A%; its skeleton Sk
is shown in Figs. 2 (a) and (b), respectively.

Let R be the region of Sk containing the only improper fiberkf We choose for
the reference poinb the vertex shown in the figures in grey and take feg, oy, o3}

a canonical basis ovdy defined by the marking such thaR c R. In both cases, the
only nontrivial slopesr = a3 is given by Paragraph 3.5.4 (1), witlp,(q) = (4, 1) or
(2, 1), respectively. According to Proposition 3.4.8, tedamental group

71 = m(P?\ C) = m1(Z1 \ (B U E))

is defined by the relation at infinity and the braid relatioasulting from three (out of
four) regionsR, R;, R, shown in the figures. Using Subsection 3.6, one obtains the
following relations: for the set of singularitie&s @ 3A,, see Fig. 2 (a):

2 1
pe =3z, {az, aszlz = {oay, apasa, }3 =1,

1 _1 -1 1
(c1apor)aa(cgopar) ™ = azonag,  (rog)or(eion)™™ = asopag ™,
and for the set of singularitiesA3, see Fig. 2 (b):
2 _ _ 1 1 1 _ 1
P =3, {ap asls={a p a1p}s, 0] = 310z, 01 = 03003 .

In the former case, the group is known to be infinite, see []jtdactors to infinite
Coxeter’s group (2, 3, 7), see [6]. In the latter case, ustA® [17], one can see that
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1 IS a soluble group of order 320; one has
m/my = Zs, wi/ni = (Z2)", 7 = (Z2)%,

where’ stands for the commutant.

Certainly, this approach applies as well to other quintighva double singular
point. In particular, one can easily show that the groupslladtaer irreducible quintics
are abelian.

4. Proof of Theorem 1.2.1

In Subsection 4.1, we replace a sextic as in the theorem wgttrigonal mode]
which is a maximal trigonal curve in an appropriate Hirzersurface. Then, in Sub-
sections 4.2 and 4.3, we enumerate the possible skeletotrgg@fial models; in view
of Theorem 2.6.1, this enumeration suffices to prove Thedteir.

4.1. The trigonal models. Recall that, due to [11], an irreducible maximizing
simple sextic cannot have a singular point of typ&, k = 2 or more than one singu-
lar point from the listAy.1, kK = 0, D1, kK = 2, or E7. Thus, a sextic as in The-
orem 1.2.1 has a unique ty@2 point, which is eitheDs or D, with odd p > 7. We
will consider the two cases separately.

Both Theorem 1.2.1 and Theorem 1.2.2 are proved by a redudticsextics to
trigonal curves. A key role is played by the following two positions.

Proposition 4.1.1. There is a natural bijectionp, invariant under equisingular
deformations between Zariski open and dense in each equisingular strauinsets of
the following two sets
(1) plane sextics C with a distinguished typg, p > 7, singular point P and without
linear components through ,Rand
(2) trigonal curves Bc X3 with a distinguished typé; singular fiber F and a dis-
tinguished typeA, 7 (Aj if p = 7) singular fiber i # F.

A sextic C is irreducible if and only if so is B ¢(C), and C is maximizing if and
only if B is maximal and stable.

Proposition 4.1.2. There is a natural bijectionp, invariant under equisingular
deformations between Zariski open and dense in each equisingular strauinsets of
the following two sets
(1) plane sextics C with a distinguished typg singular point P and without linear
components through ,Pand
(2) trigonal curves Bc ¥, with a distinguished typd; singular fiber F and a dis-
tinguished typeA; singular fiber .

A sextic C is irreducible if and only if so is B ¢(C), and C is maximizing if and
only if B is maximal and stable.
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The trigonal curveB = ¢(C) corresponding to a sexti€ via Propositions 4.1.1
and 4.1.2 is called th&igonal modelof C.

Proof of Propositions 4.1.1 and 4.1.2. |@tc P? andP be a pair as in the state-
ment. Blow P up and denote b8 ¢ £; = P%(P) the proper transform of; it is a
generalized trigonal curve with two points at infinity. We B = ¢(C) to be the trig-
onal model ofB. The inverse transformation consists in the passage fBotvack to
B c £ and blowing down the exceptional section Bf.

The distinguished fiber§, and F,, of B correspond to the two points @& at in-
finity (F corresponding to the smooth branch @fat P). It is straightforward that,
generically, the types of these fibers are as indicated instheements. If the original
sextic C is in a special position with respect to the pencil of linesotiyh P, these
fibers may degeneratds, may degenerate t&’l‘ or As, s> 1, andF, may degenerate
to Ay* (in Proposition 4.1.1 withp = 7) or to As, s > 3 (in Proposition 4.1.2). How-
ever, using theory of trigonal curves (perturbations ofsites, one can easily see that
any such curveB can be perturbed to a generic one, and this perturbationllevied
by equisingulardeformations of8 and C.

Since C and B are bhirational transforms of each other, they are eitheh lvet
ducible or both irreducible. The fact that maximizing sestcorrespond to stable max-
imal trigonal curves follows from Theorem 2.4.2: for a géoesexticC as in the state-
ments, one hag(B) = «(C) — 6 in Proposition 4.1.1 ang(B) = «(C) — 1 in Prop-
osition 4.1.2. O

Let C be a sextic as in Theorem 1.2.1. SinCeis irreducible, it has a unique
type D point (see above), which we take for the distinguished pé&tnt Denote by
B C Xk, k =3 or 4, the trigonal model o€ and let Sk be the skeleton d@. Let,
further, R and R, be the regions of Sk containing the distinguished singulaer§
F, and Fy, respectively. Since we assume tt@thas no typeE singular points,B
has no triple points (one hasgid= 0, see Remark 2.6.2) and hence Sk has exactly
2k e-vertices and has no singular vertices. Thus, due to The@&n, the proof of
Theorem 1.2.1 reduces to the enumeration of 3-regular tekedeof irreducible curves
with a prescribed number of vertices and with a p&t, ®,) of distinguished regions.
This is done is Subsections 4.2 and 4.3 below.

4.2. The case b, p=7. In this case, Sk has si-vertices,R is a bigon, and
Ry is a (p—6)-gon. Sincep is not fixed, one can take fdr, any region of Sk other
than R,.

The bigonal regiorR, looks as shown in grey in Fig. 3 (a); we will call this region
the insertion RemovingR, from Sk and patching the two black edges in the figure to
a single edge results in a new 3-regular skeletohv@th four e-vertices. Conversely,
starting from Sk and placing an insertion at the middle of any of its edges yred
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Fig. 3. A bigonal (a) and bibigonal (b) insertions.
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Fig. 4. A type D, singular point,p > 7.

a skeleton Sk with sixe-vertices and a distinguished bigonal region, which we take
for R. Using Theorem 3.6.8, one can see that Sk is the skeleton dfredfucible
trigonal curve if and only if so is Sk There are three such skeletons (see e.g. [9]);
they are listed in Fig. 4. Starting from one of these skeketand varying the posi-
tion of the insertion (shown in grey and numbered in the figamed the choice of the
second distinguished regioR;;, all up to symmetries of the skeleton, one obtains the
22 deformation families listed in Table 1. (Some rows of thblé¢ represent pairs of
complex conjugate curves, see comments below.)

4.2.1. Comments to Tables 1 and 2. Listed in the tables are combinatorial types
of singularities and references to the figures represertirgcorresponding skeletons.
Equal superscripts precede combinatorial types sharedusra items in the tables. The
‘Count’ column lists the numbersi(, nc) of real curves and pairs of complex conjugate
curves, so that the total number of curves represented byasro, + 2n.. The last
two columns refer to the computation of the fundamental grand indicate the param-
eters used in this computation. (A parameter list is markéd & * when the general
approach does not work quite well for a particular curve. His tase, more details are
found in the subsection referred to in the table.)

REMARK 4.2.2. Items 4 and 5 in Table 1 differ by the choice of the mamag
region R;. We assume that nos. 4 and 5 correspond, respectively, t@giens marked
with o or 8, B in Fig. 4 (b). (In the latter case, the two choices differ byagientation
reversing symmetry, i.e., the two curves are complex caigiy Similarly, we assume
that nos. 13 and 14 in the table correspond, respectivelfhéomonogonal regions
marked withae and g in Fig. 4 (c).
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Table 1. Maximal sets of singularities with a tyPg point, p=7.

# | Set of singularities| Figure | Count| m; Params
1 | D11 ® A4 2A;, 4 (a) (24,0) | 5.2

2 | De®2A,® A 4 (a) (1,0) | 53| (5,53)
3 | Dy 4 (b)-1 (1,0) | 5.2

4 |'D;® AR 4 (b)-1 (1,0) | 53| (13,=1)
5 |'D;® A 4 (b)-1 (0,1) | 5.4 (13,131)
6 | Di7® A2 4 (b)-2 (1,0) | 5.2

7 | Do A1p 4 (b)-2 (2,0) | 5.2

8 | D7®AL® A2 4 (b)-2 (0,1) | 55| (3,111)
9 | D13® Ag 4 (c)-1,1| (0,1) | 5.2

10 | D7 @ 2A¢ 4(c)-1,1| (0,1) | 54| (7,7.1)
11 | Dis® A4 4 (c)-2 (1,0) | 5.2

12 | D11 ® Asg 4 (c)-2 (1,0) | 5.3| (9,=5)
13 |?D; @ As ® A4 4 (c)-2 (1,0) | 53| (9,=1)
14 |?D; @ Ag ® A4 4 (c)-2 (1,0) | 55| *(9,=1)
15| Dis® A2 B A 4 (c)-3 (1,0) | 5.2

16 | D11 ® As @ Az 4 (c)-3 (4,0) | 54| (3,75
17 | Dg ® Ag ® A4 4 (c)-3 (1,0) | 5.2

18 | D7 Ac® AL D Az | 4 (0)-3 (2,0) | 56| 3,71

4.3. The case B. In this case, Sk has eightvertices and two distinguished
regions, a bigonR, and a quadrilateraR,. If R is adjacent toR,, then the two re-
gions form together an insertion shown in grey in Fig. 3 (b ®all this fragment a
bibigon As in the previous subsection, removing the insertion aattipng together
the two black edges, one obtains a 3-regular skeletdnwitk four e-vertices. The
new skeleton Skrepresents an irreducible curve if and only if so does SkcaeSk
is one of the three skeletons shown in Fig. 4. Varying the tjmwsiof the insertion,
one obtains items 19-26 in Table 2.

REMARK 4.3.1. Unlike Subsection 4.2, this time the insertion ha@am ori-
entation, which should be taken into account. For this neasome positions shown
in Fig. 4 give rise to two rows in the table. Similarly, mostsimns shown in Fig. 7
below give rise to two rows in Table 4.

Otherwise (if R is not adjacent tdR), removing R, produces a skeleton Swith
six e-vertices and a distinguished quadrilateral regRRn Such skeletons can easily
be classified; they are shown in Fig. 6 (wheRg is the outer region of the skeleton).
Using Theorem 3.6.8, one can see that only one of these sksldthe last one in
Fig. 6, also shown in Fig. 5) represents an irreducible cubeaying the position of
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Fig. 5. A type Ds singular point: irreducible curves.
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Fig. 6. A typeDs singular point: all curves.
Table 2. Maximal sets of singularities with a tyfg point.

# Set of singularities | Figure | Count| 7; | Params
19 | Ds® As D A4 B 2A; | 4 (a) (1,0) | 57| (7,5, 3)
20 | Ds® As 4 (b)-1 (0,1) | 5.7 | (15, -, 1)
21 | Ds@® AL ® A, 4 (b)-2 (1,0) | 5.7| (13,3, -)
22 |3Ds @ Ao ® As 4 (b)-2 (1,0) | 5.7 |*(11, 5, -)
23 | Ds® Ag ® Ag 4 (c)-1,1| (0,1) | 5.7|*(9,7, -)
24 |°Ds @ Ao @ A4 4 (c)-2 (0,1) | 57| (11, -, 1)
25 |“Ds @ Ag D AL D A 4 (c)-3 (4,0) | 5.7 (9,3,-)
26 |°Ds @ A @ 2A, 4 (c)-3 (1,0) | 57| (57, -)
27 | Ds @ (Ag D 3Ay) 5-1 (1,0) | 5.9

28 | Ds @ Ao @ 2A2 5-2 (1,0) | 58| (11, -, 1)
29 “Ds®As® AL DA, | 53,3 (0,1) | 58| (5,9,3)
30 |°Ds @ Ag & 2A,4 5-4 (4,0) | 58| (5,5, 7)
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the bigonal insertionR, (shown in grey and numbered in Fig. 5), one obtains items
27-30 in Table 2.

REMARK 4.3.2. The classification in this subsection could as wellob&ined
from [3], where all 3-regular skeletons with eigétvertices are listed.

5. Proof of Theorem 1.2.2

We fix a sexticC C P? as in the theorem and consider the fundamental group

71 := m(P?\C) = 71(Z1\ (BUE)), whereB C ¥ is the generalized trigonal curve ob-
tained by blowing up the typ® singular point ofC, cf. Subsection 4.1. The group

is computed on a case by case basis, using the approach airS8and the skeletons
found in Section 4. (We retain the notatid®, R, for the two distinguished regions
containing the improper fibers.) Without further refereq)ciinite groups are treated us-
ing GAP [17]: in most cases, th&i ze function returns6, which suffices to conclude
that the group i%Zg (as so is its abelianization).

5.1. A singular point of type Dy, p = 7. We take for the reference fibét, the
fiber over an appropriate vertex in the boundary ofR and choose a canonical basis
{a1,00,a3} In F corresponding to the marking at such thatl2 c R,. Next, we choose
an appropriate vertex; in the boundary ofR; and a canonical basig8;, B2, B3} In
the fiber overy, corresponding to a marking af; such that23 c R,. The translation
homomorphisms fromy, to v, are computed below on a case by case basis.

According to 3.5.3 (1) and 3.5.4 (2), the slopes oRerand R, are s = a1, and
2 = B1, respectively, and the corresponding braid relations are

(5.1.1) baao, a3l =1, o °(B)) = BBt =2, 3.

Furthermore, in view of the first relation in (5.1.1), theat@n at infinity (3.4.6)
simplifies to

(5.1.2) e102)’03 = pa.

These four relations are present in any group

5.2. The case oR, adjacent toR,. Assume that the regioR, is adjacent to the
insertionR, (nos. 1, 3,6, 7,9, 11, 15, and 17 in Table 1). Theandv, can be chosen to
coincide, so thag; = «j, j = 1, 2, 3, and the relation at infinity (5.1.2) simplifies funthe
to azalazag = 1. It follows thataz commutes witheooio; hence, in view of the first
relation in (5.1.1), one hasd, o] = [as, 1] = 1. On the other handy; = o5 o305t
belongs to the abelian subgroup generatedbgndas. Thus, the group is abelian.

The argument above applies to a reducible maximizing sé&xtees well, provided
thatC is covered by Proposition 4.1.1 (i.€,has a type,, p = 7, singular pointP and
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Fig. 7. A typeD, singular point,p > 7: reducible curves.

has no linear components througf and the distinguished regioi$, R of the skeleton

Sk of the trigonal modeB of C are adjacent to each other. Such curves can easily be
enumerated similar to Subsection 4.2, by reducing Sk to ktekeSK with at most four
e-vertices (see e.g. [9] and Fig. 7; note that this time we daeguire that Skshould have
exactly foure-vertices as we accept curv@swith D type singular fibers). The resulting
sets of singularities are listed in Table 3.

REMARK 5.2.1. In Figs. 7 (c) and (e), in addition &, one should also choose
one of the remaining regions to contain tBetype singular fiber (as one should have

Table 3. Some reducible sextics with abelian fundamentals.

Set of singularities\ Figure Set of singularities \ Figure
The splittingC3 + C3 The splittingCs + C;
Duu® Az ® Az 7 (@)1 Dio® As @ Ay 7 (a)-2
Dio® A7 B Az 7 (a)-l Dia® A1 B Ag 7 (a)-3
Dis® Az @ Aq 7 (a)-4 D14 ® 2A; @ A 7 (a)-5
Dig @ Ay 7 (b)-2 D16 ® A3z 7 (b)-1
D14 ® Ds 7 (c)-1 Dis® A2 ® A 7 (b)-3

The splittingC4 + C D12 ® Dy 7 (c)-2
D11 @ As & Az 7 (@)-2| | Di2®Ds @ Az 7 (c)-2
Dii® A7 D A; 7 (a)-3 The splittingCsz + C, + C;
Do A7 DA DAL | 7 ()5 D1, ® As @ 2A; 7 (d)1
D10 @ Ag 7 (b)-1 D12 ® 2A3 ® A 7 (d)-2
Do @ Ag ® Ay 7 (b)-3 Dio®As Az P AL | 7 (d)-2
D10 @ Dg 7 (c)-2 D10 ® Dg @ Ag 7 (e)
Do ® Ds @ As 7 (c)-2 D10 ® Ds ® Az 7 (e)
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> tdg =1, see Remark 2.6.2). The degrees of the componern®s a#n be determined
using Theorem 3.6.8, which describes the components instefngenerators (see Re-
mark 3.6.9), and the abelianization of relation (5.1.2).

5.3. The case ofR, and R, connected by a single edge. Assume thatR and
R, are connected by a single edge of the skeleton (nos. 2, 4,nt213 in Table 1)
and choose verticeg; and v, so that this connecting edge isj[v;]. Then the trans-
lation homomorphismms 15, see 3.6.1, is given by

(531) B1 = ()lz()l30l£l, B2 =o0a2, Pz= (a2a3)710l1(0l20l3).
Furthermore, in addition to (5.1.1) and (5.1.2), one hashitzd relations
(5.3.2) {o, ash = {ag, azlm =1

from the two regions adjacent tB,, see Corollary 3.6.5. (In most cases, these two
regions coincide. Sincexfay, 3] = 1, see (5.1.1), the relatiofuy, agagaz‘lh =1
given by the corollary is equivalent thw;, a3}y = 1.) Trying the possible values of
(I, m; p), see Table 1, withGAP [17], one concludes that all four groups are abelian.

5.4. The case oR, and R, connected by two edges. Assume thatR and R;
are connected by a chain of two edges (nos. 5, 10, and 16 in Table 1) and choose
reference vertices, and v, at the two ends oft. The translation homomorphism
myz 130 myz 1) along ¢ is given by

Br=35to1s, Bo=0ar PBz=p ‘op.

wheres = apase, 1, and relations (5.1.1), (5.1.2), and (5.3.2) with the valo&(,m; p)
given in Table 1 suffice to show that all three groups are abeli

5.5. The case ofR, and R, connected by three edges. Assume thatR, and
R, are connected by a chain of three edges (nos. 8 and 14 in Table 1) and choose
vy and v, at the ends of. Under an appropriate choice ¢f the translation homo-
morphismmz 1 0 m3 1 © M3 1] IS

B1=38Tpap™ts, Po=58"tus, Pas=p top,

wheres = a2a3a2‘1. (To make this homomorphism uniform, for no. 8 we take Ryr
the monogon marked witls in Fig. 4 (b). Since the two curves in no. 8 are complex
conjugate, their groups are isomorphic.)

For no. 8, relations (5.1.1), (5.1.2), and (5.3.2) withng; p) = (3, 11 1) suffice
to show that the group is abelian. For no. 14, one should a@ke into account the
relation {81, B2}s = 1 resulting from the pentagon adjacent Rp.
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Fig. 8. Regions used in the computation.

5.6. The remaining case: no. 18 in Table 1. In this case, the regionR and
R, are connected by a chain of four edges. Choosing, and v, at the ends of,
one obtains the translation homomorphisip, 1) o my3 17 0 my3 1) 0 M3, given by

(56.1)  Br=0"ray Gpap 6 s, Po =8y bad, Bz = p 6 teadp,

where § = apaze,t. Relations (5.1.1), (5.1.2), and (5.3.2) with if; p) = (3, 7; 1)
suffice to show that the group is abelian.

5.7. A singular point of type Ds, a bibigonal insertion. In the case of a type
Ds singular point, choose a pair of reference vertieesand v; and canonical bases
{1, ag, az} over vy and {B1, B2, B3} over v, similar to Subsection 5.1.

If the skeleton Sk ofB has a bibigonal insertiony, and v; can be chosen to
coincide, see Fig. 8 (a), so that one hgs= «j, j = 1, 2, 3. According to 3.5.3,
the slopes ovelRy and R, are sq = aiap and s = (apa3)?, respectively, the braid
relations become

(5.7.1) bawz, @3] = [oa, (@oe3)’] = 1,

and the relation at infinity (3.4.6) simplifies to

(5.7.2) a3p® = (aa3)?

Besides,r; has extra relations

(5.7.3) {on, azh = (o, p rerp}m = {oz, p Tz, o}y = 1

resulting from thel-, m-, andn-gonal regions marked in the figure.

From the second relation in (5.7.1) it follows that,¢s)®> commutes withp;
then (5.7.2) implies thatobas)? also commutes withvs and hence withap. Thus,
(a2r3)? is a central element and we replage with its quotientG := 1 /(apa3)?.
(Otherwise, the coset enumeration may fail @P.) Using GAP [17], we show that
G = Z,; thenm is a central extension of a cyclic group, hence abelian.

In most cases, for the conclusion th& = Z, it suffices to use relations
(5.7.1)—(5.7.3) with the values of parameteksng, n) listed in Table 2. For nos. 22
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and 23 in Table 2, one should also take into account the oekti

ap = p_lagp_lagagaz_lpaz_lp (for no. 22),

ay = p‘lagp_lalpaz_lp (for no. 23)

resulting from appropriate monogonal regions of Sk.

This computation applies as well to a reducible maximiziegtis C, provided that
it is covered by Proposition 4.1.2, the skeleton Sk of thgotmal modelB of C has
a bibigonal insertion, an€ splits into two components (Figs. 7 (a)—(c) and Table 4;
the latter condition assures that the abelianiza®fG, G] is finite). This time, the
central elementabas)? has infinite order in the abelianization, /[1, 1] and hence
one has i1, m] =[G, G].

Table 4. Some reducible sextics with a tyPe point.

Set of singularites | Figure | Params | [m, 7]
The splittingCs + C3 (G/[G, G] = Z4 & Z3)

Ds A7 AsB Az 7 (a)1 (6,8,3—-,-) | SU2,F7)
Ds®Ag®As DA 7 (a)-1 (10,4,3-,-) | {1

Ds @ A1 ® A2 © Ay 7(@-4 | (12,12,1-,-) | {1}

Ds @ A1z ® Az 7 (b)-2 (14,14, 1 -, ) | {1}

D14 @ Ds 7 (c)1 (=== [ {1

2Ds @ Ag 7 (c)1 (10,10,t—-,-) | Zs

The splittingCy + C, (G/[G, G] = Z2 & Z)

Ds ® 2As5 @ Ay 7 (a)-2 (6,5,6—,-) see 5.7.6
Ds DA DAL DA 7 (a)-3,3 | (10,5,2—,-) | {1}

Ds @ Ag @ 2A, ® A; 7(@-5 | (10,3,10-,2) | {1}

Ds @ A11 @ As 7 (b)-1 (12,4,12-,1) | Z4

Ds ® A1 ® A, DA 7 (-3 | (12,3,12—,2) | see 5.7.7
D1, ® Ds ® Az 7 (c)-2 (-3 ==-1 [{1
D;®Ds® Ay 7 (c)-2 8,-,8-,1) | Z4

2Ds © A7 @ Az 7 (c)-2 (8,3,8—,-) | see 5.7.8

The splittingCs + C; (G/[G, G] = Zg)

Ds ® As @ As ® As 7 (a)-2 (7,4,6 -, -) {1}

Ds ® A7 D Ag d Ay 7(@-33| (7,82-,-) | {1}

Ds @A &AL & A DAL | 7 (a)5 (5.8,82,-) | {1

Ds & Ag @ Asg 7 (b)1 (6,10,101,-) | {1}

Ds ®Ag® Az DAL 7 (b)-3 (5,10,102,-) | {1}

D10 ® Ds ® Ay 7 (c)-2 6, -=1L-) [ {1

Dg @ D5 & As 7 (c)-2 (-, 6,61, -) {1}

2Ds ® As b Ay 7 (c)-2 (5,6,6-,-) | {1}
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For some curves, we also take into account the additionatioak
(5.7.4) {p™%p, 6 rndhe =1 or {pazp~t, 8 raudhe = 1,

8 = apasa;?t, resulting from thek’- and k”-gonal regions marked in Fig. 8 (a). As
usual, we always skip the relations corresponding to a negioSk containing a type
D singular fiber ofB (as these relations differ from those indicated above).

For most curves, relations (5.7.1)—(5.7.4) with the valaggl, m, n; k', k) given
in Table 4 suffice to identifyr;, either because the group is already abelian or due to
Proposition 3.4.8. The few special cases are discusseav.belo

5.7.5. The set of singularities b, & Ds. To show thatr; is abelian, one needs
to take into account the additional relation

(cpoz)az(azas) t = pdp

resulting from the other monogonal region of Sk.

5.7.6. The set of singularities D & 2As & A4. In this case,GAP [17] shows
that the commutantn;, ;] is one of the five perfect groups of order 7680. | do not
know which of the five groups it is.

5.7.7. The set of singularities B & A1 & A, & A;. One has 1, 1] = Z.
Although [r1, 71] is infinite, it can be simplified using th&AP commands

P := PresentationNormal G osure(g, Subgroup(g, [9.1/9.2]));
SinmplifyPresentation(P);

which return a presentation with a single generator and faiioes.

5.7.8. The set of singularities 2D&® A; & A,. One has
/] =7 @ Zg

and
7] = Qg:={£1, £i, +j, £k} C H,

where we abbreviate] = [y, 71] and n} = [r7, ;]. The first statement is straightfor-
ward. For the second one, consider the normal closliref alagl in G. It is an order

3 subgroup ofG’ and one ha#d/[H, H] = Z. Hence H, H] =[G/, G'] = G”. Sim-
plifying the presentation oH given by GAP in the same way as in Paragraph 5.7.7,
one obtains two generatoks, x3 and three relations

2, -1.2

4 - 2,1, -1
k3 =1, Kk3ky Kk3Kk2 =1, Kk;%Kk3 KoKy Kkokz = 1.
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From the first two relations it follows that? is a central element. Then the third one,
rewritten in the forme3 = (kok31)33, implies that«3 is also central. Since the image
of /<23 in H/[H, H] has infinite order, H, H] is equal to the commutant of the quotient
H/«3. The latter group is finite and its commutant @.

Proposition 5.7.9. Let C be one of the sextics listed Tables 3and 4, and let
C’ be an irreducible perturbation of C preserving the distiigiied typeDs singular
point. Thenmy(P?\ C') = Ze.

Proof. It suffices to consider one of the seven sex@ics Table 4 that have non-
abelian groups. Since the distinguished type point is preserved, the perturbation of
C is followed by a perturbatio® — B’ of its trigonal model, or a perturbatioB — B’
of the generalized trigonal curve iB; = P?(P) which is actually used in the compu-
tation of 7;: one can assume that a proper tylg_, or Dy _; singular pointQ of B
is perturbed so that the intersecti@ N Mq is connected, wherdq is a Milnor ball
about Q.

If the point Q that is perturbed is of typd®, 3, the inclusion homomorphism
m1(Mg \ B) — m(Z1\ B) is onto (asMgq contains all three generators in a fiber suf-
ficiently close toQ). On the other hand, for any perturbati@— B’ with B' N Mg
connected, the group;(Mg \ B’) is abelian (see [16]; the maximal perturbation with
the connectedness propertyDs, 1 — Ay _5.)

If Q is of type Ax_1, the group ofB’ is found similar to that ofB: it suffices to
replace the corresponding (necessarily even) parameter(s m,n;k’,k”), see Table 4,
with its maximal odd divisor. Considering curves and par@mseone by one and using
GAP [17], one concludes that all groups are abelian. O

5.8. Other curves not of torus type. In all three cases (nos. 28—30 in Table 2),
the distinguished regionR, and R, are connected by a single edge, see Fig. 5. Choose
verticesvy, vy introduced in Subsection 5.7 as shown in Fig. 8 (b). Then rduastation
homomorphism fromv, to vy is given by (5.3.1). Hence, the braid relations frdfn
and R, and the relation at infinity become

[o10z, ag] = [(p ta1pan)?, ag] = 1

and

azp® = (a2p ta1p)?,
respectively. Consider also the relations
{on, azh = {o, aglm = {op togan, p lazpln = 1

resulting from thel-, m-, and n-gonal regions marked in Fig. 8 (b). Using the values
of (I, m, n) given in Table 2, one concludes that all three groups ardiaahe
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5.9. The curve of torus type (no. 27 in Table 2). The skeleton Sk is the one
shown in Fig. 5, with the bigonal insertion labelled with 1ak& for v; and vy, re-
spectively, the upper vertex of the insertion and the ceaofethe large circle in the
figure. Then a complete set of relations for is

[a1az, ag] = {2, a3}z = {1, as}o = 1,
[(B1B2)%, Bal = (B2, Ba) = (Br, B2Babr }a = 1,
az3p® = (B1B2)?,

where 81, B2, B3 are as in (5.6.1). (We use the marking @t such thati2 C Ry.
Along an appropriate path of length 4, the translation howghism fromu, to v is
M[2,1] © My3,1] © M3,1] © m[3,1].) Using theGAP commands

P := PresentationNormal G osure(g, Subgroup(g, [g9.1/9.3]));

SinplifyPresentation(P);
one finds that #;, 71] is a free group on two generators. Since there is a canon-
ical (perturbation) epimorphismy, — Bz and all groups involved are residually finite,
hence Hopfian, the above epimorphism is an isomorphism. s(&pproach to using

GAP [17] to treat a group ‘suspected’ to be isomorphicB®was suggested to me by
E. Artal Bartolo.)

ACKNOWLEDGEMENTS | am grateful to E. Artal Bartolo, who helped me to
identify the groupBs of the sextic of torus type in Theorem 1.2.2.
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