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Abstract

A pseudo diagram of a spatial graph is a spatial graph piojecn the 2-sphere
with over/under information at some of the double points. Mfeoduce the trivial-
izing (resp. knotting) number of a spatial graph projectipnusing its pseudo dia-
grams as the minimum number of the crossings whose ovewunfitgmation lead
the triviality (resp. nontriviality) of the spatial grapWe determine the set of non-
negative integers which can be realized by the trivializ{resp. knotting) numbers
of knot and link projections, and characterize the progetwti which have a specific
value of the trivializing (resp. knotting) number.

1. Introduction

Throughout this paper we work in the piecewise linear catedgoet G be a finite
graph which does not have degree zero or one vertices. Wédeni$ as a topological
space in the usual way. Let be an embedding o6 into the 3-spheres®. Then
f is called aspatial embeddingpf G and the imageg = f(G) is called aspatial
graph In particular, f(G) is called aknot if G is homeomorphic to a circle and an
r-component linkif G is homeomorphic to disjoint circles. In this paper, we say
that two spatial graphg/; and G, are said to beambient isotopicif there exists an
orientation-preserving self-homeomorphignon S® such thath(G1) = G». A graph G
is said to beplanar if there exists an embedding @ into the 2-spherés?. A spatial
graph ¢ is said to betrivial (or unknotted if G is ambient isotopic to a graph &
where we conside®? as a subspace &. Thus only planar graphs have trivial spatial
graphs. We consider only planar graphs from now on. It is kmaw[11] that a trivial
spatial graph ofG is unique up to ambient isotopy 8.

A continuous mapy: G — S is called aregular projection or simply aprojec-
tion, of G if the multiple points ofy are only finitely many transversal double points
away from the vertices. TheP = ¢(G) is also called grojection A diagram D is
a projection P with over/under information at the every double point. Thee say
that D is obtained from Pand P is a projection of D A diagram D uniquely repre-
sents a spatial graph up to ambient isotopy. Gebe a spatial graph represented by
D and G’ a spatial graph ambient isotopic tb Then we also say thaP is a pro-
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Fig. 1.1. Projection and diagrams obtained from it.

jection of G’. A double point with over/under information and a doublernpawithout
over/under information are called @ossingand apre-crossing respectively. Thus a
diagram has crossings and has no pre-crossings, and atmojbas pre-crossings and
has no crossings.

A projection P is said to betrivial if any diagram obtained fronP represents a
trivial spatial graph. On the other hand, a projecti®ris said to beknotted[22] if any
diagram obtained fronlP represents a nontrivial spatial graph. Moreover, the fahgw
definitions for a projectionP are known. A projectionP is said to beidentifiable[9]
if every diagram obtained fror® yields a unique labeled spatial graph, arampletely
distinguishable[14] if any two different diagrams obtained from represent different
labeled spatial graphs. Nikkuni showed in [13, Theorem 12} a projectionP is
identifiable if and only ifP is trivial.

Let G be a spatial graph an® a projection ofG. Then we ask the following
guestion.

QUESTION 1.1. Can we determine fror® whether the original spatial graph
is trivial or knotted?

If P is neither trivial nor knotted, then the (non)triviality ¢f cannot be deter-
mined from P. For example, letP be a projection of a circle with 3 pre-crossings
as illustrated in Fig. 1.1. Then we havé @iagrams obtained fron®P. Two diagrams
represent a nontrivial knot and six diagrams representvaltriknot.

It is well known in knot theory that for any projectioR of disjoint circles there
exists a diagramD obtained fromP such thatD represents a trivial link. Namely
P never admits a knotted projection. However it is known in][#2at there exists
a knotted projection of a planar graph. For example,delbe a spatial graph of the
octahedron graph anB a projection ofG as illustrated in Fig. 1.2. Then we can see
that any diagram obtained frorR contains a diagram of a Hopf link. NameR is
knotted. However there exists a projectiong®fwhich is neither trivial nor knotted. In
general, we have the following proposition.

Proposition 1.2. For any spatial graphG of a graph G there exists a projection
P of G such that P is neither trivial nor knotted.

We give a proof of Proposition 1.2 in Section 2. Then it is naltito ask the
following question.
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Fig. 1.2. Octahedron graph and a knotted projection of it.
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Fig. 1.3. Pseudo diagrams.

QUESTION 1.3. LetG be a spatial graph an@ a projection ofG. Which pre-
crossings ofP and the over/under information lead the (non)triviality @?

Now we introduce the notion of a pseudo diagram as a genatializ of a projec-
tion and a diagram. LeP be a projection of a grap®. A pseudo diagram @f G is
a projectionP with over/under information at some of the pre-crossingsermwe say
that Q is obtained from Pand P is a projection of Q Thus a pseudo diagra® has
crossings and pre-crossings. Here we allow the possilility a pseudo diagram has
no crossings or has no pre-crossings, that is, a pseudoadiaigr possibly a projection
or a diagram. We denote the number of crossings and prehogsssf Q by ¢(Q) and
p(Q), respectively. For a pseudo diagra@ by giving over/under information to some
of the pre-crossings, we can get another (possibly sameidpsgiagramQ’. Then we
say thatQ’ is obtained from Q

We say that a pseudo diagra@nis trivial if for any diagram obtained fron@ rep-
resents a trivial spatial graph. On the other hand, we say@hie knottedif any dia-
gram obtained fronQ represents a nontrivial spatial graph. For example, in Eig,
a pseudo diagram (a) is trivial, (b) is knotted, and (c) ighmgi trivial nor knotted.

Let P be a projection of a grapB. Then we define theivializing number(resp knot-
ting numbej of P by the minimum ofc(Q), whereQ varies over all trivial (resp. knot-
ted) pseudo diagrams obtained frdPy and denote it byr(P) (resp.kn(P)). Note that
there does not exist a knotted (resp. trivial) pseudo diagybtained fromP if and only
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if tr(P) = 0 (resp.kn(P) = 0), namelyP is trivial (resp. knotted). In this case we define
thatkn(P) = oo (resp.tr(P) = co). Note that for any grapks there exists a projection
P of G with kn(P) = co. For exampleP is an image of a planar embedding ®f We
also note that for a certain gra@there exists a projectioR of G with tr(P) = co as in
Fig. 1.2.

We remark here that the observation of DNA knots was an oppibyt of this re-
search, namely we cannot determine over/under informatosome of the crossings
in some photos of DNA knots. DNA knots barely become visugécts by examining
the protein-coated one by electromicroscope. Howeveretlage still cases in which
it is hard to confirm the over/under information of some of tiressings. If we can
know the (non-)triviality of a knot without checking everyeay/under information of
crossings, then it may give a reasonable way to detect the-)nigiality of a DNA
knot. In addition, it is known that there exists an enzymdledatopoisomerase, which
plays a role of crossing change. The research of pseudoadisgmay provide an ef-
fective method to change a given DNA knot to a trivial (nori&i) one. See [7, 4, 12]
on DNA knots.

We start from two questions on the trivializing number and kmotting number
of projections of a circle.

QUESTION 1.4. For any non-negative integar does there exist a projection
of a circle withtr(P) = n?

QUESTION 1.5. For any non-negative integar does there exist a projectioR
of a circle withkn(P) = n?

We have the following theorem and propositions as answe@aistions 1.4 and 1.5.
Theorem 1.6. For any projection P of a circlgthe trivializing number of P is even.

Proposition 1.7. For any non-negative even numbey there exists a projection
P of a circle with t(P) = n.

Proposition 1.8. There does not exist a projection of a circle whose knottingnn
ber is less than three. For any positive integen3, there exists a projection P of a
circle with kn(P) = n.

We give proofs of Theorem 1.6 and Proposition 1.7 in Sectioan8 a proof of
Proposition 1.8 in Section 4. Moreover we see from the foll@viproposition that
there are no relations between trivializing number and tkmptnumber in general.

Proposition 1.9. For any non-negative even number n and any positive integer
| > 3, there exists a projection P of a circle with(®) = n and krfP) = 1.
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We give a proof of Proposition 1.9 in Section 5. In additiore have the following
theorems.

Theorem 1.10. Let P be a projection of disjoint circles. Then(l&) = 2 if and
only if P is obtained from one of the projections as illuséitin Fig. 1.4 (a)and
(b) where m is a positive integer by possibly adding trivial liecand by a series of
replacing a sub-arc of P as illustrated iRig. 1.4 (c)where a trivial circle means an
embedding of a circle int&® which does not intersect any other component of the
projection.

We see that for any projectioR of disjoint circles,tr(P) < p(P) by the defin-
itions. We also see that for any projectidh with kn(P) # oo, kn(P) < p(P) by the
definitions. Then we have the following theorems.

Theorem 1.11. Let P be a projection of a circle with at least one pre-crogsin
Then it holds that {fP) < p(P) — 1. The equality holds if and only if P is one of the
projections as illustrated irFig. 1.5where m is a positive odd integer.
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(a) (b) (c)
Fig. 1.6. Projectiond? of a circle withkn(P) = p(P).

Theorem 1.12. Let P be a projection of n disjoint circles. Let;C,,..., C, be
the image of the circles of P. Then(®) = p(P) if and only if each of ¢, C,,...,C,
has no self-pre-crossings where a self-pre-crossing iseagqoossing whose preimage is
contained in a circle.

Theorem 1.13. Let P be a projection of disjoint circles. Then () = p(P)
if and only if P is obtained from one of the projections assthated inFig. 1.6 by
possibly adding trivial circles.

We give proofs of Theorems 1.10, 1.11 and 1.12 in Section 3aaptbof of The-
orem 1.13 in Section 4.

Let Q be a pseudo diagram of a circle. By giving an orientation t® ¢ircle,
we can regardQ as asingular knot namely an immersion of a circle int8® whose
multiple points are only finitely many transversal doublenp® of arcs spanning a suf-
ficiently small flat plane. We consider a singular knot up tobant isotopy preserv-
ing the flatness at each double point. A singular kKots said to betrivial if K is
deformed by ambient isotopy preserving the flatness at eacdble point to a singu-
lar knot in S?. See [17] for details. We can also regard a singular knot apatias
4-valent graph up taigid vertex isotopy see [10, 28]. Then we have the following.

Theorem 1.14. Let Q be a trivial pseudo diagram of a circle. LetgKbe a sin-
gular knot obtained from Q by giving an orientation to thectdr Then kg is trivial.

We give a proof of Theorem 1.14 in Section 3. In Section 6 we gim application
of the trivializing number and the knotting number.

2. Fundamental property
First of all, we prove Proposition 1.2.
Proof of Proposition 1.2. First we show th@thas a projection which is not knot-

ted. For any spatial grapi we can transforn@ into a trivial spatial graph by crossing
changes and ambient isotopies. Thus any spatial graph carpoessed as a band sum
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of a trivial spatial graph and Hopf links, see Fig. 2.1. Se® PB, 24] for details. Then
we can get a diagrar® of G which is identical with a planar embedding &f except
the Hopf bands. LeP be the projection ofD. Then P is also a projection of a band
sum of a trivial spatial graph and trivial 2-component linidsich is itself a trivial spatial
graph. ThereforeP is not knotted.

If P is not trivial thenP is neither trivial nor knotted. Suppose thBtis trivial.
Let | be a simple arc inP which belongs to the image of a cycle &f. Let P’ be
a projection obtained fronP by applying the local deformation tb as illustrated in
Fig. 2.2. ThenP’ is also a projection ofj which is neither trivial nor knotted. []

In the rest of this section, we show fundamental propertfethe trivializing num-
ber and the knotting number which are needed later. R.dte a projection of a circle.
We say that a simple closed cur&in S? is a decomposing circlef P if the inter-
section of P and S is the set of just two transversal double points. See Fig. 2.3
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Fig. 2.3. Decomposing circle.
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Fig. 2.4. Projections? of a circle withtr(P) = 0.

Proposition 2.1. Let P be a projection of a circle and S a decomposing circle
of P. Let{on, %} = PNS. Let B and B be the disks such that;® B, = $* and
B;NB, =S. Let| be one of the two arcs on S joiningand . Let R = (PN By)Ul
and B = (PN Bz)Ul. Then t(P) = tr(Py) +tr(P2) and kri{P) = min{kn(Py), kn(P,)}.

Proof. LetQ be a pseudo diagram obtained frofh Let Q; (resp. Q) be the
pseudo diagram obtained frof, (resp.P,) corresponding taQ. Then Q is trivial if
and only if bothQ; and Q; are trivial. This implies thatr(P) = tr(Py) + tr(P,). We
also see tha is knotted if and only if eithelQ; or Q; is knotted. This implies that
kn(P) = min{kn(Py), kn(P,)}. O

The following proposition is shown in [5, 15, 20, 21] as a cuderization of triv-
ializing number zero projections of disjoint circles.

Proposition 2.2 ([5, 15, 20, 21]). Let P be a projection of disjoint circles. Then
tr(P) = 0 if and only if P is obtained from the projection Fig. 2.4 (a)by possibly
adding trivial circles and by a series of replacing a sub-at P as illustrated in
Fig. 1.4 (c)

As an example we illustrate a projection of two circles whasgalizing number
equals to zero in Fig. 2.4 (b).
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Let P be a projection of disjoint circles. A pre-crossirgof a projectionP is
said to benugatoryif the number of connected components Bf— p is greater than
that of P. A crossingc of a diagramD obtained from a projectiorP is also said
to be nugatoryif the pre-crossing corresponding tois nugatory inP. Then we can
rephrase thaP is a projection of disjoint circles witlr(P) = 0 if and only if all pre-
crossings ofP are nugatory. A projectior® (resp. a diagranD) is said to bereduced
if P (resp.D) has no nugatory pre-crossings (resp. no nugatory cragsirinen the
following propositions hold.

Proposition 2.3. Let P be a projection of disjoint circles with nugatory pre-
crossings and {{P) = k. Let p be a nugatory pre-crossing of P. Let Q be a trivial
pseudo diagram obtained from P with k crossings. Then p iseacpssing of Q.

Proof. Suppose thap is a crossing inQ. By forgetting the over/under informa-
tion of p, we can get another trivial pseudo diagram. Then we he{f) < k. This
is a contradiction. ]

Similarly we have the following proposition.

Proposition 2.4. Let P be a projection of disjoint circles with nugatory pre-
crossings and KP) = k. Let p be a nugatory pre-crossing of P. Let Q be a knotted
pseudo diagram obtained from P with k crossings. Then p iseacprssing of Q.

3. Trivializing humber

In this section, we study trivializing number. First we peoTheorem 1.6 and
Proposition 1.7.

For a pseudo diagram of a circle, we recall a chord diagramrefcpssings to
prove Theorem 1.6. Le@Q be a pseudo diagram of a circle with pre-crossings. A
chord diagramof Q is a circle withn chords marked on it by dashed line segment,
where the preimage of each pre-crossing is connected by @l.chle denote it by
CDq. For example, lefQ be a pseudo diagram (a) in Fig. 3.1. Then a chord diagram
(b) in Fig. 3.1 isCDq. Note that for each chord of a chord diagram of a projection,
each of the two arcs in the circle bounded by the end pointkefichord contains even
number of end points of the other chords. Moreover, a re#@izgiroblem of a chord
diagram by a projection is known in [8].

To prove Theorem 1.6, we regard a pseudo diagram of a circke sisgular knot
by giving an orientation to the circle and consider the Massiinvariant. Letv be a
knot invariant which takes values in an additive group. Wa eatendv to singular
knots by the Vassiliev skein relation:

v(Ky) = v(Ky) —v(K-)
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Fig. 3.1. Chord diagram.

Fig. 3.2.

whereK,, K, andK_ are singular knots which are identical except inside thaatieg
regions as illustrated in Fig. 3.2. Thanis called aVassiliev invariant of order kf
v(K) = 0 for any singular knotk with more thank double points and there exists a
singular knotJ with exactly k double points such that(J) # 0. See [27, 2, 3, 17] for
Vassiliev invariants. Then the following lemmas hold.

Lemma 3.1. Let Q be a trivial pseudo diagram of a circle with(@Q) > 0. Let
Kg be a singular knot obtained from Q by giving an orientationthe circle. Then
v(Kg) = 0 wherev is a Vassiliev invariant of oriented knots.

Proof. It is clear from the definitions of Vassiliev invartan O

Lemma 3.2. Let Q be a pseudo diagram of a circle with two pre-crossingshsu
that CDgq is (c) in Fig. 3.1 Then Q is not trivial.

Proof. LetKqg be a singular knot obtained fro@. Let a, be the second co-
efficient of the Conway polynomial which is extended to siagiknots as above. It is
well known thata;(Kg) = 1. ThusQ is not trivial by Lemma 3.1. ]

We have the following lemma by applying Lemma 3.2.

Lemma 3.3. Let Q be a trivial pseudo diagram of a circle. Then gBontains
no sub-chord diagrams as iRig. 3.1 (c)
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Proof. Suppose tha® contains sub-chord diagrams as in Fig. 3.1 (c). Qétbe
a pseudo diagram obtained fro@ such thatCDqy is (c) in Fig. 3.1. By Lemma 3.2, a
diagram representing nontrivial knot is obtained fr@n hence fromQ. This implies
that Q is not trivial. This completes the proof. 0

Proof of Theorem 1.6. Le€CD be a sub-chord diagram d&EDp with the max-
imum number of chords over all sub-chord diagram<Ca@fs which do not contain (c)
in Fig. 3.1. We show that a trivial pseudo diagram whose cliiagram isCD is ob-
tained from P. Let p; be a pre-crossing oP which corresponds to an outer most
chordc; in CD andl; the sub-arc orP which corresponds to the outer most arc. By
giving over/under information to each pre-crossingloso thatl; goes over the others
as in Fig. 3.3, we obtain a pseudo diagr&m from P. Next, let p, be a pre-crossing
of Q; which corresponds to an outer most chasdunder forgettingec; in CD, andl,
the sub-arc onQ; which corresponds to the outer most arc. By giving over/uride
formation to each pre-crossing ¢y so thatl, goes over the others excdpt we obtain
a pseudo diagran@, from Q;. By repeating this procedure until all of the chords are
forgotten, we obtain a pseudo diagragnfrom P. For any diagranD obtained from
Q, first we can vanish the crossings bnand the crossing corresponding pa, next
we can vanish the crossings tnand the crossing corresponding g, similarly we
can vanish all crossings db. Therefore, we see thdD is trivial. Moreoverc(Q) is
even because eadh has no self-crossings by the maximality of chordsGB. Since
tr(P) = ¢(Q) by Lemma 3.3tr(P) is even. ]

Proof of Proposition 1.7. The projection of Fig. 1.5 whene= n + 1 has trivi-
alizing numbern. ]

Then we have the following corollary of Theorem 1.6 for pobiens of n disjoint
circles.

Corollary 3.4. Let P be a projection of n disjoint circles. Let; &, ..., C, be
the images of the circles of P. Then the following formuladbol

n

tr(P)= > #GCiNCp+ ) tr(Cy

1<i<j=n k=1
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where#A is the cardinality of a set A. Thereforag(P) is even.

Proof. First we show that

tr(P)> > #CinNCj)+ > tr(C.

I<i<j=n k=1

Let Q be a trivial pseudo diagram obtained frofn Suppose that there exists a pre-
crossing inC; N C;j (i # j) such that it is also a pre-crossing @f. Then a diagram
whose sub-diagram represents a 2-component link with morlagking number is ob-
tained fromQ, namely Q is not trivial. Thus each of the pre-crossings@ N C; is
a crossing ofQ. Note that #C; N C;) is even. Moreover eacly (1 < k <n) has to
be a trivial pseudo diagram . This implies that the above inequality holds.

Next we construct a trivial pseudo diagram obtained frerwith -, _; ., #(Ci N
Cj) + Y k_1 tr(Cy) crossings. We give over/under information to the presings in
Ci N C; so thatC; goes overC; for i > j and some pre-crossings @ so that a
pseudo diagram obtained frof is trivial and hastr(Cy) crossings. Then it is easy
to see that the pseudo diagram obtained fiBrby the above way is trivial. This com-
pletes the proof. 0

In general, we have the following proposition.

Proposition 3.5. Let P a projection of a graph. Then() # 1.

Proof. Suppose that there exists a projecti®rwith tr(P) = 1. Let Q be a triv-
ial pseudo diagram obtained frofd with only one crossing.. Let Q' be the pseudo
diagram obtained fronQQ by changing the over/under information of We show that
Q' is trivial. Let D be a diagram obtained fror®’. The mirror image diagram ob
is obtained fromQ. Since the mirror image of a trivial spatial graph is alseial, D
represents a trivial spatial graph. HenQé is trivial. Thus this implies thatr(P) = 0.
This is a contradiction. O

However, for a certain grapls there exists a projectio® of G with tr(P) = 3.
For example, leG be a graph which is homeomorphic to the disjoint union of aleir
and af-curve as illustrated in the left side of Fig. 3.4. Then thexkésts a projection
P of G with tr(P) = 3, see the right side of Fig. 3.4. Moreover for eatk 2 there
exists a projectionP, of G with tr(P,) = n, see Fig. 3.5.

Next we prove Theorem 1.10 that characterizes trivializingnber two projections
of disjoint circles.

Proof of Theorem 1.10. The ‘if’ part is obvious. L& be a projection oh dis-
joint circles withtr(P) = 2. LetCy, Cy,..., C, be the image of the circles iR. Sup-
pose that there exist pre-crossingsGnn C; (i # j). In this case, such pre-crossings
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Fig. 3.5.

Fig. 3.6.

must be crossings in a trivial pseudo diagram by the sameomeas we said in the
proof of Corollary 3.4. Sincer(P) = 2, such pre-crossings belong to the intersection
of only one pair ofC; and C; and eachC; is a trivial projection by Corollary 3.4.
Thus P is a projection obtained from (b) in Fig. 1.4 by adding trivéarcles and by

a series of replacing a sub-arc Bf as illustrated in Fig. 1.4 (c).

Suppose thaCi N Cj =@ (i # j). Sincetr(P) = 2, by Theorem 1.6 and Corol-
lary 3.4, only one ofCq, C,, ..., C, is not a trivial projection. Then by the proof of
Theorem 1.6 we see th&Dp is obtained from one of the chord diagrams (a) or (b) in
Fig. 3.6 by adding chords which do not cross the other choftiese chord diagrams
(a) or (b) in Fig. 3.6 are realized by the projections (a) ig.FL.4. It follows from
[8, Theorem 1] that the realizations of these chord diagranesunique up to mirror
image and ambient isotopy. Adding chords which do not crbssather chords cor-
responds to a series of replacing a sub-arc as illustratétiginl.4 (c). This completes
the proof. ]
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1 2

Fig. 3.7. A descending procedure.

Fig. 3.8.

We use the following procedure which is calleddascending procedurt prove
Theorem 1.11 and Proposition 1.8. LBt be a projection ofn disjoint circles. Let
Cy, Cy, ..., C, be the image of the circles iR. We give an arbitrary orientation and
an arbitrary base point which is not a pre-crossing to €gchwe traceC,, Cy,...,C,
in order and from their base points along their orientatiéie give the over/under
information to each pre-crossing d® so that every crossing may be first traced as
an over-crossing as illustrated in Fig. 3.7. Then the diagobtained fromP by the
procedure as above represents a trivial link.

Proof of Theorem 1.11. First we show th@f{P) < p(P) — 1. Let P be a pro-
jection of a circle. We give an orientation to the circle. lbgtbe a base point o®
which is not a pre-crossing. Lgt be the pre-crossing oP which first appears when
we trace P from b; along the orientation. Leb, be a base point which is slightly
before it thanp with respect to the orientation.

Let D; (resp.D,) be the diagram obtained froR by the descending procedure
from a base poinb; (resp.by) along the orientation. Here each B, and D, repre-
sents a trivial knot. The difference &; and D is only the over/under information of
p. Let Q be the pseudo diagram obtained frdm (or D;) by forgetting the over/under
information of p. Then Q is trivial. This implies thattr(P) < p(P) — 1.

Next we show that the equality holds if and only Ff is one of the projections
as illustrated in Fig. 1.5. The ‘if’ part is obvious. L& be a projection of a circle
with tr(P) = p(P)—1. ThenCDgp is a chord diagram in Fig. 3.8 since there exists no
pair of parallel chords by the proof of Theorem 1.6. Note t68& has odd chords.
These chord diagrams are realized by the projections asralied in Fig. 1.5 wheren
is a positive odd integer. It follows from [8, Theorem 1] thhe realizations of these
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chord diagrams are unique up to mirror image and ambienbpgot This completes
the proof. ]

Proof of Theorem 1.12. This is an immediate consequence ebrEtm 1.11 and
Corollary 3.4. ]

Note that similar results on thanknotting numberfor knot diagrams and link
diagrams as Theorem 1.11 and Theorem 1.12 are known in [28or&m 1.4, The-
orem 1.5].

In the rest of this section, we prove Theorem 1.14. To accismphis, we use the
following Theorem 3.6. LetD be a diagram of a circle anld a knot represented by
D. Then a diskE in S® is called acrossing diskfor a crossing ofD if E intersects
K only in its interior exactly twice with zero algebraic insection number and these
two intersections correspond the crossing.

Theorem 3.6 ([1]). Let K be atrivial knot and D a diagram of K. Let,&;,...,C,
be crossings of D and £E,, ..., E, crossing disks corresponding tg,c;, ..., ¢, respect-
ively. Suppose that for any nonempty subset @cy, Cy, . . ., ¢y} the diagram obtained
from D by crossing changes at C represents a trivial knot.nTKebounds an embedded
disk in the complement ofE; U 0E,, U --- U JE,.

Proof of Theorem 1.14. Leps, p2,..., pn be all of the pre-crossings dp. Let
D be a diagram representing a trivial knkit obtained fromQ. Let ¢y, Cy, ..., Cc, be
the crossings oD corresponding togs, p2, ..., Pn respectively. Lete,, E, ..., E, be
crossing disks corresponding tg, c;, .. ., ¢, respectively. For any nonempty subset
of {c1, Cy, ..., Cy}, @ diagram obtained fronD by crossing changes & represents a
trivial knot by the definition of a trivial pseudo diagram. Byeorem 3.6, there exists
an embedded diski whose boundary i« in the complement obE; U dE,, U---U
dEn. By taking sufficiently small sub-disk d; if necessary, we may assume that each
HNE (=12,...,n)is a simple arc. By contracting each simple arc to a point,
we obtain a singular disk boundingq. Here, we stick two disks at each double point
of Kg as illustrated in Fig. 3.9. Then we have a disk containitg. Therefore,Kq
is trivial. O
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4. Knotting number

In this section, we study knotting number and give proofs afpBsition 1.8 and
Theorem 1.13.

Proof of Proposition 1.8. First we show that there does n@ttex projection of
a circle whose knotting number is less than three. Supposetliere exists a pro-
jection P of a circle withkn(P) = 2. Let Q be a knotted pseudo diagram obtained
from P with two crossingsc; andc,. Let p; and p, be the pre-crossings d® which
correspond tac; and ¢, respectively.

Without loss of generality, we may assume that the positiomoand p, (resp.c:
and cy) on P (resp. Q) is (a) or (b) (resp. (c) or (d)) as in Fig. 4.1. We give an
orientation and a base point to the image of the circle astitited in Fig. 4.1. In case
(@) (resp. (b)), letD; (resp.D,) be the diagram obtained fror® by the descending
procedure from a base poifit Here under any of the over/under information @f
and c;, each ofD; and D, represents a trivial knot. This is a contradiction. In case
(c) (resp. (d)), letDs (resp. D4) be the diagram obtained fror® by the descending
procedure from a base poibt (resp.by). Then each oD3; and D4 represents a trivial
knot. This is a contradiction.

Similarly we can show that there do not exist projections afirale whose knot-
ting number is less than two.

For n > 3, the projection of Fig. 1.5 wherm = 2n — 3 has knotting numben.
This completes the proof. ]

Note that there exists a projectioR of two circles with kn(P) = 2 as (c) in
Fig. 1.6. In general, we have the following proposition whiis similar to Propos-
ition 3.5.

Proposition 4.1. Let P be a projection of a graph G. Then(l) # 1.

Proof. Since the mirror image of a nontrivial spatial graphalso nontrivial, we
can prove it in the same way as the proof of Proposition 3.5. O

We prepare some known theorems to prove Theorem 1.13DlLle¢ a diagram of
disjoint circles. We give an orientation to the image of eaaisle in D. Then each
crossing has a sign as illustrated in Fig. 4.2. A diagfanis said to bepositiveif all
crossings ofD are positive. Then the following is known.

Theorem 4.2 ([5, 26, 15, 6]). Let D be a positive diagram of disjoint circles with
a crossing which is not nugatory. Then D represents a naafriink.
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A diagram D is said to bealmost positiveif all crossings except one crossing
of D are positive. The following theorem is shown in [18, 16] faroks and in [16]
for links.

Theorem 4.3 ([18, 16]). Let D be an almost positive diagram representing a triv-
ial link. Then D can be obtained from one of the diagrafay (b), (c)in Fig. 4.3by
possibly adding trivial circles and by a series of replaciagub-arc by a part as illus-
trated in Fig. 4.3 (d)

Proof of Theorem 1.13. The ‘if’ part is obvious. L& be a projection with
tr(P) # 0 which is not obtained from any of the projections as illatd in Fig. 1.6
by possibly adding trivial circles. We show that there exiatknotted pseudo diagram
with at least one pre-crossing obtained frdtn that is, kn(P) < p(P).
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First we suppose tha® has a nugatory pre-crossing. By Proposition 2.4 there
exists a knotted pseudo diagram obtained frBnwith a pre-crossingp;. This implies
that kn(P) < p(P).

Next we suppose thaP has no nugatory pre-crossings. Suppose fas not a
projection as (a) or (b) in Fig. 1.4. Lgt, be a pre-crossing oP and Q, the pseudo
diagram obtained fronP by giving over/under information to all pre-crossings etce
p2 to be positive. We show thdD, is knotted. LetD,, be the diagram obtained from
Q2 by giving the over/under information tp, to be positive. SinceD,, is a positive
diagram, Do, represents a nontrivial link by Theorem 4.2. Bt be the diagram
obtained fromQ by giving the over/under information tp, to be negative. Sinc®,_
is an almost positive diagran,_ represents a nontrivial link by Theorem 4.3. Thus
Q> is knotted.

Suppose thafP is a projection (a) in Fig. 1.4. Note tham > 2 since P is not
obtained from one of the projections as illustrated in Fid. 1Let p3 be one ofm
pre-crossings in a row. LeQs; be the pseudo diagram obtained frofn by giving
over/under information to all crossings except to be positive. We show thaD; is
knotted. LetDs, be the diagram obtained fror®@; by giving the over/under infor-
mation to ps to be positive. SinceDs, is a positive diagramD3, represents a non-
trivial link by Theorem 4.2. LetD3;  be the diagram obtained fro®3; by giving the
over/under information tqs to be negative. We deforr;_ into D5 as illustrated in
Fig. 4.4. SinceDj_ is a positive diagram with crossings which are not nugat@ry.
represents a nontrivial link by Theorem 4.2. ThQg is knotted. ]
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Note that for a certain grap@ there exist infinitely many projectionB of G with
kn(P) = p(P). For example, leG be a handcuff graph an? }i—1 »_. is the family of
the projections as illustrated in Fig. 4.5. It is known inJ28at a diagram representing
a nontrivial spatial graph is obtained froR (i =1, 2, 3,...). Then it is easy to check

kn(R) = p(R).
5. Relations between trivializing number and knotting numker

In this section, we study relations between the triviatizimumber and the knotting
number. We give a proof of Proposition 1.9.

Proof of Proposition 1.9. LeP; be a projection of a circle as illustrated in Fig. 1.4

wherel = 2m — 5. Then we havér(P,;) = 2 andkn(P;) = |. Let P be the projection
which is the composition ofi/2 copies ofP; as illustrated in Fig. 5.1. Thus(P) = n
andkn(P;) = | by Proposition 2.1. ]

6. An application of trivializing number and knotting number

We ask the following question. For a projectidh of a graph, how many dia-
grams obtained fronP which represent trivial spatial graphs (resp. nontriviphtgl
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graphs)? We denote the number of diagrams obtained fRonvhich represent triv-
ial spatial graphs (resp. nontrivial spatial graphs)rigy(P) (resp.nnonti(P)). Then we
have the following inequality betweem,(P) (resp.nnonti(P)) andtr(P) (resp.kn(P))

for any graphs.

Proposition 6.1. Let P be a projection of a graph. If P is neither trivial nor
knotted then n,;(P) > 2P(PI-U(P)+1 and gy P) > 2P(P)—kn(P)+1,

Proof. We show thahyi(P) > 2P(P)-"(P)+1 | et Q be a trivial pseudo diagram
obtained fromP with tr(P) crossings. Then®#P)-t(P) diagrams which represent trivial
spatial graphs are obtained frofr Let Q" be the pseudo diagram obtained frapnby
changing over/under information at all crossings@f Then Q’ is trivial in the same
way as the proof of Proposition 3.5. TheA(2"(P) diagrams which represent spatial
graphs are obtained fror®’. Thusngi(P) > 2P(P)-r(P)+1  Similarly we can show that
Nnontri( P) = 2P(P)—kn(P)+1, O
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