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Abstract

Feller property of some diffusion processes and the timengba processes is
investigated. Diffusion processes treated here are skedupt of one dimensional
generalized diffusion processes and the spherical Browniation, and the time
changed processes are given by additive functional asedcigith some underlying
measure. Concrete expressions of the Dirichlet forms sparding to time changed
processes are also obtained, which may be of non-local tgpsed by degeneracy
of the underlying measures.

1. Introduction

Let s be a continuous strictly increasing function on an openrvatel = (14, I5),
and m be a right continuous nondecreasing function lgrwhere—co <1; <1, < cc.
We denote by R=[R;, PR] a one dimensional generalized diffusion process (ODGDP
for brief) on | with scale functions, speed measurm and no killing measure. We
also denote by® = [©,, P?] the spherical Brownian motion 08%! C RY with gen-
erator (¥2)A, A being the spherical Laplacian &~. In this article we study Feller
property of the skew product X [X; = (R, ©1), PF, = PR® PP, (r,0) € | xS
with respect to a positive continuous additive functior@CAF for brief) f(t) of the
ODGDP R. We also study Feller property of time changed pseEesf the skew prod-
uct X. In [10] Ogura et al. were concerned with the skew prodiica one dimensional
diffusion process oR! and ad — 1 dimensional diffusion process drR®-! with re-
spect to a PCAF, and its time changed process. They showdést pebperty of these
processes by studying some properties of the corresporiiiig. We observe behav-
ior of sample paths of R near the end poihtsi = 1, 2 to show Feller property of the
skew product X. We present Dirichlet forms of the skew prad¥icand time changed
processes, which are limit processes appeared in sometheorem discussed by the
first author. Our results ensure that Feller property is gmesl in sequences of sto-
chastic processes and their limit processes discussed mbyChechlet forms corres-
ponding to time changed processes may be non-local type.eNathey are expressed
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by diffusion term, jump term and killing term. Our resultsoshthat Markov processes
corresponding to such non-local type Dirichlet forms d$ptieller property.

In Section 2 we present Dirichlet forms corresponding to@RGDP R, the spher-
ical Brownian motion®, and the skew product X by employing the results of [4] and
[9]. In Section 3 we state Feller property of the skew prod¥ct Section 4 is de-
voted to time changed processes of the skew product. We dheiw Eeller property.

In Section 5 we present Dirichlet form of the time changedcpss and give some
typical examples.

2. Preliminaries

2.1. ODGDP. Lets, m, I, etc. be those given in the preceding section. We de-
note byds and dm the measures induced tsyand m, respectively. We assume that
supppm], the support ofdm, coincides withl. For a functionf on I, we simply write
f(l1) (resp.f(l2)) in place of f(l1+) (resp. f(I,—)) provided f(I1+) (resp. f(12-))
exists. LetD(Gsm) be the space of all bounded continuous functiansn | satisfying
the following two conditions.

() There exist a functionf on | and two constant®\;, A, such that

@1 ux) = A+ Adls() — SO + [

(c,

]{S(X) —s(y)}f(y)dm(y), xel.

(i) For eachi =1, 2,u(lj) =0 if |m(l;)] + |s(li)| < cc.

Throughout this paper we denote byan arbitrarily fixed point ofl. The operatoGs m
is defined by the mapping from € D(Gsm) to f appeared in (2.1). The operat@g
is called the one-dimensional generalized diffusion ojeeréODGDO for brief) with
(s, m), ands and m are called the scale function and the speed measure, regpect
We set

Junll) = /M du(x) [(] du(y),

for Borel measuregt andv on |. Following [3], we call the end poinlj to be

(s, m)-regular  if Jsm(li) <oco and Jns(li) < oo,
(s, m)-exit if Jsm(i) <oo and Jns(li) = oo,
(s, m)-entrance if Jsm(li) =00 and Jns(li) < oo,
(s, m)-natural  if Jsm(li) =00 and Jns(li) = oo.

Recall that

if 1; is (s, m)-regular, |m(lj)] <oo and |[s(lj)| < oo,
if 1; is (s, m)-exit, Im(li)] = 0o and |s(lj)| < oo,
if 1; is (s, m)-entrance, |m(lj)| < oo and |[s(l;)| = oo,
if i is (s, m)-natural, |m(l;)] =00 or |s(lj)| = co.
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Therefore the above condition (ii) means that the absorbmghdary condition is posed
atl; if it is (s, m)-regular. It is known that there exists a strong Markov psscB=
[R:, PR] with the generatogs m, which is called an ODGDP oh (see [6], [11]).

We denote bypf the semigroup of the ODGDP R, that is,

(22)  pRf() =EXf(R)] =/IpR(t,r,s)f@)dm(5), t=0,rel,

for f € Cp(l), whereCy(A) is the set of all bounded continuous functions on aAet
EP stands for the expectation with respect to the probabiligasureP, and pR(t,r, &)
denotes the transition probability density of R with reggecdm. We note thatp® f €
Ch(l) and there exist the following limits for > 0 (see [6], [8]).

(2.3) Iin|1 pIRf(r) =0 if lj is (s, m)-regular or exit.
r—l;

(2.4) Iinl1 ptRf(r) e R if I is (s, m)-entrance and there exists the linfi{l;).
r—lj

(2.5) Iin|1 pRf(r) =0 if I; is (s, m)-natural and there exists the limit(l;) = O.
r—l;

We consider the following symmetric bilinear forrdR, FR).

dudv <
| dsds

FR={ue L%, m): uis absolutely continuous oh

(2.6) ERu, v) =

with respect tods and ER(u, u) < oo}.

We setCR = {uos: ue C}(J)}, whereJ = s(1) and C}(J) is the set of all continu-
ously differentiable functions od with compact support. Thercg, FR) is a regular,
strongly local, irreducible Dirichlet form or.?(l, m) possessingR as its core and
corresponding to the ODGDP R [R;, PR] (see [1], [5]). In the following we write
s® andmR in place ofs and m, respectively.

Following [5], we callER to be conservative ipR1 = 1,t > 0. SincepR1(r) = PR
(t <o Agf), we see thapRl =1 if and only if

(2.7 both of I;, i =1,2, are¢?, m®)-entrance or natural,

whereo R stands for the first hitting time to poirat for the ODGDP R, that isgR =
inf{t > 0: Ry = a}, anda A b = min{a, b}. Finally we summarize hitting probability
densities. For an open intervel = (a, b) C I, let pB(t, &, n) be the transition proba-
bility density of the ODGDP orE with the scale functiors® and the speed measure
mR. Note thata (resp.b) is regular and absorbing If < a (resp.b < 1,). Let denote
by D) the right derivative with respect tdsR(r). It is known that there exist the
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following limits (see [8]).
hi(t, r, a) := I;rj; Der(e) PR(L, T, ) > 0,

hR(t, r, b) := — Igl?g Deree) PE(L, 1, £) = 0,
for t >0 anda <r < b. Then it holds true that
(2.8) PROoR <t, oR <o) = /Ot h&(u, r, a) du,
(2.9) PrR(obR <t, Gt? < (f,f) = /Ot h'é(u, r, b)du,

fort >0 anda<r <b.

2.2. Spherical Brownian motion. Next we consider the spherical Brownian mo-
tion BM(SY) on S* ¢ R9*! with generator (12)A, whereA is the spherical Laplacian
on §U. It6 and McKean [6] showed that the spherical Brownian moi®described as
the skew product of the Legendre process L&GE {¢:} with the generator

1, . I 3
(2.10) Z(sing)t9—(sing)'—, 0<g¢ <,
2 R ¢

and an independent spherical Brownian motion Bf#¢) with respect to the PCAF
fot(sin(ps)‘zds Fukushima and Oshima [4] determined the Dirichlet formrespond-
ing to the skew product)((l), Xfl)), Where{Xt(i)}, i =1, 2, are independent conserva-
tive Markov processes on state spac®, and A, is a PCAF of{Xt(l)}. They presented
the Dirichlet form corresponding to the spherical Browniaotion BM(SY) as an ap-
plication of their results. More precisely, l&t® = (0, 7), X? = T (= RY/[0, 27])
the torus, andX? = X® x X@, (d > 2). In the following X is identified with &°

(c R%*1). Thendm{’(p) = (sing)?dy (d > 1) are the measures o0®, dmi?(9) = do

is the measure oxX!?, andm@® = m’, @ m?, (d > 2) are measures ox?. we
consider the following symmetric bilinear forms.

1 dudv
2.11 EXu, v) = = —
( ) (U v) 2 Jx@ do do

do, u,ve C°°(X(12)),
g4f, 9)
212) = /x(z) £LO(E(-,0), o(-, 0) dmP,(0)

+/X(1) 4 F(p, -), 9, -))duaa(p), f,geCP(XP), d=> 2,
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whereC>(A) (resp.Cg°(A)) stands for the set of all infinitely continuously diffetele
functions on a sefA (resp. with compact supportfizg_1(¢) = (sing)=2d (1)1((;))
(sing)?-23dy and

(2.13) £91Ww, v) —5 %d—(sm(p)d Ydg, u,veCP(XW).
X d(p d

We note that &2, C°(X®)) and €9-1®, C(XD)) are closable on.2(X?, m?) and
L2(X®D), m(l) 1), respectively. Their closures are regular Dirichlet ferrwhich are de-
noted by 61, FY and €9-1@), Fd-1.0) respectively. The former is corresponding to
the circular Brownian motion BMV&') and the latter is corresponding to LEf}(with
generator (2.10). By virtue of [4] and [6]£¢, Cg°(X(?)) is closable onL2(X{?, m?)
and the closureq®, F9) is a regular Dirichlet form corresponding to BBf). In the
following we denote by® = [0, PY] and €®, F©) the spherical Brownian motion
BM(S* 1) and the corresponding Dirichlet forn€¢ 1, 79-1), respectively.

We denote byp the semigroup of the spherical Brownian motién that is,

p? f(6) = EP[(©y)]

2.
@19 = / PO(t, 6, ) f () dMPi(p), t>0, €,

for f e Cp(S'1), where p®(t, 6, ¢) stands for the transition probability density 6f
It is known that p®(t, 6, ¢) is represented by spherical harmonfs that is,

«(n)

(2.15) po(t, 6, ¢) = Ze Z S.0)S,(9).

wherey, = (1/2)n(n+d —2), k(n) = (2n+d —2)-(n +d — 3)!/n! (d — 2)! which is
the number of spherical harmonics of weight(1/2)AS, = —y,9,, and

_, Ssdnf? —{é: :;i

(see [2], [6]). We setAy_ 1 = fsd 1 dmd2 , (the total area of the spherical surfag& 1),
so thatS} = 1/2 Note thatk(0) = 1. Whend = 2, (2.15) is reduced to

po(t, 6, ¢)
1
+ = Z e ™/2{cosng cosny + sinnd sinng}
(2.16) T2 =
1

e "2 cosn(e —
= oo+ = Z © - ).



274 T. TAKEMURA AND M. TOMISAKI

2.3. Skew product. Now we turn to a skew product of R [R;, PR] and ©® =
[©¢, PP]. Itis known that the ODGDP R has the local tirft,r) which is continuous
with respect tot(r) € [0, c0) x | and satisfiesfé 1a(Ry)du= [,IR(t, r)dm(r), t > 0,
for every measurable s&f C | (see [6]), where 4 is the indicator for a seA. Let v
be a Radon measure dnand assume that supg| the support ofv, coincides withl .
We set

_ R
(2.17) f(t) _[|| (t, r)do(r).
Since suppf] = I, we see that
(2.18) PRf(t)>0,t>0)=1, rel.

We assume (2.7). Let X [X; = (R, Or), P, = PR® P2, (r,0) €1 x S be
the skew product of the ODGDP R and the spherical Brownianiama® with respect
to the PCAFf(t), and set

Kt a) = [ ENECL 0 ol ) a2, 0)
(2.19)
+ [ et ) gte, ) dut)

for f, g e CX, whereC* = {f(sR(r), 0): f € C(JI x S} and J = sR(l). Then by
means of Theorem 1.1 of [4] and (2.18), we immediately obthin following result.
So we omit the proof.

Proposition 2.1. We assumé2.7). Then the form(&£X, C¥) is closable on B(l x
s+, mR @ mi?)). The closure(€X, FX) is a regular Dirichlet form and it is corres-
ponding to the skew produc.

Let denote bypy the semigroup of the skew product X, that is,
(2.20) pEf(r,0) = EX®P[f(R, ©p)l, t>0, (,0)el xS,
for f € Cp(I x S™1). By virtue of (2.15) we obtain the following

RA ) = [ EPTRR 9P, 6, o)) (o)

(2.21) 0o Kk(n) ]
=3 > 80 /Sd S@ETI(R, e O] dr, ().

n=0 =1
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3. Feller property of the skew product

Let X = [X; = (R, O1p), Py = PR®PY, (r,0) € | x S*] be the skew product
of the ODGDP R and the spherical Brownian moti@nwith respect to the PCAIKt)
defined in the preceding section. We go forward with our amgpuinunder the assump-
tion (2.7). We show Feller property of the skew product X. B[ f (R, n)e )]
is continuous inr € | (see [6]), we immediately obtain the following result by mea
of (2.21), so we omit the proof.

Proposition 3.1. Let f e Cy(I x S™1) and t> 0. Then g f € Cy(I x S*1).

Next we observe the behavior @ f(r, 6) asr — I;.

Theorem 3.2. Leti=1,2,t>0and fe Cy(l x 7).
(i) Assume that the end pointis (s, mR)-entrance and the measure satisfies

= Q.

61 [ Fow0

Further assume that there exists the litiih, ., f(r, @) for any @ € S*-1. Then there
exist the following limits.

(3.2) ERF(R, 0)] := lim EFf(R, )], 6e S

. 1 R
@3 fim .0 = 5 [ ETHR ldn), o e s

Note that the limit(3.3) is independent of.
(i) Assume that the end pointis (R, mR)-natural and f satisfies

lim sup|f(r,0) =0.
1=l gegi-1

Then
(3.4) lim plf(r,0) =0, 6eS
Ir—l
Proof. (i) We only show the statement for= 1. Assume that the end poiht

is (sR, mR)-entrance, and there exists the limit Jim, f(r, 8) for any 8 € S™1. Then,
by means of (2.4), there exists the limit

ERF(R, 0)] = lim EX[f(R, 0)], 0eS"

We claim that, ifv satisfies (3.1),

(3.5) lim EF[f(R, 0)e M =0, e
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for any positive constant. This fact is obtained by I1t6 and McKean [6]. Their idea
is as follows. Since the support @i coincides withl, we can employ the argument
in [6] and find that the time changed process=QR;-1, PR] is an ODGDP with the

scale functions® and the speed measure wheref~ is the inverse off. Since the
end pointly is (SR, mR)-entrance, we ses(l;) = —oo. Combining this with (3.1), we
find that the end poink; is (SR, v)-natural. Sincd; is (SR, m®)-entrance, we have

(3.6)  limsuplim sup PR(f(t) = oo, t < oF) < lim suplim supPR(t < of) = 0.

a—l r—ly a—l r—ly

Since |y is (SR, v)-natural andf(ol) is the first hitting time to the poina for the
ODGDP Q (see [6]), we obtain

lim EX[e )] =0, ael.

r—ly
Therefore
lim inf lim inf PR(f(t) = oo, t > o)
a—ly r—ly
= lim inf lim inf PR(f(oR) = 00, t > oF)
a—lq r—lp

= liminf liminf PR(t > o) =1,

a—ly r—ly
where we used the fact that is (SR, mR)-entrance. Thus we obtain that

Iirrll PR(f(t) =o0) =1, t>0,
r—lg
which implies (3.5). By using (2.21) and (3.5), we arrive at

m 10 0) = §6) [ S@ETR. a2
1
- Aa

[ ETTI R, o1 a2y o)

(i) Assume that the end poifitis (s}, mR)-natural and lim.,;, sup,cgi-1| f(r,0)| =
0. We seth(r) = sup,.-1| f(r, 6)|. Then by means of (2.5) and (2.20),

lim sup sup |pXf(r, )| <limsupE™ [h(R)] = ””l‘ pRh(r) = 0.
r—lj

r—l; fesi-1 r—l;

Thus we obtain (3.4). ]

4. Feller property of time changed processes

Let X = [X; = (R, Ory), Py = PR®PY, (r,0) € I xS be the skew product
of the ODGDP R and the spherical Brownian moti®nwith respect to the PCAt)
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defined in Section 2. In this section we consider a time charmecess of X and
show its Feller property under the assumption (2.7).
Let « be a non-trivial Radon measure énand set

(4.1) g(t):/IIR(t,r)du(r), t>0.

We denote byr(t) the right continuous inverse @j{t). We consider the time changed
process Y= [Y; = (Ru, Brzry)s Pygy = PR® PP, (r, 0) € I x S™1]. Let denote by
pY the semigroup of Y, that is,

(4.2) oy f(r,6) = EFSP’[f (R, Oreq)], >0, (,0) el x

for f e Cp(I x S*1). By virtue of (2.15) we obtain the following

Pl i, 0)
wy = ETU R0 PO 0 ol
oo k(n)
=2.2_50) fsd  S@ETTF (R, ) O] dm2 (o).
n=0 I=1

Note that the time changed process2R;, PR] is an ODGDP with the scale function
sR and the speed measure We setA = suppu] andT' = A x S*-1. Also note that
the time changed process Y is essentially defined oSince ER"[ f (R;(, )e M)

is continuous ir € A (see [6]), the following result is obvious by means of (4.8p
we omit the proof.

Proposition 4.1. Let f € Cy(I") and t> 0. Then g f € Cy(T).

We observe the behavior gfYf f(r, 8) asr (€ A) — I; (resp.lz) whenl; = inf A
(resp.l, = supA).

Theorem 4.2. Let f € Cy(I') and t > 0. The following properties hold true for
the end point;l satisfying { = inf A or |, = supA.
(i) If the end pointl is (SR, w)-regular or exit then
(4.4) lim pYf(r,0)=0, 6es™L

r (€ A) =l

(i) Assume that the end pointik (sR, u)-entrance and the measure satisfies(3.1).
Further assume that there exists the lifiih, < 2y, f(r, #) for any 6 € S*-1. Then
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there exist the following limits.

4.5  EM[f(Rq, 0)] :=  Jim ER[f (R, 0)], 6L,
. 1 R _
o) i w0 = g [ ET R Al 0 e s

Note that the limit(4.6) is independent of.
(i) Assume that the end pointis (sR, u)-natural and f satisfies

lim sup | f(r, 8)] = 0.
T(E A)—)l, HGSdPl| ( )|

Then (4.4) holds true.

Proof. We may assume thht= inf A. We show the statements fby.
(i) Assume that the end poirt is (SR, u)-regular or exit. By virtue of (2.3) for
U we get

lim sup [EP[ f (Re(, 0)e ]| < limsup EF'[|f (R, 6)] =0, 6 e
r(eA)—ly r (e A)—ly

Combining this with the dominated convergence theorem &rR),(we obtain the state-
ment (i).

(i) Assume that the end poirlt is (R, u)-entrance, and there exists the limit
limy (e ay—1, T(r, 0) for any 6 € -1, Then, by means of (2.4) for the ODGDP U,
there exists the limit

ERLf (R 0) = lm  EP[f(R, 0)], 6¢cS ™

r(eA)—ly

Note that lim ¢ Ay, PR(z(t) > 0) = 1. Therefore, by the same argument as for (3.5),
we obtain

(4.7) S Nm BRI (R, 0)e ) =0, 0 e,

for any positive constan€. Combining this with (4.3), we find

im Y 10.6) = S6) [ S@ET (R, )] dni2,(0)

r (e A)—ly
1

" A

/;d’l EP'T[f(Rr(t)a ®)] dm@l@)-

(i) Assume that the end poirlt is (sR, u)-natural and

lim  sup|f(r,0)] =0.

r(eA)—ly gegi-1
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We seth(r) = supcg:| f(r, 8)|. Then by means of (2.5) for the ODGDP U and (4.2),

limsup sup|p’ f(r,6)| < limsup E®[h(R.q)] = O.

r(eA)—lypesit r(eA)—ly

Thus we obtain (4.4). [

5. Dirichlet form of the time changed process

In this section, we derive the Dirichlet forn€Y, FY) of the time changed pro-
cess Y defined in the preceding section. Y is a time changedepsoof X. X is the
skew product of R an® with respect tof defined by (2.17), and the Dirichlet form
(&, FX) corresponding to X is given in Proposition 2.1. In the faling we assume
(2.7) and that

for any compact seB C |, there exists a positive constaktg

(5.2) o
satisfying E&(r) ds?(r) < Mglg(r) dmf(r).

We note that the measure ® m{, charges no set of zer¥-capacity. For this, it
is enough to show that, for every compact &1t |, there is a positive consta@
such that

(5.2) /B SH|u(r, 6)| dpe(r) dm@,(6) < CEX(u, u)?, u e,

that is, ]B(r)du(r)drrﬁl(e) is of finite energy integral, wher&}(u, u) = £X(u, u) +
(u, “)LZ(mR®mgzjl;|xsd—1)- Let ® be an element 0€3°(J) such that®(sR(r)) =1 forr €
B. We setD = suppfP o sR]. Then we find that

[ u(r, 0)] due(r) dm@,(6)
Bx -1
12
< M(B)Aé/i{fzf:X(u, u)l/z( / o(£) ds)
J

1/2 1/2
+M,g/z(/lxsdlu(r,e)zdmR(r)dmgal(e)) (/J d)’(é)zds) }

which implies (5.2). We note thaj(t) defined by (4.1) is a PCAF of X anﬂ(fﬂ)(g(t) >
0,t >0)=1 for (r, ) € I'. Employing Theorem 6.2.1 in [5], we see that the Dirichlet
form (€Y, FY) is regular onL(T", » ® m{,) and hasCX|r as a core, wher€X|r =
{ulr: uecX).

The following lemma is easily obtained, so the proof is oeuitt
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Lemma 5.1. Assume that/, ds? > 0. Let ue C* and put f=u|r. Then there
exists the limit

. o f(r/,0)—f(r,0) . u(r’,0)—u(r, o)
83Rf(r'9)'_rf(e“m»r SR —sR(r)  rer SR —sR(r)

for dsR-a.e.re A and everyd € S1,

If A =1, then&Y(u, v) = £X(u, v) for u, v € CX. Therefore we are restricted to
the case that \ A # @. For a setE C | we put
du dv
ERu,v) = | —=-—=dS,
UV = |G dF

Ee(f, Q)Z/SH EE(T(-,0), g(-,e>)dm5221(9)+/E5®(f(r, ), 9, ) dv(r).

We note thatl \ A = [J,.« Ik, @ finite or a countable disjoint union of open in-
tervals Iy = (ay, bx) with the end points belonging ta U {4, I,}. SinceC*|r- is a core
of (£Y, FY), we fix au e C* and setf = u|r. Thenf € 7 and

(5.3) EY(f, f) = EX(Hru, Hru),

where Hru(r, ) = EP(?,m[u(Xgrx); of < od], and o = inf{t > 0: X; € I'}. By means
of (2.19) and (5.3) we see that

(5.4) EY(F, 1) = EX(Hru, Hru) + Y~ EX(Hru, Hru).
keK

Lemma 5.2. It holds true that
gj\((HrU, HI‘U)

(5:5) :[a;Rf(r,e)zdsR(r)dmgzll(e)Jr/ EO(E(r, -), F(r, ) du(r).
r A

If /. dsR(r) = 0, then the first term of the right hand side vanishes.

Proof. SinceP( , (o = 0)= 1 for (r,#) €, Hru =u = f on T. Combining
this with Lemma 5.1, we obtain (5.5). O

We are going to derive an explicit form @ (Hpu, Hpu). Forr € I = (a, by)
andf, ¢ € 1, we set

(5.6) Grar: 6, ¢) = EX[p°(f(0f), 6, ¢); of < oF],
(5.7) Gralr: 6, ¢) = EF[p°(f(0F), 6, ¢); of < ofl.
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By means of (2.15) we see that

oo k(n)

(5.8) Gri(r:6,0) = Y > SO @ET [ ok < oF],
n=0 I=1

oo k(n)
(5.9) Gra(ri6,0) = > Y SO)S(WE™[e ") 68 < o],
n=0 |=1

forr e Iy = (a, bk) ando, ¢ € 1,

Lemma 5.3. Letre lgyandf e 1. If I, = a < bx <1y, then

(5.10) Hru(r, 0) = /Sd f (B, ¢)Gka(r: 6, ¢) AP, (o).
If 11 <a < by =15, then
(5.11) Heur,6) = [ (@0 0B 6,0) dnf?y o)
If I, <ac < b <y, then

(5.12) Hru(r,0) = fg (@0 9)Gk2(r: 6, ¢) + (b, )Gia(r: 0, ¢)) Ay (o).

Proof. Letl; <ax <bg <ly, 1 €l and® € $-1. Note that P(’,(’e)(oﬁ( =of A
o < o0) = 1. Therefore, by virtue of (2.15), we find that

Hru(r, 8) = ERou(R,x, Ofx)i o < o0

oo k(n)

=280 [ SOET[u(Reg g ) H R anl )

n=0 =1

o) K(n)

- S](G)/ SO f @ 9)ET [0 0 < of]
10 DET [0 0f < 7] 4y )

Combining this with (5.8) and (5.9), we obtain (5.12).
Letl; = a <bg <1, r € Iy and 9 € 1. Then P(fﬁ)(aﬁ = ol < o) =
P o)(0F = oy < o). Therefore we obtain (5.10) in the same way as above.
We also obtain (5.11) by the same argument as that for (5.10). []
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By virtue of a general theory of ODGDP’s, there exist thedwafing limits (see [8]).

(5.13) I, @) = rlipal DerryGi.2(T: 6, ¢).
(5.14) JH0, @) = !ifgk Der(r)Gi1(r; 6, 9).
(5.15) JN0, @) = — rlimk Derry Gk 2(1: 6, ¢).
(5.16) 240, ¢) = — !im Der(ryGia(r: 6, ¢).

We denote byM the product measurmff}l ® mszfl.

Lemma 5.4. (i) Letl; =ax <bx <l,. Then
(‘:ﬁ(HrU, H[‘U)

(5.17) = % /SH T 6)— f(be N2 IZA0, ) AM(0, ¢)

__r -
by - 7(0) /sd f(bx, 0)* dmg?, (6).

The second term of the right hand side vanishes}({fi$ = —oo.
(i) Letly <ax <bx =15 Then

5|>E(HFU, Hru)

1
(5.18) = E/SM gt fE 0= f(a, )12 310, @) AM(9, @)

S (2)
T SR - @) /Sd f (@, 0)* dm?, (6).

The second term of the right hand side vanishes}{f,$ = oo.

Proof. We assumé = a, < by < I, and writea and b in place ofax and by,
respectively. By means of Green’s formula, (5.10) and (.16

EX(Hru, Hru)

_ / Hru(b, 0) lim Dexy Hru(r, 0) dm®, (6)
-1 rtb

_ _/ f(b, 0)f (b, 9) 3220, ¢) AM(, @)
Si-1x g1

1

=32 /Sd g 1@ 0= T, P2 3246, 9)dM(6, ¢)

_1 / (£(b, 6)° + (b, )2} 220, ) AM(@, ).
2 Joigi1
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Noting Jk2'2(9, @) = sz’z(t/), 0), we get

1 / (f(b, 0+ f(b, )} 3276, ¢) AM(E, ¢)
2 Jo, gt

__ / f(b, 0)232%0, ¢) dM(, ¢)
Si-1x gi-1

/ f (b, 0)21lim Der(yHr1(r, 6) dm?, ()
Si-1 rth

; 2 (2)
sR(bx) — sR(l1) /;d—l f(b, 0)" dmy”, (6).

Here we used the following fact for the last equality.

s¥(r) —s*(@)

H[‘l(r, 9) = P(>r(,9)(‘712< < OO) = l:)rR(UI;q < O';) = SR(b) _ SR(a)’

(see [6]). Thus we arrive at the first assertion. In the samg agmabove we obtain
the second assertion. O

Lemma 5.5. Letl; <ax < b <I,. Then
£X(Hru, Hru)

_ 1 / (@, 0) — T (@ 92320, ¢) AM(, )
2 Jo1 gt

1
(5.19) T3 /SH Sdfl{f(ak’ 0) — f(bx, @)} 3540, @) dM(9, )
1
3 /Sd,l gt F00 0) = fa ON2IZY0, 9) AM(©, ¢)
1
+ 5/8,,1 Sdfl{f(bk, 0) — f (b, 9)}232%0, ¢) AM(@, ).

Proof. We seta = ax andb = by. By means of Green’s formula, (5.12), (5.13),
(5.14), (5.15) and (5.16),

Eﬁ(HFU. Hru)

_ / Hru(b, 0) lim Degy Hru(r, 6) dm@,(6)
-1 rtb

_ / Hru(a, 6) lim DeqyHru(r, ) dm@,(6)
Si-1 rla
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- / £(b, 0)f(a, ¢) 320, ¢) AM(0, ¢)
Sdflxsifl
—/ £(b, 6) £ (b, ¢) 3236, ¢) AM(0, ¢)
-1y -1
- / f(a 0)f(a ¢)3-10, ¢) AM(@, ¢)
Slxgil
- / f(a, 6) (b, )3-26, ¢) AM(, ¢)
-1y -1
_1 / (£(b, 0) — f(a, ¢))2I2X0, ) AM(©, )
2 Jg gt
—%/ (f(b, )2 + f(a ¢)2)32Y0, ¢) AM(, ¢)
Sdflxsifl
+ % / (f(b, 6) — (b, ©)}23220, ¢) AM(©, )
-1y -1

- / (f(b, 02+ f(b. )} 3276, 9) AM(©, ¢)
2 Jgi,git

1

+1 / (f(a 6)— f(a ¢))232Y0, ¢) AM(0, ¢)
2 Jo1 gt

5 [ @02+ F@ 030, 0) dME. )

41 / (f(@ 0)— f(b ¢)123%0, ) AM(©, ¢)
2 Jg i gt

1
B é /Sd—l S"*l{ f (a' 9)2 + f(b' (p)Z} Jkl'z(g, <p) d./\/l(e, (p)

=Vi+Vo+Vs+Vy+ Vs+ Ve + V7 + Vs.
In the same way as above, we also find

En(Hr(u?), Hrl)

T /S(ng,,l f(b, 0)2(IZ0, @) + JZ%(0, )} AM(8, )
- /susd f(a, )30, ) + J%6, )} dM(O, ¢)

T /Sd,lxsd,l f(a, @){IEHO. @) + IO, @)} AM(O, @)
_meauhwqf%a@+iywwﬂmM&¢)

Combining this withHr1(r, 8) = PR(oR A o} < 00) = 1, we have

Va + Vg + Vs + Vg = E(Hr(U?), Hrl) = 0.
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Therefore we obtain the conclusion of the lemma. [
By virtue of Lemmas 5.2, 5.4, and 5.5, we arrive at the follugvitheorem.

Theorem 5.6. AssumeA # |, (2.7) and (5.1). Then the Dirichlet form(&Y, FY)
of Y is regular on I_Z(F,u®mf,231) and hasC*|- as a core. For fe CX|r, the Dirichlet
form (€Y, FY) is given by the following.

(5.20)
EY(f, f)=/BSRf(r,9)2dsR(r)de12_)1(9)+/ 5®(f(r, 3 £, ) dv(r)
g A
1- — 27111
+ Z V/;lesdil{f(ak. 9) f(ak, (,0)} ‘]k (9’ (,0) dM(G, (,0)

keK:ly <ak<by=l,

1
v L 1000 = 1 0)232%0, 6) MO, )
keK ) <ae<by <l ¥ xS
1 21,2
.- [ (f (@, 0) — (B, 0)123%6, ¢) AM(@, ¢)
keK:ly<ax<bg<l, Siixgit
1 212,1
.- (£ (B, 6) — (@ ©))232H0, ¢) AM(, ¢)
Si-1x gi-1

keK:lp<ag<bg<ly
+ 11(F) + 12(F).

Here the first term of the right hand side vanishes in case ﬂ;\aisR(r) = 0. The last
two terms |(f), i = 1, 2 should be read as

1 (2)
SR(bi) — sR(1) /sd—l f(bx, 0)*dmg’, (6)

if lh=a<bc<ly and (1) > —oo,
0 otherwise

11(f) =

1t 24m®
@ . [ )

if lh<ac<be=1l, and () < oo,
0 otherwise

I2(f) =

ExamMPLE 5.7. Letd > 2 and R be the Bessel process be= (0, co) with the
generatorGR = (1/2)(d?/dr? + ((d — 1)/r)(d/dr)). We may setds?(r) = 2rddr
anddmR(r) = r91dr. Note that the assumption (5.1) is satisfied. The end poirgt O i
(sR, mR)-entrance and the end poind is (s}, mR)-natural. We set

h(t):[IIR(t,r)rd’3dr =f0t R;2ds, t>0.
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In the same way as in [6], we obtain the following.

n
(G.21)  EPF[e ] = (%) . 0<r <b.

. o a d—2+n
(5.22) ER [emhCa)] = (F) , a<fr <oo.

_ (b/r)*# —(r/b)"

PR a—mh(eR). R R

(5.23) EP [emna); 6R < oF] = (b/a)7 = (a/b)" a<r<bh.
R R r/a)" — (a/r)d-2+n

(5.24) ER [e (), crbR < crf] _ ar-@m a<r<h

" b/ —@/p

Here O0<a <b < oo andn > 0, where, ifd =2 andn = 0, (5.23) and (5.24) are
reduced to (5.25) and (5.26), respectively.

log b/r

(5.25) PrR(a§ < o,?) = logb/a’ <r <hb,
logr/a

(5.26) PrR(crtgQ < 05) = logb/a’ <r<h.

We note that the functions given by (5.21)—(5.24) satiséyahuatiorGRg(r) = yar ~2g(r).
(i) We first consider the case thdv(r) = r=2dmR(r) = r9-3dr. Then

f(t):/l|R(t,r)r—20|mR(r)=/ot R;2ds,

hence the skew product ¥ [(R;, Ofp), PR ® PP, (r, 0) € | x S*71] is reduced to
d-dimensional Brownian motion BNM({). The assumption (3.1) is also satisfied for the
end points 0 andx. It is well known that the statements (i) and (ii) of Theorem2 3
are valid for BM@).

(i) Let du(r) = Lpoa(r)dm(r) and du(r) = 1pa)(r) do(r) + Lae)(r)r 2dmi(r),
where O0< a < oo and w is a Radon measure oh such that suppf] = | and

| /5 sR() do(r)] = cc. By virtue of Theorem 5.6, we get the following. For
fe CX|(O,a)><Sd*11

1 f
EV(f, f) = E/ma) o aa_r(r,e)zrd—ldr dmi?,(6)

(5.27) +/(O )é*"(f(r, -), f(r, ) do(r)

+ 3/ (f(@.0) — f(a @)123(0, ) AM©, ¢) + 1 (1),
2 Jgi,git

where

d_—2 d-2 2 (2) .
(5.28) 1(f) = 5 @ /SH f(a, 0)°dm”,(6), if d=>3,
0, if d=2.
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Since PR(f(cR) = h(ol)) =1 fora <r < 0o, J(9, ¢) is given as follows.

oo k(n)
‘](91 (P) = Irlig DSR(r) Z Z S_l(g)gh((p)EPrR[e*Vnh(U?)]
n=0 I=1
(529) d—2+n «(n)

= lim Dex() Z(?) > SO)S\(9).
n=0 I=1

Especially, ifd = 2, then

30, ¢) = lim D 1+1iancosn(9 )
y ¢ _Wa SR(r) o o r @

5.30 _ 1. (a/r) cosp — ) — (a/r)?
(530 T Ir'?zjm DSR(r)l —2(a/r) cosp — ¢) + (a/r)?
1 1 L, 0—9\ !
- 47 1— cos — ¢) - (anmz 2 ) '

Therefore£Y corresponding to the cask= 2 is given as follows.

1 of 1 of
SYf,fz—/ —r,02rdrd9+—/ —(r, 0)>dw(r) do
( ) 2 (0,2)x St 3[‘( ) 2 (0,2)x St 89( ) ()

{f(a 0) - f(a o)} de.

I —1 de
16m Jsics Sin((0 — ¢)/2)

Since the assumption of Theorem 4.2 (ii) is satisfied, the tahanged process corres-
ponding to (5.27) has Feller property in the sense of Préipost.1 and Theorem 4.2 (ii).
(i) Let du(r) = L e (r) dmi(r) and dv(r) = 1(0,a)(r)r‘2dmR(r) + La,00)(r) doo(r),
where O< a < o0 and w is a Radon measure on such that supp}] = |. By virtue

of Theorem 5.6, we get the following. Fdr € C*|@q c)xsi-1,

1 af
EV(F, 1) = 5/@ o arane)

(5.31) + / EO(F(r, -), £(r, -)) do(r)
(a,00)
+1 / (f(a 0) — f(a ¢)}2(0, ¢) AM(©, ).
2 Jg1,git

Here J(9, ¢) is given as follows. Sinc®R(f(cR) =h(el)=1for0<r <a,

oo k(n)

3O, 9) ==lim Dy 3 3 S(O)S(#)E™ [e7" ]
(5.32) n=0 I=1

n «(n)

. (T
= — |rI¥Te11 DsR(r) ;(5) ; $1(9)$1((p)
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Whend = 2,

30, ¢) = —lim D 1+1i ") cosn(@ — )
y Q) = r1a SR(r) o 7Tn=1 a @

(5.33) - 1 lim Der (r /@) cosp — ¢) — (r /a)?
T rta 1—2(r/a) cosp — @) + (r /a)?

1 1 B L, 0—p\ !

T 4z 1-—cosp —¢) (8nsm2 2 ) '

Therefore£Y corresponding to the cask= 2 is given as follows.

1 af 1 of
EY(f, f =—/ —r,ezrdrd0+—/ —(r, )?>dw(r) do
(.0 2 Jia,00)xst 3f( ) 2 J(a,00)xst 39( ) dofr)

1

+ = (fa 0) - f(a ¢)?

do de.
16r Jaxg v

1
i (6 - ¢)/2)
Since the assumption of Theorem 4.2 (iii) is satisfied, theetchanged process corres-
ponding to (5.31) has Feller property in the sense of Préipast.1 and Theorem 4.2 (iii).
(iv) Let du(r) = Lo (r)dmR(r) anddv(r) = Lo a)ub,00) () 2dmMR(r) + Liap) (1) do(r),
where O< a < b < oo andw is a Radon measure oh such that suppf] = |. By
virtue of Theorem 5.6, we get the following. Fdre CX|(a’b)X5d—1,

EY(f, 1) =3/ ﬂ(r,e)Zrdflolrdmgz_)l(@)
2 (a,b)xSt-1 ar

+ EO(f(r, +), f(r, -)) dw(r)
)

(a,b
(5.34) 41 [ (f(a 6)— @ ¢)2H0, ¢) AM(@, ¢)
2 Joi gt
41 / (£ (b, 6) — (b, 92306, ) AM(©, )
2 Joi g1
+ 1(f),

where I (f) is given by (5.28) withb in place ofa, Ji(0, ¢) is given by (5.32), and
J (0, ¢) is given by (5.29) withb in place ofa. Therefore, ifd = 2, then

-1
30, ¢) = B0, ¢) = (87r sir? Q_T"’)
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Further&Y corresponding to the cask= 2 is given as follows.

1 of 1 of
EY(f, f)== —(r, 0% drdo + = —(r, 0)?dw(r) do
(f, 1) /( (r. 6)°r dr do + /( (r, 0)% do(r)

2 Japmxs Or 2 J@apxst 00
1
_— _ 2 -
+ Ion SlXsl{f(c’:l, 0) — f(a ¢)} S —9)/2) de do
1 1
— f(b, 6) — f(b, ¢)}?————— db do.
6 Jous! 6.0 = 1. ) S0 —g)/2) "

Since the assumption of Theorem 4.2 (ii) is satisfied, the tahanged process corres-
ponding to (5.34) has Feller property in the sense of Prdipos#.1

(v) Let du(r) = 8a(dr) and dv(r) = r=2dmR(r) 4+ Céa(dr), where O< a < oo, 8,
stands for the unit measure concentrated at a pwiahd C is a positive humber. By
virtue of Theorem 5.6, we get the following. Fdre CX|(zxsi-1,

EY(f, f)=CE&®(f(a, +), f(a, +))
(5.35)
o [ @0 f@ 20,0 dME. ) + (1),
Si-1x gi-1
where I (f) is given by (5.28) andJ(9, ¢) is given as follows. SincePR(f(oF) =
h(oR)) =1 forr # a,
oo k(n)

IO, ¢)=~lm Dssgy 3 > SOV @)E [
n=0 I=1

oo k(n)

+1im Dy Y 3 ()8 ()ET [e "]

n=0 =1

n «(n)

. > r
— —iim Dar ZO(E) > $0130)

d—2+n «(n)

+ |ri[2 DSR(r) Z(?) Z %(G)SKQD)
n=0 I=1

Whend = 2, by means of (5.30) and (5.33),

30, ¢) = (47r sir? 9%‘”)

-1

Therefore£Y corresponding to the cask= 2 is given as follows.
C of
Y(F, f :-/ —(a, 0)>do
ET D=7 | 5@

+i/ {f(a, 0)— f(a ¢)}? 6 dg.
8 Jaxs

1t
SI((60 — ¢)/2)
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Since the assumption of Theorem 4.2 (i) is satisfied, the tahhanged process corres-
ponding to (5.35) has Feller property in the sense of Préiposi.1.
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