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Abstract
In [7], Yasushi Mizusawa gives computations which lead to a pro-2-presentation

of the Galois group of the maximal unramified pro-2-extension of the cyclotomicZ2-extension over some imaginary quadratic fields, with low�-invariants. We show
that these methods can be applied to some maximal tamely ramified pro-2-extensions,
depending on the quadratic imaginary field, and the condition of ramification.

Introduction

In [7], Mizusawa considers the following problem: given an imaginary quadratic num-
ber field k, and k1 its cyclotomicZ2-extension, can we compute a pro-2-presentation
of the Galois group of the maximal unramified pro-2-extension over k1? Results of
Ferrero ([1]) and Kida ([4]) give the maximal abelian quotient of these groups, that is,
the Galois group of the maximal unramified abelian pro-2-extension ofk1. It is com-
puted as an Iwasawa module. Using these results, computations of some other Iwasawa
modules, and group-theoretical results such as Proposition 3.2 below, Mizusawa is able
to find the wanted presentation in some non-trivial (i.e. non-abelian) cases with low�-invariant (namely� 2 f1, 2g). One ingredient in his computations is that Iwasawa
modules overk1 that he considers have non-trivial torsion part. Accordingto Ferrero
and Kida’s results, it can occur only if the prime 2 ramifies inthe extensionk=Q.

We show in this paper that Mizusawa’s method can be applied as well for the
Galois group of maximalS-ramified pro-2-extension overk1, where S is the set of
primes in k1 over a finite set of odd prime numbers inQ (hence, we consider the
Galois group of a tamely ramified extension). The main resultis the following:

Theorem 1. Let p and q be two prime numbers respectively congruent to5 and
3 modulo 8, and put SD fqg. Let k be the imaginary quadratic fieldQ(

p�p), and
G D Gal(L1

S (k1)=k1) the Galois group of the maximal S-ramified pro-2-extension of
k1. ThenG has rank2, its abelianization is isomorphic toZ2�Z=2Z as aZ2-module,
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and admits as a presentation:

ha, b j [a, b]a2i,
where [a, b] denotes the commutator a�1b�1ab. The same holds if we assume p�
3 mod 8and q� 5 mod 8.

The first section of our paper is devoted to fixing notations and recalling useful
known results. In the second section we extend results of Ferrero and Kida to find
S-ramified Iwasawa moduleXS(k1) over the cyclotomicZ2-extension of an imaginary
quadratic fieldk. The description depends on theS-ramified Iwasawa module overB1,
the cyclotomicZ2-extension ofQ. We are not able to give the general description of
that module, but we exhibit a few infinite families of setsS for which it is trivial or
cyclic of small order. A fact to be noticed is thatXS(k1) can have non-trivial torsion
part even if 2 does not ramify ink=Q. Using Mizusawa’s method we finally prove
Theorem 1 in Section 3. Note that it is about Galois groups whose abelianizations areZ2 � Z=2Z, hence with� D 1. We do not consider cases with� D 2. We will also
quickly restrict ourselves to the casek ¤ Q(i ), since dealing with roots of unity would
require special arguments.

As an application of this result, we compute Galois groups ofthe maximalS-ramified
pro-2-extension over the layerskn of the cyclotomicZ2-extension ofk, the so-calledS-ray
2-class field tower (Theorems 3.8 and 3.11). These results and their proofs are again in-
spired by Mizusawa’s paper: see Proposition 4.3 in [7].

We mention that numerous computations have been done using the (free) system
PARI/GP: visit http://pari.math.u-bordeaux.fr/.

1. Preliminaries.

1.1. Notations. Let S and D be two finite sets of odd prime numbers inQ. We

will mainly consider the imaginary quadratic fieldk D Q�q�Qpi2D pi

�
and various

extensions of it. For each number fieldK , we denote byS(K ) the set of places inK
which are above places inS. When no confusion is possible, we will omitK .

For any placev in K , let k�v be the pro-2-completion of the multiplicative group of
the residue class field ofK at the placev (i.e., the 2-Sylow, since it is a cyclic group).

The notationC`(K ), or simply C`, stands for the ideal class group in the number
field K , andC`M for the ray class group associated to the modulusM. All the class
groups that we consider are taken in the ordinary sense whichmeans that archimedean
places do not complexify in the corresponding class field extensions.

Let M be a modulus whose support is included inS(K ) for someK . In particular,
if M0 D Qv2S pv, and if M is such thatM0 jM, then the 2-Sylow of the ray class
groups are such thatAM D AM0 (see Proposition 1.2 below). In such a situation, we
omit the modulus and denote byAS that 2-Sylow. WhenS is empty, we omit the
subscript; in particular,A is the 2-Sylow ofC`.
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DS denotes the subgroup ofAS generated by the places above 2; in particular
D � A (no confusion with the discriminant of the quadratic numberfield seems pos-
sible). ThenA0

S is the quotient groupAS=DS (it corresponds via class field theory to
the maximal 2-splitS-ramified abelian 2-extension).

Following [9], Section 7.3, we writeBn for the n-th layer of the cyclotomicZ2-
extension ofQ, and Kn its compositum with any number fieldK . Taking inverse limits
of various class groups according to norm maps fromKm to Kn for m� n, we obtain the
so-called Iwasawa modules. For instance:X(K1) D lim � A(Kn), X0(K1) D lim � A0(Kn),

XS(K1) D lim � AS(Kn) and X0
S(K1) D lim � A0

S(Kn), lim � D(Kn) and lim � DS(Kn). Note

that in general the Iwasawa module depends on the first layer of the Zp-extension we
consider, and not only onK1. However, in our examples, they will be independent, and
thus our notation will fit.

The notationE stands for the group of (global) units,EM for the subgroup of
units which are congruent to 1 moduloM. Similarly, E0 denotes the group of 2-units
and E0

M
the subgroup of 2-units which are congruent to 1 moduloM. Then we define

E D E
ZZ2 andE 0 D E0
ZZ2. Since the setS contains only finite non-2-places, we
can defineES as EM 
Z Z2 for any modulusM built on S and divisible by

Qv2S pv
(see Proposition 1.2 below). The same holds forE 0S.

Let T be either the empty set or the set of places above 2. We useT as a super-
script for unit groups and class groups: for instanceET

S , AT
S denote eitherES and AS,

or E 0S and A0
S, according whetherT is the empty set or the set of places above 2.

1.2. Some known results. Let us recall without proof some classical results which
will be used several times. First, we state a well-known result from Iwasawa theory, which
is a special case of Nakayama’s lemma (see for example [2], Theorem 1).

Lemma 1.1. Let K1=K be the cyclotomicZp-extension of the number field K .
Assume that all primes above p in K are totally ramified in K1=K. Let S be a finite
set of finite primes in K, which are not above p. Take T to be either the empty set or
the set of places above p in k.

If AT
S(Kn) D AT

S(KnC1) for some layer Kn, then XT
S(K1) D AT

S(Kn).
Assume moreover that there is only one prime above p in K . ThenXT

S(K1) is
trivial if and only if AT

S(K ) is trivial.

The following statement is a pro-2-completion of Theorem 4.5 in Part I of [3]. It
will be used to computeS-ramified Iwasawa modules from unramified ones.

Proposition 1.2. Let K be a number field. Let T be either the empty set or the
set of places above2. We recall thatk�v denotes the pro-2-completion of the multi-
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plicative group of the residue class field of K at the placev. Then, there is an ex-
act sequence:

1! ET (K )=ET
S (K )! Y

v2S(K )

k�v ! ker(AT
S(K )! AT (K ))! 1.

It yields the following equality:

#AT
S(K ) D #AT (K ) 2�(M)

[ET (K ) W ET
S (K )]

,

where2� denotes the2-part of the generalized Euler function, and M is any modulus
whose support is S and divisible byM0 DQv2S(K ) pv.

Now we recall (a form of) the so-called genus formula which gives some informa-
tion on the class group in a fieldL depending on the class group of a subfieldK , on
ramification inL=K and on norms of units (see for instance [3], Part IV, Theorems4.2
and 4.4 for the related exact sequence, and the beginning of section 4 for a sample
of references).

Proposition 1.3. Let L=K be a cyclic extension of number fields of degree2, and
denote by1 the Galois groupGal(L=K ). Assume that L=K is disjoint from the S-ray
2-class field of K . Take T to be either the empty set or the set of places above2.
Then we have:

#AT
S(L)1 D #AT

S(K )

Qv�S[T ev Qv2T ev fv
2[ET

S (K ) W ET
S (K ) \ N(JL )]

,

where N(JL ) denotes the image by the norm map of the idele group of L, and where
ev and fv denote respectively the ramification index and the inertia degree of the placev in L=K.

We will mainly use this formula in conjunction with the following well-known
lemma:

Lemma 1.4. With the notations ofProposition 1.3,assume moreover that AT
S(K )

is trivial. Then, the quantitylog2(#AT
S(L)1) equals the number of generators of AT

S(L).

Proof. Note that the non-trivial element� of 1 acts by inversion onAT
S(L). In-

deed, for eacha, a�C1 can be seen as an element ofAT
S(K ), which is trivial by as-

sumption. Soa�C1 is in the same class as some principal ideal. The generator isstill
congruent to 1 moduloS(L), hencea�C1 is trivial as well in AT

S(L). It implies that
the 1-invariants of the groupAT

S(L) are exactly its elements of order lower than 2,
and the result follows.
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Now we give a version of Hasse’s theorem on units in CM-extensions (see [9],
Theorem 4.12) for units and 2-units in layers of the cyclotomic Z2-extension of an im-
aginary quadratic field:

Lemma 1.5. Let kD Q(
p�d) be an imaginary quadratic field, with d¤ 1 odd.

Then the quotient groupE(kn)=E(Bn) is trivial. Moreover, if 2 does not split in k=Q,
the groups of2-units E 0(Bn) and E 0(kn) are equal. If2 splits in k=Q, the quotient group
E 0(kn)=E 0(Bn) is infinite cyclic.

If k DQ(i ), then the quotient groupE(kn)=E(Bn) is cyclic of order2nC1, generated
by a primitive2nC2-th root of unity, and the quotient groupE 0(kn)=E 0(Bn) is isomorphic
to the direct product ofE(kn)=E(Bn) by a group of order2.

Proof. See the proof of Theorem 5 in [1] if 2 ramifies ink=Q (the case where 2
is inert is essentially the same), and the proof of Theorem 6 if 2 splits.

For the case ofQ(i ) see for example Theorem 2 in [1] for the first assertion. The
second one follows easily.

The following lemma is an easy generalisation of a classicalfact (see [9], The-
orem 10.3 for instance) on capitulation in a CM-extension:

Lemma 1.6. Let K be a CM-field, whose maximal real subfield we denote by
KC. Whenever S contains at least one finite place of KC, not lying above2, the (ca-
pitulation) kernel of the natural map AS(KC)! AS(K ) is trivial. If S is empty then
this capitulation kernel has order1 or 2.

Moreover, if no place above2 splits in K=KC, then the same holds for A0S(KC)!
A0

S(K ).

Proof. The proof is as in theS-empty case in [9]. LetM be any modulus built
on S divisible by at least one non-2-place ofS(KC). We defineWM(K ) as the set of
roots of unity in K equivalent to 1 modM, and W0(K ) as the subset of roots of unity
of the form �u=u where u is a unit in K , and � denotes the non-trivial element of
Gal(K=KC). Let us consider the map

ker(C`M(KC)! C`M(K ))! WM(K )=W0(K ),

defined as follows: given an ideala of KC, prime to S, which capitulates inC`S(K ),
the image of this ideal is��=�, whereaOK D (�), with � � 1 modM. Since S is a
set of places inKC, the congruence�� � 1 modM holds as well. We deduce that��=� � 1 modM. We can check that this element is indeed a root of unity, and that
this map is injective, as in theS-empty case.

Then we notice thatW0(K ) containsWM(K )2, and that if S contains one finite
placev lying above an odd primep, the only roots of unity which can be equivalent



926 L. SALLE

to 1 modulov are thepn-th for n � 0, so thatWM(K ) � �p1 , and the square map is
an isomorphism in this group. Then the target of the previousmap is trivial. Hence, for
each sufficiently large modulusM, the natural map fromC`M(KC) is into C`M(K ),
so the same holds forC`S(KC)! C`S(K ), and for the 2-Sylow.

The same proof holds when dealing withA0
S(KC)! A0

S(K ): the only point to be
modified is that in the definition of

ker(C`M(KC)! C`M(K ))! WM(K )=W0(K ),

the idealaOK is to be written as (�)p wherep is an ideal above 2. Under the assump-
tion that no place above 2 splits inK=KC, the idealp is invariant under� , and so is
aOK , hence��=� is a unit, and a root of unity as in [9] Theorem 10.3. The end of
the proof is the same.

2. Computation of Iwasawa modules

The main result of this section is the following:

Theorem 2.1. Let kD Q(
p�d) be an imaginary quadratic field, with d an odd

integer. Let D be the set of prime numbers which divide d, and let S be a set of odd
prime numbers inQ. For any odd prime number p, let 2k0p be the largest2-power
dividing p2 � 1. Take TD ; or T D Pl2(k).

Then the�-invariant of the Iwasawa module XTS(k1) is:

�T
S(k1) D #(S[ D)(B1)C �T

S(B1) � 1� Æ,
where Æ 2 f�1, 0, 1, 2g. More precisely, if k D Q(i ) and S¤ ; then Æ D 0 (Æ D �1
if S D ;), and if k¤ Q(i ), and T D ; or 2 does not split in k=Q, then Æ D 0. In
the remaining case(2 splits in k=Q and TD Pl2(k)) we only showÆ 2 f1, 2g (Æ D 1
in the S-empty case). We recall that the number of places inB1 above an odd prime
number p2 S[ D is 2k0p�3.

Moreover, the Z2-torsion part of XT
S(k1) can be computed as

TorZ2 XT
S(k1) ' TorZ2 XT

S(B1),

in the following cases: k¤Q(i ) and (2 is inert in k=Q, or 2 splits in k=Q with T D ;,
or 2 ramifies in k=Q with T D Pl2(k)).

Proof. We first recall the result of Ferrero and Kida (see [1] Theorems 4, 5, 6
and [4]), about theS-empty case:

�T (k1) D #D(B1) � 1� Æ2,

with Æ2 D �1 if k D Q(i ), with Æ2 D 1 if T D Pl2(k), and 2 splits ink=Q, and withÆ2 D 0 in the remaining cases.
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We taken sufficiently large so that places inS(Bn) are either split or ramified in
kn=Bn. We apply Proposition 1.2 for the fieldsBn and kn, and we find the following
exact commutative diagram:

1K 1

K
1

K
1 K ET (Bn)

ET
S (Bn)

K
K

Y
v2S(Bn)

k�v K
K

AT
S(Bn) K

�2K
1

1 K ET (kn)

ET
S (kn)

K
K

Y
v2S(Bn)

(k�v )1CÆv K
K

ker(AT
S(kn)! AT (kn)) K

K
1

1 K ET (kn)

ET (Bn)ET
S (kn)

�1K
K

Y
v2S(Bn)

(k�v )Æv K
K

coker�1 D coker�2 K
K

1

1 1 1

The injectivity of �2 comes from Lemma 1.6. The injectivity of�1 follows from the
snake lemma. Here are some comments on the notations. The letter T must be re-
placed by0 or by the empty set. The quantityÆv is 0 or 1 according whether the placev ramifies or splits inkn=Bn. The dependence onn has been omitted from the (pro-
2-completions of) residue class fields, and from�1 and �2. The vertical map in the
middle is a diagonal embedding at the placesv which split in kn=Bn. The group in
first row, third column is obtained from the general formula (which involves a kernel)
because of the triviality ofA(Bn).

Taking projective limit with respect to the norm maps, we findfirst:

1! XT
S(B1)! ker(XT

S(k1)! XT (k1))! lim � coker�2! 1.

Then we see that there is an isomorphism ofZ2-modules:

lim �
Y

v2S(Bn)

(k�v )Æv ' Z#(S�D)(B1)
2 .

Now, we compute lim � ET (kn)=(ET (Bn)ET
S (kn)). It is free as a sub-Z2-module of a freeZ2-module. If k ¤ Q(i ), and T D ; or 2 does not split ink=Q, these groups are

trivial by Lemma 1.5, hence the projective limit is trivial.If T D Pl2(k) and 2 splits
in k=Q, the quotient groupE 0(kn)=E 0(Bn) is infinite cyclic by the same lemma, hence
the quotient groupE 0(kn)=(E 0(Bn)E 0S(kn)) is cyclic of rank at most 1, and the projective
limit is either trivial or isomorphic toZ2.

We now focus on the casek D Q(i ). The quantitiesÆv of the diagram are all equal
to 1 in this case. First, ifT D ;, according to Lemma 1.5, the groupE(Bn(i ))=E(Bn)
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is cyclic generated by a primitive 2nC2-th root of unity �n. We claim that the groups
E(Bn(i ))=(E(Bn)ES(Bn(i ))) are non-trivial forn large enough (still assumingSnon-empty).
Assume the contrary. Then, we can write, for eachn, �n D ��S, with � 2 E(Bn) and�S 2 ES(Bn(i )). Taken such that places inS are split inBn(i )=Bn, and choose a placev in S(Bn), and placesv1 andv2 above it inBn(i ). Hence, in the residue class fieldsbv1

andbv2 of Bn(i ) at v1 andv2, we obtainN�n D N�. But N� is already in the residue class field
bv of Bn at v. Thanks to the equalitiesbv D bv1 D bv2, it follows that N�n is the same in
bv1 and inbv2 which is impossible. Therefore, the claim implies that the projective limit
lim � E(Bn(i ))=(E(Bn)ES(Bn(i ))) is isomorphic toZ2 by Z2-freeness.

Again for k D Q(i ), take nowT to be the set of places above 2. The quotient
group E 0(Bn(i ))=E 0(Bn) is the direct product of the cyclic groupE(Bn(i ))=E(Bn) withZ=2Z according to Lemma 1.5. Hence, the quotient groupE 0(Bn(i ))=(E 0(Bn)E 0S(Bn(i )))
has at most two generators. As above, we can prove the non-triviality of �n in this
quotient. Taking projective limit and using the argument ofZ2-freeness, we conclude
that the projective limit lim � E 0(Bn(i ))=(E 0(Bn)E 0S(Bn(i ))) is isomorphic toZ2.

Thus we find an exact sequence ofZ2-modules:

1! ZÆ1
2 ! Z#(S�D)(B1)

2 ! lim � coker�1! 1,

with Æ1 2 f0, 1g. More precisely, ifk ¤ Q(i ) and (T D ; or 2 does not split ink=Q)
then Æ1 D 0, and if k D Q(i ) with S¤ ; then Æ1 D 1 (and if SD ;, then Æ1 D 0).
Using this in the first exact sequence, we find:

�T
S(k1) D �T (k1)C �T

S(B1)C #(S� D)(B1) � Æ1.

The assertion about�-invariants follows from this formula and the results of Ferrero
and Kida that we have recalled.

Now we turn our attention to the torsion part. WheneverÆ1 D 0 the projective
limit lim � coker�1 is free as aZ2-module. Hence the first exact sequence splits into a

direct sum ofZ2-modules:

ker(XT
S(k1)! XT (k1)) ' XT

S(B1)� lim � coker�1.

Moreover by [1], Theorems 4, 6, if 2 does not ramify ink=Q, the Iwasawa module
XT (k1) is Z2-free, wheneverT D ; or T D Pl2(k), and the same holds if 2 ramifies
in k=Q with T D Pl2(k). In those cases we find an isomorphism ofZ2-modules:

XT
S(k1) ' XT (k1)� XT

S(B1)� lim � coker�1.

The assertion on torsion parts in the casek ¤ Q(i ) follows.

The group lim � DS(kn) needs to be known, in particular when 2 ramifies ink=Q.

From now on, we exclude the special casek D Q(i ), which demands some other con-
siderations.
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Proposition 2.2. Assume that S and D are non-empty. Thenlim � DS(Bn) is iso-

morphic toZ2=2cZ2 for some integer c, and:
– If 2 is inert in k=Q, then, lim � DS(kn) ' Z2=2cZ2.

– If 2 ramifies in k=Q, then, lim � DS(kn) ' Z2=2cC1Z2.

– If 2 splits in k=Q, then, lim � DS(kn) ' Z2� Z2=2cZ2.

Proof. First note that eachDS(Bn) is cyclic, generated by the unique ideal above
2 in Bn. Hence, lim � DS(Bn) is procyclic. Moreover, Gal(B1=Q) acts trivially on this

subgroup ofXS(B1), then, if lim � DS(Bn) were infinite, we would find a quotient of

(XS(B1))Gal(B1=Q) isomorphic toZ2, and that would contradict the fact thatQ has noZ2
2-extensions. Hence there exists some integerc such that lim � DS(Bn) ' Z2=2cZ2.

If 2 does not split ink=Q, thenDS(kn) is cyclic for eachn, generated by the unique
ideal above 2 inkn. If 2 is inert, we obtainDS(Bn) D DS(kn) (using Lemma 1.6), while,
if 2 is ramified, the ideal above 2 is not principal (see [1], Lemma 10), and, for eachn,
the map of Lemma 1.6 induces an exact sequence:

1! DS(Bn)! DS(kn)! Z=2Z! 1.

Taking the projective limit, we obtain the result in these cases.
If 2 splits in k=Q, thenDS(kn) admitsD(kn) as a quotient group. Since lim �D(kn)'Z2 (see [1], Theorem 6), it follows that lim � DS(kn) admitsZ2 as a quotient group, hence

a direct summand. Moreover, eachDS(kn) is generated by the two idealsqn and q0n
above 2 inkn. Taking n sufficiently large, so that norm from lim � DS(Bm) to DS(Bn)

is an isomorphism, those ideals are linked by (qnq
0
n)2c D 1 in AS(kn), where 2c is the

order of the ideal above 2 inAS(Bn). Hence, for eachn, the groupDS(kn) is a quo-
tient group ofZ�Z=2cZ. Taking inverse limit, we obtain that lim � DS(kn) is isomorphic

to some quotient ofZ2 � Z=2cZ. Taking the inverse limit in Lemma 1.6, the group
lim � DS(Bn) D Z=2cZ is a subgroup of lim � DS(kn), and Proposition 2.2 follows.

Corollary 2.3. Assume that S is such that X0S(B1) is trivial and that 2 ramifies
in k=Q, with k¤ Q(i ). Then:

XS(k1) ' Z�S
2 � Tor,

with:

�SD �1C X
p2S[D(Q)

2k0p�3,

and where the torsion partTor is a cyclic 2-group of order twice that oflim � DS(Bn)

(which is given inProposition 2.5).
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Proof. According to the proof of Theorem 2.1, we find an isomorpshim:

X0
S(k1) ' X0(k1)� lim � coker�1,

and we see in particular thatX0
S(k1) must beZ2-free. Hence the torsion part ofXS(k1)

must be isomorphic to that of lim � DS(kn) hence to lim � DS(kn) itself according to Prop-

osition 2.2.

We are not able to computeXS(B1) in general. We will restrict ourselves to char-
acterize the case whenX0

S(B1) is trivial in the following Proposition 2.4. Note that
much more general results of this kind have been obtained using Kummer theory (see
[3], V, Theorem 2.4), from which our proposition can be deduced. However, we prefer
to give an elementary proof in our situation.

Proposition 2.4. Let S denote a finite set of odd prime numbers inQ, and the set
of places above it in eachBn. The groups A0S(Bn) are trivial if and only if S satisfies
one of the following conditions:
– S is empty.
– S consists of a single element p, with p 6� 1 mod 8.
– S consists of two elements p1, p2 such that p2 � 7 mod 8and p1 � 3, 5 mod 8or
p2 � 3 mod 8and p1 � 5 mod 8.

Proof. According to Lemma 1.1, we only have to give a characterization of the
cases when the groupA0

S(Q) is trivial. We use Proposition 1.2. In this case, Euler
function for the modulusM0 (using notations of the proposition) satisfies:

2�(M0) DY
p2S

2kp D 2
P

p2S kp ,

where 2kp denotes the greatest power of 2 dividingp�1. We then look at the quotient
group E 0=E 0S which is seen as the subgroup generated by 2 and�1 in

Q
p2S k

�
p (we

recall thatk�p is the pro-2-completion of the multiplicative groupF�p , hence is a cyclic
2-group). In eachk�p, �1 is in the subgroup generated by 2 if and only if 2 is non-
trivial. Denote its order byop D 2ap . In the product of thek�p’s, �1 is in the subgroup
generated by 2 if and only if allop’s are equal and non-trivial. LetÆ D 0 if this occurs,
and Æ D 1 if not, and takeeD 2a the maximum of theop’s (hencea is the maximum
of the ap’s). Then, the order of 2 inE 0=E 0S is e, and the groupE 0=E 0S, generated by 2
and�1, has order 2ÆeD 2ÆCa. Hence, we have:

#A0
S(Q) D 2

P
p2S kp�a�Æ.

It yields #A0
S(Q) D 1 if and only if

P
p2S kp D a C Æ. For eachp 2 S, the integer

op D 2ap divides 2kp , henceap � kp. One easily checks that the only cases where this
equality can hold are (recall that we do not consider the caseSD ;):
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1. SD fpg, kp D ap and (this is automatic in this case)Æ D 0.
2. SD fpg, kp D ap C 1 andÆ D 1.
3. SD fp1, p2g, Æ D 1 D kp2 and kp1 D a D ap1 (making a convention on the nu-
merotation of the two primes).
For the first case to hold, it is necessary and sufficient that 2is not a square inFp,
and we find thatp � 3, 5 mod 8 are convenient for it. To study the second case, first
note that the inequalityap < kp implies that 2 is a square inFp, so thatp� 1, 7 mod
8. If p � 7 mod 8, thenkp D 1, ap D 0 and Æ D 1, so that the required equality
holds, whereas ifp� 1 mod 8, we havekp � 3 and since eitherap or Æ is trivial, the
conditions cannot be fulfilled.

We end the proof by the last case. Firstly, the conditionkp1 D ap1 implies that 2 is
not a square inFp1, hence thatp1 � 3, 5 mod 8. Secondly, the conditionkp2 D 1 reads
as p2 � 3, 7 mod 8. As seen above, ifp2 � 7 mod 8, thenap2 D 0, henceÆ D 1. Thus,
in all the cases withp1 � 3, 5 mod 8 andp2 � 7 mod 8 the conditions are fulfilled.
We then focus on the casep2 � 3 mod 8 (for whichap2 D 1). If p1 � 5 mod 8 then
ap1 D 2¤ ap2 and Æ D 1, so that the conditions are fulfilled, whereas ifp1 � 3 mod 8,
then ap1 D ap2 D 1 and the conditions are not fulfilled.

Now, we compute the whole groupAS(Bn), assuming thatS is such thatX0
S(B1)

is trivial.

Proposition 2.5. If S consists of only one place p, and p� 3, 7 mod 8 then
AS(Bn) is trivial for each n. If p� 5 mod 8, then AS(Bn) is cyclic of order 2 for
each n. If S consists of two places p1 and p2 which are respectively congruent to3
and 7 modulo8 then AS(Bn) is cyclic of order2 for each n, while, if p1 and p2 are
respectively congruent to3 and 5 or 5 and 7 modulo8, then it is cyclic of order4.

Proof. First note that since the groupA0
S(Bn) is trivial for eachn under the as-

sumptions onS, and since there is only one place above 2 inBn, then the group
AS(Bn) D DS(Bn) is cyclic for eachn. To compute its cardinality, we consider the for-
mula from Proposition 1.2. SinceS is non-empty, the unit�1 cannot be inEM(Q), so
[E(Q) W ES(Q)] D 2. The cardinality of2�(M0) is easily computed for each setS we
consider, and the result of the proposition follows forn D 0. In particular, if SD fpg
with p� 3, 7 mod 8, thenAS(Q) is trivial, and so are theAS(Bn)’s for all n, according
to Lemma 1.1.

For the remaining cases, we will show that #AS(B1) D #AS(Q), in order to apply
Lemma 1.1. The computations are therefore done in the first layer of the cyclotomicZ2-extension ofQ, namelyB1 D Q(

p
2). We apply Proposition 1.2 in that field. As-

sume first thatSD fpg, with p � 5 mod 8. We find2�(M0) D 8. The groupE(B1)
is generated by�1 and 1�p2, and the quotient group byEM(B1) can be seen as a
subgroup of the multiplicative group of the fieldFp2. The greatest 2-power dividing the

order of this latter group is 8. It suffices to show that 1�p2 admits a square root but
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not a fourth root in this group: it follows that the greatest power of 2 dividing its order
is 4, so that the quotient groupE(B1)=EM(B1) is generated by 1�p2, and the 2-part
of its order is 4, hence that the order ofAS(B1) is 2, which concludes the proof accord-
ing to Lemma 1.1. The square root of 1�p2 in Fp2 is �1=p1C i C (

p
1C i =2)

p
2,

where i is the primitive fourth root of unity inFp such that 2i has odd order (ensur-
ing that the square root of 1C i exists inFp, because (1C i )2 D 2i ). A square root

aC b
p

2 (with a, b 2 Fp) of that element would be such that:8��<
��:

a2C 2b2 D � 1p
1C i

,

2abD p1C i

2
.

These equations lead to:

b4C b2

2
p

1C i
C 1C i

32
D 0.

The discriminant of the underlying quadratic equation is (1=2)((1� i )=2)2. Since 2 is
not a square inFp, there is no solution to the above equation inFp, and we are done.

Now, assume thatS(Q) contains two primesp1 and p2. The following table gives
the values of the quantities that appear in the formula forAS(B1), in the three cases
for the congruence ofp1 and p2 modulo 8. The proposition follows from the cardinal-
ities of the groups in the first and in the last columns, and from Lemma 1.1. The two
columns in the middle give the 2-part of the quotient group ofthe units by the units
which are congruent to 1 modulo, respectively, the primes above p1 and the primes
above p2. Proofs for the values in this table are to be found below:

p1, p2 mod 8 2�(M) E=Efp1g E=Efp2g E=ES

3, 5 64 Z=8Z Z=4Z Z=8Z� Z=2Z
3, 7 32 Z=8Z Z=2Z� Z=2Z Z=8Z� Z=2Z
5, 7 32 Z=4Z Z=2Z� Z=2Z Z=4Z� Z=2Z

The values in the three first columns in the table are computedas follows: the first
column is simply given by decomposition rules inB1=Q; the cardinality of the groups
in the second and third columns are consequences of the values found for AS(B1) when
S(Q) contains only one prime. Whenever the group is cyclic, it comes from the fact
that it can be seen as a subgroup of the multiplicative group of some finite field (as
above in the case #SD 1 and p� 1 mod 8); in that case, it is generated by the class of
1�p2. The last two entries in the third column (p2 � 7 mod 8) are deduced from the
fact that the group is seen as a subgroup ofF�p2

� F�p2
, whose 2-part isZ=2Z � Z=2Z.

In each case, the groupE=EM admits bothE=Ep1 and E=Ep2 as a quotient group. It
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is generated by 1� p2 and�1. Now, the order of 1� p2 is easily checked to be
respectively 8, 8 and 4 in the three cases corresponding to the three lines in the table.
Then the groups in the two last entries of the fourth column are deduced from the
non-cyclicity in the third column. For the remaining entry (first line, fourth column),
it only needs to be noticed that�1 cannot be in the subgroup generated by 1� p2
because no odd power of (1�p2)2

k
, for any k, can be congruent to�1 modulo both

p1 and p2, since the groups in the second and third columns of the first line do not
have the same order.

Corollary 2.6. The cases with S and D non-empty, and disjoint, with trivial
X0

S(B1), and �S(k1) D 1, are:
– DD fpg with p� 3 mod 8and SD fqg with q� 3 mod 8. In this case XS(k1)'Z2.
– DD fpg with p� 5 mod 8and SD fqg with q� 3 mod 8. In this case XS(k1)'Z2� Z=2Z.
– DD fpg with p� 3 mod 8and SD fqg with q� 5 mod 8. In this case XS(k1)'Z2� Z=2Z.
– DD fpg with p� 5 mod 8and SD fqg with q� 5 mod 8. In this case XS(k1)'Z2� Z=4Z.

Proof. The triviality of X0
S(B1) implies thatXS(B1) has trivialZ2-rank according

to Proposition 2.5. Then the formula of Theorem 2.1 becomes,for T D ;:
�S(k1) D #(S[ D)(B1) � 1.

Thus, we must find all the cases where #(S[D)(B1)D 2. Since we are only interested
in the cases whereS and D are non-empty, we see that each one must consist of a
single prime number congruent to 3 or 5 modulo 8. In the caseD D fpg with p �
3 mod 8, the structure ofXS(k1) comes from Theorem 2.1 and Proposition 2.5. In the
caseD D fpg with p � 5 mod 8, use Corollary 2.3 for the torsion part.

3. Computations of Galois groups

3.1. Presentation of Galois groups overk1. Let us recall our main theorem:

Theorem. Let p and q be two prime numbers respectively congruent to5 and
3 modulo 8, and put SD fqg. Let k be the imaginary quadratic fieldQ(

p�p), and
G D Gal(L1

S (k1)=k1) the Galois group of the maximal S-ramified pro-2-extension of
k1. ThenG has rank2 and admits as a presentation:

ha, b j [a, b]a2i.
The same holds if we assume p� 3 mod 8and q� 5 mod 8.



934 L. SALLE

The proof is almost the same in the two cases. According to Corollary 2.6, the
abelianization ofG is Gab D XS(k1) ' Z2 � Z=2Z. Moreover, theZ2-quotient of
XS(k1) is X0

S(k1). In each case, we introduce the following extensions:

k D Q(
p�p)

Q k0 D Q(
p�pq) K D Q(

p�p,
p

q)

KC D Q(
p

q)

For eachn, the extensionKn=kn is S-ramified and 2-split. Hence, the extensionK1=k1
is the subextension ofL 0

S(k1) fixed by the subgroup 2X0
S(k1) of X0

S(k1) ' Z2. Since
L 0

S(k1)=k1 is procyclic, it is the maximalS-ramified 2-split pro-2-extension ofk1. The
equality L 0

S(k1) D L 0
S(K1) follows, henceX0

S(K1) ' Z2 as aZ2-module. Moreover,
we have the proposition:

Proposition 3.1. We have the equality L0S(K1) D L 0
S(k1), and the S-ramified

Iwasawa module over K1 satisfies XS(K1)' Z2
2, where one direct summand is X0S(K1).

Proof. The first assertion has already been proved. Considerthe exact sequences
for all n:

1! DS(Kn)! AS(Kn)! A0
S(Kn)! 1,

which give, by taking the projective limit:

1! lim � DS(Kn)! XS(K1)! X0
S(K1)! 1.

Since X0
S(K1) is free as aZ2-module, there is an isomorphism:

XS(K1) ' X0
S(K1)� lim � DS(Kn).

It remains to show that lim � DS(Kn) is infinite and procyclic.

First we focus on the casep � 5 mod 8 andq � 3 mod 8. Consider the exten-
sion k0n=Bn. The prime 2 splits in this extension. Then, by the genus formula (Propos-
ition 1.3), and Proposition 2.4, the groupA0

S(k0n) is trivial for eachn, henceXS(k01) D
lim � DS(k0n) holds. According to Propositions 2.2, 2.4 and 2.5, the groups DS(k0n) are

cyclic and their inverse limit is isomorphic toZ2. Then, the compositumLS(k01) . K1
is an infinite procyclicS-ramified pro-2-extension ofK1, and the two primes above 2
in K1 do not split in that extension. It is linearly disjoint fromL 0

S(K1)=K1.
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Now, we apply Proposition 1.3 in the extensionKC
n =Bn. The groupsAS(Bn) are

trivial in this special case, and the only ramified place inKC
n =Bn which is not in S is

the place above 2. Hence, using Lemma 1.4,AS(KC
n ) is trivial. Let us writepn,1 and

pn,2 for the places above 2 inKn. The productpn,1pn,2 is trivial in AS(KC
n ), hence

in AS(Kn) (the unique place inS(KC
n ) is unramified in Kn=KC

n , so any S-principal
generator inKC

n is still S-principal in Kn). It follows that the subgroupDS(Kn) gen-
erated by the places above 2 is cyclic. Hence lim � DS(Kn) is procyclic, and it is infinite

because of the extensionLS(k01) . K1=K1.
In the casep� 3 mod 8 andq � 5 mod 8, some of the arguments need to be slightly

adapted. The moduleXS(k01) is now isomorphic toZ2 � Z=2Z, according to Propos-
itions 2.2, 2.4 and 2.5. In order to exhibit an infinite procyclic S-ramified 2-extension
of K1 in which the primes above 2 do not split, one must replaceLS(k01) . K1 by the
compositum ofK1 with the unique infinite procyclicS-ramified pro-2-extension ofk01.
The triviality of AS(KC

n ) comes from the fact that the fieldKC
n is the maximalS-ramified

2-extension ofBn.

Let us now state a group theoretical proposition, whose proof can be found in [7],
Section 3.2 (but the result is not explicitly stated there):

Proposition 3.2. Let G be a metabelian pro-2-group, whose abelianization Gab

is isomorphic to C�Z=2Z, with C' Z2. Denote by H the subgroup of G of index2,
such that H=G2 ' 2C�Z=2Z. If H has rank2, then G is metacyclic. More precisely,
there is a short exact sequence:

1! N ! G! C! 1,

where N is a procyclic subgroup of H such that H=N ' 2C.

In our setting, the field extensions associated to these groups will be as follows
(here L (2)

S (k1) denotes the maximal metabelian subextension ofL1
S (k1) over k1, and

we will prove the equalityL (2)
S (k1) D L1

S (k1)):

L (2)
S (k1) D L1

S (k1)

LS(k1)

k1
C'Z2

G

K1 2C'2Z2

H

L 0
S(k1)

Z=2Z N

We want to apply Proposition 3.2 toGDGal(L (2)
S (k1)=k1), which is the maximal met-

abelian quotient ofGDGal(L1
S (k1)=k1). We recall that there is an isomorphismGabD
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Gab ' Z2 � Z=2Z, according to Corollary 2.6. Then, takeH D Gal(L (2)
S (k1)=K1),

its abelianization is Gal(LS(K1)=K1) which has rank 2 according to Proposition 3.1.
Hence, the assumptions of Proposition 3.2 are satisified andL (2)

S (k1) is a procyclic
pro-2-extension ofL 0

S(k1). Since LS(K1) is itself an infinite procyclic extension of

L 0
S(k1) (Proposition 3.1), we deduce the equalityLS(K1) D L (2)

S (k1). Finally, since

L (2)
S (k1)=LS(k1) is procyclic, we deduce that it is the maximalS-ramified pro-2-extension

of k1, and thatGDG.
The groupG is a pro-2-group of rank 2 whose abelianization isXS(k1) ' Z2 �Z=2Z. Let us denote bya, b 2 G a system of representatives of generators ofXS(k1),

such thatNb 2 XS(k1) generates the summandX0
S(k1) ' Z2, and Na generates the sum-

mandZ=2Z. By restriction, the elementNb can be seen as a generator of the Galois
group Gal(Kn=kn) for eachn, so it acts on the idealpn,1 by sending it onpn,2 (these
are the two ideals above 2 inKn, according to the notations of Proposition 3.1). These
ideals are each other inverses inAS(Kn), and generateDS(Kn), so Nb acts by inversion
on DS(Kn). Taking the projective limit, we find thatb acts by inversion ona. In the
group G the following relation is satisfied:

[a, b]a2 D 1.

The following lemma will enable us to prove that this is the only relation of the
group G:

Lemma 3.3. LetG be a(pro-p-)group admitting as a system of generators a,b, and
assume that these generators satisfy the relation[a, b]a2 D 1. Then, the derived groupG2

is included in the closed subgroup generated by a. It is in particular (pro)cyclic.

Proof. By recursion on the minimal number of letters (amonga, b, a�1 and b�1)
needed to writeu, it is easily shown that each element of the formu�1au is in the
closed subgroup generated bya. Therefore, this subgroup is normal. The derived group
G2 is the smallest closed normal subgroup ofG containing [a, b], and that element is
in the subgroup generated bya, hence the lemma follows.

We are now in position to conclude the proof of Theorem 1. Let us denote by
F the free pro-2-group on two generatorsa and b, andR its subgroup generated by
[a, b]a2. Its abelianization is easily seen to be isomorphic toZ2 � Z=2Z. There is a
surjectionF=R! G, and we deduce from it a commutative diagram:

1 K (F=R)2 K
K

F=R K
K

(F=R)ab K
K

1

1 KG2 KG KGab K 1



TAMELY RAMIFIED PRO-2-EXTENSIONS 937

The third vertical arrow is a surjection, between two groupsisomorphic toZ2�Z=2Z,
hence it is an isomorphism. It follows that the first verticalarrow is also surjective.
According to Lemma 3.3, and previous results onG, the groups (F=R)2 and G2 are
both procyclic, hence the first vertical arrow is an isomorphism. It follows that the
mapF=R! G is actually an isomorphism, which finishes the proof of Theorem 1.

Corollary 3.4. The cohomological dimension ofG is 2. That of Gal(L1
S (k1)=k)

is 3.

Proof. These assertions are consequences of Proposition 22in [8].

3.2. Presentations of Galois groups overkn. Our aim here is to compute the
Galois groups of ray class field towers above eachkn (see Theorems 3.8 and 3.11 be-
low). The two casesk D Q(

p�p) and SD fqg with respectivelyp � 5 mod 8 and
q � 3 mod 8, andp� 3 mod 8 andq � 5 mod 8 are again only slightly different. First
we prove Theorem 3.8, assuming thatk D Q(

p�p) and SD fqg with:

p � 5 mod 8, q � 3 mod 8,

�
p

q

�D �1.

We introduce the following notations:

K2 D k(i ) F D K1 � K2

K3 D k(
p�q)

k D Q(
p�p) K1 D k(

p
q)

Proposition 3.5. Assume that the Legendre symbol
� p

q

�
is �1. Then the Galois

group Gal(L1
S (k)=k) is isomorphic to the quaternionic groupQ8.

Proof. First, we collect some lemmas:

Lemma 3.6. There are isomorphisms A(k) ' Z=2Z and AS(k) ' Z=2Z�Z=2Z.
The Hilbert 2-class field of k is K2, and its ray 2-class field associated to the prime
q is F.

Proof. We know thatA(k) ' D(k) ' Z=2Z by Lemma 10 and Theorem 5 in [1]
and we obtainDS(k)' Z=2Z by Propositions 2.2, 2.4 and 2.5. SinceK2 is an unrami-
fied 2-extension ofk, it is the Hilbert 2-class field ofk. Then we apply Proposition 1.2
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in k: sinceq splits in k, the value of2�(M) is 4, and sinceE(k) is generated by�1,
which is not congruent to 1 moduloM, we deduce that #AS(k) D 4. Since F is a
S-ramifiedZ=2Z� Z=2Z-extension ofk, it is its q-ray 2-class field.

Lemma 3.7. The group AS(Q(
p

p)) is trivial, and the groups AS(K2) and AS(K1)
are cyclic.

Proof. The first assertion follows easily from the genus formula in the extensionQ(
p

p)=Q, since p is the only ramified prime in this extension. Then we use the genus
formula (Proposition 1.3) inK2=Q(

p
p):

#AS(K2)1 D 8

2 . [ES(Q(
p

p)) W ES(Q(
p

p)) \ NK2=Q(
p

p)JK2]
,

where the 8 in the numerator comes from the 3 places (the placeabove 2 and the
two real places) which ramifiy in this extension. We use Proposition 1.2 inQ(

p
p).

The groupsA(Q(
p

p)) and AS(Q(
p

p)) are trivial, andq is inert inQ(
p

p)=Q, hence

2�(M) D 8. We deduce that the quotient groupE=ES(Q(
p

p)) is cyclic of order 8.
Given (�, �1) a system of generators ofE , linear algebra shows that the subgroups
of E which give such a quotient are those generated by��4 and (�1, �8). The second
possibility has to be excluded since�1 cannot lie inES. ThenES is generated by��4.
This element cannot be a norm fromK2, since�4 is so and�1 is not. It follows that:

#AS(K2)1 D 2,

and we conclude thatAS(K2) is cyclic with Lemma 1.4.
Finally, the maximal 2-splitS-ramified (abelian) 2-extension ofk is a quadratic

extension according to Lemma 3.6. SinceK1 has those properties, it is that exten-
sion. We deduce thatA0

S(K1) is trivial. Hence AS(K1) ' DS(K1) is cyclic, according
to Proposition 3.1.

It turns out from Lemma 3.6 that Gal(L1
S (k)=k) has its abelianization isomorphic

to Z=2Z � Z=2Z. A table of maximal subgroups of such 2-groups is given for in-
stance in [6] (Table 1, see there also for references). Our Lemma 3.7 together with
this table ensures that the Galois group Gal(L1

S (k)=k) is either abelian or isomorphic
to the quaternionic group.

To conclude the proof, we will show that the ideal abovep in k does notS-capitulate
in K1, using Theorem 1 in [5] (whose adaptation to the case of ray class field towers is
immediate). That ideal ink is generated by

p�p. Denoting byq1 andq2 the prime ideals
aboveq in k, there is a rational integerr such that

p�p� r modq1 and
p�p� �r mod

q2. It follows that no odd power of
p�p can be congruent to 1 moduloq. The ideal

generated by
p�p admits another generator, namely�p�p, and the same holds for this

generator. Thus, that ideal is not trivial inAS(k).
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We claim that the 2-part ofE(K1)=EM(K1) has order 2 as well, hence is still gener-
ated by�1. Thus the same argument holds inK1. Let us conclude the proof of Propos-
ition 3.5 by proving the claim:K1=Q(

p
q) is a C M-extension, hence, by Theorem 4.12

in [9], the index [E(K1) W E(Q(
p

q))] is 1 or 2. Moreover, this index can not be 2 be-
cause the extension is ramified in the place abovep, hence is not of the formK1 DQ(
p

p)(�) with � a unit. It follows thatE(K1) D E(Q(
p

q)), henceE(K1)=ES(K1) D
E(Q(

p
q))=ES(Q(

p
q)). Applying the exact sequence of Proposition 1.2 inQ(

p
q), we

find a monomorphism fromE(Q(
p

q))=ES(Q(
p

q)) to
Qv2S(Q(

p
q)) k

�v , and this group is

isomorphic toZ=2Z in our case. HenceE(K1)=ES(K1) ' Z=2Z and we are done.

Theorem 3.8. Under the assumptions ofProposition 3.5,for each n� 0, the
group Gn D Gal(L1

S (kn)=kn) admits as a presentation:

ha, b j a2[a, b], a2nC2
, a2nC1

b�2nC1wni,
wherewn is some power of2. Moreover, w0 D 1, and, if the constant term C0 of the
Iwasawa polynomial of X0S(k1) satisfies C0 � 2 mod 8, thenwn D 1 for all n.

Proof. Recall that the group Gal(L1
S (k1)=k1) admits as a presentationha, b j

a2[a, b]i. Each groupGn can be viewed as a quotient group of the former, according to
the isomorphismGn ' Gal(L1

S (kn) . k1=k1). Moreover,F1 is contained inL1
S (k) . k1

(this follows from the proof of Proposition 3.5), and it is the fixed field of the sub-
group ofG generated bya2 and b2. This field admits three quadratic extensions, fixed
respectively byha4, b2i, ha2, b4i and ha4, a2b2i, and their Galois group overk1 are re-
spectively dihedral, abelian and quaternionic of order 8. Thus we have the presentation:

G0 ' ha, b j a2[a, b], a4, a2b2i.
Now, denote byH D XS(K1,1) the abelian subgroup ofG generated bya and b2,
whose fixed field isK1,1. It admits an Iwasawa module structure. There is an exact
sequence:

1! hai ! H ! X0
S(k1)! Gal(K1,1=k1)! 1.

Denote byP(T) the Iwasawa polynomial of the Iwasawa moduleX0
S(k1). It has degree

one, hence it can be writtenT C C0 for someC0.

Lemma 3.9. C0 � 2 mod 4.

Proof. It is completely analogous to Lemma 4.4 in [7]. On the one hand, the
Iwasawa moduleX0

S(k1) is isomorphic to3=P(T)3, and on the other hand its quo-
tient by T is isomorphic toA0

S(k) (by Lemma 13.15 in [9], since there is only one
prime above 2 ink). The latter is isomorphic toZ=2Z, hence there is an isomorphism
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3=(T , P(T))3 ' Z=2Z, and it proves that the constant coefficientC0 of P is congru-
ent to 2 modulo 4.

There is a trivial action of some generator 2 0 on the ideal above 2 in each layer
K1,n of the cyclotomic extension ofK1. Taking the limit, it yields a trivial action on
a, hence the subgrouphai of H can be made isomorphic to3=T3, by the canonical
identification between and T � 1. Then, sinceT  P(T) according to Lemma 3.9,
the exact sequence involvingH and X0

S(k1) gives a pseudo-isomorphism, with triv-
ial kernel:

H � 3=T P(T)3.

Through this map, the elementa can be identified withP(T), and b2 with T , since it
generates the image ofH in X0

S(k1) ' 3=P(T)3.
It is a classical fact of Iwasawa theory (see [9], Lemma 13.15) that the groups

Gal(LS(K1,1)=LS(K1,n) . k1) can be computed as�n(T)Y0, with:

�n(T) D (1C T)2n � 1

T
,

Y0 D Gal(LS(K1,1)=LS(K1,0) . k1) D ha4, a2b2i.
The polynomial�n(T) admits the expansion 2n C 2n�1(2n � 1)T C o(T), with o(T) a
polynomial such thatT2 j o(T), for eachn � 1. Then, there are relations:

�n(T) D xn P(T)C ynT modT P(T),

where xn D 2n�1u and yn D 2nvn, with u D 2=C0 2 Z�2 (according to the previous
lemma), andvn D 2n � 1� u. Using those notations, a direct computation yields:

�n(T)Y0 D ha4xnC0, a2xnC0b�ynC0i D ha2nC2
, a2nC1

b�2nC1wni,
wherewn is the greatest 2-power dividingvn. The last assertion follows fromvn D
2n � 1� u.

Now we turn our attention to Theorem 3.11. We take nowk D Q(
p�p) and SDfqg with:

p � 5 mod 8, q � 3 mod 8,

�
p

q

� D �1.

We recall thatK D k(
p

q). There is no analogous to the fieldsK2 and K3 here, and
the Proposition 3.5 must be replaced by:
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Lemma 3.10. Under the assumptions above. The maximal S-ramified2-extension
of k is a cyclic extension of degree4 which contains K . The primes above2 have
inertia degree2 in this extension.

Proof. It follows from Theorem 2.1, and Propositions 2.2 and2.5 that the groups
D(k) and A0(k) are trivial. Hence, the groupA(k) is trivial as well. By the same prop-
ositions, the groupDS(k) is cyclic of order 2.

By Proposition 1.2, the groupAS(k) is then cyclic, as a quotient group of
Qv2S(k) kv,

provided thatS(k) contains only one place, and this is true in the two cases (thanks to
the assumption

� p
q

� D �1 in the first case). The same proposition gives the cardinality

of AS(k), which turns to be 4.

The field L1
S (k) . k1 is thus a cyclic extension of degree 4 ofk1, and it contains

K1. The latter admits three distinct quadratic extensions, which are fixed respectively
by ha, b4i, ha2, b2i and ha2, ab2i. The first is 2-split overk1, the second one is not
cyclic over that field. Hence we find:

Y0 D Gal(LS(K1)=L1
S (k) . k1) D ha2, ab2i.

By the same computation as before, we have, forn � 1:

Gal(LS(K1)=L1
S (kn) . k1) D �n(T)Y0 D ha2xnC0, axnC0b�ynC0i.

Lemma 3.9 also holds in this case, and the theorem follows.

Theorem 3.11. Assume that p� 3 mod 8 and SD fqg with q � 5 mod 8 and� p
q

� D �1. For each n� 1, the groupGn D Gal(L1
S (kn)=kn) admits as a presentation:

ha, b j a2[a, b], a2nC1
, a2n

b�2nwni,
wherewn is some power of2. Moreover, w0 D 1, and, if the constant term of the
Iwasawa polynomial of X0S(k1) satisfies C0 � 2 mod 8, thenwn D 1 for all n.
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