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Abstract

A normalized holomorphic motion of a closed set in the Riemaphere, de-
fined over a simply connected complex Banach manifold, caextended to a nor-
malized quasiconformal motion of the sphere, in the sensgutlivan and Thurston.
In this paper, we show that if the given holomorphic motioefimed over a sim-
ply connected complex Banach manifold, has a group egaiee property, then
the extended (normalized) quasiconformal motion will hétve same property. We
then deduce a generalization of a theorem of Bers on holdmoifamilies of iso-
morphisms of Mdébius groups. We also obtain some new resultextensions of
holomorphic motions. The intimate relationship betweetoimmrphic motions and
Teichmiller spaces is exploited throughout the paper.

1. Definitions and statements of the main theorems

In their study of the dynamics of rational maps, Mafié, Sad, &allivan intro-
duced the idea of holomorphic motions (see [20]). Since ,thelomorphic motions
have found several interesting applications in Teichmiikeory, complex dynamics,
and Kleinian groups. A central topic in the study of holonfocpmotions is the ques-
tion of extensions. In this paper, we obtain some new extens#ieorems. We also
prove a generalization of a theorem of Bers on holomorphicilfas of isomorphisms
of Mdbius groups.

1.1. Holomorphic motions.

DEFINITION 1.1. LetV be a connected complex manifold, and Eete a subset
of C. A holomorphic family of injections of E over ¥ a family of maps{¢y}xev
that has the following properties:

(i) for eachx in V, the mapg¢y: E — C is an injection, and,
(i) for eachz in E, the mapx — ¢«(2) is holomorphic.
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It is convenient to defing: V x E — C as the mapp(x, z) := ¢x(2) for all (x,2) €
V x E.

If V is a connected complex manifold with a basepoigt then a holomorphic
motion of E over Vis a holomorphic family of injections such thai(xo, z) = z for
all zin E.

A holomorphic motiong: V x E — C is calledtrivial if ¢(x,z) = z for all (x,z) €
V x E.

We say thatV is the parameter spac®f the holomorphic motionp.

Unless otherwise stated, we will always assume ¢het a normalizedholomorphic
motion; i.e. 0, 1, andbo belong toE and are fixed points of the mafy(-) for every
X in V.

DEFINITION 1.2. LetV andW be connected complex manifolds with basepoints,
and f be a basepoint preserving holomorphic mapvsfinto V. If ¢: V x E — C is
a holomorphic motion, itpullback by f is the holomorphic motion

(@)X, 2) = ¢(f(x),2) forall (x,z2eWxE
of E over W.

If E is a proper subset df and¢: V xE — C and¢: V x E — C are two maps,
we say thatp extendsy if (X, z) = ¢(x, 2) for all (x, 2) in V x E.

If ¢: V x E — C is a holomorphic motion, it is natural to ask whether theristex
a holomorphic motionp: V x C — C such thatp extendsp. For holomorphic motions
over the open unit disk, the papers [5], [12], [20], [26], a8] contain important
results. Extensions of holomorphic motions over more ggnparameter spaces have
been studied in the papers [13], [21], [22], and [23].

1.2. Quasiconformal motions. In their paper [28], Sullivan and Thurston intro-
duced the idea of quasiconformal motions. In what followsdenotes the Poincaré
metric onC \ {0, 1, o0}.

Let V be a connected Hausdorff space with a basepajnt~or any mapp: V x
E — C, x in V, and any quadrupled, b, c, d of points in E, let ¢«(a, b, ¢, d) denote
the cross-ratio of the values(x, a), ¢(x,b), ¢(x, c), andp(x,d). We will write ¢(X, 2)
as ¢x(z) for x in V andz in E. So we have:

(#x(2) — ¢x(€))(¢x(b) — ¢x(d))

(1.1) Px(@. b, C ) = ) = 6 (@) (D) — 6:(0)

for eachx in V.
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DEFINITION 1.3. A quasiconformal motioris a map¢: V x E — C of E over
V such that
(i) ¢(X0,2) =2z forall zin E, and
(ii) given anyx in V and anye > 0, there exists a neighborhodd} of x such that
for any quadruplet of distinct points, b, ¢, d in E, we have

p(py(a, b, c,d), ¢y(a, b, c,d) <e foral yandy in Uy.

We will always assume thap is a normalized quasiconformal motion; i.e. O, 1,
and oo belong toE and are fixed points of the mafy(-) for everyx in V.

REMARK 1.4. If ¢:V x E — C is a quasiconformal motionx(a, b, ¢, d) is a
well-defined point inC \ {0, 1,00}, and then it is obvious that for eachin V, the
map ¢y: E — C is injective.

We will need the following property of quasiconformal mat®of the sphere. See
[23] for a complete proof.

Proposition 1.5. Let¢: V xC — C be a map such thap(xo, zZ) = z for all z in
C, and for each x in V ¢y fixes the point®, 1, and co. Then ¢ is a quasiconformal
motion ofC if and only if it satisfies
(i) the mapgy: C—>Cis quasiconformal for each x in Vand
(i) the map that sends x in V to the Beltrami coefficientppf for each x in V,
is continuous.

1.3. Some other definitions.

DEFINITION 1.6. LetV be a path-connected Hausdorff space with a basepoint
Xo. As usual,E is a subset ofC that contains the points 0, 1, and. A normalized
continuous motiorof E over V is a continuous mag: V x E — C such that:
(i) ¢(xp,2)=2zforall zin E, and
(i) for eachx in V, the mapo(x, -) is a homeomorphism oE onto its image, that
fixes the points 0, 1, andc.

As usual, we will writeg(x, -) as ¢x(-) and we will always assume that the
continuous motiorny is normalized.

We note the following fact that was proved in [23].

Proposition 1.7. A quasiconformal motiog: V xC — C is a continuous motion.
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DEFINITION 1.8. LetA denote the open unit disfz € C: |z] < 1}. A compact
subsetK of A is called AB-removabléf every bounded holomorphic function o —
K can be extended to a holomorphic function An

For example, a compact subg€t of A with zero 1-dimensional Hausdorff meas-
ure, is AB-removable.

1.4. Statements of the main theorems. We will always assume thaE is a
closed subset of, such that 0, 1, ando belong toE, and the holomorphic motions
are normalized.

For a holomorphic motiop of E over a Riemann surfac¥, Chirka [6] announced
that there exists a topological condition for the extenlitgbof the motion¢ to a holo-
morphic motion ofC over X. The following theorem gives an analytic condition for a
complex manifoldV to have a non-trivial holomorphic motion @& over V.

Theorem 1. (1) Let V be any connected complex Banach manjfalid let %
be any basepoint on V. Then there exists a non-trivial hotptio motion ofC over
V if and only if there is a non-constant bounded holomorphiecfion on V.

(2) Let V be a simply connected complex Banach manifahdl let % be a basepoint
on V. Let E be a closed subset ©f Then there is a non-trivial holomorphic motion
of E over V if and only if there is a non-constant bounded helghic function on V.

The following theorem implies that aAB-removable set is “removable” for holo-
morphic motions if the motion can be extended to the wholeesph(Here, by “remov-
able” we mean that if the given holomorphic motion can be mtel to the whole
sphere, then the holomorphic motion ovar— K can be extended to a holomorphic
motion overA.)

Theorem 2. Let K be a compact subset &f. Suppose that K is AB-removable.
For a holomorphic motionp: (A — K) x E — C, the following are equivalent
(1) ¢ can be extended to a continuous motipn(A — K) x C — C.
(2) ¢ can be extended to a holomorphic motign (A — K) x C — C.
(3) ¢ can be extended to a holomorphic motigs: A x E — C.
Statemen{3) means thatpo(t, z2) = ¢(t, 2) for all (t, 2) € (A — K) x E.

If K is not AB-removablethere exists a holomorphic motion ¢ —K) x E such
that it cannot be extended to a holomorphic motionsx E while it can be extended
to a holomorphic motion oA — K) x C.

REMARK 1.9. If ¢ satisfies one of the above conditions, then it can be extended
to a holomorphic motion om\ x C.
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Let V be a connected complex manifold. In what follows, is a subgroup of
PSL(2,C), E is a closed subset a (as usual, 0, 1, ando belong toE), and suppose
E is invariant undetG (which means thag(E) = E for all g in G). An isomorphism
n: G — PSL(2,C) is said to beinducedby an injectionf: E — C if

f(9(2)) = n(9)(f(2))

for all g € G and for allz € E. An isomorphism induced by a quasiconformal self-map
of € is called aquasiconformal deformation of G

DEFINITION 1.10. Aholomorphic family of isomorphisms of i§a family {6y }xcv
such that:
(i) for eachx e V, 6x: G — PSL(2,C) is an isomorphism, and
(i) for eachg e G, the mapx + 6x(g), for x € V, is holomorphic.

DEFINITION 1.11. Let{6yx} be a holomorphic family of isomorphisms @&. If
V has a basepoint, anfl: V x C — C is a quasiconformal motion, such that

$x(9(2)) = 6x(9)(¢x(2)

for all (x,2) e V xC, we say that the family{ox}xcv is inducedby the quasiconformal
motion ¢.

Let¢: V x E — C be a holomorphic motion. As above, Btbe a group of Mobius
transformations, such th& is invariant undeiG. We say thatp is G-equivariantif and
only if for eachg in G, andx in V, there exists a Mdbius transformatiég(g) such that:

1.2) o(X, 9(2)) = 0k(9)(p(x,2)) forall z in E.

In [12], Earle, Kra and Krushkaproved that if¢: A x E — C is a holomorphic
motion that isG-equivariant, there exists a holomorphic motignA x € — C that ex-
tends¢ and is alsoG-equivariant. The main idea was to use Slodkowski’s theattgamh
every holomorphic motion oE over A can be extended to a holomorphic motion of
C over A. For proof of Slodkowski's theorem, see the papers [3], [B], [26] and the
book [16]. Slodkowski's theorem cannot be generalized ttororphic motions over
higher dimensional parameter spaces. The papers [13], dd8fain some examples.
In the following theorem we prove a higher-dimensional egaé of the theorem of
Earle, Kra, and Krushkal

Theorem 3. Let ¢: V x E — C be a holomorphic motion where V is a con-
nected complex Banach manifpklch thaty is G-equivariant. Suppose there exists a
continuous motionp: V x € — € that extendsp. Then there exists a guasiconformal
motion¢: V x € — € such that
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(1) ¢ extendso,
(2) ¢ is also G-equivariant
(3) for each x in V. the homeomorphismg, and ¢, (of C onto itself) are isotopicrel E.

REMARK 1.12. Note that the continuous motign V x C — C is not assumed
to have the property oG-equivariance given in Equation (1.2).

Corollary 1. If V is simply connectedand ¢: V x E — C is a holomorphic
motion that is G-equivarianthen there always exists a quasiconformal motanV x
€ — C that extendsp and has the same G-equivariance property.

An immediate consequence of Theorem 3 is the following t@oon holomorphic
families of isomorphisms of Mdbius groups. Our result profAeposition 1 in [4] in
its fullest generality.

Theorem 4. Let V be a connected complex Banach manjfaltd let {¢y}xcy be
a holomorphic family of injections of E over V. Suppose i@t each x in V, and
for each g in G there exists a Mobius transformatiaiy(g) such that

?x(9(2)) = 0x(9)(¢x(2)) forall zeE.

Then we have
(i) {O«}xev is @ holomorphic family of isomorphisms of, @nd
(iiy if 6; is a quasiconformal deformation of G for some t in WMené, is a quasi-
conformal deformation of G for every x in V.

Furthermore if V is simply connectedhen the family{f4} is induced by a quasi-
conformal motiong: V x € — € which extendgey}.

REMARK 1.13. If the conditions of Theorem 4 are satisfied, we saytti@holo-
morphic family {¢4} of injections of E inducesthe holomorphic family{6s} of iso-
morphisms ofG.

The following corollary gives an infinite version of Bers’ maheorem in [4].

Corollary 2. Let G be a non-Abelian infinite group. Let V be the same as in
Theorem 4and let{6y}«xcv be a holomorphic family of isomorphisms of G defined over
V with 6, a quasiconformal deformation of ,Gor some t in V. Suppose that for all
X in V,

(i) 6x(G) is discrete and
(i) 6x(g) is parabolic if and only if ge G is parabolic.

Then for each x in V, 6 is a quasiconformal deformation of G. Furthermpit

V is simply connected6y v is induced by a quasiconformal motion &f
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Our paper is organized as follows. In 82, we discuss someepiiep of the
Teichmiller space of the closed d&f and in 83, we define the universal holomorphic
motion of the closed seE. In 84, we prove Theorem 1, and in 85 we prove The-
orem 2. In 86 we prove some propositions and then prove Thede In 87, we
prove Theorem 4 and Corollary 2. In 88, we give two examplémted to Theorems 1
and 2. The first example gives a non-trivial holomorphic motof a finite setkE that
cannot be extended to a holomorphic motion@f over a suitable Riemann surface
that admits no non-constant bounded holomorphic functidie second one gives an
example of a continuous motiop: A* x E — C, which can be extended to a con-
tinuous motiong: A* x € — C, but ¢ cannot be extended to a continuous motion
$: AXE —>C; hereA* ={zeC:0<|z] < 1}.

2. Teichmiller space of the closed seE

A homeomorphism ofC is called normalizedif it fixes the points 0, 1, and.

2.1. Definition. Two normalized quasiconformal self-mappingsand g of C
are said to beE-equivalent if and only iff ~* o g is isotopic to the identity réE. The
Teichmdller space {E) is the set of allE-equivalence classes of normalized quasi-
conformal self-mappings of.

The basepoint off (E) is the E-equivalence class of the identity map.

2.2. T(E) as a complex manifold. Let M(C) be the open unit ball of the com-
plex Banach spac&>(C). Eachu in M(C) is the Beltrami coefficient of a unique
normalized quasiconformal homeomorphisn¥ of C onto itself. The basepoint of
M(C) is the zero function.

We define the quotient map

Pe: M(C) — T(E)

by setting Pe(1) equal to theE-equivalence class of*”, written as f*]g. Clearly,
Pe maps the basepoint d¥1(C) to the basepoint of (E).

In his doctoral dissertation ([19]), G. Lieb proved thB{E) is a complex Banach
manifold such that the projection map:: M(C) — T(E) is a holomorphic split sub-
mersion. For more details, see 82.4.

2.3. Two special cases.Let E be a finite set. Its complemeriz = C \ Eis
the Riemann sphere with punctures at the point€EofSince T(E) and the classical
Teichmdiller spaceTeicH2) are quotients ofM(C) by the same equivalence relation,
T(E) can be naturally identified witfeich(2) (see Example 3.1 in [21]). The reader
is referred to [15], [17], or [24] for standard facts on claas Teichmdller theory. This
canonical identification will be useful in our paper.
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When E = C, the spaceT (C) consists of all the normalized quasiconformal self-
mappings ofC, and the maPe from M(C) to T(C) is bijective. We use it to identify
T(C) biholomorphically withM(C).

2.4. Lieb’s isomorphism theorem. For the reader’s convenience, we include a
brief discussion of “Lieb’s isomorphism theorem.” For cdetp details, the reader is
referred to Section 7 of [13]. In what follows, we shall assuthatE is infinite, and
has a nonempty complemeBf = C\ E. Let {X,} be the connected componentsf.
Each X, is a hyperbolic Riemann surface; [&ichX,) denote its Teichmuller space.
If the number of components is finit@gich(E®) is, by definition, the cartesian product
of the spaceJeich(X,). If there are infinitely many components, th&s is the disjoint
union of X,'s. We define theproduct Teichmdller space TeidE®) as follows.

For eachn > 1, let Q, be the basepoint of the Teichmuller spa@ich(X,,), and let
dn be the Teichmiller metric ofieich(X,,). As usual, letM(X,) denote the open unit
ball of the complex Banach spade*(X,), for eachn > 1. By definition, theproduct
Teichmiller space Tei¢k®) is the set of sequencés= {t,}°2, such thatt, belongs to
Teich(X,) for eachn > 1, and

sup(dn(On, th): N > 1} < .

The basepoint offeich(E®) is the sequence & {0,} whosenth term is the basepoint
of Teich(Xp).

Let L*(E®) be the complex Banach space of sequences {u,} such thatu,
belongs toL*°(X,) for eachn > 1 and the norm|u||- = SUA||inlleo: N > 1} is finite.
Let M(E®) be the open unit ball of.*(E®). Note that if © belongs toM(E®), then
un belongs toM(X,) for all n > 1 (but the converse is false).

For eachn > 1, let &, be the standard projection fromi (X,) to Teich(X,) (see
[15] or [17] or [24] for the basic definitions). For in M(E®), let ®(u) be the se-
quence{®,(un)}. It is easy to see tha®(u) belongs toTeicHE®), and the mapd
is surjective. We calkb the standard projectionof M(E€) onto TeicHE®). In [19] it
was shown thaflTeich E®) is a complex Banach manifold such that the mapis a
holomorphic split submersion (see also [13] or [21]).

Let M(E) be the open unit ball in.>°(E). The productTeicHE®) x M(E) is a
complex Banach manifold. (IE has zero area, theM(E) contains only one point,
and TeicH E®) x M(E) is then isomorphic tdTeich(E®).)

For n in L*°(C), let «|E® and u|E be the restrictions ofu to E° and E re-
spectively. We define the projection mdp: from M(C) to TeicHE®) x M(E) by
the formula:

Pe(1) = (P(1[E®), w|E) forall e M(C).

Proposition 2.1 (Lieb’s isomorphism theorem).For all © andv in M(C) we have
Pe(u) = Pe(v) if and only if Pe(u) = Pg(v). Consequentlythere is a well-defined



EXTENSIONS OF HOLOMORPHIC MOTIONS 1175

bijection6: T(E) — TeicHE®) x M(E) such thatd o Pz = Pg, and T(E) has a unique
complex manifold structure such that s a holomorphic split submersion.

See Section 7.9 of [13] for a complete proof.

2.5. Continuous section ofPg. The projection mapPg: M(C) — T(E) has a
continuous section, that will be very crucial in our papethisTwas proved in [13]
and also in [21]. It is an application of barycentric extensi studied in [8]. We in-
clude the discussion here, for the reader's convenience,adso to make our paper
self-contained.

Proposition 2.2. There is a continuous basepoint preserving rddpom TeiclE®)
to M(E®) such that® o § is the identity map on Tei€B®).

Sketch of proof. By Lemma 5 in [8], for eaah> 1, there is a continuous base-
point preserving mag, from Teich(X,) to M(X,) such that®, 0§, is the identity map
on Teich(X;)). Let

Mi(Xn) = {un € M(Xn): [[tnlleo < K}

for anyk in the open interval (0, 1) and consider the mgp= §,0 ®, from M(X,) to
itself. By Propositions 3 and 7 in [8], it follows thai, maps My(X,) into Mcgy(Xn),
where 0< c(k) < 1, andc(k) is independent oh. Furthermoreo, is uniformly con-
tinuous inMy(Xy), and its modulus of continuity iMy(X,) depends only oik. It can

be checked that the formuk(t) = {&.(tn)}, for t = {t,} in TeicH E®), defines a contin-
uous map fromTeich(E®) to M(E®) with the required properties. For the details, we
refer the reader to Section 7.7 in [13].

Proposition 2.3. There is a continuous basepoint preserving map s frai)To
M(C) such that B os is the identity map on (E).

Proof. By Proposition 2.2, there is a continuous basepaiesgrving mags from
Teich(E®) to M(E®) such that® o § is the identity map orTeich(E®). Let § be the
map from TeicE®) x M(E) to M(C) such that§(z, v) equals$(z) in E® and equals
v in E for each ¢, v) in TeicHE®) x M(E). Clearly, Pg o § is the identity map on
TeicHE®) x M(E). We defines = §06, wheref is the biholomorphic map fronT (E)
to TeicHE®) x M(E) given in Proposition 2.1. It is clear that T(E) - M(C) is a
continuous basepoint preserving map such fab s is the identity map ol (E). [

Since M(C) is contractible, we have the following

Corollary 2.4. The Teichmdller space (E) is contractible.
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3. Universal holomorphic motion of the closed seE

3.1. The general definition. The universal holomorphic motionvg of E over
T(E) is defined as follows:

We(Pe(n), 2) = wh(z) for we M(C) and ze€ E.

The definition of Pg in 8§2.2 implies that the ma@e is well-defined. It is a holo-

morphic motion becaus®: is a holomorphic split submersion and+— w#(z) is a

holomorphic map fromM(C) to C for every fixedz in € (by Theorem 11 in [1]).
This holomorphic motion is “universal” in the following sest

Theorem 3.1. Let ¢: V x E — C be a holomorphic motion. If V is a simply
connected complex Banach manifold with a basepdi@re is a unique basepoint pre-
serving holomorphic map :fV — T(E) such that f(Vg) = ¢.

For a proof see Section 14 in [21].

Here is a special case of Theorem 3.1. Recall from §2.3, then = C, T(C)
is canonically identified withM(C). Therefore, the universal holomorphic motion
Wa: M(C)x € — C is given by:

Vel 2) = wh(2)

for all ze C. So, by Theorem 3.1, ifp: V x C — C is a holomorphic motion,
there exists a unique basepoint preserving holomorphic maf@ — M(C) such that
d(x, 2) = F*(Wa)(X, 2) = We(f(X), 2) = w'®¥(z) for all (x,2) in V xC.

We also note the following theorem that was proved in [23].

Theorem 3.2. Let¢: V x E — C be a holomorphic motion where V is a con-
nected complex Banach manifold with a basepoint. Then th@niog are equivalent
(1) There exists a continuous motign V x C — C that extendsp.

(2) There exists a quasiconformal motign V x C — C that extendsp.
(3) There exists a unique basepoint preserving holomorphic hay — T(E) such
that f*(Vg) = ¢.

4. Proof of Theorem 1

(1) If there are non-constant bounded holomorphic funstion V, there is a
non-constant holomorphic functiof on V so that f(Xo) = 0 and|f(x)| < 1 for all
x € V. Take u € M(C) which does not vanish identically and put

$(x, 2) = w'®(2)
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for all ze C. Then,¢ is a holomorphic motion of over V. Sinceu # 0, the motion
is non-trivial.

For the other direction, if is a holomorphic motion o over V, then, by The-
orem 4 in [10] (or by Theorem 3.2 of this paper, whéte= C and T(C) is identified
with M(C)), the mapF from V to M(C) that sendx in V to the Beltrami coefficient of
¢ is holomorphic. If¢ is non-trivial, thenF is non-constant; sd,c F is a non-constant
holomorphic function orV if | is a suitable bounded linear functional &f°(C).

(2) If there are non-constant bounded holomorphic funstionV, then the same
method as in (1) gives a non-trivial holomorphic motion®fover V.

Conversely, if¢ is a non-trivial holomorphic motion of some closed $et(0, 1,
oo € E) overV, then by Theorem 3.1, there exists a unique basepoint piegdnolo-
morphic mapF: V — T(E) such thatF*(Vg) = ¢. Since¢ is non-trivial, F is non-
constant. Lieb’s isomorphism theorem (see Proposition) grbduces a non-constant
holomorphic mapG = 6 o F from V to TeichE®) x M(E), which is a bounded re-
gion in a complex Banach spad¥. Thereforef =1 o G is a non-constant bounded
holomorphic function onV if | is a suitable bounded linear functional ov. O

REMARK 4.1. LetV be a connected complex manifold with a basepaintand
E be a closed subset @ (as usual, 0, 1po € E). Let ¢: V x E — € be a holo-
morphic motion. For each € E\ {0, 1,00}, we have a holomorphic functiol, (x) :=
¢(x,¢) on V. It is a holomorphic map fronv to C\ {0, 1}. Here, we present a prop-
erty of the maph, which has an independent interest and may also be used te prov
Theorem 1.

Proposition 4.2. Suppose that: V x E — € can be extended to a continuous
motion¢: V x C — €. Then the function h can be lifted to a holomorphic function
ﬁz: V — A (where A is the universal covering of \ {0, 1, c0}).

Proof. Take any closed curv@ passing throughxp, and putC, := ¢(C, ¢). Then
C, is a closed curve irC \ {0, 1} passing through. By Theorem 3.2, there exists
a quasiconformal motio: V x C — C that extendsy. Also, by Proposition 1.5,
#x: € — C is a quasiconformal map, for eaghin V. Hence, there existg(x) € M(C)
for eachx € V such thath,(x) = ¢(x, ¢) = w*®(¢). Therefore,

Cp = (w"¥(¢) | x € C}.
Furthermore, it follows from Proposition 1.5 that the maggpV > X — u(x) € M(C)
is continuous orV. Thus, a mapping/ 3 x — w*®(¢) e C\ {0, 1} is still continuous

for eacht € [0, 1] and we can define a cur\@; by

Cy = (") |xeC} (te[0, 1].
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Since{C;,}te[o,l] is a continuous family of curves i@ \ {0, 1} and C? = {¢}, we con-
clude thath,(C) = Cy4 is homotopic to the trivial curve i€ \ {0, 1}. This implies that

h, can be lifted to a holomorphic functioﬁg from V to the universal covering\ of
C\ {0, 1, as desired. O

5. Proof of Theorem 2

First, we consider the case whekke is AB-removable.

(2) = (1): It is obvious.

(3) = (2): By Slodkowski's theoremgy can be extended to a holomorphic mo-
tion ¢: (A — K)x C — C. Thus, (2) is true.

We will prove that (1)= (3). Suppose thap: (A — K)x E — € can be extended
to a continuous motiom: (A — K) x € — C.

Case 1. WhenE is finite. SupposeE containsn (> 4) points. By Theorem 3.2,
we have a holomorphic map,: (A — K) — T(E) such that

F,(Ve)(A, 2) = ¢(x,2) forall (1, 2) €(A—-K)xE.

By 8§2.3, T(E) can be identified with the Teichmiller space of the spheté wipunc-
tures, denoted byfeich0, n). Since TeicH0, n) is regarded as a bounded domain in
C"3 by Bers embedding, the holomorphic m&p on A — K can be extended to a
holomorphic mapF; from A to TeicHO, n). We shall show thaf,(1) € Teich0, n)
for every » € K.

Since K is AB-removable, the space of bounded holomorphic functionsAon
K is the same as that on. Hence the Carathéodory metrics @an— K and on A
are the same om — K. Therefore, any sequende,};°, in A — K converging to a
point & € K is a Cauchy sequence with respect to the Carathéodory nwetric — K
and {Fg(An)}2; is also a Cauchy sequence with respect to the Carathéoddric roe
TeicH0,n) because of the distance decreasing property of holomorphps. Using the
completeness of the Carathéodory metricTeich0,n) (see [9] and [25]), we conclude
that |f¢(x) = limp_.o Fy(An) exists inTeich0, n) and the holomorphic ma|§¢: A —
TeicH0, 4) extendsF,. Therefore,F; gives a holomorphic motiorpy: A x E — €
defined by¢o = Ifd;"(\IJE) and clearly,pp extendse.

CASeE 2. WhenE is infinite. Consider a sequence of finite subgéig} such that
{0, 1,00} C E, C Epyq for eachn > 1 and|J E, is dense inE. Let ¢ = ¢|(A —K) x
E, for eachn > 1. Consider the holomorphic motiaf,: (A — K) x E, — C; it can
be extended to a continuous motigp: (A — K) x € — C. So, by Case 1¢, can be
extended to a holomorphic motiapy o: A x E, — C.

Let Eo, = |J En. For (A, 2) € A x Eo, let ¢o(r, 2 = ¢(%, 2) whenx ¢ K. For
any z € E, there existsn € N such thatz € E,. We set¢o(X, 2) = ¢no(r, 2) for
A € K. The definition of¢g on A x E,, is well-defined. In fact, ifz € E,, for n < m,
¢m extendse, implies thatgm(x, z2) = ¢n(2, 2) for 1 ¢ K. For eachy € K we take a
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sequencgiglp, C A — K converging tor and consider the limits iR« ¢n oAk, 2)
and lim oo ¢m o(rk, z). Obviously, both limits coincide and do not depend on céoic
of the sequence. Thus, we haga oA, 2) = ¢no(r, 2) for (A, 2) € K x Ey, Which
shows thatpg is well-defined.

Now, we show thatpg is a holomorphic motion oA x E,. It is easily seen that
¢o( -, 2) is holomorphic onA for each fixedz € E,,. We check injectivity. Forz, Z
in E., wherez # Z, there existsn € N such thatz, Z are in E,. Now, ¢o(A, 2) =
dn.o(X, 2) # éno(r, Z) = ¢o(A, Z). We have therefore shown thap: A x E, — Cis
a holomorphic motion.

Finally, by the A-lemma in [20], it follows that¢, can be extended to a holo-
morphic motion (still calledpo: A x E — C.

Now, we consider the case wheke is not AB-removable. We may assume that
A—K>0andE = {0, 1, 2, o} for somezy # 0, 1,00. Let n be a holomorphic
quadratic differential onX := C — E with ||n| = 1, where|5|| = sup.cy P(272n(2)
for the hyperbolic metrigp of X.

Since K is not AB-removable, there exists a bounded holomorphic functioan
A — K such that it cannot be extended to a holomorphic functiorAoriWe may as-
sume thatf (0) = 0 and|f(1)| < 1 for eachh € A—K. Then, we define a holomorphic
mapF: A — K — M(C) by

F() = f(A)% (A€ A—K)

and a holomorphic motion/s : (A —K) x E — C by

wi(r,2) =wW(2) (z€E).
Obviously, the holomorphic motionts can be extended to a holomorphic motion
Ui, 2) = wF®() on (A —K) x C.

Suppose that; can be extended to a holomorphic motidn: A x E — €. Then,
we have a holomorphic ma@: A — T(E) = Teich0, 4) such that

(5.1) Ui (1, 2) = Ve(G(A), 2)

for every (., z) € A x E. Since ding Teich0, 4) = 1, the Teichmiller space&eich0, 4)
is biholomorphic to the Teichmuller space ¥f and

Teich X) = {A% A€ A}

by Teichmuller's theorem. Hence, the m&pgives a uniqgue mag from A to itself

such that

(5.2) G() = Pe (g(,\)l’7—|) for all 1 € A.
n
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Since G is holomorphic andPg is a holomorphic split submersion, (5.2) implies that
g is a holomorphic function om\.
Now, (5.1), (5.2), and the definition d?g imply that

Ui (A, 2) = wIP/l(z)

for all (A, Z) € A x E. Since the holomorphic motiod/; extendsWy, it follows by
Teichmdiller’'s uniqueness theorem that

f(1) =9()
for A € A — K which implies thatg extendsf. This is a contradiction. ]

6. Proof of Theorem 3

Let G be a group of Mdbius transformations that mBponto itself. For eacly
in G, there exists a biholomorphic magy: T(E) — T(E) (also called a “geometric
isomorphism” induced byg) which is defined as follows: for each in M(C),

pg([w"Te) = [§ow" o g ']e

where § is the unique Mdobius transformation such tiiad w* o g~ fixes the points
0, 1, andoo. See Remark 3.4 in [11] for a discussion on “geometric isqhniems”
of T(E).
It follows from the definition that, for eacly in G, pg is basepoint preserving.
We need the following

Lemma 6.1. Let B be a path-connected topological space andg fbe continu-
ous maps from B to (E) satisfying
(i) We(f(t),e) = We(g(t), e) for all e in E, and
(iiy f(tg) = g(to) for some § in B,
then f(t) = g(t) for all t in B.

For a proof see Lemma 12.2 in [21].

In the next proposition, leY be a simply connected complex Banach manifold
with a basepointxg. If ¢: V x E — Cis a holomorphic motion, by Theorem 3.1,
there exists a unique basepoint preserving holomorphic fal — T(E) such that
f*(Vg) = ¢.

Let G be a group of Mdbius transformations that mgponto itself. Recall the
definition of G-equivariance in Equation (1.2).

Proposition 6.2. The holomorphic motiow: V x E — Cis G-equivariant if and
only if f maps V into the set of points in(E) that are fixed bypy for each g in G.
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Proof. Supposef mapsV into the set of points inT (E) that are fixed bypog for
all gin G. Letge G, x eV, and f(x) = Pe(u). So,¢(X, 2) = Ve(f(x), 2) = w"(2)
for all zin E.

Now, pg(f(x)) = f(x) implies that

[w*]e = [6x(9) o w* 0 g~ ']e

wherefy(g) is the unique Mdbius transformation such tiafg) o w* o g~ fixes 0, 1,
and co. This means tha#y(g) o w” o g~* = w* on E. Therefore, we have

0x(g)(w"(2)) = w"(g(2)) for all zeE.

We conclude that(x, g(2)) = 6x(9)(¢(X, 2)) for all z in E, and so,¢p satisfies Equa-
tion 1.2.

Next, suppose the holomorphic motigh satisfies Equation 1.2. Let € V and
f(x) = [w*]e. For x € V, andg € G, there exists a Md&bius transformatiagi(g)
such that

P(x, 9(2)) = 6x(9)(¢(x, 2)) forall zeE.

Since f (x) = [w*]g, we havep(x, 9(2)) = w*(g(2)) for all zin E. Thereforew*(g(2)) =
O (9)(w*(2)) for all z € E. We conclude thatv”* = 6,(g) o w* o g~* on E. Since the
quasiconformal mam* fixes 0, 1, and, it follows that6,(g) o w* o g~* fixes 0, 1,
andoo.

By definition of pg, we have

pg([w*1e) = [§ow" o g e

where § is the unique Mobius transformation such ti§as w* o g* fixes 0, 1, ando.
It follows that § = 0«(g). Therefore, we have

f(x) = [w"]e
and
pg(f(X)) = [6x(9) o w" o g ']E.

Since f and pg are both basepoint preserving, we haixg) = pg( f (X0)). And since
wh = 6y(g)ow* og~t on E, we haveWe(f(X), z) = We(og(f (X)), 2) for all zin E. It
follows by Lemma 6.1 thaff (x) = pg(f(x)) for any x in V. This means, thaf maps
V into the set of points irT (E) that are fixed bypy for eachg in G. []

Proposition 6.3. If 7 is in T(E) such thatpy(r) = v for every g in G then
s(r) = p satisfies

a

(6.1) (o g)% =pn for each ge G.
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The proof follows easily from the construction of the mapT(E) — M(C) in
Proposition 2.3.

We need the following simple lemma. L&t be a path-connected topological space
and #(C) be the group of homeomorphisms @f onto itself, with the topology of
uniform convergence in the spherical metric.

Lemma 6.4. Let h: B — #(C) be a continuous map such thaftj{e) = e for
allt in B and for all e in E. If Htp) is isotopic to the identityel E for some fixedot
in B, then Ht) is isotopic to the identityel E for all t in B.

For a proof see Lemma 12.1 in [21].
We are now ready to prove Theorem 3.

Proof of Theorem 3. By Theorem 3.2, there exists a uniquepoasepreserving
holomorphic mapf: V — T(E) such thatf*(Wg) = ¢. Since¢ is G-equivariant, it
follows by Proposition 6.2 , that mapsV into the set of points ifT (E) that are fixed
by pg for eachg in G. If f(x) = 7, then by Proposition 6.3, it follows tha(r) =
where . satisfies Equation (6.1).

Define f =so f and letg(x, 2) = w ®(z) for all (x,2) € V x €. Since f: V —
M(C) is a continuous map, it follows by Proposition 1.5 thatis a quasiconformal
motion.

Also, ¢ extendsg, because for allx, z) € V x E, we have

$(x, 2) = w'™(2) = We(Pe(s(f (X)), 2) = Ve(f(X), 2) = p(x, 2).

This proves (1).

Sinces(f(x)) = u satisfies Equation (6.1), it follows that for eaghn G, w*ogo
(w*)™1 is a Mobius transformation that depends @rand onyu (and therefore orx in
V). So, we write this Mobius transformation &g(g). We therefore havew*(g(2)) =
0x(g)(w*(2)) for all z in €. Hence, we conclude thak(x, g(z)) = 6x(9)(¢(x, 2)) for
all (x,2) in VxC i.e.¢ is G-equivariant. This proves (2).

Finally, define mapsf and g from #(C) by f(x)(2) = #(x, 2) and g(x)(z) =
é(x,2) for x in V andz in €. Since¢ is a quasiconformal motion, by Proposition 1.7,
$ is also a continuous motion. So, baghand ¢ are continuous maps. Hence, by The-
orem 5 in [2], the mapsf and g are continuous. Therefore, the map V — H(C)
defined byh(x) = g(x)~*o f(x) for x in V, is continuous. Clearlyh(xo) is the identity
map onC. Since both¢ and ¢ extende, h(x) fixes E pointwise, for everyx in V.
Hence, by Lemma 6.4, it follows thdt(x) is isotopic to the identity relE for eachx
in V. This proves (3). O

Proof of Corollary 1. IfV is simply connected, by Theorem 3.1, there must al-
ways exist a basepoint preserving holomorphic niapy — T(E) such thatf *(Vg) =
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¢. Hence, if¢: V x E — C is a holomorphic motion satisfying Equation (1.2), there
will always be a quasiconformal motiaf: V x C — C such thatp extendsgy and also
satisfies Equation (1.2). []

7. Proof of Theorem 4

The proof of (i) is easy; we follow exactly the first part of theguments in the
proof of Theorem 1 of [12].

For (ii), it clearly suffices to prove the theorem wh¥nis simply connected. Also,
by consideringdy 06,71, we may assume that = id. Then,¢ is a holomorphic motion
of E over V with basepointt. Hence, by Corollary 1, there exists a quasiconformal
motion ¢: V x C — C such that:
() ¢ extendsg, and
(i) Bx(9(2)) = 6x(9)(¢x(2)) for all ziin C.

Also, by Proposition 1.5, for eack € V, ¢,: C — C is a quasiconformal map.
This meangy is a quasiconformal deformation & for eachx in V. O

Proof of Corollary 2. We may assume that= id and V is simply connected.
Let E be the set of fixed points of loxodromic elements@f For eachz € E, there
exists a primitive loxodromic elememfe G such thatz is the attracting fixed point of
g. Let us denote the attracting fixed point of a loxodromic elatg € PSL(2,C) by
a[g]. Then, for eachx € V, we define

o(x, a[g]) = a[6x(9)]

for eachz = «[g] € E. Sinced(G) is discrete, for distinct primitive loxodromic elem-
entsg, g’ € G, we havex[g] # «[d] and a[6x(9)] # a[6x(g))]. Therefore,p is a holo-
morphic motion ofE over V.
Furthermore ¢« (2) induceséy. Indeed, forg € G and fora[h] € E (h € G),
¢x(g(e[h])) = ¢x(@[gohog™])
= aff(gohog™)] = a[bx(g) o 6x(h) o 6x(9) ']
= Ox(9)(«[Ox(N)]) = Ox(9)(@x(«[h]).
Therefore the conclusion follows from Theorem 4. O
The following proposition generalizes Proposition 2 in,[4hd also Theorem 3

in [27].
Let V be a simply connected complex Banach manifold with basé¢peinLet

U= {er: pv (X, Xo) < 'OA(O’ %)}
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where py is the Kobayashi metric oW and p, is the Poincaré metric orn.
Let G be a subgroup of PSL(Z}) and letE be a closed subset « (as usual,
0, 1, oo belong toE) that is invariant unde(G.

Proposition 7.1. Suppose that the holomorphic familyi}xcv Of injections of E
induces the holomorphic familifx}xey of isomorphisms of G. gy, = id, then there
exists a holomorphic familygy} of quasiconformal self-maps @f defined over U such
that ¢, = id and ¢, inducesy for each xe U.

Proof. By Theorem B in [21], there existsumique holomorphic motiong: U x
€ — € such thatg(x, z) = ¢(x, 2) for all (x,z) € U x E with the following properties:
() ¢éx: C — C is a quasiconformal map for eachin U,

(i) the Beltrami coefficient ofg, depends holomorphically with respect xofor each
x in U, and

(iii) the Beltrami coefficient ofg, is harmonic in each component 6)‘\ E for each
x in U.

We now follow Bers’ arguments in [4]. For sontee G, let Fy = 6,(g) Loy og
for eachx in U. Then,{F,} is a holomorphic family of quasiconformal self-maps of
C, defined ovelU and Fy = id.

We are given thatp,(9(2)) = 6x(9)(¢x(2)) for all z€ E. Therefore, for allz in E,
we have Fy(2) = 6x(9) (¢x(9(2)) = 6x(9) ($x(9(2))) (since ¢x(2) = ¢x(2) for all z
in E) which is equal togy(2).

Let the Beltrami coefficient off be . It can be easily shown thaly is har-
monic on each component @ \ E. Therefore, by the uniqueness part of Theorem B
in [21], it follows that Fy = ¢ for everyg € G and for allx € U. Therefore 6,(g) =
$x 0 go .t for eachx € U and for allg € G. O

REMARK 7.2. |If E is not a closed set we can use Theorem 2 in [18] to extend
¢ to a holomorphic motion oE (the closure ofE) over V.

REMARK 7.3. We can follow Bers’ methods in [4] and use Propositioh &
give another proof of Theorem 4. However, we want to emplkatiat the statements
of Corollary 1 and of Theorem 4 for a simply connectddmply a global property like
Slodkowski's theorem; that means, there exists a quasicorafl motiong: V xC — C
that extends the given holomorphic motign

8. Examples

ExXAMPLE 8.1. LetXg be a Riemann surface that admits no non-constant bounded
holomorphic functions, and let be a non-constant meromorphic function Xp. Fix a
point xg € Xo as a basepoint. Ly = {0, 1,00, a1, ..., @z} be any finite set. We may
assume thaf (xo) ¢ Eo. Then putA = f~Y(Ep). The setA, which is possibly an empty
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set, is a discrete subset &f. Since Xy admits no non-constant bounded holomorphic
function, X := Xp \ A also admits no non-constant bounded holomorphic functibos
E = Ep U { f(x0)}, we define a holomorphic motiap: X x E — C by

z (z € E),

ox.2) = {f(x) (z¢ E).

Since f is non-constant, the motion is non-trivial. But Theorem Jamguntees thad
cannot be extended to a holomorphic motiontfover X.

EXAMPLE 8.2. In Theorem 2, we gave equivalent conditions for a holginic
motion ¢: (A—K)x E — C to be extended to a holomorphic motigg AxE — C. In
this example, we shall show that the holomorphicity¢gotannot be relaxed by giving
a counter-example. We construct an example of a continuaatsome¢: A* x E —
C, which can be extended to a continuous motipnA* x € — €, but ¢ cannot be
extended to a continuous motight A x E — C.

Let E = {0, 1,00, 1/3}. We defineg(x, 0) = 0, ¢(1, 1) = 1 and¢(x, co) = oo, for
A e A*. And for (, 1/3) € A* x {1/3}, A =r€l?, 0 <r < 1, we definep(n, 1/3) =
re'?1/3 for 0< 6 < 7, andg(r, 1/3) =re@=91/3 for 7 < 6 < 2r.

It is easy to check thap: A* x E — C is a continuous motion. Alsgp cannot
be extended to a continuous motign A x E — C.

We now construct a continuous motiefn A* x C — C that extendsp. For 0<
|z| < 1/3, we definep(r, z) =re'?z for 0<6 < 7, andp(r, 2) = rel@ Nz for 7 <
0 <2m.

For all |z| > 2/3, set¢(r, 2) = z.

Finally, for 1/3 < |z| < 2/3, we definep(re'?, z) as follows: for 0< 6 < =, define

A —0 2
i0 _ r2-3|Z i — —
o(re’, z) =r exp(l (Iog 2(Iog |z| —log 3)))2

and forr < 0 < 27 define

N 2 —6 2
i0 _ r2-3|7| il _ —
o(re’, 2 =r exp(l ( l0g 2 (Iog|z| log 3)))2.

It can be checked thap: A* x C — C is a continuous motion that extends the
given continuous motiog: A* x E — C.
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