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Abstract

Feller property of some diffusion processes and the time changed processes is
investigated. Diffusion processes treated here are skew product of one dimensional
generalized diffusion processes and the spherical Brownian motion, and the time
changed processes are given by additive functional associated with some underlying
measure. Concrete expressions of the Dirichlet forms corresponding to time changed
processes are also obtained, which may be of non-local type caused by degeneracy
of the underlying measures.

1. Introduction

Let s be a continuous strictly increasing function on an open interval I D (l1, l2),
and m be a right continuous nondecreasing function onI , where�1 � l1 < l2 � 1.
We denote by RD [Rt , PR

r ] a one dimensional generalized diffusion process (ODGDP
for brief) on I with scale functions, speed measurem and no killing measure. We
also denote by2 D [2t , P2� ] the spherical Brownian motion onSd�1 � Rd with gen-
erator (1=2)1, 1 being the spherical Laplacian onSd�1. In this article we study Feller
property of the skew product XD [Xt D (Rt ,2f(t)), PX

(r ,�) D PR
r 
P2� , (r , �) 2 I �Sd�1]

with respect to a positive continuous additive functional (PCAF for brief) f(t) of the
ODGDP R. We also study Feller property of time changed processes of the skew prod-
uct X. In [10] Ogura et al. were concerned with the skew product of a one dimensional
diffusion process onR1 and ad � 1 dimensional diffusion process onRd�1 with re-
spect to a PCAF, and its time changed process. They showed Feller property of these
processes by studying some properties of the correspondingPCAF. We observe behav-
ior of sample paths of R near the end pointsl i , i D 1, 2 to show Feller property of the
skew product X. We present Dirichlet forms of the skew product X and time changed
processes, which are limit processes appeared in some limittheorem discussed by the
first author. Our results ensure that Feller property is preserved in sequences of sto-
chastic processes and their limit processes discussed by her. Dirichlet forms corres-
ponding to time changed processes may be non-local type. Namely, they are expressed
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by diffusion term, jump term and killing term. Our results show that Markov processes
corresponding to such non-local type Dirichlet forms satisfy Feller property.

In Section 2 we present Dirichlet forms corresponding to theODGDP R, the spher-
ical Brownian motion2, and the skew product X by employing the results of [4] and
[9]. In Section 3 we state Feller property of the skew productX. Section 4 is de-
voted to time changed processes of the skew product. We show their Feller property.
In Section 5 we present Dirichlet form of the time changed process and give some
typical examples.

2. Preliminaries

2.1. ODGDP. Let s, m, I , etc. be those given in the preceding section. We de-
note by ds and dm the measures induced bys and m, respectively. We assume that
supp[m], the support ofdm, coincides withI . For a function f on I , we simply write
f (l1) (resp. f (l2)) in place of f (l1C) (resp. f (l2�)) provided f (l1C) (resp. f (l2�))
exists. LetD(Gs,m) be the space of all bounded continuous functionsu on I satisfying
the following two conditions.
(i) There exist a functionf on I and two constantsA1, A2 such that

(2.1) u(x) D A1 C A2fs(x) � s(c)g C Z
(c,x]

fs(x) � s(y)g f (y) dm(y), x 2 I .

(ii) For eachi D 1, 2, u(l i ) D 0 if jm(l i )j C js(l i )j <1.
Throughout this paper we denote byc an arbitrarily fixed point ofI . The operatorGs,m

is defined by the mapping fromu 2 D(Gs,m) to f appeared in (2.1). The operatorGs,m

is called the one-dimensional generalized diffusion operator (ODGDO for brief) with
(s, m), and s and m are called the scale function and the speed measure, respectively.
We set

J�,�(l i ) D
Z

(c,l i )
d�(x)

Z
(c,x]

d�(y),

for Borel measures� and � on I . Following [3], we call the end pointl i to be

(s, m)-regular if Js,m(l i ) <1 and Jm,s(l i ) <1,
(s, m)-exit if Js,m(l i ) <1 and Jm,s(l i ) D 1,
(s, m)-entrance if Js,m(l i ) D1 and Jm,s(l i ) <1,
(s, m)-natural if Js,m(l i ) D1 and Jm,s(l i ) D 1.

Recall that

if l i is (s, m)-regular, jm(l i )j <1 and js(l i )j <1,
if l i is (s, m)-exit, jm(l i )j D 1 and js(l i )j <1,
if l i is (s, m)-entrance, jm(l i )j <1 and js(l i )j D 1,
if l i is (s, m)-natural, jm(l i )j D 1 or js(l i )j D 1.
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Therefore the above condition (ii) means that the absorbingboundary condition is posed
at l i if it is (s, m)-regular. It is known that there exists a strong Markov process RD
[Rt , PR

r ] with the generatorGs,m, which is called an ODGDP onI (see [6], [11]).
We denote bypR

t the semigroup of the ODGDP R, that is,

pR
t f (r ) D EPR

r [ f (Rt )] D
Z

I
pR(t , r , � ) f (� ) dm(� ), t > 0, r 2 I ,(2.2)

for f 2 Cb(I ), whereCb(A) is the set of all bounded continuous functions on a setA,
EP stands for the expectation with respect to the probability measureP, and pR(t , r , � )
denotes the transition probability density of R with respect to dm. We note thatpR

t f 2
Cb(I ) and there exist the following limits fort > 0 (see [6], [8]).

lim
r!l i

pR
t f (r ) D 0 if l i is (s, m)-regular or exit.(2.3)

lim
r!l i

pR
t f (r ) 2 R if l i is (s, m)-entrance and there exists the limitf (l i ).(2.4)

lim
r!l i

pR
t f (r ) D 0 if l i is (s, m)-natural and there exists the limitf (l i ) D 0.(2.5)

We consider the following symmetric bilinear form (ER, FR).

ER(u, v) D Z
I

du

ds

dv
ds

ds,(2.6)

FR D fu 2 L2(I , m) W u is absolutely continuous onI

with respect tods and ER(u, u) <1g.
We setCR D fu Æ sW u 2 C1

0(J)g, where J D s(I ) and C1
0(J) is the set of all continu-

ously differentiable functions onJ with compact support. Then (ER, FR) is a regular,
strongly local, irreducible Dirichlet form onL2(I , m) possessingCR as its core and
corresponding to the ODGDP RD [Rt , PR

r ] (see [1], [5]). In the following we write
sR and mR in place ofs and m, respectively.

Following [5], we callER to be conservative ifpR
t 1D 1, t > 0. SincepR

t 1(r )D PR
r

(t < �R
l1
^ �R

l2
), we see thatpR

t 1D 1 if and only if

both of l i , i D 1, 2, are (sR, mR)-entrance or natural,(2.7)

where�R
a stands for the first hitting time to pointa for the ODGDP R, that is,�R

a D
infft > 0W Rt D ag, and a ^ b D minfa, bg. Finally we summarize hitting probability
densities. For an open intervalE D (a, b) � I , let pR

E(t , � , �) be the transition proba-
bility density of the ODGDP onE with the scale functionsR and the speed measure
mR. Note thata (resp.b) is regular and absorbing ifl1 < a (resp.b < l2). Let denote
by DsR(r ) the right derivative with respect todsR(r ). It is known that there exist the
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following limits (see [8]).

hR
E(t , r , a) WD lim�#a

DsR(� ) pR
E(t , r , � ) � 0,

hR
E(t , r , b) WD � lim�"b

DsR(� ) pR
E(t , r , � ) � 0,

for t > 0 anda < r < b. Then it holds true that

PR
r (�R

a < t , �R
a < �R

b ) D Z t

0
hR

E(u, r , a) du,(2.8)

PR
r (�R

b < t , �R
b < �R

a ) D Z t

0
hR

E(u, r , b) du,(2.9)

for t > 0 anda < r < b.

2.2. Spherical Brownian motion. Next we consider the spherical Brownian mo-
tion BM(Sd) on Sd � RdC1 with generator (1=2)1, where1 is the spherical Laplacian
on Sd. Itô and McKean [6] showed that the spherical Brownian motionis described as
the skew product of the Legendre process LEG(d) D f't g with the generator

1

2
(sin')1�d ��' (sin')d�1 ��' , 0< ' < � ,(2.10)

and an independent spherical Brownian motion BM(Sd�1) with respect to the PCAFR t
0 (sin's)�2 ds. Fukushima and Oshima [4] determined the Dirichlet form correspond-

ing to the skew product (X(1)
t , X(2)

At
), wherefX(i )

t g, i D 1, 2, are independent conserva-

tive Markov processes on state spaceX(i ), and At is a PCAF offX(1)
t g. They presented

the Dirichlet form corresponding to the spherical Brownianmotion BM(Sd) as an ap-
plication of their results. More precisely, letX(1) D (0, �), X(2)

1 D T (D R1=[0, 2� ])

the torus, andX(2)
d D X(1) � X(2)

d�1 (d � 2). In the following X(2)
d is identified with Sd

(� RdC1). Thendm(1)
d (')D (sin')d d' (d � 1) are the measures onX(1), dm(2)

1 (�)D d�
is the measure onX(2)

1 , and m(2)
d D m(1)

d�1 
 m(2)
d�1 (d � 2) are measures onX(2)

d . We
consider the following symmetric bilinear forms.

E1(u, v) D 1

2

Z
X(2)

1

du

d� dv
d� d� , u, v 2 C1(X(2)

1 ),(2.11)

Ed( f , g)

D Z
X(2)

d�1

Ed�1,(1)( f ( � , �), g( � , �)) dm(2)
d�1(�)

C Z
X(1)

Ed�1( f (', � ), g(', � )) d�d�1('), f , g 2 C1
0 (X(2)

d ), d � 2,

(2.12)
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whereC1(A) (resp.C1
0 (A)) stands for the set of all infinitely continuously differentiable

functions on a setA (resp. with compact support),d�d�1(') D (sin')�2 dm(1)
d�1(') D

(sin')d�3 d' and

Ed�1,(1)(u, v) D 1

2

Z
X(1)

du

d' dv
d' (sin')d�1 d', u, v 2 C1

0 (X(1)).(2.13)

We note that (E1, C1(X(2)
1 )) and (Ed�1,(1), C1

0 (X(1))) are closable onL2(X(2)
1 , m(2)

1 ) and

L2(X(1), m(1)
d�1), respectively. Their closures are regular Dirichlet forms, which are de-

noted by (E1, F1) and (Ed�1,(1), Fd�1,(1)), respectively. The former is corresponding to
the circular Brownian motion BM(S1) and the latter is corresponding to LEG(d) with
generator (2.10). By virtue of [4] and [6], (Ed, C1

0 (X(2)
d )) is closable onL2(X(2)

d , m(2)
d )

and the closure (Ed, Fd) is a regular Dirichlet form corresponding to BM(Sd). In the
following we denote by2 D [2t , P2� ] and (E2, F2) the spherical Brownian motion
BM(Sd�1) and the corresponding Dirichlet form (Ed�1, Fd�1), respectively.

We denote byp2t the semigroup of the spherical Brownian motion2, that is,

(2.14)
p2t f (�) D EP2� [ f (2t )]

D Z
Sd�1

p2(t , � , ') f (') dm(2)
d�1('), t > 0, � 2 Sd�1,

for f 2 Cb(Sd�1), where p2(t , � , ') stands for the transition probability density of2.
It is known that p2(t , � , ') is represented by spherical harmonicsSl

n, that is,

(2.15) p2(t , � , ') D 1X
nD0

e�
nt
�(n)X
lD1

Sl
n(�)Sl

n('),

where
n D (1=2)n(nC d � 2), �(n) D (2nC d � 2) � (nC d � 3)!=n! (d � 2)! which is
the number of spherical harmonics of weightn, (1=2)1Sl

n D �
nSl
n, and

Z
Sd�1

Sl
nSk

n dm(2)
d�1 D

�
1, l D k,
0, l ¤ k,

(see [2], [6]). We setAd�1 D R
Sd�1 dm(2)

d�1 (the total area of the spherical surfaceSd�1),

so thatS1
0 D A�1=2

d�1 . Note that�(0)D 1. Whend D 2, (2.15) is reduced to

(2.16)

p2(t , � , ')

D 1

2� C 1�
1X

nD1

e�n2t=2fcosn� cosn' C sinn� sinn'g
D 1

2� C 1�
1X

nD1

e�n2t=2 cosn(� � ').
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2.3. Skew product. Now we turn to a skew product of RD [Rt , PR
r ] and2 D

[2t , P2� ]. It is known that the ODGDP R has the local timel R(t ,r ) which is continuous

with respect to (t , r ) 2 [0,1)� I and satisfies
R t

0 1A(Ru)duD R
A l R(t , r )dmR(r ), t > 0,

for every measurable setA� I (see [6]), where 1A is the indicator for a setA. Let �
be a Radon measure onI and assume that supp[�], the support of�, coincides withI .
We set

f(t) D Z
I

l R(t , r ) d�(r ).(2.17)

Since supp[�] D I , we see that

PR
r (f(t) > 0, t > 0)D 1, r 2 I .(2.18)

We assume (2.7). Let XD [Xt D (Rt , 2f(t)), PX
(r ,�) D PR

r 
 P2� , (r , �) 2 I � Sd�1] be
the skew product of the ODGDP R and the spherical Brownian motion 2 with respect
to the PCAFf(t), and set

(2.19)

EX( f , g) D Z
Sd�1

ER( f ( � , �), g( � , �)) dm(2)
d�1(�)

C Z
I
E2( f (r , � ), g(r , � )) d�(r ),

for f , g 2 CX , whereCX D f f (sR(r ), �) W f 2 C1
0 (J � Sd�1)g and J D sR(I ). Then by

means of Theorem 1.1 of [4] and (2.18), we immediately obtainthe following result.
So we omit the proof.

Proposition 2.1. We assume(2.7). Then the form(EX , CX) is closable on L2(I �
Sd�1, mR 
 m(2)

d�1). The closure(EX , FX) is a regular Dirichlet form and it is corres-
ponding to the skew productX.

Let denote bypX
t the semigroup of the skew product X, that is,

(2.20) pX
t f (r , �) D EPR

r 
P2� [ f (Rt , 2f(t))], t > 0, (r , �) 2 I � Sd�1,

for f 2 Cb(I � Sd�1). By virtue of (2.15) we obtain the following

(2.21)

pX
t f (r , �) D Z

Sd�1
EPR

r [ f (Rt , ')p2(f(t), � , ')] dm(2)
d�1(')

D 1X
nD0

�(n)X
lD1

Sl
n(�)

Z
Sd�1

Sl
n(')EPR

r [ f (Rt , ')e�
nf(t)] dm(2)
d�1(').
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3. Feller property of the skew product

Let X D [Xt D (Rt ,2f(t)), PX
(r ,�) D PR

r 
 P2� , (r , �) 2 I �Sd�1] be the skew product
of the ODGDP R and the spherical Brownian motion2 with respect to the PCAFf(t)
defined in the preceding section. We go forward with our argument under the assump-
tion (2.7). We show Feller property of the skew product X. Since EPR

r [ f (Rt , �)e�
nf(t)]
is continuous inr 2 I (see [6]), we immediately obtain the following result by means
of (2.21), so we omit the proof.

Proposition 3.1. Let f 2 Cb(I � Sd�1) and t> 0. Then pXt f 2 Cb(I � Sd�1).

Next we observe the behavior ofpX
t f (r , �) as r ! l i .

Theorem 3.2. Let i D 1, 2, t > 0 and f 2 Cb(I � Sd�1).
(i) Assume that the end point li is (sR, mR)-entrance, and the measure� satisfies����

Z
(c,l i )

sR(r ) d�(r )

���� D1.(3.1)

Further assume that there exists the limitlimr!l i f (r , �) for any � 2 Sd�1. Then there
exist the following limits.

EPR
l i [ f (Rt , �)] WD lim

r!l i
EPR

r [ f (Rt , �)], � 2 Sd�1.(3.2)

lim
r!l i

pX
t f (r , �) D 1

Ad�1

Z
Sd�1

EPR
l i [ f (Rt , ')] dm(2)

d�1('), � 2 Sd�1.(3.3)

Note that the limit(3.3) is independent of� .
(ii) Assume that the end point li is (sR, mR)-natural and f satisfies

lim
r!l i

sup�2Sd�1

j f (r , �)j D 0.

Then

lim
r!l i

pX
t f (r , �) D 0, � 2 Sd�1.(3.4)

Proof. (i) We only show the statement fori D 1. Assume that the end pointl1
is (sR, mR)-entrance, and there exists the limit limr!l1 f (r , �) for any � 2 Sd�1. Then,
by means of (2.4), there exists the limit

EPR
l1 [ f (Rt , �)] WD lim

r!l1
EPR

r [ f (Rt , �)], � 2 Sd�1.

We claim that, if� satisfies (3.1),

lim
r!l1

EPR
r [ f (Rt , �)e�Cf(t)] D 0, � 2 Sd�1,(3.5)
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for any positive constantC. This fact is obtained by Itô and McKean [6]. Their idea
is as follows. Since the support ofmR coincides withI , we can employ the argument
in [6] and find that the time changed process QD [Rf �1(t), PR

r ] is an ODGDP with the

scale functionsR and the speed measure�, where f �1 is the inverse off. Since the
end pointl1 is (sR, mR)-entrance, we seesR(l1) D �1. Combining this with (3.1), we
find that the end pointl1 is (sR, �)-natural. Sincel1 is (sR, mR)-entrance, we have

lim sup
a!l1

lim sup
r!l1

PR
r (f(t) D1, t < �R

a ) � lim sup
a!l1

lim sup
r!l1

PR
r (t < �R

a ) D 0.(3.6)

Since l1 is (sR, �)-natural andf(�R
a ) is the first hitting time to the pointa for the

ODGDP Q (see [6]), we obtain

lim
r!l1

EPR
r [e�f(�R

a )] D 0, a 2 I .

Therefore

lim inf
a!l1

lim inf
r!l1

PR
r (f(t) D1, t > �R

a )

� lim inf
a!l1

lim inf
r!l1

PR
r (f(�R

a ) D1, t > �R
a )

D lim inf
a!l1

lim inf
r!l1

PR
r (t > �R

a ) D 1,

where we used the fact thatl1 is (sR, mR)-entrance. Thus we obtain that

lim
r!l1

PR
r (f(t) D 1) D 1, t > 0,

which implies (3.5). By using (2.21) and (3.5), we arrive at

lim
r!l1

pX
t f (r , �) D S1

0(�)
Z

Sd�1
S1

0(')EPR
l1 [ f (Rt , ')] dm(2)

d�1(')

D 1

Ad�1

Z
Sd�1

EPR
l1 [ f (Rt , ')] dm(2)

d�1(').

(ii) Assume that the end pointl i is (sR,mR)-natural and limr!l i sup�2Sd�1j f (r ,�)j D
0. We seth(r ) D sup�2Sd�1j f (r , �)j. Then by means of (2.5) and (2.20),

lim sup
r!l i

sup�2Sd�1

jpX
t f (r , �)j � lim sup

r!l i

EPR
r [h(Rt )] D lim

r!l i
pR

t h(r ) D 0.

Thus we obtain (3.4).

4. Feller property of time changed processes

Let X D [Xt D (Rt ,2f(t)), PX
(r ,�) D PR

r 
P2� , (r , �) 2 I �Sd�1] be the skew product
of the ODGDP R and the spherical Brownian motion2 with respect to the PCAFf(t)
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defined in Section 2. In this section we consider a time changed process of X and
show its Feller property under the assumption (2.7).

Let � be a non-trivial Radon measure onI and set

g(t) D Z
I

l R(t , r ) d�(r ), t > 0.(4.1)

We denote by� (t) the right continuous inverse ofg(t). We consider the time changed
process YD [Yt D (R� (t), �f(� (t))), PY

(r ,�) D PR
r 
 P2� , (r , �) 2 I � Sd�1]. Let denote by

pY
t the semigroup of Y, that is,

pY
t f (r , �) D EPR

r 
P2� [ f (R� (t), 2f(� (t)))], t > 0, (r , �) 2 I � Sd�1,(4.2)

for f 2 Cb(I � Sd�1). By virtue of (2.15) we obtain the following

(4.3)

pY
t f (r , �)

D Z
Sd�1

EPR
r [ f (R� (t), ')p2(f(� (t)), � , ')] dm(2)

d�1(')

D 1X
nD0

�(n)X
lD1

Sl
n(�)

Z
Sd�1

Sl
n(')EPR

r [ f (R� (t), ')e�
nf(� (t))] dm(2)
d�1(').

Note that the time changed process UD [R� (t), PR
r ] is an ODGDP with the scale function

sR and the speed measure�. We set3 D supp[�] and 0 D 3 � Sd�1. Also note that
the time changed process Y is essentially defined on0. SinceEPR

r [ f (R� (t), ')e�
nf(� (t))]
is continuous inr 2 3 (see [6]), the following result is obvious by means of (4.3).So
we omit the proof.

Proposition 4.1. Let f 2 Cb(0) and t> 0. Then pYt f 2 Cb(0).

We observe the behavior ofpY
t f (r , �) as r (2 3) ! l1 (resp.l2) when l1 D inf 3

(resp.l2 D sup3).

Theorem 4.2. Let f 2 Cb(0) and t> 0. The following properties hold true for
the end point li satisfying l1 D inf 3 or l2 D sup3.
(i) If the end point li is (sR, �)-regular or exit, then

lim
r (2 3)!l i

pY
t f (r , �) D 0, � 2 Sd�1.(4.4)

(ii) Assume that the end point li is (sR, �)-entrance, and the measure� satisfies(3.1).
Further assume that there exists the limitlimr (2 3)!l i f (r , �) for any � 2 Sd�1. Then
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there exist the following limits.

EPR
l i [ f (R� (t), �)] WD lim

r (2 3)!l i
EPR

r [ f (R� (t), �)], � 2 Sd�1.(4.5)

lim
r (2 3)!l i

pY
t f (r , �) D 1

Ad�1

Z
Sd�1

EPR
l i [ f (R� (t), ')] dm(2)

d�1('), � 2 Sd�1.(4.6)

Note that the limit(4.6) is independent of� .
(iii) Assume that the end point li is (sR, �)-natural and f satisfies

lim
r (2 3)!l i

sup�2Sd�1

j f (r , �)j D 0.

Then (4.4) holds true.

Proof. We may assume thatl1 D inf 3. We show the statements forl1.
(i) Assume that the end pointl1 is (sR, �)-regular or exit. By virtue of (2.3) for

U we get

lim sup
r (2 3)!l1

jEPR
r [ f (R� (t), �)e�f(� (t))]j � lim sup

r (2 3)!l1

EPR
r [j f (R� (t), �)j] D 0, � 2 Sd�1.

Combining this with the dominated convergence theorem and (4.3), we obtain the state-
ment (i).

(ii) Assume that the end pointl1 is (sR, �)-entrance, and there exists the limit
limr (2 3)!l1 f (r , �) for any � 2 Sd�1. Then, by means of (2.4) for the ODGDP U,
there exists the limit

EPR
l1 [ f (R� (t), �)] WD lim

r (2 3)!l1
EPR

r [ f (R� (t), �)], � 2 Sd�1.

Note that limr (2 3)!l1 PR
r (� (t) > 0)D 1. Therefore, by the same argument as for (3.5),

we obtain

(4.7) lim
r (2 3)!l1

EPR
r [ f (R� (t), �)e�Cf(� (t))] D 0, � 2 Sd�1,

for any positive constantC. Combining this with (4.3), we find

lim
r (2 3)!l1

pY
t f (r , �) D S1

0(�)
Z

Sd�1
S1

0(')EPR
l1 [ f (R� (t), ')] dm(2)

d�1(')

D 1

Ad�1

Z
Sd�1

EPR
l1 [ f (R� (t), ')] dm(2)

d�1(').

(iii) Assume that the end pointl1 is (sR, �)-natural and

lim
r (2 3)!l1

sup�2Sd�1

j f (r , �)j D 0.
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We seth(r ) D sup�2Sd�1j f (r , �)j. Then by means of (2.5) for the ODGDP U and (4.2),

lim sup
r (2 3)!l1

sup�2Sd�1

jpY
t f (r , �)j � lim sup

r (2 3)!l1

EPR
r [h(R� (t))] D 0.

Thus we obtain (4.4).

5. Dirichlet form of the time changed process

In this section, we derive the Dirichlet form (EY , FY) of the time changed pro-
cess Y defined in the preceding section. Y is a time changed process of X. X is the
skew product of R and2 with respect tof defined by (2.17), and the Dirichlet form
(EX , FX) corresponding to X is given in Proposition 2.1. In the following we assume
(2.7) and that

(5.1)
for any compact setB � I , there exists a positive constantMB

satisfying 1B(r ) dsR(r ) � MB1B(r ) dmR(r ).

We note that the measure� 
 m(2)
d�1 charges no set of zeroEX-capacity. For this, it

is enough to show that, for every compact setB � I , there is a positive constantC
such that Z

B�Sd�1
ju(r , �)j d�(r ) dm(2)

d�1(�) � CEX
1 (u, u)1=2, u 2 CX ,(5.2)

that is, 1B(r ) d�(r ) dm(2)
d�1(�) is of finite energy integral, whereEX

1 (u, u) D EX(u, u)C
(u, u)L2(mR
m(2)

d�1II�Sd�1). Let 8 be an element ofC1
0 (J) such that8(sR(r )) D 1 for r 2

B. We setD D supp[8 Æ sR]. Then we find thatZ
B�Sd�1

ju(r , �)j d�(r ) dm(2)
d�1(�)

� �(B)A1=2
d�1

�p
2EX(u, u)1=2�Z

J
8(� )2 d��1=2

C M1=2
D

�Z
I�Sd�1

u(r , �)2 dmR(r ) dm(2)
d�1(�)

�1=2�Z
J
80(� )2 d��1=2�

,

which implies (5.2). We note thatg(t) defined by (4.1) is a PCAF of X andPX
(r ,�)(g(t) >

0, t > 0)D 1 for (r , �) 2 0. Employing Theorem 6.2.1 in [5], we see that the Dirichlet
form (EY , FY) is regular onL2(0, � 
 m(2)

d�1) and hasCX j0 as a core, whereCX j0 Dfuj0 W u 2 CXg.
The following lemma is easily obtained, so the proof is omitted.
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Lemma 5.1. Assume that
R3 dsR > 0. Let u2 CX and put fD uj0. Then there

exists the limit

��sR f (r , �) WD lim
r 0 (2 3)!r

f (r 0, �) � f (r , �)

sR(r 0) � sR(r )
D lim

r 0!r

u(r 0, �) � u(r , �)

sR(r 0) � sR(r )
,

for dsR-a.e. r 2 3 and every� 2 Sd�1.

If 3 D I , then EY(u, v) D EX(u, v) for u, v 2 CX . Therefore we are restricted to
the case thatI n3 ¤ ;. For a setE � I we put

ER
E(u, v) D Z

E

du

dsR

dv
dsR

dsR,

EX
E ( f , g) D Z

Sd�1
ER

E( f ( � , �), g( � , �)) dm(2)
d�1(�)C Z

E
E2( f (r , � ), g(r , � )) d�(r ).

We note thatI n 3 D S
k2K Ik, a finite or a countable disjoint union of open in-

tervals Ik D (ak, bk) with the end points belonging to3[ fl1, l2g. SinceCX j0 is a core
of (EY , FY), we fix a u 2 CX and set f D uj0. Then f 2 FY and

EY( f , f ) D EX(H0u, H0u),(5.3)

where H0u(r , �) D EPX
(r ,� ) [u(X�X0 )I �X0 <1], and �X0 D infft > 0W Xt 2 0g. By means

of (2.19) and (5.3) we see that

EY( f , f ) D EX3(H0u, H0u)CX
k2K

EX
Ik

(H0u, H0u).(5.4)

Lemma 5.2. It holds true that

(5.5)
EX3(H0u, H0u)

D Z
0 ��sR f (r , �)2 dsR(r ) dm(2)

d�1(�)C Z
3 E2( f (r , � ), f (r , � )) d�(r ).

If
R3 dsR(r ) D 0, then the first term of the right hand side vanishes.

Proof. SincePX
(r ,�)(�X0 D 0) D 1 for (r , �) 2 0, H0u D u D f on 0. Combining

this with Lemma 5.1, we obtain (5.5).

We are going to derive an explicit form ofEX
Ik

(H0u, H0u). For r 2 Ik D (ak, bk)

and � , ' 2 Sd�1, we set

Gk,1(r I � , ') D EPR
r [ p2(f(�R

bk
), � , ')I �R

bk
< �R

ak
],(5.6)

Gk,2(r I � , ') D EPR
r [ p2(f(�R

ak
), � , ')I �R

ak
< �R

bk
].(5.7)
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By means of (2.15) we see that

Gk,1(r I � , ') D 1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nf(�R

bk
)I �R

bk
< �R

ak
],(5.8)

Gk,2(r I � , ') D 1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nf(�R

ak
)I �R

ak
< �R

bk
],(5.9)

for r 2 Ik D (ak, bk) and � , ' 2 Sd�1.

Lemma 5.3. Let r 2 Ik and � 2 Sd�1. If l1 D ak < bk < l2, then

(5.10) H0u(r , �) D Z
Sd�1

f (bk, ')Gk,1(r I � , ') dm(2)
d�1(').

If l 1 < ak < bk D l2, then

H0u(r , �) D Z
Sd�1

f (ak, ')Gk,2(r I � , ') dm(2)
d�1(').(5.11)

If l 1 < ak < bk < l2, then

H0u(r , �) D Z
Sd�1

f f (ak, ')Gk,2(r I � , ')C f (bk, ')Gk,1(r I � , ')g dm(2)
d�1(').(5.12)

Proof. Let l1 < ak < bk < l2, r 2 Ik and � 2 Sd�1. Note that PX
(r ,�)(�X0 D �R

ak
^�R

bk
<1) D 1. Therefore, by virtue of (2.15), we find that

H0u(r , �) D EPX
(r ,� ) [u(R�X0 , 2f(�X0 ))I �X0 <1]

D 1X
nD0

�(n)X
lD1

Sl
n(�)

Z
Sd�1

Sl
n(')EPR

r
�
u
�
R�R

ak
^�R

bk
, '�e�
nf(�R

ak
^�R

bk
)� dm(2)

d�1(')

D 1X
nD0

�(n)X
lD1

Sl
n(�)

Z
Sd�1

Sl
n(')

�
f (ak, ')EPR

r
�
e�
nf(�R

ak
)I �R

ak
< �R

bk

�
C f (bk, ')EPR

r
�
e�
nf(�R

bk
)I �R

bk
< �R

ak

�	
dm(2)

d�1(').

Combining this with (5.8) and (5.9), we obtain (5.12).
Let l1 D ak < bk < l2, r 2 Ik and � 2 Sd�1. Then PX

(r ,�)(�X0 D �R
bk
< 1) D

PX
(r ,�)(�X0 D �R

bk
< �R

ak
). Therefore we obtain (5.10) in the same way as above.

We also obtain (5.11) by the same argument as that for (5.10).
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By virtue of a general theory of ODGDP’s, there exist the following limits (see [8]).

J1,1
k (� , ') WD lim

r#ak

DsR(r )Gk,2(r I � , ').(5.13)

J1,2
k (� , ') WD lim

r#ak

DsR(r )Gk,1(r I � , ').(5.14)

J2,1
k (� , ') WD � lim

r"bk

DsR(r )Gk,2(r I � , ').(5.15)

J2,2
k (� , ') WD � lim

r"bk

DsR(r )Gk,1(r I � , ').(5.16)

We denote byM the product measurem(2)
d�1 
m(2)

d�1.

Lemma 5.4. (i) Let l1 D ak < bk < l2. Then

(5.17)

EX
Ik

(H0u, H0u)

D 1

2

Z
Sd�1�Sd�1

f f (bk, �) � f (bk, ')g2J2,2
k (� , ') dM(� , ')

C 1

sR(bk) � sR(l1)

Z
Sd�1

f (bk, �)2 dm(2)
d�1(�).

The second term of the right hand side vanishes if sR(l1) D �1.
(ii) Let l1 < ak < bk D l2. Then

(5.18)

EX
Ik

(H0u, H0u)

D 1

2

Z
Sd�1�Sd�1

f f (ak, �) � f (ak, ')g2J1,1
k (� , ') dM(� , ')

C 1

sR(l2) � sR(ak)

Z
Sd�1

f (ak, �)2 dm(2)
d�1(�).

The second term of the right hand side vanishes if sR(l2) D1.

Proof. We assumel1 D ak < bk < l2, and writea and b in place of ak and bk,
respectively. By means of Green’s formula, (5.10) and (5.16),

EX
Ik

(H0u, H0u)

D Z
Sd�1

H0u(b, �) lim
r"b

DsR(r ) H0u(r , �) dm(2)
d�1(�)

D � Z
Sd�1�Sd�1

f (b, �) f (b, ')J2,2
k (� , ') dM(� , ')

D 1

2

Z
Sd�1�Sd�1

f f (b, �) � f (b, ')g2J2,2
k (� , ')dM(� , ')

� 1

2

Z
Sd�1�Sd�1

f f (b, �)2 C f (b, ')2gJ2,2
k (� , ') dM(� , ').
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Noting J2,2
k (� , ') D J2,2

k (', �), we get

� 1

2

Z
Sd�1�Sd�1

f f (b, �)2 C f (b, ')2gJ2,2
k (� , ') dM(� , ')

D � Z
Sd�1�Sd�1

f (b, �)2J2,2
k (� , ') dM(� , ')

D Z
Sd�1

f (b, �)2 lim
r"b

DsR(r ) H01(r , �) dm(2)
d�1(�)

D 1

sR(bk) � sR(l1)

Z
Sd�1

f (b, �)2 dm(2)
d�1(�).

Here we used the following fact for the last equality.

H01(r , �) D PX
(r ,�)(�X0 <1) D PR

r (�R
b < �R

a ) D sR(r ) � sR(a)

sR(b) � sR(a)
,

(see [6]). Thus we arrive at the first assertion. In the same way as above we obtain
the second assertion.

Lemma 5.5. Let l1 < ak < bk < l2. Then

(5.19)

EX
Ik

(H0u, H0u)

D 1

2

Z
Sd�1�Sd�1

f f (ak, �) � f (ak, ')g2J1,1
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (ak, �) � f (bk, ')g2J1,2
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (bk, �) � f (ak, ')g2J2,1
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (bk, �) � f (bk, ')g2J2,2
k (� , ') dM(� , ').

Proof. We seta D ak and b D bk. By means of Green’s formula, (5.12), (5.13),
(5.14), (5.15) and (5.16),

EX
Ik

(H0u, H0u)

D Z
Sd�1

H0u(b, �) lim
r"b

DsR(r ) H0u(r , �) dm(2)
d�1(�)

� Z
Sd�1

H0u(a, �) lim
r#a

DsR(r ) H0u(r , �) dm(2)
d�1(�)
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D � Z
Sd�1�Sd�1

f (b, �) f (a, ')J2,1
k (� , ') dM(� , ')

� Z
Sd�1�Sd�1

f (b, �) f (b, ')J2,2
k (� , ') dM(� , ')

� Z
Sd�1�Sd�1

f (a, �) f (a, ')J1,1
k (� , ') dM(� , ')

� Z
Sd�1�Sd�1

f (a, �) f (b, ')J1,2
k (� , ') dM(� , ')

D 1

2

Z
Sd�1�Sd�1

f f (b, �) � f (a, ')g2J2,1
k (� , ') dM(� , ')

� 1

2

Z
Sd�1�Sd�1

f f (b, �)2 C f (a, ')2gJ2,1
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (b, �) � f (b, ')g2J2,2
k (� , ') dM(� , ')

� 1

2

Z
Sd�1�Sd�1

f f (b, �)2 C f (b, ')2gJ2,2
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (a, ')g2J1,1
k (� , ') dM(� , ')

� 1

2

Z
Sd�1�Sd�1

f f (a, �)2 C f (a, ')2gJ1,1
k (� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (b, ')g2J1,2
k (� , ') dM(� , ')

� 1

2

Z
Sd�1�Sd�1

f f (a, �)2 C f (b, ')2gJ1,2
k (� , ') dM(� , ')

� V1 C V2 C V3 C V4 C V5 C V6 C V7 C V8.

In the same way as above, we also find

EX
Ik

(H0(u2), H01)

D � Z
Sd�1�Sd�1

f (b, �)2fJ2,1
k (� , ')C J2,2

k (� , ')g dM(� , ')

� Z
Sd�1�Sd�1

f (a, �)2fJ1,1
k (� , ')C J1,2

k (� , ')g dM(� , ')

D � Z
Sd�1�Sd�1

f (a, ')2fJ2,1
k (� , ')C J1,1

k (� , ')g dM(� , ')

� Z
Sd�1�Sd�1

f (b, ')2fJ2,2
k (� , ')C J1,2

k (� , ')g dM(� , ').

Combining this withH01(r , �) D PR
r (�R

a ^ �R
b <1) D 1, we have

V2 C V4 C V6 C V8 D EX
Ik

(H0(u2), H01)D 0.
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Therefore we obtain the conclusion of the lemma.

By virtue of Lemmas 5.2, 5.4, and 5.5, we arrive at the following theorem.

Theorem 5.6. Assume3 ¤ I , (2.7) and (5.1). Then the Dirichlet form(EY , FY)
of Y is regular on L2(0,�
m(2)

d�1) and hasCX j0 as a core. For f2 CX j0, the Dirichlet
form (EY , FY) is given by the following.
(5.20)

EY( f , f ) D Z
0 ��sR f (r , �)2 dsR(r ) dm(2)

d�1(�)C Z
3 E2( f (r , � ), f (r , � )) d�(r )

C 1

2

X
k2K Wl1<ak<bk�l2

Z
Sd�1�Sd�1

f f (ak, �) � f (ak, ')g2J1,1
k (� , ') dM(� , ')

C 1

2

X
k2K Wl1�ak<bk<l2

Z
Sd�1�Sd�1

f f (bk, �) � f (bk, ')g2J2,2
k (� , ') dM(� , ')

C 1

2

X
k2K Wl1<ak<bk<l2

Z
Sd�1�Sd�1

f f (ak, �) � f (bk, ')g2J1,2
k (� , ') dM(� , ')

C 1

2

X
k2K Wl1<ak<bk<l2

Z
Sd�1�Sd�1

f f (bk, �) � f (ak, ')g2J2,1
k (� , ') dM(� , ')

C I1( f )C I2( f ).

Here the first term of the right hand side vanishes in case that
R3 dsR(r ) D 0. The last

two terms Ii ( f ), i D 1, 2 should be read as

I1( f ) D
8��<
��:

1

sR(bk) � sR(l1)

Z
Sd�1

f (bk, �)2dm(2)
d�1(�)

if l 1 D ak < bk < l2 and sR(l1) > �1,
0 otherwise,

I2( f ) D
8��<
��:

1

sR(l2) � sR(ak)

Z
Sd�1

f (ak, �)2dm(2)
d�1(�)

if l 1 < ak < bk D l2 and sR(l2) <1,
0 otherwise.

EXAMPLE 5.7. Let d � 2 and R be the Bessel process onI D (0,1) with the
generatorGR D (1=2)(d2=dr2 C ((d � 1)=r )(d=dr )). We may setdsR(r ) D 2r 1�d dr
and dmR(r ) D r d�1 dr . Note that the assumption (5.1) is satisfied. The end point 0 is
(sR, mR)-entrance and the end point1 is (sR, mR)-natural. We set

h(t) D Z
I

l R(t , r )r d�3 dr D Z t

0
R�2

s ds, t > 0.
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In the same way as in [6], we obtain the following.

EPR
r [e�
nh(�R

b )] D �
r

b

�n

, 0< r < b.(5.21)

EPR
r [e�
nh(�R

a )] D �
a

r

�d�2Cn

, a < r <1.(5.22)

EPR
r [e�
nh(�R

a )I �R
a < �R

b ] D (b=r )d�2Cn � (r =b)n

(b=a)d�2Cn � (a=b)n
, a < r < b.(5.23)

EPR
r [e�
nh(�R

b )I �R
b < �R

a ] D (r =a)n � (a=r )d�2Cn

(b=a)n � (a=b)d�2Cn
, a < r < b.(5.24)

Here 0< a < b < 1 and n � 0, where, if d D 2 and n D 0, (5.23) and (5.24) are
reduced to (5.25) and (5.26), respectively.

PR
r (�R

a < �R
b ) D log b=r

log b=a , a < r < b,(5.25)

PR
r (�R

b < �R
a ) D log r =a

log b=a , a < r < b.(5.26)

We note that the functions given by (5.21)–(5.24) satisfy the equationGRg(r )D
nr �2g(r ).
(i) We first consider the case thatd�(r ) D r �2 dmR(r ) D r d�3 dr . Then

f(t) D Z
I

l R(t , r )r �2 dmR(r ) D Z t

0
R�2

s ds,

hence the skew product XD [(Rt , 2f(t)), PR
r 
 P2� , (r , �) 2 I � Sd�1] is reduced to

d-dimensional Brownian motion BM(d). The assumption (3.1) is also satisfied for the
end points 0 and1. It is well known that the statements (i) and (ii) of Theorem 3.2
are valid for BM(d).
(ii) Let d�(r ) D 1(0,a)(r ) dmR(r ) and d�(r ) D 1(0,a)(r ) d!(r ) C 1(a,1)(r )r �2 dmR(r ),
where 0< a < 1 and ! is a Radon measure onI such that supp[!] D I and��R a

0 sR(r ) d!(r )
�� D 1. By virtue of Theorem 5.6, we get the following. For

f 2 CX j(0,a)�Sd�1,

(5.27)

EY( f , f ) D 1

2

Z
(0,a)�Sd�1

� f�r (r , �)2r d�1 dr dm(2)
d�1(�)

C Z
(0,a)

E2( f (r , � ), f (r , � )) d!(r )

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (a, ')g2J(� , ') dM(� , ')C I ( f ),

where

I ( f ) D
8<
:

d � 2

2
ad�2

Z
Sd�1

f (a, �)2 dm(2)
d�1(�), if d � 3,

0, if d D 2.
(5.28)
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Since PR
r (f(�R

a ) D h(�R
a )) D 1 for a < r <1, J(� , ') is given as follows.

(5.29)

J(� , ') D lim
r#a

DsR(r )

1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nh(�R

a )]

D lim
r#a

DsR(r )

1X
nD0

�
a

r

�d�2Cn �(n)X
lD1

Sl
n(�)Sl

n(').

Especially, if d D 2, then

(5.30)

J(� , ') D lim
r#a

DsR(r )

(
1

2� C 1�
1X

nD1

�
a

r

�n

cosn(� � ')

)

D 1� lim
r#a

DsR(r )
(a=r ) cos(� � ') � (a=r )2

1� 2(a=r ) cos(� � ')C (a=r )2

D 1

4� 1

1� cos(� � ')
D �

8� sin2 � � '
2

��1

.

ThereforeEY corresponding to the cased D 2 is given as follows.

EY( f , f ) D 1

2

Z
(0,a)�S1

� f�r (r , �)2r dr d� C 1

2

Z
(0,a)�S1

� f�� (r , �)2 d!(r ) d�
C 1

16�
Z

S1�S1
f f (a, �) � f (a, ')g2 1

sin2((� � ')=2)
d� d'.

Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process corres-
ponding to (5.27) has Feller property in the sense of Proposition 4.1 and Theorem 4.2 (ii).
(iii) Let d�(r ) D 1(a,1)(r ) dmR(r ) and d�(r ) D 1(0,a)(r )r �2 dmR(r ) C 1(a,1)(r ) d!(r ),
where 0< a <1 and! is a Radon measure onI such that supp[!] D I . By virtue
of Theorem 5.6, we get the following. Forf 2 CX j(a,1)�Sd�1,

(5.31)

EY( f , f ) D 1

2

Z
(a,1)�Sd�1

� f�r (r , �)2r d�1 dr dm(2)
d�1(�)

C Z
(a,1)

E2( f (r , � ), f (r , � )) d!(r )

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (a, ')g2J(� , ') dM(� , ').

Here J(� , ') is given as follows. SincePR
r (f(�R

a ) D h(�R
a )) D 1 for 0< r < a,

(5.32)

J(� , ') D � lim
r"a

DsR(r )

1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nh(�R

a )]

D � lim
r"a

DsR(r )

1X
nD0

�
r

a

�n �(n)X
lD1

Sl
n(�)Sl

n(').
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When d D 2,

(5.33)

J(� , ') D � lim
r"a

DsR(r )

(
1

2� C 1�
1X

nD1

�
r

a

�n

cosn(� � ')

)

D � 1� lim
r"a

DsR(r )
(r =a) cos(� � ') � (r =a)2

1� 2(r =a) cos(� � ')C (r =a)2

D 1

4� 1

1� cos(� � ')
D �

8� sin2 � � '
2

��1

.

ThereforeEY corresponding to the cased D 2 is given as follows.

EY( f , f ) D 1

2

Z
(a,1)�S1

� f�r (r , �)2r dr d� C 1

2

Z
(a,1)�S1

� f�� (r , �)2 d!(r ) d�
C 1

16�
Z

S1�S1
f f (a, �) � f (a, ')g2 1

sin2((� � ')=2)
d� d'.

Since the assumption of Theorem 4.2 (iii) is satisfied, the time changed process corres-
ponding to (5.31) has Feller property in the sense of Proposition 4.1 and Theorem 4.2 (iii).
(iv) Let d�(r ) D 1(a,b)(r )dmR(r ) andd�(r ) D 1(0,a)[(b,1)(r )r �2 dmR(r )C1(a,b)(r )d!(r ),
where 0< a < b < 1 and ! is a Radon measure onI such that supp[!] D I . By
virtue of Theorem 5.6, we get the following. Forf 2 CX j(a,b)�Sd�1,

(5.34)

EY( f , f ) D 1

2

Z
(a,b)�Sd�1

� f�r (r , �)2r d�1drdm(2)
d�1(�)

C Z
(a,b)

E2( f (r , � ), f (r , � )) d!(r )

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (a, ')g2J1(� , ') dM(� , ')

C 1

2

Z
Sd�1�Sd�1

f f (b, �) � f (b, ')g2J2(� , ') dM(� , ')

C I ( f ),

where I ( f ) is given by (5.28) withb in place of a, J1(� , ') is given by (5.32), and
J2(� , ') is given by (5.29) withb in place ofa. Therefore, ifd D 2, then

J1(� , ') D J2(� , ') D �
8� sin2 � � '

2

��1

.
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FurtherEY corresponding to the cased D 2 is given as follows.

EY( f , f ) D 1

2

Z
(a,b)�S1

� f�r (r , �)2r dr d� C 1

2

Z
(a,b)�S1

� f�� (r , �)2 d!(r ) d�
C 1

16�
Z

S1�S1
f f (a, �) � f (a, ')g2 1

sin2((� � ')=2)
d� d'

C 1

16�
Z

S1�S1
f f (b, �) � f (b, ')g2 1

sin2((� � ')=2)
d� d'.

Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process corres-
ponding to (5.34) has Feller property in the sense of Proposition 4.1
(v) Let d�(r ) D Æa(dr ) and d�(r ) D r �2 dmR(r ) C CÆa(dr ), where 0< a < 1, Æa

stands for the unit measure concentrated at a pointa and C is a positive number. By
virtue of Theorem 5.6, we get the following. Forf 2 CX jfag�Sd�1,

(5.35)
EY( f , f ) D CE2( f (a, � ), f (a, � ))

C 1

2

Z
Sd�1�Sd�1

f f (a, �) � f (a, ')g2J(� , ') dM(� , ')C I ( f ),

where I ( f ) is given by (5.28) andJ(� , ') is given as follows. SincePR
r (f(�R

a ) D
h(�R

a )) D 1 for r ¤ a,

J(� , ') D � lim
r"a

DsR(r )

1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nh(�R

a )]

C lim
r#a

DsR(r )

1X
nD0

�(n)X
lD1

Sl
n(�)Sl

n(')EPR
r [e�
nh(�R

a )]

D � lim
r"a

DsR(r )

1X
nD0

�
r

a

�n �(n)X
lD1

Sl
n(�)Sl

n(')

C lim
r#a

DsR(r )

1X
nD0

�
a

r

�d�2Cn �(n)X
lD1

Sl
n(�)Sl

n(').

When d D 2, by means of (5.30) and (5.33),

J(� , ') D �
4� sin2 � � '

2

��1

.

ThereforeEY corresponding to the cased D 2 is given as follows.

EY( f , f ) D C

2

Z
S1

� f�� (a, �)2 d�
C 1

8�
Z

S1�S1
f f (a, �) � f (a, ')g2 1

sin2((� � ')=2)
d� d'.
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Since the assumption of Theorem 4.2 (ii) is satisfied, the time changed process corres-
ponding to (5.35) has Feller property in the sense of Proposition 4.1.
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