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Abstract
We give a geometric proof of the fact that any affine surface with trivial Makar-

Limanov invariant has finitely many singular points. We deduce that a complete
intersection surface with trivial Makar-Limanov invariantis normal.

1. Notation and introduction

Let us first fix some notation and recall some basic definitions. Throughout this
paper, unless otherwise specified,k will always denote a field of characteristic zero. A
domain means an integral domain. Given a domainR, FracR denotes the field of frac-
tions of R. By k[n] , we mean the polynomial ring inn variables overk and Frac(k[n])
will be denoted byk(n). The set of singular points of a varietyX will be denoted
by Sing(X).

DEFINITION 1.1. Given ak-algebra B, a derivation D W B ! B is locally nil-
potent if for each b 2 B, there exists a natural numbern (depending onb) such that
Dn(b) D 0. We use the following notations:

Der(B) D {D j D is a derivation ofB},

LND(B) D {D 2 Der(B) j D is locally nilpotent},

KLND (B) D {ker D j D 2 LND(B), D ¤ 0}.

Given ak-domain B, one defines itsMakar-Limanov invariantby

ML( B) D \
D2LND(B)

ker D.

If X D SpecB is an affinek-variety, define ML(X) D ML( B). The Makar-Limanov
invariant plays an important role in classifying and distinguishing affine varieties. We
say thatB has trivial Makar-Limanov invariant if ML(B) D k.

Affine spacesAn
k are the simplest examples of varieties with trivial Makar-Limanov

invariant. While it is known thatA1
k is the only affine curve which has trivial
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Makar-Limanov invariant, the class of affine surfaces with trivial Makar-Limanov in-
variant contains many more surfaces, some of which are not even normal. (See Ex-
ample 5.4, for instance.)

Let M(k) denote the class of 2-dimensional affinek-domains which have trivial
Makar-Limanov invariant. We say that an affine surfaceSD SpecR belongs to the
classM(k) if R 2M(k). Such a surfaceS is also called a ML-surface.

The following question arises naturally:Classify all surfaces in the classM(k).
In recent years, researchers including Bandman, Daigle, Dubouloz, Gurjar, Masuda,

Makar-Limanov, Miyanishi, and Russell (see [1], [3], [6], [7], [9], [11]) have been ac-
tively investigating properties of normal (or smooth) surfaces belonging to the class
M(k). However, it is desirable to understand what happens when we drop the assump-
tion of normality. For instance, it is natural to askwhat are all hypersurfaces of the
affine spaceA3

k with trivial Makar-Limanov invariant, and it is not a priori clear that
all those surfaces are normal: the fact that they are indeed normal is a consequence of
the present paper.

In this paper, we prove that a surface in the classM(k) has only finitely many sin-
gular points. As an application, we prove that any complete intersection surface with
trivial Makar-Limanov invariant is normal. Note that these results are valid over any
field k of characteristic zero. The results of this paper will be used in a joint paper
with D. Daigle [5], where we classify all hypersurfaces ofA3

k (more generally, com-
plete intersection surfaces overk) with trivial Makar-Limanov invariant.

To understand the necessity of some of the arguments given inthis paper, the
reader should keep in mind certain pathologies that occur when k is not assumed to
be algebraically closed. For instance, surfacesSD SpecR belonging toM(k) are not
necessarily rational overk and may have very fewk-rational points; moreover, ifNk is
the algebraic closure ofk, then Nk 
k R is not necessarily an integral domain.

2. Preliminaries

In this section, we gather some basic results and known facts.

2.1. Suppose thatB is a k-domain, letD be a nonzero locally nilpotent deriva-
tion of B, and let AD kerD. The following are well-known definitions and facts about
locally nilpotent derivations:
(i) A is factorially closedin B (i.e., the conditionsx, y 2 B n {0} and xy 2 A imply
that x, y 2 A). Consequently,A is algebraically closed inB.
(ii) Consider the multiplicative setSD A n {0} of B. We can extendD to an element
D 2 LND(S�1B) defined byD(b=s)D D(b)=s. It is well-known thatS�1BD (FracA)[1] .
(iii) For every � 2 k, the map

e�D W B! B, b 7! 1X
nD0

�n Dn(b)

n!
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is a k-algebra automorphism ofB.
(iv) Let � W SpecB! SpecA be the canonical morphism induced by the inclusion map
A ,! B. Then there exists a nonempty open setU � SpecA such that

��1(p) � A1�(p) for every p 2 U , where�(p) is the residue fieldAp=pAp.

Furthermore, ifk is algebraically closed andA is k-affine, then

��1(m) � A1�(m) D A1
k for every closed pointm of U .

Lemma 2.2. Given an affinek-surface XD SpecB, let A1 and A2 be two affine

subalgebras of B of dimension1. Set Yi D SpecAi and let Y1
f1 � SpecB

f2�! Y2 be
the canonical morphisms determined by the inclusions Ai ,! B ( for i D 1, 2). If B is
algebraic over its subalgebrak[ A1 [ A2], then

E D {y 2 Y2 j f1( f �1
2 (y)) is a point}

is not a dense subset of Y2, where by“ y 2 Y2” we mean that y is a closed point of Y2.

We leave the proof of Lemma 2.2 to the reader, as it is basic algebraic geometry and
is not directly related to the subject matter of this paper.

DEFINITION 2.3. A domainA of transcendence degree 1 over a fieldk is called
a polynomial curveover k if it satisfies the following equivalent conditions:
(i) A is a subalgebra ofk[1] .
(ii) Frac AD k(1) and A has one rational place at infinity.

NOTATION 2.4. Given a field extensionF=k, let PF=k be the set of valuation
rings R of F=k such thatR¤ F .

Lemma 2.5. Let A be ak-domain. If there exists an algebraic extensionk0 of k
such thatk0
k A is a polynomial curve overk0, then A is a polynomial curve overk.

Proof. We sketch a proof of this fact, as we were unable to find asuitable ref-
erence. It is easy to prove thatA is affine. We may assume that [k0 W k] < 1. Let
F D FracA and F 0 D FracA0, where A0 D k0 
k A. Note that [F 0 W F ] D [k0 W k] and
F 0 D k0F . In the terminology of [12], the function fieldF 0=k0 is an algebraic con-
stant field extension ofF=k. By [12, Theorem III.6.3],F 0=k0 has same genus asF=k
(hence,F=k has genus zero) andF 0=F is unramified. It remains to prove thatA has
one rational place at infinity. Let

E D {R 2 PF=k j A � R} and E0 D {R0 2 PF 0=k0 j k0 
k A � R0}.
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If R is any element ofE, then everyR0 2 PF 0=k0 lying over R (i.e., satisfyingR0\ F D
R) must belong toE0. But E0 is a singleton, sayE0 D {R0}. It follows that E is a
singleton, sayE D {R}. Let � 0 and � be the residue fields ofR0 and R, respectively.
Then [F 0 W F ] D ef , where f D [� 0 W �] and e is the ramification index ofR0 over R.
As F 0=F is unramified, we haveeD 1. Sincek0 
k A is a polynomial curve overk0,� 0 D k0. Hence

[k0 W k] D [F 0 W F ] D ef D [� 0 W �] D [k0 W �].

Thus, � D k and A has one rational place at infinity.

The following lemma can be obtained as an easy consequence of[4, Lemma 3.1].

Lemma 2.6. Let B be ak-algebra and f(T) 2 B[T ], where T is an indeterminate.
(a) If f (T) has infinitely many roots ink, then f(T) D 0.
(b) If J is an ideal of B and f(�) 2 J for infinitely many� 2 k, then f(T) 2 J[T ].

DEFINITION 2.7. Let R be a ring andD 2 Der(R). An ideal I of R is called an
integral ideal for D if D(I ) � I .

Lemma 2.8. Let R be ak-domain, and let I be a nonzero ideal of R. If A2
KLND (R), then the following statements are equivalent:
(1) I \ A¤ (0).
(2) There exists D2 LND(R) such thatker D D A and I is an integral ideal for D.

Proof. Assume that (1) holds. Let 0¤ a 2 I \ A, and let E 2 LND(R) be such
that AD kerE. Sincea 2 A, aE 2 LND(R) and aE has kernelA. Moreover, asa 2 I ,
(aE)(b)D a(Eb) 2 I for all b 2 I . So (aE)(I ) � I , and henceD WD aE is the required
locally nilpotent derivation ofR proving assertion (2).

In the other direction, assume that 0¤ D 2 LND(R), ker D D A, and D(I ) � I .
Choose anyb 2 I , b¤ 0. Then the set{b, Db, D2b, : : : } is included in I and contains
a nonzero element ofA.

The following is an easy consequence of [2, Lemma 2.10].

Lemma 2.9. Let R be a noetheriank-algebra, and let D2 Der(R). If I is an
integral ideal for D, so is every minimal prime-over ideal of I .

Lemma 2.10. Let B be ak-algebra, J an ideal of B, and D 2 LND(B). If
et D(J) � J for some nonzero t2 k, then J is an integral ideal for D.

Proof. First observe that ifet D(J) � J for some nonzerot 2 k, then et D(J) � J
for infinitely many t 2 k. Let f 2 J. We will show thatD( f ) 2 J. Let n D degD( f ),
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i.e., n is the maximum nonnegative integer such thatDn( f ) ¤ 0. Define a polynomial
P(T) 2 B[T ] by

P(T) D f C D( f )T C D2( f )T2

2!
C � � � C Dn( f )Tn

n!
.

Then for infinitely manyt 2 k,

P(t) D f C D( f )t C D2( f )t2

2!
C � � � C Dn( f )tn

n!
D et D( f ) 2 J.

By Lemma 2.6, all coefficients ofP(T) belong to J, so D( f ) 2 J.

Lemma 2.11. Let B be an affinek-domain, and let D2 LND(B). If QB denotes
the normalization of B, then there existsQD 2 LND( QB) such thatker QD \ B D ker D.

Proof. We recall the well-known argument. WriteAD kerD and letSD An {0}.
Then D extends to a locally nilpotent derivationD of S�1B such thatB\ kerD D A.
As S�1B is a polynomial ring over the fieldS�1A, it is normal, and consequentlyB �QB � S�1B. It follows that there existss 2 S such that the locally nilpotent derivation
sD W S�1B ! S�1B maps QB into itself. The restriction QD W QB ! QB of sD satisfies
ker QD \ B D ker D.

Lemma 2.12. For a two-dimensional affinek-domain R,

jKLND (R)j > 1 if and only if ML( R) is algebraic overk.

Proof. Assume that ML(R) is algebraic overk. Since trdegk A D 1 for any A 2
KLND (R), it follows that jKLND (R)j> 1. In the other direction, letA and A0 be distinct
elements ofKLND (R). As trdegk AD 1D trdegk A0 and A\ A0 is algebraically closed
in R, it follows that A\ A0 is algebraic overk. Hence ML(R) is algebraic overk.

Corollary 2.13. If R 2M(k), then QR2M(k0) for some algebraic field extension
k0 � k such thatk0 � QR. In particular, if k is algebraically closed, then ML( QR) D k.

Proof. As R 2M(k), we getjKLND (R)j > 1 by Lemma 2.12. LetA1 and A2 be
distinct elements ofKLND (R). There exist QA1, QA2 2 KLND ( QR) satisfying QAi \ RD Ai

(cf. Lemma 2.11), sojKLND ( QR)j > 1. Hence ML(QR) is algebraic overk and is a field,
say, ML( QR) D k0. Then clearly,k � k0 � QR and k0 is algebraic overk.

Lemma 2.14. Let B2M(k). If B is normal and A2 KLND (B), then A� k[1] .
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Proof. This result is well-known whenk is algebraically closed. (See [6, 2.3],
for instance.) To prove the general case, denote the algebraic closure ofk by Nk. Let
A 2 KLND (B) and note thatA is a 1-dimensional noetherian normal domain. To prove
that A� k[1] , it suffices to check thatA� k[1] . By [3, Lemma 3.7],B WD Nk
k B is an
integral domain and ML(B)D Nk. If QB denotes the normalization ofB, then ML( QB)D Nk
by Corollary 2.13. Note that each element ofKLND ( QB) is isomorphic to Nk[1] . Given
A 2 KLND (B), Nk
k A 2 KLND (B) and there existsD 2 LND( QB) such that kerD\B DNk
k A (cf. Lemma 2.11). As kerD � Nk[1]

, it follows that Nk
k A� Nk[1] . Then A� k[1]

by Lemma 2.5.

3. Completion of surfaces and fibrations

Throughout Section 3, we fixk to be an algebraically closed field of characteristic
zero. All varieties are assumed to bek-varieties. In this section, we state some prop-
erties of affine normal surfaces, fibrations on such surfaces, and completions of such
surfaces. The material of this section is well-known.

3.1. Let S be a complete normal surface. By anSNC-divisoron S, we mean
a Weil divisor D D Pn

iD1 Ci where C1, : : : , Cn are distinct irreducible curves onS
satisfying the following conditions:
(i) Supp(D) DSn

iD1 Ci is included inSn Sing(S).
(ii) Each irreducible componentCi of D is isomorphic toP1.
(iii) If i ¤ j then Ci \ C j � 1.
(iv) If i , j , k are distinct thenCi \ C j \ Ck D ¿.

DEFINITION 3.2. An A1-fibration (respectively, aP1-fibration) on a surfaceS
is a surjective morphism� W S! Z on a nonsingular curveZ whose general fibres
are isomorphic toA1 (respectively, toP1). For our purposes, we will always considerA1-fibrations whose codomainZ is A1.

DEFINITION 3.3. LetSbe an affine normal surface and�W S! A1 anA1-fibration.
By a completion of the pair(S, �), we mean a commutative diagram of morphisms of
algebraic varieties

(1)

S

� K
, K NS

N�KA1 , KP1

such that the “,!” are open immersions,NS is a complete normal surface, andNSn S is
the support of an SNC-divisor ofNS.



SINGULAR POINTS OF AFFINE ML-SURFACES 639

It is well-known that given any affine normal surfaceS and anA1-fibration �W S! A1,
there exists a completion of (S, �).

SETUP 3.4. Throughout Paragraph 3.4, we assume:
(i) S is an affine normal surface.
(ii) � W S! A1 is anA1-fibration.
(iii) ( NS, N�) is a completion of (S, �), with notation as in Diagram (1); we letD be the
SNC-divisor of NS whose support isNSn S.

As NS is complete, N� is closed. So given any curveC � NS, N�(C) is either a point or
all of P1. Accordingly we have:

DEFINITION 3.4.1. A curveC � NS is said to be N�-vertical if N�(C) is a point.
Otherwise, we say that the curve isN�-horizontal. Thus C � NS is N�-horizontal if and
only if N�(C) D P1.

Lemma 3.4.2. Let the setup be as inSetup 3.4.
(a) For a general point z2 P1, N��1(z) � P1 and N��1(z) \ S � A1. In particular,N� W NS! P1 is a P1-fibration.
(b) Exactly one irreducible component of D isN�-horizontal.

Proof. As these facts are well-known, we only sketch the proof. By commutativ-
ity of Diagram (1), N��1(z)\SD ��1(z) � A1 for generalz 2 P1. Assertion (a) follows
from this. It also follows that the general fibreN��1(z) meetsD in exactly one point,
and this implies thatD has exactly one horizontal component.

4. Geometry of surfaces in the classM(k)

In this section,k is an arbitrary field of characteristic zero (except in Setup4.1
and Corollary 4.3, where it is assumed to be algebraically closed).

SETUP 4.1. The following assumptions and notations are valid throughout Para-
graph 4.1. Suppose thatk is algebraically closed. FixB 2M(k), suppose thatB is
normal, and letSD SpecB. Consider distinct elementsA1, A2 2 KLND (B) and recall
from Lemma 2.14 thatAi � k[1] for i D 1, 2. Let�i W S! A1 be the morphism deter-
mined by the inclusionAi ,! B for i D 1, 2. It follows from Paragraph 2.1 (iv) that�1

and �2 areA1-fibrations, and Lemma 2.2 implies that�1 and �2 have distinct general
fibres. Choose a complete normal surfaceNS and morphismsN�1, N�2 W NS! P1 such that,
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for eachi D 1, 2, (NS, N�i ) is a completion of (S, �i ) in the sense of Definition 3.3. We
also consider the following diagram:

(2)

S

�2K�1 K
, K NS

N�2KN�1 KA1 , KP1.

Let 1 be such thatP1 D A1[ {1} in Diagram (2). Fori D 1, 2, let Hi be the unique
irreducible component ofD D NSn S which is N�i -horizontal. (See Lemma 3.4.2.)

Lemma 4.1.1. We haveN�1(H2)D {1} and N�2(H1)D {1}. In particular, H1¤ H2.

Proof. Recall thatHi � D and N�i (Hi ) D P1 for each i D 1, 2. For a general
z1 2 P1, ( N�1)�1(z1) D C1, whereC1 is an irreducible curve ofNS which intersectsH1

in a unique point, sayQ. As �1 and �2 have distinct general fibres, we choosez1 so
that �2(��1

1 (z1)) is not a point. ThenN�2(C1) is not a point, soN�2(C1) D P1. Choose
Q1 2 C1 such that N�2(Q1) D {1}. Clearly, Q1 2 D. SinceC1 meetsD in exactly one
point, C1\ D D {Q1}. Consequently,{Q} D C1\ H1 � C1\ D D {Q1}. It follows that
{Q1} D C1 \ H1. Repeating this process for infinitely many pointszi of P1, we get
infinitely many pointsQi 2 H1 satisfying N�1(Qi ) D zi and N�2(Qi ) D {1}. Hence we
conclude thatN�2(H1)D {1}. Similarly, we can prove thatN�1(H2)D {1}. As N�1(H1)DP1 D N�2(H2), it follows immediately thatH1 and H2 are distinct.

Proposition 4.1.2. There does not exist an irreducible curve C� S such that�1(C) and �2(C) are points.

Proof. By contradiction, suppose that there exists an irreducible curveC0 of S
such that�1(C0) D a1 and �2(C0) D a2 for some pointsai 2 A1. ConsiderC WD NC0,
the closure ofC0 in NS. Then C is a curve in NS such thatC \ D ¤ ¿, N�1(C) D a1,
and N�2(C) D a2 (where a1, a2 2 P1 n {1}). Since D is connected, there is an integer
k � 1 and a sequenceD1, : : : , Dk of irreducible components ofD satisfying:
• For each 1� i < k, Di is N�1-vertical and N�2-vertical, andDk 2 {H1, H2}.
• C \ D1 ¤ ¿, and Di \ DiC1 ¤ ¿ (for 1� i < k).

Note that N� j (Dk) D1 for some j 2 {1, 2}. SinceC[ D1[ � � � [ Dk is connected,
it follows that N� j (C [ D1 [ � � � [ Dk) is connected and is a finite set of points, i.e., is
one point. Buta j ,1 2 N� j (C [ D1 [ � � � [ Dk), so we obtain a contradiction.

For the remainder of this paper, we assume thatk is an arbitrary field of characteris-
tic zero.
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DEFINITION 4.2. Let B be an integral domain of characteristic zero. We say that
B has property (�) if B has no height 1 proper idealI which intersects two distinct
elementsA1, A2 2 KLND (B) nontrivially. That is,B has property (�) if I \ A1 D 0 or
I \ A2 D 0 for all height 1 proper idealsI of B and all distinctA1, A2 2 KLND (B).

Our next goal is to prove Theorem 4.6. We do this in several steps, as follows.

Corollary 4.3. Suppose thatk is algebraically closed and that B2M(k) is nor-
mal. Then B has property(�).

Proof. By contradiction, suppose that there exist distinctA1, A2 2 KLND (B) and
a height 1 idealI of B such thatI \ Ai ¤ 0 for i D 1, 2. Pick a height 1 prime ideal
p of B such thatp � I , and note thatp\ Ai ¤ 0 for i D 1, 2. So the irreducible curve
C D V(p) � SpecB is mapped to a point by each canonical morphism�i W SpecB!
SpecAi (i D 1, 2). This contradicts Proposition 4.1.2.

NOTATION 4.4. Let B � B0 be integral domains of characteristic zero. We write
B G B0 to indicate thatB0 is integral overB and that, for eachA 2 KLND (B), there
exists A0 2 KLND (B0) such thatA0 \ B D A. Clearly,G is a transitive relation.

Lemma 4.5. Let B,B0 be integral domains of characteristic zero such that BGB0.
If B 0 has property(�), then so does B.

Proof. Let I ¤ B be a height 1 ideal ofB and let A1, A2 2 KLND (B) satisfy
I \Ai ¤ 0. As B0 is integral overB, I B 0 ¤ B0 and htI B 0 D 1. SinceBGB0, there exist
A0

1, A0
2 2 KLND (B0) such thatA0

i \BD Ai for i D 1,2. Moreover,A0
i \ I B 0 � Ai \ I ¤ 0.

Since B0 has property (�), it follows that A0
1 D A0

2. Consequently,A1 D A2.

Recall thatk is an arbitrary field of characteristic zero.

Theorem 4.6. Each element B ofM(k) has property(�).
Proof. If QB denotes the normalization ofB, BG QB follows by Lemma 2.11. More-

over, Corollary 2.13 implies thatQB 2M(k0) for some fieldk0. As BG QB, it suffices to
prove the theorem whenB is normal by Lemma 4.5.

If B is normal,B D Nk
k B is an integral domain and ML(B)D Nk by [3, Lemma 3.7].
Then the normalizationQB 2M( Nk) by Corollary 2.13, soQB has property (�) by Corol-
lary 4.3. It suffices to prove thatB G QB because then the result follows by Lemma 4.5.

As Nk is integral overk, it follows that Nk 
k B is integral overk 
k B � B. Fur-
thermore, givenA 2 KLND (B), NAD Nk
k A belongs toKLND (B) and NA\ (k
k B)D A.
This proves thatB GB. Finally, B G QB andG is transitive, so it follows thatB G QB.
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REMARK 4.7. Every two-dimensional affinek-domain has property (�). Indeed,
let B be such a ring. IfjKLND (B)j � 1, then it is trivial that B has property (�).
If jKLND (B)j > 1 then B 2 M(k0) for some fieldk0, where k0 is algebraic overk
(cf. Lemma 2.12). Then the result follows from Theorem 4.6.

DEFINITION 4.8. An affine scheme SpecA is regular in codimension1 if and
only if Ap is regular for every height 1 prime idealp of A.

Theorem 4.9 ([10, Theorem 73, p. 246]).Let A an affine domain containing a
field. Then

U D {p 2 SpecA j Ap is a regular local ring}

is a nonempty open subset of the affine scheme XD SpecA.

Proposition 4.10. Let B be an affinek-domain. Ifp is a height1 prime ideal of
B such that Bp is not regular, then D(p) � p for every D2 LND(B).

Proof. The setT D {p 2 SpecB j Bp is not regular} is a closed and proper sub-

set of X WD SpecB. For everyp 2 T satisfying htp D 1, the closure{p} is an irre-
ducible component ofT and p is the unique generic point of that component. AsT
has only finitely many irreducible components, it follows that T contains only finitely
many prime ideals of height 1. Denote these prime ideals byp1, : : : , pn.

Pick p 2 {p1, : : : , pn} and D 2 LND(B). We will prove thatD(p) � p. In view of
Lemma 2.10, it is enough to show that

(3) e�D(p) � p for some nonzero � 2 k.

As the group Aut(B) acts on the setT , it follows that it acts on{p1, : : : , pn}. Further-
more, k D Sn

iD1{� 2 k j e�D(p) D pi }. Sincek is infinite, there existsi 2 {1, : : : , n}

such that� WD {� 2 k j e�D(p) D pi } is infinite. Pick distinct elements�1, �2 of �.
Then e(��2C�1)D(p) � p. So (3) is true.

Corollary 4.11. If B 2M(k) and XD SpecB, then the set

Sing(X) D {p 2 SpecB j Bp is not a regular local ring}

is finite. Consequently, B is regular in codimension1.

Proof. The setT D Sing(X) is a proper closed subset ofX, so dimT � 1. It
follows by Proposition 4.10 that given a height 1 prime idealp of B belonging toT ,
D(p) � p for every D 2 LND(B). Then Lemma 2.8 implies thatp \ ker D ¤ 0 for
every D 2 LND(B). Since B has property (�) by Theorem 4.6, we obtain that the set
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KLND (B) is a singleton, a contradiction. SoT contains no height 1 prime ideal; con-
sequently,B is regular in codimension 1. This also proves that dimT D 0. So T is a
finite set of maximal ideals.

5. An application to complete intersections

DEFINITION 5.1. Let A be a domain containing a fieldk. We say thatA is a
complete intersection overk if it is isomorphic to a quotient

k[X1, : : : , Xn]=( f1, : : : , f p)

for somen, p 2 N, where (f1, : : : , f p) is a prime ideal ofk[X1, : : : , Xn] of height
p. If R is a complete intersection overk, we also call SpecR a complete intersection
over k.

Recall the following criterion for noetherian normal ringsdue to Serre.

Theorem 5.2 (Serre). A noetherian ring A is normal if and only if it satisfies
(R1) Ap is regular for all p 2 SpecA with ht p � 1, and
(S2) depthAp � min(htp, 2) for all p 2 SpecA.

Corollary 5.3. Let B 2 M(k). If B satisfies Serre’s condition (S2), then B is
normal. In particular, complete intersection surfaces in the classM(k) are normal.

Proof. ConsiderB 2M(k) and suppose thatB satisfies (S2). To show thatB is
normal, it suffices to prove thatB satisfies (R1). So let p 2 SpecB. If ht p D 0, then
clearly Bp is regular. If htp D 1, Bp is regular by Corollary 4.11.

If B is a complete intersection, thenB is Cohen–Macaulay (cf. [8, Proposition 18.13]),
and so it satisfies (S2) (cf. [10, 17.I, p. 125]). Then the result follows by the previous case.

EXAMPLE 5.4. Let B D k[x, xy, y2, y3]. Then D D x �=�y, E D y2 �=�x are
two nonzero locally nilpotent derivations ofB and ML(B) D k. Note that B is not
normal. So by Corollary 5.3, SpecB is not a complete intersection surface overk. By
similar arguments, we can prove thatS WD Speck[x2, x3, y3, y4, y5, xy, x2y, xy2, xy3]
is a ML-surface which is not a complete intersection surface over k.
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