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Abstract

An alternate description for ribbon disk complements in the4-ball is provided. It
is known (and reestablished) that this description is equivalent to the standard LOT
description, up to 3-deformation. Amenable to geometric arguments, the alternate de-
scription yields asphericity results for ribbon disk complements using simple graph-
theoretic criteria and, later, using a relative homotopy group which arises naturally.
In the course of making and modifying the description, two algorithms are given for
presenting ribbon disk groups.

1. Introduction

A ribbon is an immersed 2-dimensional disk inS3 whose boundary is a p.l. knot
and whose self-intersections areribbon-like, meaning they are of the type illustrated
in Fig. 1. In particular, the singular set for a ribbon immersion � W B2 ! S3 consists
of pairs of arcs inB2, each pair comprised of a large, properly-embedded arc and a
small, interior arc. Examples of ribbons are shown in Fig. 2.

A ribbon disk is a properly embedded p.l. disk in the 4-ball,B4, whose projection
onto S3 D Bd(B4) is a ribbon. Slides along a collar on Bd(B4) account for the morph-
ing of ribbons to ribbon disks. For a thorough discussion of ribbons and ribbon disks,
see [1] and [7].

In [7] Howie describes 2-dimensional spines for ribbon diskcomplements via la-
beled oriented trees. A review of Howie’s spines, calledLOT spines, is included in
Appendix B of this article. LOT spines illuminate striking similarities between ribbon
disk complements inB4 and classical knot complements inS3. For example, presen-
tations for ribbon disk groups based on LOT spines strongly resemble Wirtinger pres-
entations for knot groups. Furthermore, LOT spines, like knot complement spines, are
seen to be subcomplexes of contractible 2-complexes. In light of such similarities, it is
not surprising that the questions which ribbon disk complements invoke are similar to
esteemed questions concerning knot complements. Foremostis the question: Are they
aspherical? Indeed, many ribbon disk complements share thehomotopy class of a knot
complement and are thus aspherical. Not all ribbon disk complements enjoy this status
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Fig. 1. A ribbon-like intersection.

Fig. 2. Pages from a catalog of ribbons.

[7] and [11], however, and the question of asphericity remains open. In this way ribbon
disk complements play an important role in the investigation of Whitehead’s question
whether every subcomplex of an aspherical 2-complex is itself aspherical [14] and [6].

In Section 2 of this article an alternate description to the LOT description is pro-
vided. The main result in this regard is

Theorem 2.1. A ribbon disk complement in B4 can be described as a3-complex
of the form

[U n 0] [ c � Bd(U ),

where U is a3-dimensional cube with handles and0 is an interior graph in U. The
graph 0 contains the original ribbon knot and is obtained by attaching spanning arcs
to the ribbon knot, one spanning arc for each ribbon singularity.
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Fig. 3. Corresponding core graphs for the ribbons above.

This description for the ribbon disk complement is based on work by Robert Craggs,
which tells a more general story of 2-complexes in 4-manifolds. Here, the description
is presented as it applies to ribbon disk complements. For the reader’s benefit, motiva-
tion for this description is provided in Appendix A. In [3, Chapter 2], Cavagnaro shows
that this description is equivalent to the standard LOT description, up to 3-deformation.
This equivalence is (re)established in Appendix B of this article. The proof is the au-
thor’s own and follows quickly from earlier observations.

The description in Theorem 2.1 is further modified to obtain a2-dimensional spine
for the ribbon disk complement, from which a presentation for the ribbon disk group
can be written. To this end, the notion of acore graph is helpful. Define a core
graph for a ribbon to be any 1-dimensional spine for the ribbon whose vertex set con-
tains precisely one point from each singular arc of the ribbon. One may, for example,
thicken the ribbon to a cube with handles, then identify a 1-dimensional core, being
sure to place vertices on the ribbon’s singular arcs. In thisway, the vertices of the core
graph correspond to ribbon singularities and the edges of the core graph correspond to
1-handles in a thickening of the ribbon. Fig. 3 illustrates examples of core graphs.

It may be assumed, without changing the 3-deformation type of the complement,
that the LOT for a ribbon is a chain, that is, a tree with precisely two extremal vertices
[7, Proposition 4.1]. Consequently, it may be assumed that acore graph has precisely
two vertices of valence 3 and that its remaining vertices have valence 4. In particular,
the chain assumption allows the small arcs in the singular set of the ribbon immer-
sion to be ordered left to right inB2. The leftmost small arc, then, corresponds to
one vertex of valence 3 in the core graph; the rightmost smallarc to the other vertex
of valence 3. All intermediate small arcs correspond to vertices of valence 4. This
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arrangement for core graphs will be assumed throughout.
Further, an edge’s position at a vertex of a core graph will beimportant. Each

vertex in the core graph, therefore, will be said to have a topedge, a bottom edge,
and either one or two side edges, depending on its valence. Labels will be placed on
ends of edges at a vertex and these labels play the central role in writing a presentation
for the ribbon disk group.

In Section 3 the language of the core graph is used to state twoasphericity results
for ribbon disk complements, both based on simple, graph-theoretic criteria. The first
result establishes asphericity provided a certain subgraph of a twist-free core graph is a
forest. (Intuitively, a twist-free core graph correspondsto a ribbon without half-twists.)

Theorem 3.1. Suppose all edges containing a bottom label are deleted froma
twist-free core graph. If the graph which remains is a forest, then the ribbon disk com-
plement is aspherical.

The second result establishes asphericity provided the core graph has a particular
cut-edge property. This result may be viewed as a topological analog of a well-known
algebraic result in the subject.

Theorem 3.2. Suppose a core graph C can be written as CD A[ e[ B, where
A, B are disjoint core graphs and e is an edge which connects them. If A and B cor-
respond to aspherical ribbon disk complements, then C corresponds to an aspherical
ribbon disk complement.

In Section 4 the main description for the ribbon disk complement is modified by
eliminating the cone from the description. In this setting the ribbon disk is complement
described as the ribbon graph complementS3n0 with 2-cells attached along a complete
set of meridional curves in Bd(U ). Recall thatU is a regular neighborhood of the
ribbon in S3 and0 is an interior graph comprised of the ribbon knot and spanning arcs.
A modification in this direction suggests a second algorithmfor presenting a ribbon
disk group. The presentation in this case is a relative presentation with respect to a
standard Wirtinger presentation for�1(S3 n 0).

Furthermore, this approach suggests a natural pair of spaces to consider: the ribbon
disk complement itself and the ribbon graph complementS3 n 0 which is a subset of
it. Using the homotopy sequence of the pair, an asphericity result is obtained based on
the second relative homotopy group.

Theorem 4.1. Let YD [S3 n 0] [ fE1, E2, : : : , Eng denote the ribbon disk com-
plement as described above and let X be the subspace S3 n 0. If �2(Y, X) is a free
group, then Y is aspherical.
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Fig. 4. An example of a ribbon and corresponding 3-manifoldW.

Empirical evidence suggests this condition is necessary and sufficient for a sizable
subset of ribbon disk complements.

2. An alternate description for ribbon disk complements

Fix a collar S3 � I on the boundary ofB4 and consider a ribbon disk embedded
in the collar. Recall that the ribbon disk projects along thefibers of the collar onto a
ribbon in S3 � f0g. To begin the alternate description for the ribbon disk complement,
let U denote a regular neighborhood of the ribbon inS3 � f0g. Notice thatU is a
3-dimensional cube with handles and that the boundary of theribbon disk, which is a
ribbon knot, resides in its interior. It may be assumed without loss of generality that
U is Heegaard inS3. Let W denote the 3-manifold obtained by removing fromU the
interior of a small regular neighborhood of the ribbon knot,as illustrated in Fig. 4.

Next, add toW the cone over Bd(U ) to obtain the 3-complex

W [ c � Bd(U ).

The description for the ribbon disk complement is completedby adding 3-cells to
this 3-complex, one 3-cell for each ribbon singularity, according to the instructions
which follow.

Let S1, S2, : : : , Sn denote the singular arcs in the ribbon. InW there exists a col-
lection of annulifA1, A2, : : : , Ang with the following properties:
(1) The annulifA1, A2, : : : , Ang are mutually disjoint.
(2) Each annulusAi is properly embedded inU .
(3) Each annulusAi intersects the ribbon transversely in a circle which boundsa disk
containingSi and which misses all other double arcs.

A good deal of flexibility is available in choosing such annuli. To avoid patholo-
gies, however, take each annulusAi to be as pictured in Fig. 5.

Now, for eachi , let 6i D Ai [c�Bd(Ai ). These pinched 2-spheres61,62, : : : ,6n

serve as placeholders for the 3-cells which are attached toW [ c�Bd(U ) to complete
the description for the ribbon disk complement. In summary,the ribbon disk comple-
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Fig. 5. A typical annulus,Ai , in the collectionfA1, A2, : : : , Ang.
ment in the 4-ball has the 3-deformation type of the 3-complex

W [ c � Bd(U ) [ fD1, D2, : : : , Dng,
where W is a ribbon knot complement in a cube with handlesU and eachDi is a
3-cell attached toW [ c � Bd(U ) along a pinched 2-sphere per the instructions above.

REMARK 2.1. As noted earlier, the motivation for this description for a rib-
bon disk complement is given in Appendix A. This descriptionwill soon be mod-
ified and will ultimately be shown, in Appendix B, to be equivalent to the standard
LOT description.

REMARK 2.2. It follows from this description that the ribbon disk group is iso-
morphic to the fundamental group of the 3-complexW[c�Bd(U ), a singular 3-manifold
with precisely one non-manifold point, its cone point.

REMARK 2.3. By [2, Lemma 2.1], the 3-complexW [ c � Bd(U ) 3-deforms to
the ribbon knot complement inS3 together with 2-cells attached along a complete set
of meridional curves in Bd(U ). It follows that the ribbon disk group is a homomorph
of the classical ribbon knot group, a fact which has been observed in the literature.
Notice, in this context, the kernel of the epimorphism is normally generated by the
meridional curves in Bd(U ).

The current description for the ribbon disk complement permits modifications in
several directions. The description, for example, permitscollapses which eliminate the
3-cells fD1, D2, : : : , Dng. The price for performing these collapses is the addition of
spanning arcs to the ribbon knot. This is the content of the following theorem, which
serves as the main statement of the alternate description.
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Fig. 6. A typical series of collapses which leads to the removal
of a 3-cell Di .

Theorem 2.1. A ribbon disk complement can be described as a3-complex of
the form

[U n 0] [ c � Bd(U ),

where U is a3-dimensional cube with handles and0 is an interior graph in U. The
graph 0 contains the original ribbon knot and is obtained by attaching spanning arcs
to the ribbon knot, one spanning arc for each ribbon singularity.

Proof. The main idea for the proof is demonstrated in Fig. 6. In a neighborhood
of each singular arcSi , collapse toward the annulusAi from either direction, starting
at faces on the boundary of a regular neighborhood of the knot. These collapses cre-
ate a free face inAi and the 3-cellDi may now be collapsed through this free face.
Performing such a series of collapse for eachi achieves the promised modification of
the ribbon disk complement.

The reader satisfied with the intuitive argument above may wish to skip ahead to
Remark 2.4. A more precise argument for the claim in Theorem 2.1 is made below.

Let � W B2 ! S3 denote the ribbon immersion and letfS1, S2, : : : , Sng denote the
singular arcs in�(B2). For eachi , let ��1(Si ) D 1i [ Æi , where1i is a large, properly-
embedded arc inB2 andÆi is a small, interior arc. There exists a collectionf�1,�2, : : : ,�ng
of arcs inB2 with the following properties:
(1) Int(�i ) lies in the component of int(B2) n [f11, 12, : : : , 1ng which containsÆi .
(2) One endpoint of�i is an endpoint ofÆi and the other endpoint of�i lies on Bd(B2).
(3) �i does not meet any peer� j and does not meet any circle��1(A j ) except��1(Ai ),
which it meets transversely in a single point.

Fig. 7 demonstrates a choice of arcs�i for a ribbon with two singularities used in
an earlier example. The arcs�(�i ) guide the collapses which eliminate the 3-cellsDi .

Without loss of generality, it may be assumed that the description has a CW de-
composition such thatAi , N(�(�i )), N(�(�i )) \ Ai , and N(�(�i )) \ N(�(Bd(B2))) are
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Fig. 7. A choice of arcsf�1, �2g in B2 for a ribbon with two
singularities. The images of these arcs guide the collapsesin the
ribbon disk complement.

subcomplexes for eachi and the regular neighborhoodsN(�(�i )) are mutually disjoint.
The two 2-cells which compriseN(�(�i )) \ N(�(Bd(B2))) are both free faces on
N(�(�i )). CollapseN(�(�i )) through these free faces towardN(�(�i )) \ Ai . The 2-cell
N(�(�i )) \ Ai is now a free face onDi . CollapseDi through this free face. Observe
the effect of this operation: The 3-cellDi is now absent and the graph�(Bd(B2)) re-
moved fromU has been enlarged by a spanning arc. Continuing in this way all 3-cells
D1, D2, : : : , Dn may be removed from the description of the ribbon disk complement.

REMARK 2.4. For a result similar to Theorem 2.1, the reader is encouraged to
see [4, Theorem 3]. There, a strong connection is made between LOT spines and com-
plements of properly embedded arcs in cones over surfaces.

REMARK 2.5. The reader is cautioned not to confuse the termscore graphand
ribbon graph. The term core graph refers to a 1-dimensional core for a thickening of a
ribbon. On the other hand, the term ribbon graph refers to a ribbon knot with spanning
arcs attached, as in the statement of Theorem 2.1.

EXAMPLE 2.1. To illustrate Theorem 2.1, consider again the example of a rib-
bon with two singularities. In this case, the ribbon disk complement is described as
a ribbon graph complement in a cube with two handles, together with the cone over
the boundary of the cube with handles. The ribbon graph is obtained from the original
ribbon knot by attaching two spanning arcs, one for each singularity. The outcome is
shown in Fig. 8.

At this point, further modifications of the main descriptionare available. One could,
for example, aim to remove the cone from the description. This is done in Section 4,
where a modified 3-dimensional description is obtained. On the other hand, one could
aim to collapse the description to a 2-dimensional complex,from which a presentation
for the ribbon disk group can be written. This latter goal will now be pursued.



ASPHERICITY RESULTS FORRIBBON DISK COMPLEMENTS 107

Fig. 8. A ribbon disk complement for a ribbon with two singu-
larities.

Fig. 9. The two types of hubs: 4-valent and 3-valent.

As before, neighborhoods of the singularities are the primary focus. Each transverse
self-intersection in the ribbon creates an area of interest, a hub, in the description of the
ribbon disk complement. A hub will be called 4-valent or 3-valent, depending on the
valence of the corresponding vertex in the core graph. Fig. 9illustrates the two types
of hubs. The key observation is that each type of hub, whether4-valent or 3-valent,
collapses to a 2-complex whose fundamental group is free of rank 2. This reduction to
a 2-complex will be shown for a 4-valent hub.

Using Fig. 10 as a guide, begin by partitioning the hub into three sections: a top
section, middle section, and bottom section. The top and bottom sections are identical
and serve merely as transitions. By comparison, the middle section is the most inter-
esting, as it captures the structure of the hub. Some libertyis taken with the shapes of
regions to best illustrate the collapses which follow.

First, collapse the interiors of the sections as completelyas possible, preserving
exterior walls while doing so. The motive here is to create space in the interiors of
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Fig. 10. Interior collapses in the top, middle, and bottom sections
(top views included to illustrate collapses).

sections by collapsing toward their exterior walls. It helps to view these collapses from
the top, thus this vantage point is taken in Fig. 10. Notice that the exterior walls of
the sections are intact after the first stage of collapses.

Next, collapse as completely as possible the horizontal walls which separate the
sections. Notice that vertical interior walls created in the first stage restrict collapses of
horizontal walls in this second stage. For example, the floorof the top section (which
is the same as the ceiling of the middle section) does not collapse completely due to
this restriction. Fig. 11 (a) illustrates. Select 2-cells in the figure are shaded to empha-
size that they do not collapse. As before, the vertical exterior walls are preserved, to
be addressed in the final stage.

Lastly, collapse as completely as possible the vertical exterior walls. Recall that the
alternate description for the ribbon disk complement requires a cone over the boundary
of the cube with handles. This cone allows much of these wallsto collapse. Each
section has two exterior 2-cells which are free faces for 3-cells created by the cone.
These 2-cells are deleted (to collapse the 3-cells). The middle section may be collapsed
a bit further near the four holes in its walls. The cells deleted here are not attached
to the cone. Rather, their vicinity to the holes allows them to be deleted. Fig. 11 (b)
shows the outcome.

To complete the collapse of the hub, delete all 1-cells whichare free faces on
2-cells created by the cone. Then, do the same for 0-cells which are free faces on
1-cells created by the cone. Fig. 11 (c) shows what is left when all such collapses are
made. Reconnecting the three pieces, one recovers the 2-complex to which the 4-valent
hub collapses. Similarly, a 3-valent hub may be collapsed toa 2-dimensional complex.
While verifying, the reader is encouraged to follow the outline above and to take a top
view to witness the collapses. Fig. 12 summarizes the findings.
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Fig. 11. Collapses in (a) the horizontal walls which separate the
sections and then (b) and (c) the vertical exterior walls.

Fig. 12. Collapsing hubs to obtain spines for ribbon disk comple-
ments. Recall, on the left a cone is taken over the boundary of
the cube with handles. Likewise, on the right a cone is taken over
the bold edges in the 2-complexes. (Edges of the 2-complexes
are labeled in the figure in anticipation of computing fundamen-
tal groups.)
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Fig. 13. Labels at a vertex of a core graph. (The two 3-valent
vertices in the core graph are labeled similarly, with one ofthe
side edges omitted.)

In both the 4-valent and 3-valent cases, the fundamental group of the reduced
2-complex is a free group on two generators,xi and yi . For example, in the case of a
4-valent hub, take the base point to be the cone point and takethe maximal tree to be
the collection of edges from the cone point to the vertices. Assume that all horizon-
tal edges agree in orientation withxi and that all vertical edges agree in orientation
with yi . A presentation for the 2-complex then becomes

fa, b, c, d, e, f , s, t , xi , yi j te�1, a, c, b�1yi , ab�1c�1d, d�1s, ey�1
i f �1s, f x�1

i g,
which reduces tofxi , yi j g by extended Nielsen operations. Furthermore, under this
reduction, the side edges corresponds toyi and the top edget corresponds toy�1

i xi yi .
Likewise, it is seen for the case of a 3-valent hub that the fundamental group of the
2-complex is free on the generatorsxi , yi . Here, too, the side edges corresponds toyi

and the top edget corresponds toy�1
i xi yi . For this calculation, take the cone point as

the base point and include all edges from the cone point to thevertices in the maximal
tree, as before. In this case, however, additional edges need to be included to make the
tree maximal. The edgesg and h suffice.

A 2-dimensional spine for the ribbon disk complement, therefore, may be described
as a union of collapsed hubs, connected via their top, bottom, and side edges. The core
graph documents the connections to be made. Altogether, this suggests an algorithm for
writing a geometric presentation for the ribbon disk group.

ALGORITHM 1 for writing a presentation for a ribbon disk group. First, place
distinct labels on the vertices of the core graph as shown in Fig. 13.

Then:
(1) For each vertex of the core graph, one writes two generators, xi and yi .
(2) For each edge of the core graph with labels, say,l1 and l2 on its ends, one writes
a relator of the forml1 D l2 or l1 D l�1

2 , depending on whether the hubs are connected
without or with a half-twist.
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Fig. 14. A presentation for the ribbon disk group:fx1, x2, y1, y2 j
x1 D x�1

2 , y�1
1 D y�1

2 x2y2, y�1
1 x1y1 D y2g.

Fig. 15. A presentation for the ribbon disk group:fx1, x2, x3, x4,
y1, y2, y3, y4 j x1 D y�1

2 x2y2, y1 D x3, y�1
1 x1y1 D y2, x2 D y3, y2 D

y4, y3 D y�1
4 x4y4, y�1

3 x3y3 D x4g.
EXAMPLE 2.2. To demonstrate the algorithm for obtaining a ribbon disk group

presentation, an earlier example of a ribbon with two singularities is revisited. Its core
graph, with labels, is drawn in Fig. 14, and the presentationfor its ribbon disk group
is written below. The presentation has 4 generators (two foreach vertex) and 3 relators
(one for each edge). The first relator,x1 D x�1

2 , documents that the bottom of hub 1
is attached to the bottom of hub 2, with a half-twist.

EXAMPLE 2.3. A second, more sophisticated core graph is shown in Fig.15. As-
sume that its connections are made without half-twists. Thepresentation for this ribbon
disk group has 8 generators and 7 relators, corresponding tothe 4 vertices and 7 edges
in the core graph. The first relator,x1 D y�1

2 x2y2, documents that the bottom of hub 1
is connected to the top of hub 2.
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Fig. 16. Local changes at a vertex of the core graph to remove
a half-twist. On the left, the pathP originally traverses the ver-
tex top-to-bottom. It is made to traverse the vertex bottom-to-top
instead, alteringP only in a neighborhood of the vertex. Like-
wise, on the right, a bottom-to-top traverse is switched to a
top-to-bottom traverse by alteringP locally.

REMARK 2.6. A core graph without twisted connections will be said tobe twist-
free. Relators given by a twist-free core graph readxi D x j or yi D y�1

j x j y j , for

example, and notxi D x�1
j or yi D (y�1

j x j y j )�1. Any core graph with twists can be
replaced by a twist-free core graph without changing the homotopy type of the corres-
ponding 2-complex. Put another way, a ribbon with twists canbe replaced by a ribbon
without twists without changing the homotopy type of the complement. This follows,
intuitively, from the fact that the homotopy type of the complement is determined by
its LOT. Beneficial, local changes can be made to a ribbon without changing the LOT.
This claim for core graphs is justified, formally, below.

It suffices to show that any core graph with half-twists can bereplaced by a core
graph with fewer half-twists. Recall it is assumed that the core graph has two verti-
ces of valence 3 and remaining vertices of valence 4. Each vertex has a top edge and
a bottom edge incident to it, and either one or two side edges incident to it, depend-
ing on its valence. There exists in the core graph a pathP (unique up to orientation)
which begins at the side edge of one 3-valent vertex, ends at the side edge of the other
3-valent vertex, and moves transversely through the remaining 4-valent vertices. That
is, P moves top-to-bottom, bottom-to-top, or side-to-side through each vertex, mimick-
ing on the page the formation of the ribbon in space. NoticeP includes each vertex
of the core graph twice and each edge once. FollowingP, label its initial vertex 1,
the next vertex traversed side-to-side 2, the next vertex traversed side-to-side 3, and so
on. Thus, the vertices are numbered 1, 2,: : : , n as they are traversed side-to-side. Let
[1, 2], [2, 3], : : : , [n, n� 1] denote the corresponding subpaths ofP.

Now, suppose the core graph has a half-twist, witnessed by anedgee. Then e is
in subpath [i , i C 1] for somei (1� i � n� 1). The core graph is altered as follows:
(1) For each vertexk � i C 1, interchange its top and bottom connections. As Fig. 16
illustrates, interchanging the top and bottom connectionsis a local move onP which
leaves other connecting data unchanged.
(2) Remove the half-twist witnessed by edgee.
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It is claimed that the presentations associated with the original and new core graphs
are Nielsen equivalent. The following Nielsen moves on the original presentation achieve
this equivalence:
(1) xk ! ykxky�1

k for k � i C 1,
(2) yk ! y�1

k for k � i C 1,
(3) x j ! x�1

j for each vertexj traversed top-to-bottom or bottom-to-top by subpath
[i , i C 1] [ � � � [ [n� 1, n].
Notice that moves of type (1) and (2) switch the top and bottomlabels at a vertex:
(top label) y�1

k xk yk ! xk,
(bottom label)xk ! ykxk y�1

k ! y�1
k xk yk.

This agrees with the local change in the core graph at such a vertex. Further, no-
tice that moves of type (3) assure that the old connecting data is preserved (except,
of course, for the one edge on which it is changed). In particular, consider any edge
in the core graph besides the edgee. Then P traverses this edge either before or after
it traversese. If before, then both labels on this edge are unchanged and the connecting
data is preserved. If after, then both labels on this edge arechanged to their inverses,
again preserving the connecting data. For the edgee itself, one of its labels is ne-
cessarily changed to its inverse and the other is not, removing the half-twist from the
connecting data. This completes the formal proof of the claim made in Remark 2.6.

3. Asphericity results using graph-theoretic criteria

The first application of the alternate description is a graph-theoretic result in the
spirit of [7, Theorem 10.1], which states that a ribbon disk complement is aspherical
provided a certain graph kindred to the LOT is a tree. A slightly generalized version
of this result will actually be used here. Consider a group presentation of the form
P D fx1, x2, : : : , xm j a1 D b1, a2 D b2, : : : g, wherea j , b j , j D 1, 2,: : : are nonempty
words in the alphabetfxC1 , xC2 , : : : , xCm g and the wordsa j b�1

j are cyclically reduced.
The right graph of P, 8(P), is defined to be the graph on verticesx1, x2, : : : , xm

whose edgesej are in one-to-one correspondence with the relatorsa j D b j such that
ej connectsx j1 and x j2 provideda j , b j end in x j1, x j2 respectively. It is known that if8(P) is a forest, then the 2-complex modeled onP is aspherical ([10] and [12]). This
result is the main observation in the proof of the following theorem.

Theorem 3.1. Suppose all edges containing a bottom label are deleted froma
twist-free core graph. If the graph which remains is a forest, then the ribbon disk com-
plement is aspherical.

Proof. LetP denote the presentation based on the core graph and let8(P) de-
note its right graph. It suffices to show that8(P) is a forest. Recall that the rela-
tors in P correspond to the edges in the core graph. If, for example, anedge in the
core graph has two bottom labels, then the corresponding relator in P is of the form
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xi D x j . In 8(P), one gets an edge joiningxi and x j . If an edge in the core graph
has one top label and one bottom label, then the corresponding relator inP is of the
form xi D y�1

j x j y j , or y j xi D x j y j . In this case, one gets an edge in8(P) joining

xi and y j . Technically, the relatory�1
i xi yi D y�1

j x j y j is faulty as it has negative pow-
ers and these negatives cannot be voided by simply moving letters to opposite sides.
This issue may be resolved, however, by an elementary expansion of P. For each such
relator, add toP a new generatort and a new relatort D y�1

i xi yi . This new relator
is of an appropriate type, as it can be rewrittenyi t D xi yi . The old relator may now
be rewritten ast D y�1

j x j y j , or y j t D x j y j , making it appropriate as well. In8(P),
an edge connectsyi to t and another connectst to y j . Since no other edges in8(P)
meet t , the two edges may be regarded as a single edge in8(P) connectingyi and
y j . An analysis of remaining cases fills in the table below.

edge in core graph relator edge in8(P)

bottom-bottom xi D x j

bottom-side xi D y j

bottom-top xi D y�1
j x j y j

side-side yi D y j

side-top yi D y�1
j x j y j

top-top y�1
i xi yi D y�1

j x j y j

The proof of the theorem is completed by observing that each vertex xi in 8(P)
has valence 1. The bottom of hubi makes one connection and this connection pro-
duces the one edge in8(P) incident to xi . No other connection produces an edge
incident to xi . It follows that any cycle in8(P) must go solely throughy vertices.
Such a cycle exists in8(P), however, only if there is a corresponding cycle in the
core graph consisting solely of top and side connections. Byassumption, no such
cycle exists.

EXAMPLE 3.1. The core graph in Fig. 17, for example, satisfies the graph-theoretic
criterion of Theorem 3.1. The corresponding ribbon disk complement is therefore aspher-
ical. Edges with bottom labels are given a lighter weight, toemphasize the application of
the criterion. Notice that deleting the lighter edges leaves a tree.

The geometric nature of the alternate description for a ribbon disk complement
will continue to be utilized. The next goal is to express a ribbon disk complement
as a union of aspherical spaces whose intersection is aspherical and�1-injective. This
requires that the intersection be simple relative to the spaces and is accomplished by
requiring a certain cut-edge property in the core graph.



ASPHERICITY RESULTS FORRIBBON DISK COMPLEMENTS 115

Fig. 17. Example of a core graph which satisfies the graph-
theoretic criterion of Theorem 3.1.

Fig. 18. Y1\Y2 is a sphere with two holes, which has the homo-
topy type of a circle.

Theorem 3.2. Suppose a core graph C can be written as CD A[ e[ B, where
A, B are disjoint core graphs and e is an edge which connects them. If A and B cor-
respond to aspherical ribbon disk complements, then C corresponds to an aspherical
ribbon disk complement.

Proof. Using Theorem 2.1, letY denote the description of the ribbon disk com-
plement which corresponds toC. Recall thatY is a ribbon graph complement in a
cube with handlesU together with the cone over Bd(U ). By hypothesis,U consists
of two disjoint cubes with handles (corresponding to graphsA, B) connected with a
1-handleE (corresponding to the edgee). A transverse disk inE essentially splitsY,
suggesting a natural decomposition ofY. Taking this suggestion, writeY as a union,
Y D Y1 [ Y2, such that:
(1) Y1 \ Y2 has the homotopy type of a circle (Fig. 18); and
(2) Y1, Y2 have the homotopy types of aspherical ribbon disk complements.

The first property follows from the fact thatY1 \ Y2 is a sphere with two holes.
Notice that a transverse disk inE meets the ribbon graph in two points. The two holes
in this disk correspond to these points of intersection. Meanwhile, the cone over the
boundary of the disk is required by the description of the ribbon disk complement. The
second property follows from the fact thatY1, Y2 correspond to the graphsA, B, which
are assumed to be core graphs for aspherical ribbon disk complements.
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Fig. 19. Example of a core graph which satisfies the criterionof
Theorem 3.2, with cut-edge marked.

Fig. 20. A core graph whose corresponding ribbon disk comple-
ment is known, inductively, to be aspherical.

Now, Y1 \ Y2 is aspherical, as it has the homotopy type of a circle. Further, the
generator for�1(Y1\Y2) maps to nontrivial elements in the torsion-free groups�1(Y1)
and �1(Y2). It follows that �1(Y1 \ Y2) injects into�1(Y1) and �1(Y2). By [13, The-
orem 5], Y is aspherical.

REMARK 3.1. A strong connection has been established between the group-
theoretic property oflocal indicability and the topological property of asphericity [5].
The result in Theorem 3.2 may be viewed as a topological analog of the fact that
the amalgamated product of locally indicable groups via infinite cyclic subgroups is
itself locally indicable [8, Theorem 9]. Recall that the intersection space used in the
proof of Theorem 3.2 has the homotopy type of a circle. Amalgamating two aspher-
ical spaces along this intersection space gives an aspherical space.

EXAMPLE 3.2. The core graph in Fig. 19 satisfies the criterion of Theorem 3.2.
Deleting the marked cut-edge produces two valid core graphs. These subgraphs are
known to correspond to aspherical ribbon disk complements,as the LOT’s for their
ribbons have diameters less than or equal to 3 [7, Theorem A].
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EXAMPLE 3.3. Inductively, families of ribbons with increasing diameters can be
formed whose complements are known to be aspherical. Fig. 20suggests how to proceed.

4. An asphericity result using a relative homotopy group

The description for the ribbon disk complement in Theorem 2.1 allows for modifi-
cations in different directions. Rather than collapsing toa 2-dimensional complex, one
may wish instead to remove the cone from the description. To this end, [2, Lemma 2.1]
applies. It is known that the description in Theorem 2.1 3-deforms to the ribbon graph
complementS3 n 0 with 2-cells attached along a complete set of meridional curves in
Bd(U ). A modification in this direction yields a second algorithmfor writing a pres-
entation for a ribbon disk group. In this case the presentation is written as a relative
presentationfW j Rg with respect to a standard Wirtinger presentationW for the rib-
bon graph group.

ALGORITHM 2 for writing a presentation for a ribbon disk group. First, draw
a ribbon graph0 which corresponds to the ribbon. To avoid pathologies, use the method
in the proof of Theorem 2.1 to obtain the ribbon graph. Next, identify a complete
set of meridional disks in a thickening of the ribbon. A complete set of transverse
disks suffices.

Then:
(1) Write the standard Wirtinger presentation,W, for the graph group�1(S3 n 0).
(2) Add to W one relator for each meridional disk in the collection above. Each such
relator is of the formxi x�1

j for some generatorsxi , x j in W and denotes the word

in �1(S3 n 0) read by the boundary of the meridional disk. The nature of the ribbon
ensures that each relative relator has length two.

Fig. 21 illustrates the modified description for the ribbon disk complement using
the example of a 2-singularity ribbon considered earlier. The ribbon disk complement
can be described as [S3 n 0] [ fE1, E2g, where0 is the ribbon graph andE1, E2 are
the 2-cells shown in Fig. 21. These 2-cells form a complete set of meridional disks
in a thickening of the ribbon. The corresponding ribbon diskgroup has a presentation
of the form fW j xi x�1

j , xmx�1
n g, whereW is a standard Wirtinger presentation for the

ribbon graph group and thex’s are generators in that presentation.
The current description for ribbon disk complements suggests a natural pair of

spaces to consider: the ribbon disk complement itself and the ribbon graph comple-
ment which is a subspace of it. Graph complements inS3 are well-studied 3-manifolds
whose properties lead to the next asphericity result.

Theorem 4.1. Let YD [S3 n 0] [ fE1, E2, : : : , Eng denote the ribbon disk com-
plement as described above and let X be the subspace S3 n 0. If �2(Y, X) is a free
group, then Y is aspherical.
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Fig. 21. A modified 3-dimensional description for the ribbondisk
complement. The cone is removed from the earlier description,
replaced by two 2-cells attached along meridional curves ina
thickening of the ribbon.

Proof. Noting that�2(X) D 0, the long exact sequence of the pair (Y, X) gives:

0! �2(Y) ! �2(Y, X)
��! �1(X) ! �1(Y) ! 0.

Now, rk(�2(Y, X)) � 1 must be true, as it is a free crossed module over�1(X) with
boundary map� and a basis which corresponds tofE1, E2, : : : , Eng ([14]).

If rk(�2(Y, X)) D 1, i.e.�2(Y, X) � Z, then � is either the zero map or is one-
to-one. (Note that�1(X) is torsion-free.) However,� cannot be the zero map. On
one hand,� � 0 implies �2(Y) � �2(Y, X) � Z. On the other hand,� � 0 implies�1(Y) � �1(X). Since X is an irreducible 3-manifold with boundary, the group�1(X)
is locally indicable [5, Corollary 6.2]. It follows by [5, Theorem 5.2] that�2(Y) D 0,
contradicting an earlier consequence. It must be true, therefore, that� is one-to-one.
By exactness,�2(Y) D 0, as desired.

If rk(�2(Y, X)) > 1, then the center of�2(Y, X) is trivial. However, ker� is con-
tained in the center of�2(Y, X) [9, Section 1], and thus ker� D 0. Again, by exactness,�2(Y) D 0.

Corollary 4.1. If the graph0 is Heegaard in S3, then Y is aspherical if and only
if �2(Y, X) is a free group.

Proof. If �2(Y, X) is a free group, then�2(Y) D 0 by Theorem 4.1, whether0 is
Heegaard or not. On the other hand, suppose0 is Heegaard and�2(Y) D 0. Consider
again the exact sequence of the pair (Y, X):

0! �2(Y) ! �2(Y, X)
�! �1(X) ! �1(Y) ! 0.
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Fig. 22. Several ribbon graphs known to be Heegaard.

Note that�2(Y, X) injects into�1(X), which is a free group by hypothesis. Therefore,�2(Y, X) is itself free by the Nielsen–Schreier theorem.

REMARK 4.1. The ribbon graph associated with a ribbon may indeed be Heegaard.
In fact, ribbons which yield Heegaard ribbon graphs seem to form a sizable subset of all
ribbons. The ribbon graphs in Fig. 22, for example, are all Heegaard. For each of these
graphs, the group of the graph complement inS3 is free.

REMARK 4.2. Not all ribbon graphs are Heegaard, however. The ribbongraph in
Fig. 23, for example, is not. In this example,�1(S3 n0) D ha, b, x, y j abab�1a�1b�1i,
which is not a free group, as it contains the trefoil groupha, b j abab�1a�1b�1i as a
free factor. Interestingly, the ribbon disk complement in this example has the homotopy
type of the classical trefoil knot complement.

A. Motivation for the initial description of the ribbon disk complement

Motivation for the initial description given in Section 2 progresses in two stages.
First, the ribbon is moved along the fibers of a collar ofS3 D Bd(B4) such that the
ribbon knot remains in Bd(B4) and the rest of the ribbon moves to its interior. The
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Fig. 23. Example of a ribbon graph which is not Heegaard.

ribbon continues to be a singular disk in the initial stage and an intermediate spine
for the complement is described. In the second stage, the singularities in the ribbon
are resolved by applying 3-deformations and then deleting residual arcs. It is observed
that this resolution causes 3-cells to be added to the intermediate spine.

As before, letU be a regular neighborhood of a ribbonR D �(B2) in S3 and let

W be the 3-manifold defined byW D U n VN(k), wherek denotes the ribbon knot. It
may be assumed thatU is Heegaard, in which caseW is a knot complement in an
unkotted cube with handles. Let� W S3 � [0, 1] ! B4 be a collar on Bd(B4) and let
h0 W S3 ! [0, 1] be a continuous height function such thath�1

0 (1) D S3 n Int(U ) and
h�1

0 (0)D k. Define a maph from S3 into the collar�(S3� [0, 1]) by x ! �((x, h0(x))
and move the ribbonR to its imageh(R) along the fibers of the collar. At this mo-
ment, the ribbon resides in the interior ofB4, with the exception ofk, which remains
in Bd(B4).

Define a second height functionh1 W S3 ! [0, 1] such thath1(x) � h0(x) for all
x 2 S3, andh1(x)D h0(x) if and only if x 2 k[(S3nInt(U )). Notice that the 4-manifold
N D f�(u, t) 2 B4 j u 2 U and h1(u) � t � 1g is a regular neighborhood ofh(R) in
B4. The closure of the complement ofN in B4 consists of three pieces:

X0 D B4 n �(S3 � [0, 1)),

X1 D �((S3 n Int(U )) � [0, 1]),

and

X2 D f�(x, t) 2 B4 j x 2 W and 0� t � h1(x)g.
For convenience, label the subspacesY1 D �(Bd(U ) � [0, 1]) and Y2 D f�(x, h1(x)) j
x 2 Wg of the complement. The diagram in Fig. 24 helps identify someof the key
spaces in this description.

Now, the the complementB4 n N collapses toY2 [ X0 by the following sequence
of moves:
(1) CollapseX1 to Y1 [ (X1 \ X0).
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Fig. 24. Key spaces in the description of the complement at an
intermediate stage.

(2) CollapseX2 to Y2.
(3) CollapseY1 to Y1 \ X0.

Therefore, at this intermediate stage, the complement has adescription homeo-
morphic to the identification space

Y2 q X0,

whereY2 and X0 are identified along the shared spacef�(x, h1(x)) j x 2 Bd(U )g. How-
ever,Y2, X0, andf�(x, h1(x)) j x 2 Bd(U )g are merely homeomorphic copies ofW, B4,
and Bd(U ) respectively. Thus, the identification space may be regarded as

W q B4,

where the identification is made along copies of Bd(U ) in the boundaries ofW and B4.
RegardingB4 as the conec � S3 over its boundary, the space above in turn collapses
to the identification space

W q c � Bd(U ),(†)

with identifications, again, along copies of Bd(U ). This completes the first stage of the
process.

Next, the ribbon’s singularities will be resolved. This will nearly be accomplished
by way of 3-deformations. Recall that the singular set for the ribbon immersion�
is a collection of arcsf1i , Æi g in B2 such that the arcs1i separate the interior of
B2 into disjoint open 2-cells. LetC denote a component ofB2 n f1i g. For eachÆ j
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in C, choose an arc� j in C which connects Bd(Æ j ) to Bd(B2). This process should
mimic the method in the proof of Theorem 2.1. (See Fig. 7 for anexample.) Then
Int(C) n fÆ j , � j g is an open 2-cell whose image under� is an open 2-cell, sayOC, in

R. The 2-cell OC serves as a base for a vertical 3-deformation of the ribbon along the
fibers of the collar on Bd(B4). Attach a 3-cell along OC and then collapse immedi-
ately through OC. This operation elevates the points of Cl(OC) in the collar, eliminating
the singularities which correspond to theÆ j ’s. However, a 2-cell with edge�(Æ j [ � j )
is a byproduct of this move. Perform a side collapse to eliminate the interior of this
2-cell. Each such collapse produces a residual arc,�(� j ). Operate in a similar manner
on the remaining components ofB2 n f1i g to obtain an embedded ribbon disk inB4

with residual arcs attached. The complement of this complexhas the same deformation
type as (†), since it is obtained by perfoming 3-deformations inB4 on the ribbon. Now,
deleting the residual arcs yields the embedded ribbon disk itself. By duality, deleting
1-cells from the complex corresponds to adding 3-cells to its complement. These dual
3-cells complete the description of the ribbon disk complement given at the beginning
of Section 2.

B. Equivalence with the standard LOT description

It will be shown that the description for ribbon disk complements used in this work
is equivalent to the standard LOT description, up to 3-deformation. In particular, it will
be shown that the corresponding presentations are Nielsen equivalent. The presence of
the conjugating relators in Algorithm 1 and the fact that thecore graph is an immer-
sion of the LOT help make this a reasonable assertion. For thereader’s benefit, first a
review of the LOT description is given.

As before, let� W B2 ! S3 be a ribbon immersion and letfSi g, i D 1, 2,: : : , n,
denote the double arcs in the ribbon�(B2). For eachi , let ��1(Si ) D 1i [ Æi , where1i is a large, properly-embedded arc inB2 and Æi is a small, interior arc. The LOT
associated with the ribbon is a tree inB2 defined by the properties which follow.
Vertices: The vertices of the LOT are in one-to-one correspondence with the compo-
nents of B2 n f1i g.
Edges: Two vertices are joined by an edge if the corresponding components ofB2 nf1i g share on their boundaries a large arc1 j for some j .
Labels: Each edgee of the LOT is labeled with a vertex�(e). If the edge exists by
way of a large arc1 j , then�(e) is the vertex which corresponds to the component of
B2 n f1i g containing the small arcÆ j .
Orientations: The ribbon�(B2) inherits a positive side and a negative side from the
disk B2. Orient each edge of the LOT such that its image under� pierces the ribbon
from its negative side.
The LOT spine for the ribbon disk complement is then the 2-complex modeled on the
presentationffvgv2V j f�(e)�1�(e)�(e)� (e)�1ge2Eg, where V , E denote the vertex and
edges sets of the LOT and�, � help denote initial and terminal vertices of edges.
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Regarding the alternate description in this article, one begins with a core graph
for the ribbon. By Remark 2.6, it may be assumed that the core graph is twist-free. It
is again beneficial to identify a path in the core graph which begins at the side edge
of one 3-valent vertex, ends at the side edge of the other 3-valent vertex, and moves
transversely through the remaining 4-valent vertices. Recall that such a path traverses
each edge exactly once and moves top-to-bottom, bottom-to-top, or side-to-side through
each vertex as it does so. Using this path, the core graph can be divided into segments
as follows: Segment 1 begins at the initial vertex and ends atthe first vertex met at the
top or bottom. Segment 2 begins where segment 1 ends and continues until a vertex
is met at the top or bottom. Continuing in this way, the core graph can be written
as a union of segments which share vertices but do not share edges. Notice that the
segments are in one-to-one correspondence with the components of B2 n f1i g.

The core graph yields a group presentation (see Algorithm 1)and the segments of
the core graph may be associated with strings of relators in this presentation. Indeed,
one may write relators in the order that corresponding edgesare traversed, to make the
association of segments and strings of relators more clear.A typical string of relators
begins and ends with a top or bottom label and has only side labels in between. The
first (resp. last) string is exceptional in that it necessarily begins (resp. ends) with a side
label. Now, this group presentation may be expanded as follows:
(1) For each segment of length 1 of the formxi D x j or xi D y�1

j x j y j , add a new
generatora and a new relatora D xi .
(2) For each segment of length 1 of the formy�1

i xi yi D y�1
j x j y j , add a new generator

a and a new relatora D y�1
i xi yi .

(3) For each remaining segment, add a new generatora. If the segment contains a
bottom labelxi , then add the relatora D xi . If it does not, then it must contain a
side labelyi , in which case the relatora D yi is added. This assignment need not be
unique.

This expanded presentation collapses to a presentation on the lettersfa j g. To achieve
this rewriting, first collapse all relators of length 2 by wayof (1) and (3) above. Then
finish the rewriting by way of (2). The claim is that the new presentation is precisely the
LOT presentation for the ribbon disk complement. This is established by making two ob-
servations about the presentation, one about its generators and the other about its relators.

Generators in the collapsed presentation. The generators in the collapsed presenta-
tion correspond with the segments in the core graph. The segments, in turn, correspond
with the components ofB2nf1i g. Therefore, the number of generators is in agreement.

Relators in the collapsed presentation. Only relators involving top labels remain
in the collapsed presentation. That is, all relators are nowof the form a�1

i a j ai D ak.
Furthermore, the lettersa j , ak correspond to consecutive segments. This is true since
top labels are conjugates of bottom labels per Algorithm 1. These consecutive segments
correspond to components ofB2nf1i g which share a large singular arc on their bound-
aries. On the other hand, the conjugating letterai corresponds to a segment which
meets the vertex at the side. Such a segment corresponds, in turn, to the component
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Fig. 25. A core graph from an earlier example. (Note: The twist-
free replacement is the same core graph, which does not happen
in general.)

Fig. 26. A graphic which illustrates the rewriting process.

of B2 n f1i g which contains the matching small singular arc. In this way,the relators
are in agreement as well.

EXAMPLE B.1. Equivalence will be demonstrated for a presentation from a pre-
vious example. (See Fig. 25.)

ordered presentation:fx1, x2, y1, y2 j y1 D y�1
2 x2y2, x2 D x1, y�1

1 x1y1 D y2g,
strings of relators (3, all of length 1):y1 D y�1

2 x2y2 j x2 D x1 j y�1
1 x1y1 D y2,

new generators:a1, a2, a3,
new relators:a1 D y1, a2 D x2, a3 D y2,
collapsed presentation:fa1, a2, a3 j a1 D a�1

3 a2a3, a�1
1 a2a1 D a3g.

The collapsed presentation is precisely the LOT presentation for the ribbon disk
complement. While working through the previous example, the reader may find
Fig. 26 helpful.
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