SINGULAR POINTS OF AFFINE ML-SURFACES

Ratnadha KOLHATKAR

(Received October 20, 2009, revised February 12, 2010)

Abstract

We give a geometric proof of the fact that any affine surface with trivial MakarLimanov invariant has finitely many singular points. We deduce that a complete intersection surface with trivial Makar-Limanov invariant is normal.

1. Notation and introduction

Let us first fix some notation and recall some basic definitions. Throughout this paper, unless otherwise specified, \mathbf{k} will always denote a field of characteristic zero. A domain means an integral domain. Given a domain R, Frac R denotes the field of fractions of R. By $\mathbf{k}^{[n]}$, we mean the polynomial ring in n variables over \mathbf{k} and $\operatorname{Frac}\left(\mathbf{k}^{[n]}\right)$ will be denoted by $\mathbf{k}^{(n)}$. The set of singular points of a variety X will be denoted by $\operatorname{Sing}(X)$.

DEFINITION 1.1. Given a k-algebra B, a derivation $D: B \rightarrow B$ is locally nilpotent if for each $b \in B$, there exists a natural number n (depending on b) such that $D^{n}(b)=0$. We use the following notations:

$$
\begin{gathered}
\operatorname{Der}(B)=\{D \mid D \text { is a derivation of } B\}, \\
\operatorname{LND}(B)=\{D \in \operatorname{Der}(B) \mid D \text { is locally nilpotent }\}, \\
\operatorname{KLND}(B)=\{\operatorname{ker} D \mid D \in \operatorname{LND}(B), D \neq 0\}
\end{gathered}
$$

Given a k-domain B, one defines its Makar-Limanov invariant by

$$
\operatorname{ML}(B)=\bigcap_{D \in \operatorname{LND}(B)} \operatorname{ker} D
$$

If $X=\operatorname{Spec} B$ is an affine k-variety, define $\operatorname{ML}(X)=\operatorname{ML}(B)$. The Makar-Limanov invariant plays an important role in classifying and distinguishing affine varieties. We say that B has trivial Makar-Limanov invariant if $\operatorname{ML}(B)=\mathbf{k}$.

Affine spaces $\mathbb{A}_{\mathbf{k}}^{n}$ are the simplest examples of varieties with trivial Makar-Limanov invariant. While it is known that $\mathbb{A}_{\mathbf{k}}^{1}$ is the only affine curve which has trivial

Makar-Limanov invariant, the class of affine surfaces with trivial Makar-Limanov invariant contains many more surfaces, some of which are not even normal. (See Example 5.4, for instance.)

Let $\mathcal{M}(\mathbf{k})$ denote the class of 2-dimensional affine \mathbf{k}-domains which have trivial Makar-Limanov invariant. We say that an affine surface $S=\operatorname{Spec} R$ belongs to the class $\mathcal{M}(\mathbf{k})$ if $R \in \mathcal{M}(\mathbf{k})$. Such a surface S is also called a ML-surface.

The following question arises naturally: Classify all surfaces in the class $\mathcal{M}(\mathbf{k})$.
In recent years, researchers including Bandman, Daigle, Dubouloz, Gurjar, Masuda, Makar-Limanov, Miyanishi, and Russell (see [1], [3], [6], [7], [9], [11]) have been actively investigating properties of normal (or smooth) surfaces belonging to the class $\mathcal{M}(\mathbf{k})$. However, it is desirable to understand what happens when we drop the assumption of normality. For instance, it is natural to ask what are all hypersurfaces of the affine space $\mathbb{A}_{\mathbf{k}}^{3}$ with trivial Makar-Limanov invariant, and it is not a priori clear that all those surfaces are normal: the fact that they are indeed normal is a consequence of the present paper.

In this paper, we prove that a surface in the class $\mathcal{M}(\mathbf{k})$ has only finitely many singular points. As an application, we prove that any complete intersection surface with trivial Makar-Limanov invariant is normal. Note that these results are valid over any field \mathbf{k} of characteristic zero. The results of this paper will be used in a joint paper with D. Daigle [5], where we classify all hypersurfaces of $\mathbb{A}_{\mathbf{k}}^{3}$ (more generally, complete intersection surfaces over \mathbf{k}) with trivial Makar-Limanov invariant.

To understand the necessity of some of the arguments given in this paper, the reader should keep in mind certain pathologies that occur when \mathbf{k} is not assumed to be algebraically closed. For instance, surfaces $S=\operatorname{Spec} R$ belonging to $\mathcal{M}(\mathbf{k})$ are not necessarily rational over \mathbf{k} and may have very few \mathbf{k}-rational points; moreover, if $\overline{\mathbf{k}}$ is the algebraic closure of \mathbf{k}, then $\overline{\mathbf{k}} \otimes_{\mathbf{k}} R$ is not necessarily an integral domain.

2. Preliminaries

In this section, we gather some basic results and known facts.
2.1. Suppose that B is a \mathbf{k}-domain, let D be a nonzero locally nilpotent derivation of B, and let $A=\operatorname{ker} D$. The following are well-known definitions and facts about locally nilpotent derivations:
(i) A is factorially closed in B (i.e., the conditions $x, y \in B \backslash\{0\}$ and $x y \in A$ imply that $x, y \in A$). Consequently, A is algebraically closed in B.
(ii) Consider the multiplicative set $S=A \backslash\{0\}$ of B. We can extend D to an element $\mathfrak{D} \in \operatorname{LND}\left(S^{-1} B\right)$ defined by $\mathfrak{D}(b / s)=D(b) / s$. It is well-known that $S^{-1} B=(\operatorname{Frac} A)^{[1]}$. (iii) For every $\lambda \in \mathbf{k}$, the map

$$
e^{\lambda D}: B \rightarrow B, \quad b \mapsto \sum_{n=0}^{\infty} \lambda^{n} \frac{D^{n}(b)}{n!}
$$

is a \mathbf{k}-algebra automorphism of B.
(iv) Let $\pi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ be the canonical morphism induced by the inclusion map $A \hookrightarrow B$. Then there exists a nonempty open set $U \subseteq \operatorname{Spec} A$ such that

$$
\pi^{-1}(\mathfrak{p}) \cong \mathbb{A}_{\kappa(\mathfrak{p})}^{1} \text { for every } \mathfrak{p} \in U, \text { where } \kappa(\mathfrak{p}) \text { is the residue field } A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}
$$

Furthermore, if \mathbf{k} is algebraically closed and A is \mathbf{k}-affine, then

$$
\pi^{-1}(\mathfrak{m}) \cong \mathbb{A}_{\kappa(\mathfrak{m})}^{1}=\mathbb{A}_{\mathfrak{k}}^{1} \quad \text { for every closed point } \mathfrak{m} \text { of } U
$$

Lemma 2.2. Given an affine \mathbf{k}-surface $X=\operatorname{Spec} B$, let A_{1} and A_{2} be two affine subalgebras of B of dimension 1. Set $Y_{i}=\operatorname{Spec} A_{i}$ and let $Y_{1} \stackrel{f_{1}}{\leftarrow} \operatorname{Spec} B \xrightarrow{f_{2}} Y_{2}$ be the canonical morphisms determined by the inclusions $A_{i} \hookrightarrow B$ (for $i=1,2$). If B is algebraic over its subalgebra $\mathbf{k}\left[A_{1} \cup A_{2}\right]$, then

$$
E=\left\{y \in Y_{2} \mid f_{1}\left(f_{2}^{-1}(y)\right) \text { is a point }\right\}
$$

is not a dense subset of Y_{2}, where by " $y \in Y_{2}$ " we mean that y is a closed point of Y_{2}.
We leave the proof of Lemma 2.2 to the reader, as it is basic algebraic geometry and is not directly related to the subject matter of this paper.

Definition 2.3. A domain A of transcendence degree 1 over a field \mathbf{k} is called a polynomial curve over \mathbf{k} if it satisfies the following equivalent conditions:
(i) A is a subalgebra of $\mathbf{k}^{[1]}$.
(ii) Frac $A=\mathbf{k}^{(1)}$ and A has one rational place at infinity.

Notation 2.4. Given a field extension F / \mathbf{k}, let $\mathbb{P}_{F / \mathbf{k}}$ be the set of valuation rings R of F / \mathbf{k} such that $R \neq F$.

Lemma 2.5. Let A be a \mathbf{k}-domain. If there exists an algebraic extension \mathbf{k}^{\prime} of \mathbf{k} such that $\mathbf{k}^{\prime} \otimes_{\mathbf{k}} A$ is a polynomial curve over \mathbf{k}^{\prime}, then A is a polynomial curve over \mathbf{k}.

Proof. We sketch a proof of this fact, as we were unable to find a suitable reference. It is easy to prove that A is affine. We may assume that $\left[\mathbf{k}^{\prime}: \mathbf{k}\right]<\infty$. Let $F=\operatorname{Frac} A$ and $F^{\prime}=\operatorname{Frac} A^{\prime}$, where $A^{\prime}=\mathbf{k}^{\prime} \otimes_{\mathbf{k}} A$. Note that $\left[F^{\prime}: F\right]=\left[\mathbf{k}^{\prime}: \mathbf{k}\right]$ and $F^{\prime}=\mathbf{k}^{\prime} F$. In the terminology of [12], the function field $F^{\prime} / \mathbf{k}^{\prime}$ is an algebraic constant field extension of F / \mathbf{k}. By [12, Theorem III.6.3], $F^{\prime} / \mathbf{k}^{\prime}$ has same genus as F / \mathbf{k} (hence, F / \mathbf{k} has genus zero) and F^{\prime} / F is unramified. It remains to prove that A has one rational place at infinity. Let

$$
E=\left\{R \in \mathbb{P}_{F / \mathbf{k}} \mid A \nsubseteq R\right\} \quad \text { and } \quad E^{\prime}=\left\{R^{\prime} \in \mathbb{P}_{F^{\prime} / \mathbf{k}^{\prime}} \mid \mathbf{k}^{\prime} \otimes_{\mathbf{k}} A \nsubseteq R^{\prime}\right\} .
$$

If R is any element of E, then every $R^{\prime} \in \mathbb{P}_{F^{\prime} / \mathbf{k}^{\prime}}$ lying over R (i.e., satisfying $R^{\prime} \cap F=$ R) must belong to E^{\prime}. But E^{\prime} is a singleton, say $E^{\prime}=\left\{R^{\prime}\right\}$. It follows that E is a singleton, say $E=\{R\}$. Let κ^{\prime} and κ be the residue fields of R^{\prime} and R, respectively. Then $\left[F^{\prime}: F\right]=e f$, where $f=\left[\kappa^{\prime}: \kappa\right]$ and e is the ramification index of R^{\prime} over R. As F^{\prime} / F is unramified, we have $e=1$. Since $\mathbf{k}^{\prime} \otimes_{\mathbf{k}} A$ is a polynomial curve over \mathbf{k}^{\prime}, $\kappa^{\prime}=\mathbf{k}^{\prime}$. Hence

$$
\left[\mathbf{k}^{\prime}: \mathbf{k}\right]=\left[F^{\prime}: F\right]=e f=\left[\kappa^{\prime}: \kappa\right]=\left[\mathbf{k}^{\prime}: \kappa\right]
$$

Thus, $\kappa=\mathbf{k}$ and A has one rational place at infinity.

The following lemma can be obtained as an easy consequence of [4, Lemma 3.1].

Lemma 2.6. Let B be a k-algebra and $f(T) \in B[T]$, where T is an indeterminate. (a) If $f(T)$ has infinitely many roots in \mathbf{k}, then $f(T)=0$.
(b) If J is an ideal of B and $f(\lambda) \in J$ for infinitely many $\lambda \in \mathbf{k}$, then $f(T) \in J[T]$.

DEFINITION 2.7. Let R be a ring and $D \in \operatorname{Der}(R)$. An ideal I of R is called an integral ideal for D if $D(I) \subseteq I$.

Lemma 2.8. Let R be a k-domain, and let I be a nonzero ideal of R. If $A \in$ $\operatorname{KLND}(R)$, then the following statements are equivalent:
(1) $I \cap A \neq(0)$.
(2) There exists $D \in \operatorname{LND}(R)$ such that $\operatorname{ker} D=A$ and I is an integral ideal for D.

Proof. Assume that (1) holds. Let $0 \neq a \in I \cap A$, and let $E \in \operatorname{LND}(R)$ be such that $A=\operatorname{ker} E$. Since $a \in A, a E \in \operatorname{LND}(R)$ and $a E$ has kernel A. Moreover, as $a \in I$, $(a E)(b)=a(E b) \in I$ for all $b \in I$. So $(a E)(I) \subseteq I$, and hence $D:=a E$ is the required locally nilpotent derivation of R proving assertion (2).

In the other direction, assume that $0 \neq D \in \operatorname{LND}(R)$, ker $D=A$, and $D(I) \subseteq I$. Choose any $b \in I, b \neq 0$. Then the set $\left\{b, D b, D^{2} b, \ldots\right\}$ is included in I and contains a nonzero element of A.

The following is an easy consequence of [2, Lemma 2.10].

Lemma 2.9. Let R be a noetherian k-algebra, and let $D \in \operatorname{Der}(R)$. If I is an integral ideal for D, so is every minimal prime-over ideal of I.

Lemma 2.10. Let B be a k-algebra, J an ideal of B, and $D \in \operatorname{LND}(B)$. If $e^{t D}(J) \subseteq J$ for some nonzero $t \in \mathbf{k}$, then J is an integral ideal for D.

Proof. First observe that if $e^{t D}(J) \subseteq J$ for some nonzero $t \in \mathbf{k}$, then $e^{t D}(J) \subseteq J$ for infinitely many $t \in \mathbf{k}$. Let $f \in J$. We will show that $D(f) \in J$. Let $n=\operatorname{deg}_{D}(f)$,
i.e., n is the maximum nonnegative integer such that $D^{n}(f) \neq 0$. Define a polynomial $P(T) \in B[T]$ by

$$
P(T)=f+D(f) T+\frac{D^{2}(f) T^{2}}{2!}+\cdots+\frac{D^{n}(f) T^{n}}{n!}
$$

Then for infinitely many $t \in \mathbf{k}$,

$$
P(t)=f+D(f) t+\frac{D^{2}(f) t^{2}}{2!}+\cdots+\frac{D^{n}(f) t^{n}}{n!}=e^{t D}(f) \in J
$$

By Lemma 2.6, all coefficients of $P(T)$ belong to J, so $D(f) \in J$.
Lemma 2.11. Let B be an affine \mathbf{k}-domain, and let $D \in \operatorname{LND}(B)$. If \tilde{B} denotes the normalization of B, then there exists $\tilde{D} \in \operatorname{LND}(\tilde{B})$ such that $\operatorname{ker} \tilde{D} \cap B=\operatorname{ker} D$.

Proof. We recall the well-known argument. Write $A=\operatorname{ker} D$ and let $S=A \backslash\{0\}$. Then D extends to a locally nilpotent derivation \mathfrak{D} of $S^{-1} B$ such that $B \cap \operatorname{ker} \mathfrak{D}=A$. As $S^{-1} B$ is a polynomial ring over the field $S^{-1} A$, it is normal, and consequently $B \subseteq$ $\tilde{B} \subseteq S^{-1} B$. It follows that there exists $s \in S$ such that the locally nilpotent derivation $s \mathfrak{D}: S^{-1} B \rightarrow S^{-1} B$ maps \tilde{B} into itself. The restriction $\tilde{D}: \tilde{B} \rightarrow \tilde{B}$ of $s \mathfrak{D}$ satisfies ker $\tilde{D} \cap B=\operatorname{ker} D$.

Lemma 2.12. For a two-dimensional affine \mathbf{k}-domain R,

$$
|\operatorname{KLND}(R)|>1 \quad \text { if and only if } \operatorname{ML}(R) \text { is algebraic over } \mathbf{k} .
$$

Proof. Assume that $\operatorname{ML}(R)$ is algebraic over \mathbf{k}. Since $\operatorname{trdeg}_{\mathbf{k}} A=1$ for any $A \in$ $\operatorname{KLND}(R)$, it follows that $|\operatorname{KLND}(R)|>1$. In the other direction, let A and A^{\prime} be distinct elements of $\operatorname{KLND}(R)$. As $\operatorname{trdeg}_{\mathbf{k}} A=1=\operatorname{trdeg}_{\mathbf{k}} A^{\prime}$ and $A \cap A^{\prime}$ is algebraically closed in R, it follows that $A \cap A^{\prime}$ is algebraic over \mathbf{k}. Hence $\operatorname{ML}(R)$ is algebraic over \mathbf{k}.

Corollary 2.13. If $R \in \mathcal{M}(\mathbf{k})$, then $\tilde{R} \in \mathcal{M}\left(\mathbf{k}^{\prime}\right)$ for some algebraic field extension $\mathbf{k}^{\prime} \supseteq \mathbf{k}$ such that $\mathbf{k}^{\prime} \subset \tilde{R}$. In particular, if \mathbf{k} is algebraically closed, then $\operatorname{ML}(\tilde{R})=\mathbf{k}$.

Proof. As $R \in \mathcal{M}(\mathbf{k})$, we get $|\operatorname{KLND}(R)|>1$ by Lemma 2.12. Let A_{1} and A_{2} be distinct elements of $\operatorname{KLND}(R)$. There exist $\tilde{A}_{1}, \tilde{A}_{2} \in \operatorname{KLND}(\tilde{R})$ satisfying $\tilde{A}_{i} \cap R=A_{i}$ (cf. Lemma 2.11), so $|\operatorname{KLND}(\tilde{R})|>1$. Hence $\operatorname{ML}(\tilde{R})$ is algebraic over \mathbf{k} and is a field, say, $\operatorname{ML}(\tilde{R})=\mathbf{k}^{\prime}$. Then clearly, $\mathbf{k} \subseteq \mathbf{k}^{\prime} \subset \tilde{R}$ and \mathbf{k}^{\prime} is algebraic over \mathbf{k}.

Lemma 2.14. Let $B \in \mathcal{M}(\mathbf{k})$. If B is normal and $A \in \operatorname{KLND}(B)$, then $A \cong \mathbf{k}^{[1]}$.

Proof. This result is well-known when \mathbf{k} is algebraically closed. (See [6, 2.3], for instance.) To prove the general case, denote the algebraic closure of \mathbf{k} by $\overline{\mathbf{k}}$. Let $A \in \operatorname{KLND}(B)$ and note that A is a 1 -dimensional noetherian normal domain. To prove that $A \cong \mathbf{k}^{[1]}$, it suffices to check that $A \subseteq \mathbf{k}^{[1]}$. By [3, Lemma 3.7], $\mathcal{B}:=\overline{\mathbf{k}} \otimes_{\mathbf{k}} B$ is an integral domain and $\operatorname{ML}(\mathcal{B})=\overline{\mathbf{k}}$. If $\tilde{\mathcal{B}}$ denotes the normalization of \mathcal{B}, then $\operatorname{ML}(\tilde{\mathcal{B}})=\overline{\mathbf{k}}$ by Corollary 2.13. Note that each element of $\operatorname{KlND}(\tilde{\mathcal{B}})$ is isomorphic to $\overline{\mathbf{k}}^{[1]}$. Given $A \in \operatorname{KLND}(B), \overline{\mathbf{k}} \otimes_{\mathbf{k}} A \in \operatorname{KLND}(\mathcal{B})$ and there exists $D \in \operatorname{LND}(\tilde{\mathcal{B}})$ such that $\operatorname{ker} D \cap \mathcal{B}=$ $\overline{\mathbf{k}} \otimes_{\mathbf{k}} A$ (cf. Lemma 2.11). As ker $D \cong \overline{\mathbf{k}}^{-1]}$, it follows that $\overline{\mathbf{k}} \otimes_{\mathbf{k}} A \subseteq \overline{\mathbf{k}}^{[1]}$. Then $A \subseteq \mathbf{k}^{[1]}$ by Lemma 2.5 .

3. Completion of surfaces and fibrations

Throughout Section 3, we fix \mathbf{k} to be an algebraically closed field of characteristic zero. All varieties are assumed to be \mathbf{k}-varieties. In this section, we state some properties of affine normal surfaces, fibrations on such surfaces, and completions of such surfaces. The material of this section is well-known.
3.1. Let S be a complete normal surface. By an $S N C$-divisor on S, we mean a Weil divisor $D=\sum_{i=1}^{n} C_{i}$ where C_{1}, \ldots, C_{n} are distinct irreducible curves on S satisfying the following conditions:
(i) $\operatorname{Supp}(D)=\bigcup_{i=1}^{n} C_{i}$ is included in $S \backslash \operatorname{Sing}(S)$.
(ii) Each irreducible component C_{i} of D is isomorphic to \mathbb{P}^{1}.
(iii) If $i \neq j$ then $C_{i} \cap C_{j} \leq 1$.
(iv) If i, j, k are distinct then $C_{i} \cap C_{j} \cap C_{k}=\varnothing$.

Definition 3.2. An \mathbb{A}^{1}-fibration (respectively, a \mathbb{P}^{1}-fibration) on a surface S is a surjective morphism $\rho: S \rightarrow Z$ on a nonsingular curve Z whose general fibres are isomorphic to \mathbb{A}^{1} (respectively, to \mathbb{P}^{1}). For our purposes, we will always consider \mathbb{A}^{1}-fibrations whose codomain Z is \mathbb{A}^{1}.

Definition 3.3. Let S be an affine normal surface and $\rho: S \rightarrow \mathbb{A}^{1}$ an \mathbb{A}^{1}-fibration. By a completion of the pair (S, ρ), we mean a commutative diagram of morphisms of algebraic varieties

such that the " \hookrightarrow " are open immersions, \bar{S} is a complete normal surface, and $\bar{S} \backslash S$ is the support of an SNC-divisor of \bar{S}.

It is well-known that given any affine normal surface S and an \mathbb{A}^{1}-fibration $\rho: S \rightarrow \mathbb{A}^{1}$, there exists a completion of (S, ρ).

Setup 3.4. Throughout Paragraph 3.4, we assume:
(i) S is an affine normal surface.
(ii) $\rho: S \rightarrow \mathbb{A}^{1}$ is an \mathbb{A}^{1}-fibration.
(iii) $(\bar{S}, \bar{\rho})$ is a completion of (S, ρ), with notation as in Diagram (1); we let D be the SNC-divisor of \bar{S} whose support is $\bar{S} \backslash S$.

As \bar{S} is complete, $\bar{\rho}$ is closed. So given any curve $C \subset \bar{S}, \bar{\rho}(C)$ is either a point or all of \mathbb{P}^{1}. Accordingly we have:

Definition 3.4.1. A curve $C \subset \bar{S}$ is said to be $\bar{\rho}$-vertical if $\bar{\rho}(C)$ is a point. Otherwise, we say that the curve is $\bar{\rho}$-horizontal. Thus $C \subset \bar{S}$ is $\bar{\rho}$-horizontal if and only if $\bar{\rho}(C)=\mathbb{P}^{1}$.

Lemma 3.4.2. Let the setup be as in Setup 3.4.
(a) For a general point $z \in \mathbb{P}^{1}, \bar{\rho}^{-1}(z) \cong \mathbb{P}^{1}$ and $\bar{\rho}^{-1}(z) \cap S \cong \mathbb{A}^{1}$. In particular, $\bar{\rho}: \bar{S} \rightarrow \mathbb{P}^{1}$ is a \mathbb{P}^{1}-fibration.
(b) Exactly one irreducible component of D is $\bar{\rho}$-horizontal.

Proof. As these facts are well-known, we only sketch the proof. By commutativity of Diagram (1), $\bar{\rho}^{-1}(z) \cap S=\rho^{-1}(z) \cong \mathbb{A}^{1}$ for general $z \in \mathbb{P}^{1}$. Assertion (a) follows from this. It also follows that the general fibre $\bar{\rho}^{-1}(z)$ meets D in exactly one point, and this implies that D has exactly one horizontal component.

4. Geometry of surfaces in the class $\mathcal{M}(\mathbf{k})$

In this section, \mathbf{k} is an arbitrary field of characteristic zero (except in Setup 4.1 and Corollary 4.3 , where it is assumed to be algebraically closed).

SEtup 4.1. The following assumptions and notations are valid throughout Paragraph 4.1. Suppose that \mathbf{k} is algebraically closed. Fix $B \in \mathcal{M}(\mathbf{k})$, suppose that B is normal, and let $S=\operatorname{Spec} B$. Consider distinct elements $A_{1}, A_{2} \in \operatorname{KLND}(B)$ and recall from Lemma 2.14 that $A_{i} \cong \mathbf{k}^{[1]}$ for $i=1,2$. Let $\rho_{i}: S \rightarrow \mathbb{A}^{1}$ be the morphism determined by the inclusion $A_{i} \hookrightarrow B$ for $i=1,2$. It follows from Paragraph 2.1 (iv) that ρ_{1} and ρ_{2} are \mathbb{A}^{1}-fibrations, and Lemma 2.2 implies that ρ_{1} and ρ_{2} have distinct general fibres. Choose a complete normal surface \bar{S} and morphisms $\bar{\rho}_{1}, \bar{\rho}_{2}: \bar{S} \rightarrow \mathbb{P}^{1}$ such that,
for each $i=1,2,\left(\bar{S}, \bar{\rho}_{i}\right)$ is a completion of $\left(S, \rho_{i}\right)$ in the sense of Definition 3.3. We also consider the following diagram:

Let ∞ be such that $\mathbb{P}^{1}=\mathbb{A}^{1} \cup\{\infty\}$ in Diagram (2). For $i=1$, 2, let H_{i} be the unique irreducible component of $D=\bar{S} \backslash S$ which is $\bar{\rho}_{i}$-horizontal. (See Lemma 3.4.2.)

Lemma 4.1.1. We have $\bar{\rho}_{1}\left(H_{2}\right)=\{\infty\}$ and $\bar{\rho}_{2}\left(H_{1}\right)=\{\infty\}$. In particular, $H_{1} \neq H_{2}$.
Proof. Recall that $H_{i} \subseteq D$ and $\bar{\rho}_{i}\left(H_{i}\right)=\mathbb{P}^{1}$ for each $i=1,2$. For a general $z_{1} \in \mathbb{P}^{1},\left(\bar{\rho}_{1}\right)^{-1}\left(z_{1}\right)=C_{1}$, where C_{1} is an irreducible curve of \bar{S} which intersects H_{1} in a unique point, say Q. As ρ_{1} and ρ_{2} have distinct general fibres, we choose z_{1} so that $\rho_{2}\left(\rho_{1}^{-1}\left(z_{1}\right)\right)$ is not a point. Then $\bar{\rho}_{2}\left(C_{1}\right)$ is not a point, so $\bar{\rho}_{2}\left(C_{1}\right)=\mathbb{P}^{1}$. Choose $Q_{1} \in C_{1}$ such that $\bar{\rho}_{2}\left(Q_{1}\right)=\{\infty\}$. Clearly, $Q_{1} \in D$. Since C_{1} meets D in exactly one point, $C_{1} \cap D=\left\{Q_{1}\right\}$. Consequently, $\{Q\}=C_{1} \cap H_{1} \subseteq C_{1} \cap D=\left\{Q_{1}\right\}$. It follows that $\left\{Q_{1}\right\}=C_{1} \cap H_{1}$. Repeating this process for infinitely many points z_{i} of \mathbb{P}^{1}, we get infinitely many points $Q_{i} \in H_{1}$ satisfying $\bar{\rho}_{1}\left(Q_{i}\right)=z_{i}$ and $\bar{\rho}_{2}\left(Q_{i}\right)=\{\infty\}$. Hence we conclude that $\bar{\rho}_{2}\left(H_{1}\right)=\{\infty\}$. Similarly, we can prove that $\bar{\rho}_{1}\left(H_{2}\right)=\{\infty\}$. As $\bar{\rho}_{1}\left(H_{1}\right)=$ $\mathbb{P}^{1}=\bar{\rho}_{2}\left(H_{2}\right)$, it follows immediately that H_{1} and H_{2} are distinct.

Proposition 4.1.2. There does not exist an irreducible curve $C \subset S$ such that $\rho_{1}(C)$ and $\rho_{2}(C)$ are points.

Proof. By contradiction, suppose that there exists an irreducible curve C_{0} of S such that $\rho_{1}\left(C_{0}\right)=a_{1}$ and $\rho_{2}\left(C_{0}\right)=a_{2}$ for some points $a_{i} \in \mathbb{A}^{1}$. Consider $C:=\bar{C}_{0}$, the closure of C_{0} in \bar{S}. Then C is a curve in \bar{S} such that $C \cap D \neq \varnothing, \bar{\rho}_{1}(C)=a_{1}$, and $\bar{\rho}_{2}(C)=a_{2}$ (where $a_{1}, a_{2} \in \mathbb{P}^{1} \backslash\{\infty\}$). Since D is connected, there is an integer $k \geq 1$ and a sequence D_{1}, \ldots, D_{k} of irreducible components of D satisfying:

- For each $1 \leq i<k, D_{i}$ is $\bar{\rho}_{1}$-vertical and $\bar{\rho}_{2}$-vertical, and $D_{k} \in\left\{H_{1}, H_{2}\right\}$.
- $\quad C \cap D_{1} \neq \varnothing$, and $D_{i} \cap D_{i+1} \neq \varnothing$ (for $1 \leq i<k$).

Note that $\bar{\rho}_{j}\left(D_{k}\right)=\infty$ for some $j \in\{1,2\}$. Since $C \cup D_{1} \cup \cdots \cup D_{k}$ is connected, it follows that $\bar{\rho}_{j}\left(C \cup D_{1} \cup \cdots \cup D_{k}\right)$ is connected and is a finite set of points, i.e., is one point. But $a_{j}, \infty \in \bar{\rho}_{j}\left(C \cup D_{1} \cup \cdots \cup D_{k}\right)$, so we obtain a contradiction.

For the remainder of this paper, we assume that \mathbf{k} is an arbitrary field of characteristic zero.

Definition 4.2. Let B be an integral domain of characteristic zero. We say that B has property $(*)$ if B has no height 1 proper ideal I which intersects two distinct elements $A_{1}, A_{2} \in \operatorname{KLND}(B)$ nontrivially. That is, B has property $(*)$ if $I \cap A_{1}=0$ or $I \cap A_{2}=0$ for all height 1 proper ideals I of B and all distinct $A_{1}, A_{2} \in \operatorname{KLND}(B)$.

Our next goal is to prove Theorem 4.6. We do this in several steps, as follows.
Corollary 4.3. Suppose that \mathbf{k} is algebraically closed and that $B \in \mathcal{M}(\mathbf{k})$ is normal. Then B has property $(*)$.

Proof. By contradiction, suppose that there exist distinct $A_{1}, A_{2} \in \operatorname{KLND}(B)$ and a height 1 ideal I of B such that $I \cap A_{i} \neq 0$ for $i=1$, 2. Pick a height 1 prime ideal \mathfrak{p} of B such that $\mathfrak{p} \supseteq I$, and note that $\mathfrak{p} \cap A_{i} \neq 0$ for $i=1,2$. So the irreducible curve $C=V(\mathfrak{p}) \subset \operatorname{Spec} B$ is mapped to a point by each canonical morphism $\rho_{i}: \operatorname{Spec} B \rightarrow$ $\operatorname{Spec} A_{i}(i=1,2)$. This contradicts Proposition 4.1.2.

Notation 4.4. Let $B \subseteq B^{\prime}$ be integral domains of characteristic zero. We write $B \triangleleft B^{\prime}$ to indicate that B^{\prime} is integral over B and that, for each $A \in \operatorname{Klnd}(B)$, there exists $A^{\prime} \in \operatorname{KLND}\left(B^{\prime}\right)$ such that $A^{\prime} \cap B=A$. Clearly, \triangleleft is a transitive relation.

Lemma 4.5. Let B, B^{\prime} be integral domains of characteristic zero such that $B \triangleleft B^{\prime}$. If B^{\prime} has property $(*)$, then so does B.

Proof. Let $I \neq B$ be a height 1 ideal of B and let $A_{1}, A_{2} \in \operatorname{KLND}(B)$ satisfy $I \cap A_{i} \neq 0$. As B^{\prime} is integral over $B, I B^{\prime} \neq B^{\prime}$ and ht $I B^{\prime}=1$. Since $B \triangleleft B^{\prime}$, there exist $A_{1}^{\prime}, A_{2}^{\prime} \in \operatorname{KLND}\left(B^{\prime}\right)$ such that $A_{i}^{\prime} \cap B=A_{i}$ for $i=1,2$. Moreover, $A_{i}^{\prime} \cap I B^{\prime} \supset A_{i} \cap I \neq 0$. Since B^{\prime} has property ($*$), it follows that $A_{1}^{\prime}=A_{2}^{\prime}$. Consequently, $A_{1}=A_{2}$.

Recall that \mathbf{k} is an arbitrary field of characteristic zero.
Theorem 4.6. Each element B of $\mathcal{M}(\mathbf{k})$ has property (*).
Proof. If \tilde{B} denotes the normalization of $B, B \triangleleft \tilde{B}$ follows by Lemma 2.11. Moreover, Corollary 2.13 implies that $\tilde{B} \in \mathcal{M}\left(\mathbf{k}^{\prime}\right)$ for some field \mathbf{k}^{\prime}. As $B \triangleleft \tilde{B}$, it suffices to prove the theorem when B is normal by Lemma 4.5.

If B is normal, $\mathcal{B}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} B$ is an integral domain and $\operatorname{ML}(\mathcal{B})=\overline{\mathbf{k}}$ by [3, Lemma 3.7]. Then the normalization $\tilde{\mathcal{B}} \in \mathcal{M}(\overline{\mathbf{k}})$ by Corollary 2.13 , so $\tilde{\mathcal{B}}$ has property (*) by Corollary 4.3. It suffices to prove that $B \triangleleft \tilde{\mathcal{B}}$ because then the result follows by Lemma 4.5.

As $\overline{\mathbf{k}}$ is integral over \mathbf{k}, it follows that $\overline{\mathbf{k}} \otimes_{\mathbf{k}} B$ is integral over $\mathbf{k} \otimes_{\mathbf{k}} B \cong B$. Furthermore, given $A \in \operatorname{KLND}(B), \bar{A}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} A$ belongs to $\operatorname{KLND}(\mathcal{B})$ and $\bar{A} \cap\left(\mathbf{k} \otimes_{\mathbf{k}} B\right)=A$. This proves that $B \triangleleft \mathcal{B}$. Finally, $\mathcal{B} \triangleleft \tilde{\mathcal{B}}$ and \triangleleft is transitive, so it follows that $B \triangleleft \tilde{\mathcal{B}}$.

REmark 4.7. Every two-dimensional affine \mathbf{k}-domain has property ($*$). Indeed, let B be such a ring. If $|\operatorname{KLND}(B)| \leq 1$, then it is trivial that B has property (*). If $|\operatorname{KLND}(B)|>1$ then $B \in \mathcal{M}\left(\mathbf{k}^{\prime}\right)$ for some field \mathbf{k}^{\prime}, where \mathbf{k}^{\prime} is algebraic over \mathbf{k} (cf. Lemma 2.12). Then the result follows from Theorem 4.6.

Definition 4.8. An affine scheme $\operatorname{Spec} A$ is regular in codimension 1 if and only if $A_{\mathfrak{p}}$ is regular for every height 1 prime ideal \mathfrak{p} of A.

Theorem 4.9 ([10, Theorem 73, p. 246]). Let A an affine domain containing a field. Then

$$
U=\left\{\mathfrak{p} \in \operatorname{Spec} A \mid A_{\mathfrak{p}} \text { is a regular local ring }\right\}
$$

is a nonempty open subset of the affine scheme $X=\operatorname{Spec} A$.
Proposition 4.10. Let B be an affine \mathbf{k}-domain. If \mathfrak{p} is a height 1 prime ideal of B such that $B_{\mathfrak{p}}$ is not regular, then $D(\mathfrak{p}) \subseteq \mathfrak{p}$ for every $D \in \operatorname{LND}(B)$.

Proof. The set $T=\left\{\mathfrak{p} \in \operatorname{Spec} B \mid B_{\mathfrak{p}}\right.$ is not regular $\}$ is a closed and proper subset of $X:=\operatorname{Spec} B$. For every $\mathfrak{p} \in T$ satisfying ht $\mathfrak{p}=1$, the closure $\overline{\{\mathfrak{p}\}}$ is an irreducible component of T and \mathfrak{p} is the unique generic point of that component. As T has only finitely many irreducible components, it follows that T contains only finitely many prime ideals of height 1 . Denote these prime ideals by $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$.

Pick $\mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ and $D \in \operatorname{LND}(B)$. We will prove that $D(\mathfrak{p}) \subseteq \mathfrak{p}$. In view of Lemma 2.10, it is enough to show that

$$
\begin{equation*}
e^{\lambda D}(\mathfrak{p}) \subseteq \mathfrak{p} \quad \text { for some nonzero } \quad \lambda \in \mathbf{k} \tag{3}
\end{equation*}
$$

As the $\operatorname{group} \operatorname{Aut}(B)$ acts on the set T, it follows that it acts on $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. Furthermore, $\mathbf{k}=\bigcup_{i=1}^{n}\left\{\lambda \in \mathbf{k} \mid e^{\lambda D}(\mathfrak{p})=\mathfrak{p}_{i}\right\}$. Since \mathbf{k} is infinite, there exists $i \in\{1, \ldots, n\}$ such that $\Omega:=\left\{\lambda \in \mathbf{k} \mid e^{\lambda D}(\mathfrak{p})=\mathfrak{p}_{i}\right\}$ is infinite. Pick distinct elements λ_{1}, λ_{2} of Ω. Then $e^{\left(-\lambda_{2}+\lambda_{1}\right) D}(\mathfrak{p}) \subseteq \mathfrak{p}$. So (3) is true.

Corollary 4.11. If $B \in \mathcal{M}(\mathbf{k})$ and $X=\operatorname{Spec} B$, then the set

$$
\operatorname{Sing}(X)=\left\{\mathfrak{p} \in \operatorname{Spec} B \mid B_{\mathfrak{p}} \text { is not a regular local ring }\right\}
$$

is finite. Consequently, B is regular in codimension 1.
Proof. The set $T=\operatorname{Sing}(X)$ is a proper closed subset of X, so $\operatorname{dim} T \leq 1$. It follows by Proposition 4.10 that given a height 1 prime ideal \mathfrak{p} of B belonging to T, $D(\mathfrak{p}) \subseteq \mathfrak{p}$ for every $D \in \operatorname{LND}(B)$. Then Lemma 2.8 implies that $\mathfrak{p} \cap$ ker $D \neq 0$ for every $D \in \operatorname{LND}(B)$. Since B has property $(*)$ by Theorem 4.6 , we obtain that the set
$\operatorname{KLND}(B)$ is a singleton, a contradiction. So T contains no height 1 prime ideal; consequently, B is regular in codimension 1 . This also proves that $\operatorname{dim} T=0$. So T is a finite set of maximal ideals.

5. An application to complete intersections

Definition 5.1. Let A be a domain containing a field \mathbf{k}. We say that A is a complete intersection over \mathbf{k} if it is isomorphic to a quotient

$$
\mathbf{k}\left[X_{1}, \ldots, X_{n}\right] /\left(f_{1}, \ldots, f_{p}\right)
$$

for some $n, p \in \mathbb{N}$, where $\left(f_{1}, \ldots, f_{p}\right)$ is a prime ideal of $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ of height p. If R is a complete intersection over \mathbf{k}, we also call $\operatorname{Spec} R$ a complete intersection over \mathbf{k}.

Recall the following criterion for noetherian normal rings due to Serre.
Theorem 5.2 (Serre). A noetherian ring A is normal if and only if it satisfies $\left(R_{1}\right) A_{\mathfrak{p}}$ is regular for all $\mathfrak{p} \in \operatorname{Spec} A$ with ht $\mathfrak{p} \leq 1$, and (S_{2}) depth $A_{\mathfrak{p}} \geq \min (h t \mathfrak{p}, 2)$ for all $\mathfrak{p} \in \operatorname{Spec} A$.

Corollary 5.3. Let $B \in \mathcal{M}(\mathbf{k})$. If B satisfies Serre's condition $\left(S_{2}\right)$, then B is normal. In particular, complete intersection surfaces in the class $\mathcal{M}(\mathbf{k})$ are normal.

Proof. Consider $B \in \mathcal{M}(\mathbf{k})$ and suppose that B satisfies $\left(S_{2}\right)$. To show that B is normal, it suffices to prove that B satisfies $\left(R_{1}\right)$. So let $\mathfrak{p} \in \operatorname{Spec} B$. If ht $\mathfrak{p}=0$, then clearly $B_{\mathfrak{p}}$ is regular. If ht $\mathfrak{p}=1, B_{\mathfrak{p}}$ is regular by Corollary 4.11.

If B is a complete intersection, then B is Cohen-Macaulay (cf. [8, Proposition 18.13]), and so it satisfies (S_{2}) (cf. [10, 17.I, p. 125]). Then the result follows by the previous case.

Example 5.4. Let $B=\mathbf{k}\left[x, x y, y^{2}, y^{3}\right]$. Then $D=x \partial / \partial y, E=y^{2} \partial / \partial x$ are two nonzero locally nilpotent derivations of B and $\operatorname{ML}(B)=\mathbf{k}$. Note that B is not normal. So by Corollary 5.3, $\operatorname{Spec} B$ is not a complete intersection surface over \mathbf{k}. By similar arguments, we can prove that $S:=\operatorname{Spec} \mathbf{k}\left[x^{2}, x^{3}, y^{3}, y^{4}, y^{5}, x y, x^{2} y, x y^{2}, x y^{3}\right]$ is a ML-surface which is not a complete intersection surface over \mathbf{k}.

Acknowledgements. The author wishes to thank Professor Daniel Daigle for his many helpful suggestions and his valuable help in preparing this manuscript.

References

[1] T. Bandman and L. Makar-Limanov: Affine surfaces with $\operatorname{AK}(S)=\mathbb{C}$, Michigan Math. J. 49 (2001), 567-582.
[2] D. Daigle: Triangular derivations of $\mathbf{k}[X, Y, Z]$, J. Pure Appl. Algebra, to appear.
[3] D. Daigle: Affine surfaces with trivial Makar-Limanov invariant, J. Algebra 319 (2008), 31003111.
[4] D. Daigle: Locally nilpotent derivations, Lecture notes prepared for the "September school of algebraic geometry" (2003), avail at http://aix1.uottawa.ca/~ddaigle/.
[5] D. Daigle and R. Kolhatkar: Complete intersection surfaces with trivial Makar-Limanov invariant, preprint.
[6] D. Daigle and P. Russell: On log \mathbb{Q}-homology planes and weighted projective planes, Canad. J. Math. 56 (2004), 1145-1189.
[7] A. Dubouloz: Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004), 289-308.
[8] D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer, New York, 1995.
[9] R.V. Gurjar and M. Miyanishi: Automorphisms of affine surfaces with \mathbb{A}^{1}-fibrations, Michigan Math. J. 53 (2005), 33-55.
[10] H. Matsumura: Commutative Algebra, second edition, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980.
[11] K. Masuda and M. Miyanishi: The additive group actions on \mathbb{Q}-homology planes, Ann. Inst. Fourier (Grenoble) 53 (2003), 429-464.
[12] H. Stichtenoth: Algebraic Function Fields and Codes, Universitext, Springer, Berlin, 1993.

Département de mathématiques et de statistique Université Laval Québec, G1V 0A6 Canada e-mail: ratnadha.kolhatkar@mat.ulaval.ca

