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Abstract

In this paper we study the entire solutions of a class of periodic Allen–Cahn
equations

(0.1) �1u(x, y)C a(x)W
0
(u(x, y)) D 0, (x, y) 2 R2,

wherea(x)W R! RC is a periodic, positive function andW 2 C2(R,R) is a double-
well potential. We look for the entire solutions of the aboveequation with asymp-
totic conditionsu(x, y) ! �� as x ! �1 uniformly with respect toy 2 R. Via
variational methods we find infinitely many solutions.

1. Introduction

In this paper we consider a class of Allen–Cahn equation

(1.1)

(�1u(x, y)C a(x)W
0
(u(x, y)) D 0, (x, y) 2 R2,

lim
x!�1 u(x, y) D �� uniformly w.r.t. y 2 R,

where we assume
(H1): a(x) 2 C(R) is T periodic and positive;
(H2): W(t) is a non-negativeC2 function with two zeros�� and W0(��) D 0, and
there exists aR0 > 0 such thatW0(s)s� 0 for any jsj � R0.

Potentials satisfying the assumption (H2) are widely used in physical models. For
example, the Ginzbrug–Laudau potentialW(s) D (s2�1)2 and the Sine–Gordon poten-
tial W(s) D 1C cos(�s) are introduced to study various problems in phase transitions
and condensed state physics. Functionu represents the mixed state of material and the
global minima of W represents pure phase. The introduction of an oscillatory factor
a(x) can be used to describe inhomogeneity of the material.

For autonomous case, i.e.,a(x) is identically a constant, Ghoussoub and Gui first
proved a long standing conjecture by De Giorgi inR2 (see [11]). L. Ambrosio and
X. Cabré in [10] proved the conjecture inRn when n � 3. For 4� n � 8, assuming
an additional limiting condition onu, O. Savin proved that this conjecture is also true
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(see [12]). These results tell us that the solutions reducesto one dimensional solutions
q0 modulo space transition, and the problem (1.1) is in fact onedimensional.

In [5], F. Alessio, L. Jeanjean and P. Montecchiari studied (1.1) under the same
conditions withjuj � 1. Given ��, �C 2 f�1, �2, : : : , �mg, �� ¤ �C, where�i is zero
of W(t), they got the existence of multiple layered solutions depending on bothx and
y. Firstly, they discussed some features of the one dimensional problem associated to
(1.1), i.e.,

(1.2)

(�Rq(x)C a(x)W
0
(q(x)) D 0, x 2 R,

lim
x!�1 q(x) D �� uniformly w.r.t. y 2 R.

Then they considered the functionalF(q) D RR(1=2)j Pq(x)j2 C a(x)W(q(x)) dx on the
Hilbert spaceE D �

q 2 H1
loc(R)

RRj Pq(x)j2dx<C1	
endowed with the normkqk2 WDjq(0)j2 C RRj Pq(x)j2 dx. They showed that, given anyi 2 f1, : : : , mg, there exist some

j (i ) 2 f1, : : : , mg n fi g such that the functionalF attains its minimum on the set0i Dfq 2 fF <C1g j limx!�1q(t) D �i , limx!C1q(t)D � j (i )g. Settingc(i ) WDmin0i F(q),
the setKi D fq 2 0i j F(q) D c(i )g is considered. Finally the critical discreteness
assumption onKi was verified, i.e.,
(�)i : There exists; ¤ K0 � Ki , settingK j D fq( � � jT ) j q 2 K0g for j 2 Z, such that

(i) K0 is compact with respect to theH1(R) topology;
(ii) Ki D S

j2Z K j and there exists somed0 > 0 such that if j ¤ j 0 then
d(K j , K j 0) � d0.

Here d(A, B) D inffkq1(x)�q2(x)kL2(R)=q1 2 A, q2 2 Bg, A, B � 0. They obtained the
following result.

Theorem 1.1 ([5]). Let (H1)–(H2) be satisfied, then for any i2 f1, : : : , mg for
which (�)i holds, there exist�1, : : : �l 2 Zn f0g such that

�Pl�D1 n��� j n� 2 N[ f0g	D Z,
and for which for any� 2 f1, : : : , l g there exists a solution u� 2 C2(R2) to (1.2) with�� D �i , �C D � j (i ), satisfying

(1.3) lim
y!�1 dist(u�(x, y), Ki

0) D lim
y!C1 dist(u�(x, y), Ki��) D 0.

In fact, the assumption (�)i excludes the autonomous case, i.e., (�)i -(ii) cannot hold
whena is a constant. In [5], the authors checked the (�)i by perturbations analysis.

In [6], Alessio and Montecchiari extended the results in [5] and proved the exist-
ence of infinitely many periodic solutions to (1.1) of the brake orbits type.

Theorem 1.2 ([6]). Let (H1)–(H2) be satisfied, and assume that condition(�)i

holds true. If cp 2 (c, c�) is a regular value of F, then there exist Tp > 0, j p 2 Z n f0g
and a solutionvp 2 C2(R2) to the problem(1.1) such that
i) Evp(y) D �(1=2)k�yvp( � , y)k2

L2(R) C F(vp( � , y)) D cp for any y2 R;
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ii) F(vp( � , 0))D F(vp( � , Tp)) D cp, vp( � , 0)2 00, vp( � , Tp) 2 0 j p and F(vp( � , y)) > cp

for any y2 (0, Tp);
iii) vp( � ,�y) D vp( � , y) and vp( � , yCTp) D vp( � , Tp� y) for any y2 R, in particular,vp( � , yC 2Tp) D vp( � , y) for any (x, y) 2 R2.

Due to conservation of energy, the solutionvp satisfies the Neumann boundary
conditions �yvp(x, 0) D �yvp(x, Tp) for any x 2 R, thus the solution inR � [0, Tp]
can be extended to an entire one. Theorem 1.2 guarantees the existence of a brake
orbits type solution at levelcp whenevercp 2 (c, c�) is a regular value ofF . By Sard
Smale theorem and local compactness properties ofF , they proved the set of regular
values ofF is open and dense in [c, c�]. Then Theorem 1.2 provides in fact the exist-
ence of an uncountable set of geometrically distinct two dimensional solutions to (1.1)
of the brake orbits type.

Inspired by [7], we will show the existence of infinitely manylayered solutions
of (1.1).

For problem (1.2), we define the action functional

F(q) WD Z
R

1

2
j Pq(x)j2 C a(x)W(q(x)) dx

on the space

E WD �
q 2 H1

loc(R)
Z
Rj Pq(x)j2 dx < C1�.

Moreover one can consider the minima ofF on the subclass0 of E

0 WD �
q 2 E lim

x!�1 q(x) D ��, lim
x!C1 q(x) D �C

�
.

For problem (1.1), we also define the corresponding action functional

'(u) WD Z
R
�Z

R
1

2
jru(x, y)j2 C a(x)W(u(x, y)) dx� c

�
dy

on

H WD fu 2 H1
loc(R2) j u( � , y) 2 0 for a.e.y 2 Rg.

Note that the solutions of (1.2) are the minimizers of'(u), i.e., u(x, y) D q(x) is one
dimensional, symmetric solution of (1.1). We setK WD fq 2 0 j F(q) D min0 F(q0)g.
We write z1 �x z2 if z1(x) D z2(x C jT ) for some j 2 Z.

If K=�x is finite, thenK is constituted by isolated points, which takes an essential
role like (�)i in [5]. Taking a similar argument, we get the minimizeru� on H� WD
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fu 2 H j limy!�1 d(u( � , y), q0) D limy!C1 d(u( � , y), q� ) D 0g, � 2 Z, such that'(u�) D min�¤0 m� . Here m� D infu2H� '(u) andK� D fu 2 H� j '(u) D m� g, � 2 Z.
We meanu1 �y u2 if there exists somej 2 Z such thatu1(x, yC j ) D u2(x, y).
If K=�x andK�=�y are finite, we set

U0 WD fu 2 H j D(u( � , �L), q0) � Æ, D(u( � , L), q�) � Æg
and

U� WD fu 2 H j D(u( � , �L), q�) � Æ, D(u( � , L), q0) � Æg.
Let us define an odd numberN 2 N, pD (p1, : : : , pN ) 2 ZN , � D (�1, : : : ,�N) 2 f0,�gN

with �i ¤ �i�1 for all i D 2, : : : , N. We also define

HN, p,� WD fu 2 H j u(x, y� pi ) 2 U� for a.e. (x, y) 2 R2, i D 1, : : : , Ng
and look for multibump solutions on it.

Note that there are only two zeros�� for W(t). Similar as in [5], here we need
the following assumption
(�): There exists; ¤ K0 � K, settingK j D fq(�� jT ) j q 2 K0g for j 2 Z, there result

(i) K0 is compact with respect to theH1(R) topology;
(ii) K D S

j2Z K j and there exists somed0 > 0 such that if j ¤ j 0 then
d(K j , K j 0) � d0.
Following the procedure of [7], we get the existence of infinitely many heteroclinic

solutions of multibump type.

Theorem 1.3. Let (H1)–(H2) be satisfied, then (1.1) admits infinitely many solu-
tions distinct up to periodic transitions. More precisely we have
(i) the setK of periodic solutions of(1.2) is not empty;
(ii) if the setK=�x is finite, then there exists some� 2 Z such that the setK� of
heteroclinic type solutions of(1.1) is not empty;
(iii) if the setK0� is finite, then for every odd number N2 N, p D (p1, : : : , pN) 2 ZN

and � D (�1, : : : , �N) 2 f0,�gN with pi � pi�1 � 4L and �i ¤ �i�1 for all i D 2,: : : , N,
the setKN, p,� of multibump type solutions of(1.1) is not empty.

2. One dimensional symmetric solutions

In this section, we look for one dimensional symmetric solutions of equation (1.1).
We consider the action functional

F(q) D Z
R

1

2
j Pq(x)j2 C a(x)W(q(x)) dx
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on the space

E WD �
q 2 H1

loc(R)
Z
Rj Pq(x)j2 dx < C1�,

which is endowed with the Hilbert normkqk D �jq(0)j2CRRj Pq(x)j2dx
�1=2

. It’s standard
to show thatF is weakly lower semicontinuous onE (see also [5]). Now one can
consider the subclass ofE, i.e.,

0 WD �
q 2 E lim

x!�1 q(x) D ��, lim
x!C1 q(x) D �C

�
.

There exists a minimizerNq 2 0 such thatF( Nq) D min0 F(q) WD c, i.e., the classK WDfq 2 0 j F(q) D cg is not empty. Moreover, each element inK is a classic solution
to (1.2).

Finally, by the definition of0 and quadratical behavior ofW around��, then the
following L2 metric is well defined on0

d(q1, q2) D �Z
Rjq1(x) � q2(x)j2 dx

�1=2
, 8q1, q2 2 0.

Note that the metric space (0,d) is not complete and we will denote byN0 its completion.
We also need to define another metric on0

D(q1, q2) D kq1 � q2kH1(R), 8q1, q2 2 0.

REMARK 2.1. As in [5], if qn 2 0 such thatF(qn) ! c, then there existsNq 2 K

such that, along a subsequence,kqn � NqkH1(R) ! 0.

Clearly, for anyr > 0 there exists somehr > 0 such that

(2.1) if q 2 0 and infNq2Kkq � NqkH1(R) � r then F(q) � cC hr .

Let

H WD fu 2 H1
loc(R2) j u( � , y) 2 0 for a.e. y 2 Rg.

We note that ifu 2 H, then the functiony ! RR(1=2)jru(x, y)j2C a(x)W(u(x, y)) dx
is measurable and greater than or equal toc for a.e.y 2 R. Therefore the functional' W H! R [ fC1g given by

'(u) D Z
R
�Z

R
1

2
jru(x, y)j2 C a(x)W(u(x, y)) dx� c

�
dy, u 2 H,
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is well defined and it can be rewritten in the more enlightening form

'(u) D Z
R
�Z

R
1

2
j�yu(x, y)j2 dxC F(u( � , y)) � c

�
dy, u 2 H.

We see that'(u) � 0 whenu 2 H, if q 2 K, then the functionu(x, y) D q(x) belongs
to H and '(u) D 0, i.e., the one dimensional solution of (1.1) is global minimal of' on H. If there are infinite elements inK distinct up to periodic transitions, then
Theorem 1.3 is true. Otherwise, we will analyze the case where
(�) K is finite distinct up to periodic transitions.

3. Two dimensional heteroclinic solutions

In this section, we assume (�), K is constituted by isolated points that we will
enumerate byq� , � 2 Z. Also, setting

(3.1) inf�¤� D(q� , q�) WD � D 3r0,

we have� > 0, since by (�) K is locally finite.

REMARK 3.1. As in [5], if (y1, y2) � R andu 2H are such that infq2Kku( � , y)�
qkH1(R) � r > 0 for a.e.y 2 (y1, y2), then

(3.2) '(u) �p
2hr d(u( � , y1), u( � , y2)).

Especially, corresponding tor0 D �=3, let us fix h0 > 0 such that

if q 2 0 and infNq2Kkq � NqkH1(R) � r0

2
, then F(q) � cC h0.(3.3)

If u 2 H, we obtain fory1, y2 2 R thatZ
Rju(x, y2) � u(x, y1)j2 dx D Z

R
����
Z y2

y1

�yu(x, y) dy

����
2

dx

� jy2 � y1j
Z
R
Z
Rj�yu(x, y) dyj2 dy dx

� 2'(u)jy2 � y1j.
If '(u) <C1, then the functiony ! u( � , y) is Holder continuous from a dense subset
of R. Following the procedure introduced by Alessio, Jeanjean and Montecchiari in [5]
(see also [12]), we look for solutions to (1.1) depending on both the variablesx and y.

Lemma 3.1. For any C> 0 there exists C0 > 0 such that if u2 H \ f' � Cg,
then d(u( � , y1), u( � , y2)) � C0 for any y1, y2 2 R.
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Proof. Denoting (y)D u( �, y), y 2 R, we can consider as a path in NH. For any
y1, y2 2 R, by compactness ([y1, y2]) intersects only a finite number of setsBr0(q� ),� 2 Z. Let fBi j i D 1, : : : , kg be the family in fBr0(q� ) j Br0(q� ) \  ([y1, y2]) ¤ ;,� 2 Zg such that if (y) � Sk

iD1 Bi , y 2 [y1, y2], by (3.1), then d(u( � , K)) � r0, and
dist(Bi , BiC1) � r0 for i 2 f1, : : : , k � 1g. Moreover, we have maxi (diam(Bi )) � 2r0.
From (2.1) and (3.2) one obtains that

C � '(u) �p
2h0 maxfd( (y1),  (y2)) � 2kr0, (k � 1)r0g,

hence d( (y1),  (y2) � 3C=p2h0 C 2r0 WD C0.
The consequence of (2.1) and Lemma 3.1 is that they provide information on the

asymptotic behavior of the functions in the sublevels of' as y !�1.

Lemma 3.2. If u 2 H \ f' < C1g, then there exist�� 2 Z such that
d(u( � , y), q��) ! 0 as y!�1.

Proof. If '(u) < C1, by the definition of'(u), we have F(u( � , y)) ! c as
y!�1, i.e., lim infy!�1d(u( �, y),K)D 0. Since by Lemma 3.1 the pathy! u( �, y)

is bounded in NH, there exist�� 2 Z such that lim infy!�1 d(u( � , y), q�� ) D 0. Or
else we assume by contradiction that lim infy!C1 d(u( � , y), q�C) � r > 0, then there
exist infinite many intervals (pi , si ) � R, i 2 N such that d(u( � , y), K) � r =2 for any
y 2 (pi , si ), by the definition of� and (3.2) we have

'(u) � 1X
iD1

p
2hr � r

2
D C1,

which is a contradiction. Similarly, one can prove limy!�1 d(u( � , y), q��) D 0.

By Lemma 3.2 we can restrict ourselves to consider the elements in H which
have prescribed limits asy ! �1. By periodicity it is sufficient to consider, for� 2 Z, the classes

H� D
�

u 2 H lim
y!�1 d(u( � , y), q0) D lim

y!C1 d(u( � , y), q� ) D 0

�

and

m� D inf
u2H� '(u) and K� D fu 2 H� j '(u) D m� g, � 2 Z.

Using suitable test functions, one can prove thatm� < C1 for any � 2 Z. Moreover,
we have the following lemma.
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Lemma 3.3. There holds m� � p
2h0r0 for any � ¤ 0 and m� ! C1 asj� j ! C1.

Proof. It’s easy to see thatD(q0, q� ) ! C1 as j� j ! C1, by the definition
of H� and Lemma 3.1, It follows thatm� ! C1 as j� j ! C1. To prove the first
estimate, let� ¤ 0 and u 2 H� , we have D(u( � , y), q0) ! 0 as y ! �1 while
lim inf y!C1 D(u( � , y), q0) � D(q0, q� ) � �. By the continuity ofu( � , y) there exists
(y1, y2) � R such thatr0 � d(u( � , y), q0) � 2r0 for any y 2 (y1, y2), by (�), r0 �
d(u( � , y), K), and using (3.2) we have'(u) � p

2h0r0 and the lemma follows.

By Lemma 3.3, there exists some� 2 Z such that

(3.4) m� D min�¤0
m� .

As we will see in the next lemma, the minimality property of� allows us to further
characterize the functions inH� whose action is close tom�.

REMARK 3.2. We define

�C� ,y0
(u)(x, y) D

8<
:

q� (x) if y � y0 C 1,
u(x, y)(y0 C 1� y)C q� (x)(y � y0) if y0 � y < y0 C 1,
u(x, y) if y < y0,

��� ,y0
(u)(x, y) D

8<
:

u(x, y) when y � y0 C 1,
u(x, y)(y � y0)C q� (x)(y0 C 1� y) when y0 � y < y0 C 1,
q� (x) when y < y0,

and set

'(s, p)(u) D ' p
s (u) WD Z p

s

�Z
R

1

2
j�yuj2 dxC F(u( � , y)) � c

�
dy.

Lemma 3.4. There exists aÆ0 2 (0, r0=2), and for any Æ 2 (0, Æ0) such that if
u 2 H� and '(u) � m� C �Æ, then
(i) if D(u( � , y), K) � Æ for all y 2 (s, p), then p� s� lÆ;
(ii) if D(u( � , y0), q0) � Æ then D(u( � , y), q0) � r0 for all y � y0;
(iii) if D(u( � , y0), q�) � Æ then D(u( � , y), q�) � r0 for all y � y0;
(iv) if � 2 Z n f0, �g, then D(u( � , y), q� ) > Æ for all y 2 R.

Proof. By (2.1),F(u( � , y)) � cC hÆ for y 2 (s, p), by (3.2) we havem� C �� �'(u) � hÆ(p� s), thus p� s � (1=hÆ)(m� C ��) WD lÆ.
To prove (ii), we first fix some notations. Note Remark 2.1, forany Æ > 0,

by continuity there exists a�Æ with �Æ ! 0 as Æ ! 0, and Æ 2 (0,
p

2�Æ), �Æ �
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minf(r0=5)
p

h0=2, (1=4)m�g such that for anyu 2 H,

(3.5) if D(u( � , y), K) � Æ, then F(u( � , y)) � cC �Æ.
Let u 2 H� be such that'(u) � m� C �Æ and assume thaty0 2 R is such that
D(u( � , y0), q0) � Æ0, we define Qu(x, y) D ��� ,y0�1(u)(x, y), note that Qu 2 H� and so'( Qu) � m�, then

m� � '( Qu) D '(u) � 'y0�1(u)C 'y0

y0�1( Qu)

and

'y0�1(u) � �Æ C
Z y0

y0�1

�Z
R

1

2
ju(x, y0) � q0(x)j2 dxC F( Qu( � , y)) � c

�
dy.

SinceD( Qu(�, y),q0)� D(u(�, y0),q0)� Æ for y 2 (y0�1,y0), then F( Qu(�, y))�c� �Æ, and

'y0�1(u) � �Æ C 1

2
Æ2 C �Æ � 3�Æ.

Assume by contradiction that there existsy1 � y0 such thatD(u( � , y1), q0) � r0, then
by continuity there exists (y01, y00) � (y1, y0) such thatD(u( � , y), q0( � )) 2 (r0=2, r0) for
a.e.y 2 (y01, y00) and D(u( � , y01), u( � , y00)) � r0=2. Hence by (3.2)

3�Æ � 'y0�1(u) � p
2h0

r0

2
� 5�Æ,

which is a contradiction. Similarly one can show (iii).
To prove (iv), we assume by contradiction that there existsy0 2 R and � 2 R nf0,�g such thatD(u( � , y0), q� ) � Æ. Let u1 D �C� ,y0

(u)(x, y), u2 D ��� ,y0
(u)(x, y) and note

that u1 2 H� while u2( � � � , � ) 2 H��� . Sincem� D min�¤0 m� , then'(u1)C '(u2) �
2m�, and we have

'(u1)C '(u2) D '(u) � 'y0C1
y0

(u)C 'y0C1
y0

(u1)C 'y0C1
y0

(u2)

� '(u)C 'y0C1
y0

(u1)C 'y0C1
y0

(u2)

� m� C �Æ C 'y0C1
y0

(u1)C 'y0C1
y0

(u2).

Since D(u1( � , y), q� ) � D(u( � , y0), q� ) � Æ and D(u2( � , y), q� ) � D(u( � , y0), q� ) � Æ
for y 2 [y0, y0 C 1], then 'y0C1

y0 (u1) C 'y0C1
y0 (u2) � 2�Æ by (3.4), which leads to that

m� � 3�Æ, it’s a contradiction.

We are now able to prove the following compactness property of the minimizing
sequence of' in H�. It will be sufficient to use the direct method of the calculusof
variation to show that the functional' admits a minimum in classH�.
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Lemma 3.5. Let (un) �H�, '(un) ! m� be such that D(un( � , 0),K) � Æ for any
n 2 N, then there exists u� 2 K� such that up to a subsequence un ! u� as n!1
weakly in H1

loc(R2). Moreover, D(un( � , y), u�( � , y)) ! 0 for a.e. y2 R as n!1.

Proof. Let (un) � H� be such that'(un) � m� C �Æ for any n 2 N. Assume thatkunkL1 � R0, indeed otherwise we can consider the minimizing sequenceQun D
maxfminfun, R0g,�R0g. SinceD(un( �, 0),K)� Æ, by Lemma 3.4 we haveD(un( �, y),q0)�
r0 for y� �lÆ andD(un( � , y), q�)� r0 for y� lÆ.

Since '(un) � m� C �Æ, there exists a functionu� 2 K� such that along a sub-
sequenceun ! u� in H1(�) for every� b R2 (refer to [5]), andD(u�( � , y), q0) � r0

for y � �lÆ and D(u�( � , y), q�) � r0 for y � lÆ. By Lemma 3.2 we conclude that
D(u�( � , y), q0) ! 0 as y ! �1 and D(u�( � , y), q�) ! 0 as y !C1, i.e., u� 2 H�.
By weak semi-continuity of' (see[5]), we have' � m�, thus u� 2 K�.

To prove the last argument, we first claim that'y2
y1 (un)! 'y2

y1 (u�) for 8y1 < y2 2 R.
Indeed by semicontinuity,'y2

y1 (u�) � lim infn!1 'y2
y1 (un). Assume by contradiction

that there exists a interval (y1, y2) such that lim supn!1('y2
y1 (un) � 'y2

y1 (u�)) � "0 > 0.
By the continuity of y ! u( � , y), there existsBh0(y0) � (y1, y2) and a subsequence
(un j ) � (un) such that'Bh0 (y0)(un j ) � 'Bh0 (y0)(u�) � "0=2 as j !1. Then

'y2
y1

(un j ) � 'y2
y1

(u�) D '(y1,y2)nBh0 (y0)(un j ) � '(y1,y2)nBh0 (y0)(u�)
C 'Bh0 (y0)(un j ) � 'Bh0 (y0)(u�)

and lim infj!1('y2
y1 (un j ) � 'y2

y1 (u�)) � "0=2, it’s a contradiction.
Sincey1 < y2 is arbitrary, lety1 ! y2, by the definition of' we haveF(un( � , y)) !

F(u�( � , y)) for every fixedy 2 R asn !1. Let

Xy WD X(u( � , y)) D supfx 2 R j minju(x, y)� ��j � �0g,
where�0 D (1=6)j�C � ��j. Since F(un( � , y)), F(u�( � , y)) < C1, for 8" > 0, there
exists a constantl y," > 0 related toy and " such that

(3.6)
Z
jx�Xyj>l y,"

1

2
j�xunj2 C a(x)W(un(x, y)) dx < a!0"

and

(3.7)
Z
jx�Xyj>l y,"

1

2
j�xu�j2 C a(x)W(u�(x, y)) dx < a!0".

Observing thatW(u(x, y)) � !0ju(x, y) � Q(x � Xy)j2 for any jx � Xyj > l y,",
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then we have

(3.8)
Z
jx�Xyj>l y," jun(x, y) � Q(x � Xy)j2 dx < "

and

(3.9)
Z
jx�Xyj>l y," ju�(x, y) � Q(x � Xy)j2 dx < ".

Sinceun( � , y) ! u�( � , y) in L1(R) and by (3.8), (3.9) we haveun( � , y) ! u�( � , y)
in L2(R). By (3.6), (3.7) we have

RR W(un(x, y)) dx ! RR W(u�(x, y)) dx, and since
F(un( � , y)) ! F(u�( � , y)), we obtain

RRj�xun(x, y)j2 dx! RRj�xu�(x, y)j2 dx. Together
we havekun( � , y)�u�( � , y)kH1(R) ! 0, i.e., D(un( � , y), u�( � , y)) ! 0 asn !1.

In fact, u� 2 C2(R2) is a classical solution to (1.1) withku�kL1(R2) � R0 (see [5]).
Lemma 3.5 admits two dimensional heteroclinic solutions to(1.1), if the setK� is in-
finite distinct up to transitions, then Theorem 1.3 holds. Otherwise, we will analyze
the case where
(��) K� is finite distinct up to transitions.

4. Multibump type solutions

In this section, we assume (�) and (��). Sinceu�(x, yC �), 8� 2 R are solutions
to (1.1), and d(q� , q�) � 3r0 for q� , q� 2 K, � ¤ �, we define

K0� D
�

u 2 K� D(u( � , 0), q0) D 3

2
r0

�
.

REMARK 4.1. Let J D fD(u( � , i ), q0) j u 2 K0�, i 2 Zg, by (��) the set J is
countable and so the set4 D (0, r0) n J is non countable, dense subset of (0,r0).

Lemma 4.1. For all Æ 2 4 there exists a3 2 (0, r0) such that if u2 H� satisfies
D(u( � , � ), q0) D Æ for some� 2 Z, then '(u) � m� C3.

Proof. By contradiction assume that there exists a sequenceun 2 H� such that'(un) ! m� and D(un( � , � ), q0) D Æ for some� 2 Z. Since Æ < r0, by Lemma 3.5
there exists au 2 K� such that up to a subsequenceun( � , y) ! u( � , y) in H1(R). Then
D(u( � , � ), q0) D Æ and u 2 K�, which contradicts with the assumptionÆ 2 4.

REMARK 4.2. Foru 2 H1
loc(R2), let u(x, y) D u(x,�y), (x, y) 2 R2, and setH� Dfu 2 H j Nu 2 H�g. We have'(u) D '( Nu) and so that infNH� ' D m�. Setting NK� Dfu 2 NH� j '(u) D m�g D fu 2 H j u 2 Kg, NJ D fD(u( � , i ), q�) j u 2 NK�, i 2 Zg and
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N4 D (0, r0) n NJ, and arguing as in Lemma 4.1 one can prove that for allÆ 2 N4 there
exists a3 2 (0, 40) such that ifu 2 NH� satisfiesD(u( � , � ), q�) D Æ for some� 2 Z,
then '(u) � m� C3.

If (��) holds, we can chooseÆ 2 4\ N4 and3 2 (0, r0) such that ifu 2 H� and
D(u( � , � ), q0) D Æ for some� 2 Z, or u 2 H� and D(u( � , � ), q0) D Æ then

(4.1) '(u) � m� C3.

Now let us fix some constants, letQ3 > 0 be such thatQ3 < 3=2. Let " 2 (0, Æ) be
such that�" < 3=8. Let L 2 N be such thatL > (m� C Q3)=h", whereh" is given by
(2.1) and such that there exists au� 2 K� with

D(u�( � , �L), q0) � Æ, D(u�( � , L), q�) � Æ.
We define

U0 D fu 2 H j D(u( � , �L), q0) � Æ, D(u( � , L), q�) � Æg
and

U� D fu 2 H j D(u( � , �L), q�) � Æ, D(u( � , L), q0) � Æg.
Lemma 4.2. If u 2 U� , � 2 f0, �g satisfies'2L�2L (u) � m� C Q3, then there exist

l� 2 [�2L, �L] and lC 2 [L, 2L] such that

D(u( � , l�), q0) � " and D(u( � , l�), q�) � " if � D 0

or

D(u( � , lC), q�) � " and D(u( � , lC), q0) � " if � D �.

Proof. We consider the case� D 0, the other case follows. By contradiction, as-
sume that there exist au 2 U0 such that'2L�2L (u) � m� C Q3 and D(u( � , y), q0) > "
for all y 2 [�2L, �L]. Then, by (2.1) we haveF(u( � , y)) > h" C c for all y 2
[�2L, �L], therefore

m� C Q3 � '2L�2L (u) � '�L�2L (u) > Lh",
which is a contradiction with the choice ofL. In the same way, we can prove the
existence oflC 2 [L, 2L] such thatD(u( � , lC), q�) � ".
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Then we obtain

Lemma 4.3. If u 2 U� , � 2 f0, �g satisfies'2L�2L (u) � m� C Q3, then

D(u( � , �L), q0) < Æ and D(u( � , L), q�) < Æ if � D 0

or

D(u( � , �L), q�) < Æ and D(u( � , L), q0) < Æ if � D �.

Proof. We consider the case� D 0, the other case follows similarly.
Let u 2 U0 with '2L�2L (u) � m� C Q3 and let l� 2 [�2L, �L] and lC 2 [L, 2L] be

given by Lemma 4.2, we setQu D ��0,l� Æ �C�,lC (u) then Qu 2 H�. Since D( Qu( � , y), q�) �
D(u( � , lC), q�) � " when y 2 (lC, lCC 1), then'lCC1

lC ( Qu) � �" and also'l�C1
l� ( Qu) � �",

we obtain

'( Qu) � '2L�2L (u)C 2�" � m� C Q3C 2�" < m� C3,

by the choice of" and Q3.
Setting u(x, y) D Qu(x, y C L), u 2 H� with '(u) D '( Qu) < m� C 3 and

D(u( �, 0),q0) � Æ, by (4.1) we exclude the caseD(u( �, 0),q0)D Æ, i.e., D(u( �, 0),q0)< Æ.
So we concludeD(u( � , �L), q0) < Æ.

One can see that Lemma 4.3 excludes the case that minimizers might be on the bor-
der of the set. We now define the classes of functions in which we look for multibump
solutions. Let us defineN 2 N, N is odd, p D (p1, : : : , pN) 2 ZN , � D (�1, : : : , �N) 2f0, �gN with �i ¤ �i�1 for all i D 2, : : : , N. We set

HN, p,� D fu 2 H j u(x, y� pi ) 2 U� for a.e. (x, y) 2 R2, i D 1, : : : , Ng
and mN, p,� D infHN, p,� '.

REMARK 4.3. Given anyi 2 f1, : : : , Ng, we define

wi (x, y) D �
u�(x, y� pi ) if �i D 0,
u�(x, pi � y) if �i D �.

By Lemma 4.2, there existl�i 2 [ pi � 2L, pi � L] and lCi 2 [ pi C L, pi C 2L] such that

D(wi ( � , l�i ), q�i ) � "
and

D(wi ( � , lCi ), q�iC1) � ".
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Setting Qwi D ���i ,l�i Æ �C�iC1,lCi (wi ), then we have'( Qwi ) � m� C 2�".
Lemma 4.4. If u 2 HN, p,� satisfies'(u) D mN, p,� , then ' piC2L

pi�2L (u) � m� C Q3,8i D 1, : : : , N.

Proof. We define

I WD �
i 2 f1, : : : , Ng �� ' piC2L

pi�2L (u) > m� C Q3	
,

I C D fi 2 f1, : : : , Ng n I j i C 1 2 I g,
and

I � D fi 2 f1, : : : , Ng n I j i � 1 2 I g.
It’s obvious that Card(I C [ I �) � 2 CardI .

Applying Lemma 4.2 for everyi 2 I , we can let l�i 2 [ pi � 2L, pi � L] and
lCi 2 [ pi C L, pi C 2L] be the corresponding real numbers. Let us consider the sets
of consecutive intervals

J1 D
�

y 2 R j y � p1 C p2

2

�
, JN D �

y 2 R j y � pN�1 C pN

2

�
,

Ji D
�

y 2 R j pi�1 C pi

2
� y � pi C piC1

2

�
, i D 2, : : : , N � 1,

and note thatl�i 2 Ji , i D 1, : : : , N.
For any i 2 fi , : : : , Ng, we replaceu in Ji with the function

Qu D

8������<
������:

Qwi if i 2 I ,���i ,l�i Æ �C�iC1,lCi (u) if i 2 I � \ I C,

���i ,l�i (u) if i 2 I � n I C,�C�iC1,lCi (u) if i 2 I C n I �,

u if otherwise.

Note that Qu 2 HN, p,� and so'( Qu) � '(u). Moreover Qu D u if and only if I D ;, i.e.,
the lemma holds if and onlyI D ;.

If i 2 I , then

' piC2L
pi�2L ( Qu) D ' piC2L

pi�2L ( Qwi ) � m� C 2�" � ' piC2L
pi�2L (u)C 2�" � Q3.

If i 2 I � [ I C, then

' piC2L
pi�2L ( Qu) � ' piC2L

pi�2L (u)C 2�".
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Finally, letting I c D f1, : : : , Ng n (I [ I � [ I C).
If 1 2 I c, 2¤ I c, then

'( Qu) D ' p2�2L�1 ( Qu)CX
i2I

' piC2L
pi�2L ( Qu)C X

i2I �[I C '
piC2L
pi�2L ( Qu)

� '(u)C (2�" � Q3) Card(I )C 2�" Card(I � [ I C).

If N 2 I c, N � 1¤ I c, then

'( Qu) D 'C1pN�1C2L ( Qu)CX
i2I

' piC2L
pi�2L ( Qu)C X

i2I �[I C '
piC2L
pi�2L ( Qu)

� '(u)C (2�" � Q3) Card(I )C 2�" Card(I � [ I C).

In any case, we have

'( Qu) � '(u)C (2�" � Q3) Card(I )C 2�" Card(I � [ I C).

Since Card(I �[ I C) � 2Card(I ), we have thatI must be empty, otherwise'( Qu)< '(u),
it’s a contradiction becauseu is a minimizer.

Theorem 4.1. Assume that(�) and (��) hold, then for every odd number N2N, p D (p1, : : : , pN) 2 f0, �gN , where pi ¤ pi�1 � 4L and �i ¤ �i�1, there exists a
u 2 HN, p,� such that'(u) D mN, p,� . Moreover, u is classical solution of(1.1) withkukL1(R2) � R0.

Proof. Let (un) � HN, p,� be such that'(un) ! mN, p,� , by Lemma 3.6 there
exists a subsequence still noted (un) and au 2 H such thatun ! u in H1. By lower
semicontinuity of', '(u) � mN, p,� . By lower semicontinuity of theH1 norm, we have

D(u( � , �L), q0) � lim inf
n!1 D(un( � , �L), q0) � Æ

and

D(u( � , L), q�) � lim inf
n!1 D(un( � , L), q�) � Æ,

therefore'(u) D mN, p,� .
By Lemmas 4.4 and 4.3, we haveD(u( � , pi � L), q�i ) < Æ and D(u( � , pi C

L), q�iC1) < Æ for all i D 1, : : : , N. Here we argue as in Lemma 3.5 that

D(u( � , y), q�i ) � r0 for y < pi � L

and

D(u( � , y), q�iC1) � r0 for y > pi C L.
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By Lemma 3.2 we have

D(u( � , y), q0) ! 0 for y < p1 � L

and

D(u( � , y), q�� ) ! 0 for y > pN C L.

Using standard regularity arguments, we can conclude thatu belongs toC(R2) and
it is a classical solution to (1.1) withkukC2(R2) � C (refer to [5] and [7]).
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