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Abstract
A pseudo diagram of a spatial graph is a spatial graph projection on the 2-sphere

with over/under information at some of the double points. Weintroduce the trivial-
izing (resp. knotting) number of a spatial graph projectionby using its pseudo dia-
grams as the minimum number of the crossings whose over/under information lead
the triviality (resp. nontriviality) of the spatial graph.We determine the set of non-
negative integers which can be realized by the trivializing(resp. knotting) numbers
of knot and link projections, and characterize the projections which have a specific
value of the trivializing (resp. knotting) number.

1. Introduction

Throughout this paper we work in the piecewise linear category. Let G be a finite
graph which does not have degree zero or one vertices. We consider G as a topological
space in the usual way. Letf be an embedding ofG into the 3-sphereS3. Then
f is called aspatial embeddingof G and the imageG D f (G) is called aspatial
graph. In particular, f (G) is called aknot if G is homeomorphic to a circle and an
r -component linkif G is homeomorphic to disjointr circles. In this paper, we say
that two spatial graphsG1 and G2 are said to beambient isotopicif there exists an
orientation-preserving self-homeomorphismh on S3 such thath(G1) D G2. A graph G
is said to beplanar if there exists an embedding ofG into the 2-sphereS2. A spatial
graphG is said to betrivial (or unknotted) if G is ambient isotopic to a graph inS2

where we considerS2 as a subspace ofS3. Thus only planar graphs have trivial spatial
graphs. We consider only planar graphs from now on. It is known in [11] that a trivial
spatial graph ofG is unique up to ambient isotopy inS3.

A continuous map' W G ! S2 is called aregular projection, or simply aprojec-
tion, of G if the multiple points of' are only finitely many transversal double points
away from the vertices. ThenP D '(G) is also called aprojection. A diagram D is
a projection P with over/under information at the every double point. Thenwe say
that D is obtained from Pand P is a projection of D. A diagram D uniquely repre-
sents a spatial graph up to ambient isotopy. LetG be a spatial graph represented by
D and G 0 a spatial graph ambient isotopic toG. Then we also say thatP is a pro-
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Fig. 1.1. Projection and diagrams obtained from it.

jection of G 0. A double point with over/under information and a double point without
over/under information are called acrossingand apre-crossing, respectively. Thus a
diagram has crossings and has no pre-crossings, and a projection has pre-crossings and
has no crossings.

A projection P is said to betrivial if any diagram obtained fromP represents a
trivial spatial graph. On the other hand, a projectionP is said to beknotted[22] if any
diagram obtained fromP represents a nontrivial spatial graph. Moreover, the following
definitions for a projectionP are known. A projectionP is said to beidentifiable [9]
if every diagram obtained fromP yields a unique labeled spatial graph, andcompletely
distinguishable[14] if any two different diagrams obtained fromP represent different
labeled spatial graphs. Nikkuni showed in [13, Theorem 1.2]that a projectionP is
identifiable if and only if P is trivial.

Let G be a spatial graph andP a projection ofG. Then we ask the following
question.

QUESTION 1.1. Can we determine fromP whether the original spatial graphG
is trivial or knotted?

If P is neither trivial nor knotted, then the (non)triviality ofG cannot be deter-
mined from P. For example, letP be a projection of a circle with 3 pre-crossings
as illustrated in Fig. 1.1. Then we have 23 diagrams obtained fromP. Two diagrams
represent a nontrivial knot and six diagrams represent a trivial knot.

It is well known in knot theory that for any projectionP of disjoint circles there
exists a diagramD obtained fromP such thatD represents a trivial link. Namely
P never admits a knotted projection. However it is known in [22] that there exists
a knotted projection of a planar graph. For example, letG be a spatial graph of the
octahedron graph andP a projection ofG as illustrated in Fig. 1.2. Then we can see
that any diagram obtained fromP contains a diagram of a Hopf link. NamelyP is
knotted. However there exists a projection ofG which is neither trivial nor knotted. In
general, we have the following proposition.

Proposition 1.2. For any spatial graphG of a graph G, there exists a projection
P of G such that P is neither trivial nor knotted.

We give a proof of Proposition 1.2 in Section 2. Then it is natural to ask the
following question.
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Fig. 1.2. Octahedron graph and a knotted projection of it.

Fig. 1.3. Pseudo diagrams.

QUESTION 1.3. Let G be a spatial graph andP a projection ofG. Which pre-
crossings ofP and the over/under information lead the (non)triviality ofG?

Now we introduce the notion of a pseudo diagram as a generalization of a projec-
tion and a diagram. LetP be a projection of a graphG. A pseudo diagram Qof G is
a projectionP with over/under information at some of the pre-crossings. Then we say
that Q is obtained from Pand P is a projection of Q. Thus a pseudo diagramQ has
crossings and pre-crossings. Here we allow the possibilitythat a pseudo diagram has
no crossings or has no pre-crossings, that is, a pseudo diagram is possibly a projection
or a diagram. We denote the number of crossings and pre-crossings of Q by c(Q) and
p(Q), respectively. For a pseudo diagramQ, by giving over/under information to some
of the pre-crossings, we can get another (possibly same) pseudo diagramQ0. Then we
say thatQ0 is obtained from Q.

We say that a pseudo diagramQ is trivial if for any diagram obtained fromQ rep-
resents a trivial spatial graph. On the other hand, we say that Q is knotted if any dia-
gram obtained fromQ represents a nontrivial spatial graph. For example, in Fig.1.3,
a pseudo diagram (a) is trivial, (b) is knotted, and (c) is neither trivial nor knotted.

Let P be a projection of a graphG. Then we define thetrivializing number(resp.knot-
ting number) of P by the minimum ofc(Q), whereQ varies over all trivial (resp. knot-
ted) pseudo diagrams obtained fromP, and denote it bytr(P) (resp.kn(P)). Note that
there does not exist a knotted (resp. trivial) pseudo diagram obtained fromP if and only
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if tr(P) D 0 (resp.kn(P) D 0), namelyP is trivial (resp. knotted). In this case we define
that kn(P) D 1 (resp.tr(P) D 1). Note that for any graphG there exists a projection
P of G with kn(P) D 1. For example,P is an image of a planar embedding ofG. We
also note that for a certain graphG there exists a projectionP of G with tr(P) D1 as in
Fig. 1.2.

We remark here that the observation of DNA knots was an opportunity of this re-
search, namely we cannot determine over/under informationat some of the crossings
in some photos of DNA knots. DNA knots barely become visual objects by examining
the protein-coated one by electromicroscope. However there are still cases in which
it is hard to confirm the over/under information of some of thecrossings. If we can
know the (non-)triviality of a knot without checking every over/under information of
crossings, then it may give a reasonable way to detect the (non-)triviality of a DNA
knot. In addition, it is known that there exists an enzyme, called topoisomerase, which
plays a role of crossing change. The research of pseudo diagrams may provide an ef-
fective method to change a given DNA knot to a trivial (nontrivial) one. See [7, 4, 12]
on DNA knots.

We start from two questions on the trivializing number and the knotting number
of projections of a circle.

QUESTION 1.4. For any non-negative integern, does there exist a projectionP
of a circle with tr(P) D n?

QUESTION 1.5. For any non-negative integern, does there exist a projectionP
of a circle with kn(P) D n?

We have the following theorem and propositions as answers toQuestions 1.4 and 1.5.

Theorem 1.6. For any projection P of a circle, the trivializing number of P is even.

Proposition 1.7. For any non-negative even number n, there exists a projection
P of a circle with tr(P) D n.

Proposition 1.8. There does not exist a projection of a circle whose knotting num-
ber is less than three. For any positive integer n� 3, there exists a projection P of a
circle with kn(P) D n.

We give proofs of Theorem 1.6 and Proposition 1.7 in Section 3and a proof of
Proposition 1.8 in Section 4. Moreover we see from the following proposition that
there are no relations between trivializing number and knotting number in general.

Proposition 1.9. For any non-negative even number n and any positive integer
l � 3, there exists a projection P of a circle with tr(P) D n and kn(P) D l.
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Fig. 1.4.

Fig. 1.5.

We give a proof of Proposition 1.9 in Section 5. In addition, we have the following
theorems.

Theorem 1.10. Let P be a projection of disjoint circles. Then tr(P) D 2 if and
only if P is obtained from one of the projections as illustrated in Fig. 1.4 (a) and
(b) where m is a positive integer by possibly adding trivial circles and by a series of
replacing a sub-arc of P as illustrated inFig. 1.4 (c)where a trivial circle means an
embedding of a circle intoS2 which does not intersect any other component of the
projection.

We see that for any projectionP of disjoint circles, tr(P) � p(P) by the defin-
itions. We also see that for any projectionP with kn(P) ¤ 1, kn(P) � p(P) by the
definitions. Then we have the following theorems.

Theorem 1.11. Let P be a projection of a circle with at least one pre-crossing.
Then it holds that tr(P) � p(P)� 1. The equality holds if and only if P is one of the
projections as illustrated inFig. 1.5 where m is a positive odd integer.
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Fig. 1.6. ProjectionsP of a circle with kn(P) D p(P).

Theorem 1.12. Let P be a projection of n disjoint circles. Let C1, C2, : : : , Cn be
the image of the circles of P. Then tr(P) D p(P) if and only if each of C1, C2, : : : , Cn

has no self-pre-crossings where a self-pre-crossing is a pre-crossing whose preimage is
contained in a circle.

Theorem 1.13. Let P be a projection of disjoint circles. Then kn(P) D p(P)
if and only if P is obtained from one of the projections as illustrated in Fig. 1.6 by
possibly adding trivial circles.

We give proofs of Theorems 1.10, 1.11 and 1.12 in Section 3 anda proof of The-
orem 1.13 in Section 4.

Let Q be a pseudo diagram of a circle. By giving an orientation to the circle,
we can regardQ as asingular knot, namely an immersion of a circle intoS3 whose
multiple points are only finitely many transversal double points of arcs spanning a suf-
ficiently small flat plane. We consider a singular knot up to ambient isotopy preserv-
ing the flatness at each double point. A singular knotK is said to betrivial if K is
deformed by ambient isotopy preserving the flatness at each double point to a singu-
lar knot in S2. See [17] for details. We can also regard a singular knot as a spatial
4-valent graph up torigid vertex isotopy, see [10, 28]. Then we have the following.

Theorem 1.14. Let Q be a trivial pseudo diagram of a circle. Let KQ be a sin-
gular knot obtained from Q by giving an orientation to the circle. Then KQ is trivial.

We give a proof of Theorem 1.14 in Section 3. In Section 6 we give an application
of the trivializing number and the knotting number.

2. Fundamental property

First of all, we prove Proposition 1.2.

Proof of Proposition 1.2. First we show thatG has a projection which is not knot-
ted. For any spatial graphG we can transformG into a trivial spatial graph by crossing
changes and ambient isotopies. Thus any spatial graph can beexpressed as a band sum
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Fig. 2.1.

Fig. 2.2.

of a trivial spatial graph and Hopf links, see Fig. 2.1. See [19, 29, 24] for details. Then
we can get a diagramD of G which is identical with a planar embedding ofG except
the Hopf bands. LetP be the projection ofD. Then P is also a projection of a band
sum of a trivial spatial graph and trivial 2-component linkswhich is itself a trivial spatial
graph. ThereforeP is not knotted.

If P is not trivial then P is neither trivial nor knotted. Suppose thatP is trivial.
Let l be a simple arc inP which belongs to the image of a cycle ofP. Let P0 be
a projection obtained fromP by applying the local deformation tol as illustrated in
Fig. 2.2. ThenP0 is also a projection ofG which is neither trivial nor knotted.

In the rest of this section, we show fundamental properties of the trivializing num-
ber and the knotting number which are needed later. LetP be a projection of a circle.
We say that a simple closed curveS in S2 is a decomposing circleof P if the inter-
section of P and S is the set of just two transversal double points. See Fig. 2.3.
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Fig. 2.3. Decomposing circle.

Fig. 2.4. ProjectionsP of a circle with tr(P) D 0.

Proposition 2.1. Let P be a projection of a circle and S a decomposing circle
of P. Let fq1, q2g D P \ S. Let B1 and B2 be the disks such that B1 [ B2 D S2 and
B1\B2D S. Let l be one of the two arcs on S joining q1 and q2. Let P1D (P\B1)[l
and P2 D (P\ B2)[ l. Then tr(P) D tr(P1)C tr(P2) and kn(P) D minfkn(P1), kn(P2)g.

Proof. Let Q be a pseudo diagram obtained fromP. Let Q1 (resp. Q2) be the
pseudo diagram obtained fromP1 (resp. P2) corresponding toQ. Then Q is trivial if
and only if bothQ1 and Q2 are trivial. This implies thattr(P) D tr(P1)C tr(P2). We
also see thatQ is knotted if and only if eitherQ1 or Q2 is knotted. This implies that
kn(P) D minfkn(P1), kn(P2)g.

The following proposition is shown in [5, 15, 20, 21] as a characterization of triv-
ializing number zero projections of disjoint circles.

Proposition 2.2 ([5, 15, 20, 21]). Let P be a projection of disjoint circles. Then
tr(P) D 0 if and only if P is obtained from the projection inFig. 2.4 (a)by possibly
adding trivial circles and by a series of replacing a sub-arcof P as illustrated in
Fig. 1.4 (c).

As an example we illustrate a projection of two circles whosetrivializing number
equals to zero in Fig. 2.4 (b).
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Let P be a projection of disjoint circles. A pre-crossingp of a projection P is
said to benugatory if the number of connected components ofP � p is greater than
that of P. A crossingc of a diagramD obtained from a projectionP is also said
to be nugatory if the pre-crossing corresponding toc is nugatory inP. Then we can
rephrase thatP is a projection of disjoint circles withtr(P) D 0 if and only if all pre-
crossings ofP are nugatory. A projectionP (resp. a diagramD) is said to bereduced
if P (resp. D) has no nugatory pre-crossings (resp. no nugatory crossings). Then the
following propositions hold.

Proposition 2.3. Let P be a projection of disjoint circles with nugatory pre-
crossings and tr(P) D k. Let p be a nugatory pre-crossing of P. Let Q be a trivial
pseudo diagram obtained from P with k crossings. Then p is a pre-crossing of Q.

Proof. Suppose thatp is a crossing inQ. By forgetting the over/under informa-
tion of p, we can get another trivial pseudo diagram. Then we havetr(P) < k. This
is a contradiction.

Similarly we have the following proposition.

Proposition 2.4. Let P be a projection of disjoint circles with nugatory pre-
crossings and kn(P)D k. Let p be a nugatory pre-crossing of P. Let Q be a knotted
pseudo diagram obtained from P with k crossings. Then p is a pre-crossing of Q.

3. Trivializing number

In this section, we study trivializing number. First we prove Theorem 1.6 and
Proposition 1.7.

For a pseudo diagram of a circle, we recall a chord diagram of pre-crossings to
prove Theorem 1.6. LetQ be a pseudo diagram of a circle withn pre-crossings. A
chord diagramof Q is a circle with n chords marked on it by dashed line segment,
where the preimage of each pre-crossing is connected by a chord. We denote it by
CDQ. For example, letQ be a pseudo diagram (a) in Fig. 3.1. Then a chord diagram
(b) in Fig. 3.1 isCDQ. Note that for each chord of a chord diagram of a projection,
each of the two arcs in the circle bounded by the end points of the chord contains even
number of end points of the other chords. Moreover, a realization problem of a chord
diagram by a projection is known in [8].

To prove Theorem 1.6, we regard a pseudo diagram of a circle asa singular knot
by giving an orientation to the circle and consider the Vassiliev invariant. Letv be a
knot invariant which takes values in an additive group. We can extendv to singular
knots by the Vassiliev skein relation:

v(K�) D v(KC) � v(K�)
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Fig. 3.1. Chord diagram.

Fig. 3.2.

whereK�, KC and K� are singular knots which are identical except inside the depicted
regions as illustrated in Fig. 3.2. Thenv is called aVassiliev invariant of order kifv(K ) D 0 for any singular knotK with more thank double points and there exists a
singular knotJ with exactly k double points such thatv(J) ¤ 0. See [27, 2, 3, 17] for
Vassiliev invariants. Then the following lemmas hold.

Lemma 3.1. Let Q be a trivial pseudo diagram of a circle with p(Q) > 0. Let
KQ be a singular knot obtained from Q by giving an orientation tothe circle. Thenv(KQ) D 0 wherev is a Vassiliev invariant of oriented knots.

Proof. It is clear from the definitions of Vassiliev invariants.

Lemma 3.2. Let Q be a pseudo diagram of a circle with two pre-crossings such
that CDQ is (c) in Fig. 3.1. Then Q is not trivial.

Proof. Let KQ be a singular knot obtained fromQ. Let a2 be the second co-
efficient of the Conway polynomial which is extended to singular knots as above. It is
well known thata2(KQ) D 1. Thus Q is not trivial by Lemma 3.1.

We have the following lemma by applying Lemma 3.2.

Lemma 3.3. Let Q be a trivial pseudo diagram of a circle. Then CDQ contains
no sub-chord diagrams as inFig. 3.1 (c).



PSEUDO DIAGRAMS 873

Fig. 3.3.

Proof. Suppose thatQ contains sub-chord diagrams as in Fig. 3.1 (c). LetQ0 be
a pseudo diagram obtained fromQ such thatCDQ0 is (c) in Fig. 3.1. By Lemma 3.2, a
diagram representing nontrivial knot is obtained fromQ0, hence fromQ. This implies
that Q is not trivial. This completes the proof.

Proof of Theorem 1.6. LetCD be a sub-chord diagram ofCDP with the max-
imum number of chords over all sub-chord diagrams ofCDP which do not contain (c)
in Fig. 3.1. We show that a trivial pseudo diagram whose chorddiagram isCD is ob-
tained from P. Let p1 be a pre-crossing ofP which corresponds to an outer most
chord c1 in CD and l1 the sub-arc onP which corresponds to the outer most arc. By
giving over/under information to each pre-crossing onl1 so thatl1 goes over the others
as in Fig. 3.3, we obtain a pseudo diagramQ1 from P. Next, let p2 be a pre-crossing
of Q1 which corresponds to an outer most chordc2 under forgettingc1 in CD, and l2
the sub-arc onQ1 which corresponds to the outer most arc. By giving over/under in-
formation to each pre-crossing onl2 so thatl2 goes over the others exceptl1, we obtain
a pseudo diagramQ2 from Q1. By repeating this procedure until all of the chords are
forgotten, we obtain a pseudo diagramQ from P. For any diagramD obtained from
Q, first we can vanish the crossings onl1 and the crossing corresponding top1, next
we can vanish the crossings onl2 and the crossing corresponding top2, similarly we
can vanish all crossings ofD. Therefore, we see thatQ is trivial. Moreoverc(Q) is
even because eachl i has no self-crossings by the maximality of chords inCD. Since
tr(P) D c(Q) by Lemma 3.3,tr(P) is even.

Proof of Proposition 1.7. The projection of Fig. 1.5 wherem D nC 1 has trivi-
alizing numbern.

Then we have the following corollary of Theorem 1.6 for projections of n disjoint
circles.

Corollary 3.4. Let P be a projection of n disjoint circles. Let C1, C2, : : : , Cn be
the images of the circles of P. Then the following formula holds.

tr(P) D ∑

1�i< j�n

#(Ci \ C j )C n
∑

kD1

tr(Ck)
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where#A is the cardinality of a set A. Therefore, tr(P) is even.

Proof. First we show that

tr(P) � ∑

1�i< j�n

#(Ci \ C j )C n
∑

kD1

tr(Ck).

Let Q be a trivial pseudo diagram obtained fromP. Suppose that there exists a pre-
crossing inCi \ C j (i ¤ j ) such that it is also a pre-crossing ofQ. Then a diagram
whose sub-diagram represents a 2-component link with nonzero linking number is ob-
tained from Q, namely Q is not trivial. Thus each of the pre-crossings inCi \ C j is
a crossing ofQ. Note that #(Ci \ C j ) is even. Moreover eachCk (1 � k � n) has to
be a trivial pseudo diagram inQ. This implies that the above inequality holds.

Next we construct a trivial pseudo diagram obtained fromP with
∑

1�i< j�n #(Ci \
C j ) C∑n

kD1 tr(Ck) crossings. We give over/under information to the pre-crossings in
Ci \ C j so thatCi goes overC j for i > j and some pre-crossings ofCk so that a
pseudo diagram obtained fromCk is trivial and hastr(Ck) crossings. Then it is easy
to see that the pseudo diagram obtained fromP by the above way is trivial. This com-
pletes the proof.

In general, we have the following proposition.

Proposition 3.5. Let P a projection of a graph. Then tr(P) ¤ 1.

Proof. Suppose that there exists a projectionP with tr(P) D 1. Let Q be a triv-
ial pseudo diagram obtained fromP with only one crossingc. Let Q0 be the pseudo
diagram obtained fromQ by changing the over/under information ofc. We show that
Q0 is trivial. Let D be a diagram obtained fromQ0. The mirror image diagram ofD
is obtained fromQ. Since the mirror image of a trivial spatial graph is also trivial, D
represents a trivial spatial graph. HenceQ0 is trivial. Thus this implies thattr(P) D 0.
This is a contradiction.

However, for a certain graphG there exists a projectionP of G with tr(P) D 3.
For example, letG be a graph which is homeomorphic to the disjoint union of a circle
and a�-curve as illustrated in the left side of Fig. 3.4. Then thereexists a projection
P of G with tr(P) D 3, see the right side of Fig. 3.4. Moreover for eachn � 2 there
exists a projectionPn of G with tr(Pn) D n, see Fig. 3.5.

Next we prove Theorem 1.10 that characterizes trivializingnumber two projections
of disjoint circles.

Proof of Theorem 1.10. The ‘if’ part is obvious. LetP be a projection ofn dis-
joint circles with tr(P) D 2. Let C1, C2, : : : , Cn be the image of the circles inP. Sup-
pose that there exist pre-crossings inCi \ C j (i ¤ j ). In this case, such pre-crossings
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Fig. 3.4.

Fig. 3.5.

Fig. 3.6.

must be crossings in a trivial pseudo diagram by the same reason as we said in the
proof of Corollary 3.4. Sincetr(P) D 2, such pre-crossings belong to the intersection
of only one pair ofCi and C j and eachCi is a trivial projection by Corollary 3.4.
Thus P is a projection obtained from (b) in Fig. 1.4 by adding trivial circles and by
a series of replacing a sub-arc ofP as illustrated in Fig. 1.4 (c).

Suppose thatCi \ C j D ; (i ¤ j ). Since tr(P) D 2, by Theorem 1.6 and Corol-
lary 3.4, only one ofC1, C2, : : : , Cn is not a trivial projection. Then by the proof of
Theorem 1.6 we see thatCDP is obtained from one of the chord diagrams (a) or (b) in
Fig. 3.6 by adding chords which do not cross the other chords.These chord diagrams
(a) or (b) in Fig. 3.6 are realized by the projections (a) in Fig. 1.4. It follows from
[8, Theorem 1] that the realizations of these chord diagramsare unique up to mirror
image and ambient isotopy. Adding chords which do not cross the other chords cor-
responds to a series of replacing a sub-arc as illustrated inFig. 1.4 (c). This completes
the proof.
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Fig. 3.7. A descending procedure.

Fig. 3.8.

We use the following procedure which is called adescending procedureto prove
Theorem 1.11 and Proposition 1.8. LetP be a projection ofn disjoint circles. Let
C1, C2, : : : , Cn be the image of the circles inP. We give an arbitrary orientation and
an arbitrary base point which is not a pre-crossing to eachCi . We traceC1, C2, : : : , Cn

in order and from their base points along their orientation.We give the over/under
information to each pre-crossing ofP so that every crossing may be first traced as
an over-crossing as illustrated in Fig. 3.7. Then the diagram obtained fromP by the
procedure as above represents a trivial link.

Proof of Theorem 1.11. First we show thattr(P) � p(P) � 1. Let P be a pro-
jection of a circle. We give an orientation to the circle. Letb1 be a base point onP
which is not a pre-crossing. Letp be the pre-crossing ofP which first appears when
we trace P from b1 along the orientation. Letb2 be a base point which is slightly
before it thanp with respect to the orientation.

Let D1 (resp. D2) be the diagram obtained fromP by the descending procedure
from a base pointb1 (resp.b2) along the orientation. Here each ofD1 and D2 repre-
sents a trivial knot. The difference ofD1 and D2 is only the over/under information of
p. Let Q be the pseudo diagram obtained fromD1 (or D2) by forgetting the over/under
information of p. Then Q is trivial. This implies thattr(P) � p(P) � 1.

Next we show that the equality holds if and only ifP is one of the projections
as illustrated in Fig. 1.5. The ‘if’ part is obvious. LetP be a projection of a circle
with tr(P) D p(P)�1. ThenCDP is a chord diagram in Fig. 3.8 since there exists no
pair of parallel chords by the proof of Theorem 1.6. Note thatCDP has odd chords.
These chord diagrams are realized by the projections as illustrated in Fig. 1.5 wherem
is a positive odd integer. It follows from [8, Theorem 1] thatthe realizations of these
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Fig. 3.9.

chord diagrams are unique up to mirror image and ambient isotopy. This completes
the proof.

Proof of Theorem 1.12. This is an immediate consequence of Theorem 1.11 and
Corollary 3.4.

Note that similar results on theunknotting numberfor knot diagrams and link
diagrams as Theorem 1.11 and Theorem 1.12 are known in [25, Theorem 1.4, The-
orem 1.5].

In the rest of this section, we prove Theorem 1.14. To accomplish this, we use the
following Theorem 3.6. LetD be a diagram of a circle andK a knot represented by
D. Then a diskE in S3 is called acrossing diskfor a crossing ofD if E intersects
K only in its interior exactly twice with zero algebraic intersection number and these
two intersections correspond the crossing.

Theorem 3.6 ([1]). Let K be a trivial knot and D a diagram of K . Let c1,c2,: : : ,cn

be crossings of D and E1, E2, : : : , En crossing disks corresponding to c1, c2, : : : , cn respect-
ively. Suppose that for any nonempty subset C� fc1, c2, : : : , cng the diagram obtained
from D by crossing changes at C represents a trivial knot. Then K bounds an embedded
disk in the complement of�E1 [ �E2, [ � � � [ �En.

Proof of Theorem 1.14. Letp1, p2, : : : , pn be all of the pre-crossings ofQ. Let
D be a diagram representing a trivial knotK obtained fromQ. Let c1, c2, : : : , cn be
the crossings ofD corresponding top1, p2, : : : , pn respectively. LetE1, E2, : : : , En be
crossing disks corresponding toc1, c2, : : : , cn respectively. For any nonempty subsetC
of fc1, c2, : : : , cng, a diagram obtained fromD by crossing changes atC represents a
trivial knot by the definition of a trivial pseudo diagram. ByTheorem 3.6, there exists
an embedded diskH whose boundary isK in the complement of�E1 [ �E2, [ � � � [�En. By taking sufficiently small sub-disk ofEi if necessary, we may assume that each
H \ Ei (i D 1, 2,: : : , n) is a simple arc. By contracting each simple arc to a point,
we obtain a singular disk boundingKQ. Here, we stick two disks at each double point
of KQ as illustrated in Fig. 3.9. Then we have a disk containingKQ. Therefore,KQ

is trivial.
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4. Knotting number

In this section, we study knotting number and give proofs of Proposition 1.8 and
Theorem 1.13.

Proof of Proposition 1.8. First we show that there does not exist a projection of
a circle whose knotting number is less than three. Suppose that there exists a pro-
jection P of a circle with kn(P) D 2. Let Q be a knotted pseudo diagram obtained
from P with two crossingsc1 and c2. Let p1 and p2 be the pre-crossings ofP which
correspond toc1 and c2 respectively.

Without loss of generality, we may assume that the position of p1 and p2 (resp.c1

and c2) on P (resp. Q) is (a) or (b) (resp. (c) or (d)) as in Fig. 4.1. We give an
orientation and a base point to the image of the circle as illustrated in Fig. 4.1. In case
(a) (resp. (b)), letD1 (resp. D2) be the diagram obtained fromP by the descending
procedure from a base pointb. Here under any of the over/under information ofc1

and c2, each of D1 and D2 represents a trivial knot. This is a contradiction. In case
(c) (resp. (d)), letD3 (resp. D4) be the diagram obtained fromQ by the descending
procedure from a base pointb1 (resp.b2). Then each ofD3 and D4 represents a trivial
knot. This is a contradiction.

Similarly we can show that there do not exist projections of acircle whose knot-
ting number is less than two.

For n � 3, the projection of Fig. 1.5 wherem D 2n � 3 has knotting numbern.
This completes the proof.

Note that there exists a projectionP of two circles with kn(P) D 2 as (c) in
Fig. 1.6. In general, we have the following proposition which is similar to Propos-
ition 3.5.

Proposition 4.1. Let P be a projection of a graph G. Then kn(P) ¤ 1.

Proof. Since the mirror image of a nontrivial spatial graph is also nontrivial, we
can prove it in the same way as the proof of Proposition 3.5.

We prepare some known theorems to prove Theorem 1.13. LetD be a diagram of
disjoint circles. We give an orientation to the image of eachcircle in D. Then each
crossing has a sign as illustrated in Fig. 4.2. A diagramD is said to bepositive if all
crossings ofD are positive. Then the following is known.

Theorem 4.2 ([5, 26, 15, 6]). Let D be a positive diagram of disjoint circles with
a crossing which is not nugatory. Then D represents a nontrivial link.
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Fig. 4.1.

Fig. 4.2.

A diagram D is said to bealmost positiveif all crossings except one crossing
of D are positive. The following theorem is shown in [18, 16] for knots and in [16]
for links.

Theorem 4.3 ([18, 16]). Let D be an almost positive diagram representing a triv-
ial link. Then D can be obtained from one of the diagrams(a), (b), (c) in Fig. 4.3 by
possibly adding trivial circles and by a series of replacinga sub-arc by a part as illus-
trated in Fig. 4.3 (d).

Proof of Theorem 1.13. The ‘if’ part is obvious. LetP be a projection with
tr(P) ¤ 0 which is not obtained from any of the projections as illustrated in Fig. 1.6
by possibly adding trivial circles. We show that there exists a knotted pseudo diagram
with at least one pre-crossing obtained fromP, that is, kn(P) < p(P).
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Fig. 4.3.

Fig. 4.4.

First we suppose thatP has a nugatory pre-crossingp1. By Proposition 2.4 there
exists a knotted pseudo diagram obtained fromP with a pre-crossingp1. This implies
that kn(P) < p(P).

Next we suppose thatP has no nugatory pre-crossings. Suppose thatP is not a
projection as (a) or (b) in Fig. 1.4. Letp2 be a pre-crossing ofP and Q2 the pseudo
diagram obtained fromP by giving over/under information to all pre-crossings except
p2 to be positive. We show thatQ2 is knotted. LetD2C be the diagram obtained from
Q2 by giving the over/under information top2 to be positive. SinceD2C is a positive
diagram, D2C represents a nontrivial link by Theorem 4.2. LetD2� be the diagram
obtained fromQ by giving the over/under information top2 to be negative. SinceD2�
is an almost positive diagram,D2� represents a nontrivial link by Theorem 4.3. Thus
Q2 is knotted.

Suppose thatP is a projection (a) in Fig. 1.4. Note thatm > 2 since P is not
obtained from one of the projections as illustrated in Fig. 1.6. Let p3 be one ofm
pre-crossings in a row. LetQ3 be the pseudo diagram obtained fromP by giving
over/under information to all crossings exceptp3 to be positive. We show thatQ3 is
knotted. Let D3C be the diagram obtained fromQ3 by giving the over/under infor-
mation to p3 to be positive. SinceD3C is a positive diagram,D3C represents a non-
trivial link by Theorem 4.2. LetD3� be the diagram obtained fromQ3 by giving the
over/under information top3 to be negative. We deformD3� into D0

3� as illustrated in
Fig. 4.4. SinceD0

3� is a positive diagram with crossings which are not nugatory,D0
3�

represents a nontrivial link by Theorem 4.2. ThusQ3 is knotted.
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Fig. 4.5.

Fig. 5.1.

Note that for a certain graphG there exist infinitely many projectionsP of G with
kn(P)D p(P). For example, letG be a handcuff graph andfPi giD1,2,::: is the family of
the projections as illustrated in Fig. 4.5. It is known in [23] that a diagram representing
a nontrivial spatial graph is obtained fromPi (i D 1, 2, 3,: : :). Then it is easy to check
kn(Pi ) D p(Pi ).

5. Relations between trivializing number and knotting number

In this section, we study relations between the trivializing number and the knotting
number. We give a proof of Proposition 1.9.

Proof of Proposition 1.9. LetP1 be a projection of a circle as illustrated in Fig. 1.4
wherel D 2m � 5. Then we havetr(P1) D 2 andkn(P1) D l . Let P be the projection
which is the composition ofn=2 copies ofP1 as illustrated in Fig. 5.1. Thustr(P) D n
andkn(P1) D l by Proposition 2.1.

6. An application of trivializing number and knotting numbe r

We ask the following question. For a projectionP of a graph, how many dia-
grams obtained fromP which represent trivial spatial graphs (resp. nontrivial spatial
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graphs)? We denote the number of diagrams obtained fromP which represent triv-
ial spatial graphs (resp. nontrivial spatial graphs) byntri(P) (resp.nnontri(P)). Then we
have the following inequality betweenntri(P) (resp.nnontri(P)) and tr(P) (resp.kn(P))
for any graphs.

Proposition 6.1. Let P be a projection of a graph. If P is neither trivial nor
knotted, then ntri(P) � 2p(P)�tr(P)C1 and nnontri(P) � 2p(P)�kn(P)C1.

Proof. We show thatntri(P) � 2p(P)�tr(P)C1. Let Q be a trivial pseudo diagram
obtained fromP with tr(P) crossings. Then 2p(P)�tr(P) diagrams which represent trivial
spatial graphs are obtained fromQ. Let Q0 be the pseudo diagram obtained fromQ by
changing over/under information at all crossings ofQ. Then Q0 is trivial in the same
way as the proof of Proposition 3.5. Then 2p(P)�tr(P) diagrams which represent spatial
graphs are obtained fromQ0. Thus ntri(P) � 2p(P)�tr(P)C1. Similarly we can show that
nnontri(P) � 2p(P)�kn(P)C1.
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