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Abstract
An n-dimensional Hartogs domaibg can be equipped with a natural Kahler
metric gg. This paper contains two results. In the first one we prove ithgg is
an extremal Kahler metric therDg, ge) is holomorphically isometric to an open
subset of then-dimensional complex hyperbolic space. In the second onegnwee
the same assertion under the assumption that there existl &alomorphic vector
field X on Dg such that ¢r, X) is a Kahler—Ricci soliton.

1. Introduction and statements of the main results

The study of the existence and uniqueness of a preferredeKatgtric on a given
complex manifoldM is a very interesting and important area of research, batm fr
the mathematical and from the physical point of view. Many rdéfins of canonical
metrics (Einstein, constant scalar curvature, extremahl&—Ricci solitons and so on)
have been given both in the compact and in the noncompact(sasee.g. [2], [15] and
[24]). In the noncompact case many important questions @lteopen. For example
Yau raised the question on the classification of Bergmant&imsnetrics on strongly
pseudoconvex domains and S.-Y. Cheng conjectured thakiB#&rgman metric on a
strongly pseudoconvex domain is Einstein, then the domaibiticlomorphic to the
ball (see [13]).

In this paper we are interested in extremal Kahler metria$ ldéhler—Ricci soli-
tons on a particular class of complex domains, the so célladogs domaingsee the
next section for their definition and main properties).

Our main results are the following theorems.

Theorem 1.1. Let (Dg, g¢) be an n-dimensional Hartogs domain. Assume that
Or is an extremal Kahler metric. The(Dg, gr) is holomorphically isometric to an
open subset of the n-dimensional complex hyperbolic space.

Theorem 1.2. Let(Dg, gr) be an n-dimensional Hartogs domain and let X be a
real holomorphic vector field on Psuch that(gg, X) is a Kéhler—Ricci soliton. Then
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Or is Kahler—Einstein. Consequentl{Dr, gr) is holomorphically isometric to an open
subset of the n-dimensional complex hyperbolic space.

Notice that (compare with Cheng'’s conjecture above) therapsons on the met-
ric gr in Theorem 1.1 and Theorem 1.2 are weaker than Einstein'ditbtom. To this
regard it is worth pointing out that whege equals the Bergman metric ddg, then
(Dg, gr) is holomorphically isometric to an open subset of the caxphyperbolic
space (see Theorem 1.3 in [10] for a proof).

The paper is organized as follows. In the next section, aéealling the definition
of Hartogs domains, we analyze their pseudoconvexity, aacdmeve a lemma regard-
ing their generalized scalar curvatures. Sections 3 and 4ledicated to the proofs of
Theorem 1.1 and Theorem 1.2 respectively.

2. Hartogs domains

Let xg € Rt U {+o00} and letF: [0, Xo) — (0, +o0) be a decreasing continuous
function, smooth on (0%). The Hartogs domain [p C C" associated to the function
F is defined by

Dr = {(20, 21, -, Zn-1) € C" | |20]* < Xo, |z1]? ++++ + |z0-1]? < F(120[%))}.

We shall assume that the natural (1, 1)-form Dp given by

i = 1
. = O R~ = = el
is a Kahler form onDg (see Proposition 2.1 below for some conditions @a equiva-
lent to this assumption). The Kahler metge associated to the Kahler formg is the
metric we will be dealing with in the present paper. Obsehat for F(x) = 1 — X,
0 <x < 1, Df equals then-dimensional complex hyperbolic spa@H" and gr is the
hyperbolic metric, i.egr = gnyp. In the 2-dimensional case this metric has been con-
sidered in [11] and [21] in the framework of quantization cditder manifolds. In [20],
the first author studied the Kahler immersions Bf:( gr) into finite or infinite dimen-
sional complex space forms, [9] is concerned with the emgsteof global symplectic
coordinates onPr, wg) and [10] deals with the Riemannian geometry Bf:( g¢) (in
particular in this paper one can find necessary and suffidenditions in terms of~
for the completeness of the metrig).

Proposition 2.1. Let D be a Hartogs domain irC". Then the following condi-
tions are equivalent
(i) the (1, 1rform we given by(1) is a Kéhler form
(i) the function—x F’(x)/F(x) is strictly increasing namely—(x F'(x)/F(x))’ > 0 for
every xe [0, Xp);
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(iii) the boundary of P is strongly pseudoconvex at all =z (zg, z1, . . ., Zn_1) With
|20/% < Xo.

Proof. (i) < (ii) Set
(2) A=F(z)—|za - -zl

Thenwg is a Kahler form if and only if the real-valued functigh = —log A is strictly
plurisubharmonic, i.e. the matrig,; = (02®/(92,0%)), o, B =0,...,n—1 is positive
definite, where

n—1

[ -
(3) wF = Eaéogag dz, A dz.

A straightforward computation gives
20 F*(|o)|z0” — (F"(120)|20” + F'(|20*) A
02002 A2 '

Pe _ Fl(2)2zs
320025 Az

B=1...,n-1

and

32d _ (SaﬁA‘F szﬁ
02,02 A2 ’

a,p=1...,n-1

Then, by setting
(4) C = F*(|zo|?)|20l* = (F" (1201 20| + F'(120|) A,

C -Fazy -+ —-Foaz, --- —Foaz,
—Fzz A+zn)? --- 27, 2Zn 1
1 . . : .
5 he L o : : o
©) A —F'z, 1z o Atz o Tz
—-Fzz1 7211 - ZyZ 1 A |zo1)?
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First notice that then(— 1) x (n — 1) matrix obtained by deleting the first row
and the first column oh is positive definite. Indeed it is not hard to see that, for all
1<a<n-1,

A+ 1z > Zzg11 - 2,7 1
(6) det
Z-1Zy B1Zerr o A+ ]Zaa)?

= AT AP 2 ) > O

On the other hand, by the Laplace expansion along the first n@avget

deth) = Az [An L A (|z2 4 (20|
—F'zoz 27 - Zy 12
F'2z -F'zz A+ |z)? --- Zn12
+—Az§n1det . . " toe
—F'20Zv1 %1 o0 A |z
—Fzz  A+z? - z02
F'2z -F'zy2 2% o Zn22
(R ey , , "
A 0 . .
—F'z2z1  ZiZ1 o Zn2Zaa
A2n[An ' + A" 2(|le2 -+ |anl|2)]
-1 2 e Zn—1
F72|20|2| 242 2 A+ - za2
+ T det : . : + -
—Z1 B3 o A+ |za)?
-z Atz -z
F’2|20|2|20-1|? —% 1 o In2d
+ (_1)nA—2n det| . . :
-1 Z e Zn_2

An+2[CA+ (C — F2zol*)(|2af? + - - + [z0-1)].

By substituting (2) and (4) into this last equality one gets

% deth) = —AF—il(%)

x=|20[?
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Hence, by (6) and (7), the matrixi®/(0z,92)) is positive definite if and only if
(xF'/FY < 0.

Before proving equivalence (iiy> (iii) we briefly recall some facts on complex
domains (see e.g. [16]). LeR € C" be any complex domain of" with smooth
boundaryd<2, and letz € 9. Assume that, for some neighbourhobd of z in C",
there exists a smooth functign: U — R (called defining function forQ2 at 2) satisfy-
ing the following: p <0 onU N, p>00onU\Q andp =0 onU N3; gradp # 0
on U Nag. In this cased2 is said to bestrongly pseudoconvex atitzthe Levi form

n-1
92p -
L(p, 2)(X) = — (D Xa Xp
a,ﬁZ:O 02,024

is positive definite on

S = [(Xo,---, Xp-1) € C"

n-1 3
S 2 x, = o]
a=0 aza

(it is easily seen that this definition does not depend on txiqular defining func-
tion p).

(i) « (i) Let now Q = D¢ and let us fixz = (29, 3, . . ., Zh—1) € 9Dg with
|Z0|? < Xo. Then, |12 + - - - 4 |Z1-1]? = F(]20/?). In this case

p(20, 21,y Zo1) = |21 + - + [20-a]” = F(|20])
is a defining function forDg at z, the Levi form for Dg reads as
8 L(p, 2)(X) = [Xa|* + - + [Xn-al* = (F' + F"|20]%)| Xol?
and
9 S ={(Xo, X1, ..., Xn-1) € C" | =F'Xo + 21Xy + -+ - + Z -1 Xn-1 = O}
We distinguish two caseszy = 0 andzy # 0. At zp = 0 the Levi form reads as
L(p, 2)(X) = |Xa|? + - - + [ Xn_1]? = F'(0)| Xo|?

which is strictly positive forany non-zero vector Xg, X1, ..., Xn—1) (not necessarily
in S,) becauseF is assumed to be decreasing.

If zg # 0 by (9) we obtainXo = (z1X1 + - - - + Z,-1Xn-1)/F'2% which, substituted
in (8), gives:

= + F//|ZO|2

o 12t Xl

(10)  L(X,2) = |[Xaf> + -+ + [Xna]? -
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We can assume tha X; + --- + Z,_1Xn-1 # 0 (which by (9) is equivalent to
Xo # 0) for otherwiseL (X, 2) is clearly strictly positive for any non-zero vectot e
S,. Therefore we are reduced to show that:

(XF'/F) < 0 for x € (0, o) if and only if L(X, 2) is strictly positive for every
(X1,..., Xn1) # (0,..., 0) and every(zg, z1, . .., Zn_1) € dDg, 0 < |20]? < Xo.

If (xF'/F) <0 then F'+xF")F < xF? and, sinceF(|2/?) = |z1]?+- - - +|zn_1/%,
we get:

L(X,2) > [Xe|2+ -+ | Xnoa|2 = |Z1X1 4 -+ - + Zy1 Xna|?

1
F(|z0/?)
X XDz 4+ (zeeal®) — X+ -+ Za X
B |z2)? + -+ + [z0-1]?

and the conclusion follows by the Cauchy—Schwarz inequalit

Conversely, assume that(X, 2) is strictly positive for every Xy, ..., Xn_1) #
(0,...,0) and eacte = (29, 71, . . ., Zn—1) such thatF(|z|?) = |z|?+ - - - + |Zo-1|% By
inserting (X1, ..., Xn_1) = (z1, - . -, Zo—1) in (10) we get

_F

_ 2
L) = Rl (1- T

() > 0
which implies &F’/F) < 0. ]

REMARK 2.2. Notice that the previous proposition is a generatiratf Propos-
ition 3.6 in [11] proved there for the 2-dimensional case.

Recall (see e.g. [18]) that the Ricci curvature and the scalavature of a Kahler
metric g on ann-dimensional complex manifoldM, g) are given respectively by

32

(11) RiG,; = ey 2ﬂ(log deth)), «,8=0,...,n—-1
and

n-1
(12) scaj = z g’*Ric,z,

a,p=0

whereg#* are the entries of the inverse of,§), namely > 0_o g°%g.; = 83,
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When M, g) = (D, ge), using (5) it is not hard to check the validity of the
following equalities.

= A
oo_ 7™
(13) g —BF,
B0 A /5 5
(14) g =§onzﬁ, B=1,...,n—1,
A
(15) g"“zg(F’+F”|20|2)zazg, a#p, a,fp=1,...,n—1,
A
(16) o = gB+(F'+ F'z0l9)|zs13, B=1,...,n—1,
where

B = B(I202) = F2lzof? ~ F(F' + F'[zo[2).

Now, set

L(x) = %[Xdix log(x F? — F(F' + F”x))]

A straightforward computation using (7) and (11) gives:

17 Ricgs = —L(120l%) — (n + 1)goo,
(18) Ric,; = —(n+ 1)d,3, o« > 0.

Then, by (12), the scalar curvature of the metjic equals

n—1
scal. = —L(1z)9” - (n+1) D> ¢™g,5 = —L(|120[)g* — n(n + 1),
a,f=0
which by (13) reads as
A
(29) scay, = _EFL —n(n + 1).

We conclude this section with Lemma 2.3 below which will bedisn the proof
of our results. This lemma is a generalization of a resulvgdoby the first author for
2-dimensional Hartogs domains (see Theorem 4.8 in [21]).fit8recall the definition
of generalized scalar curvatures. Given a Kahler megiramn ann-dimensional complex
manifold M, its generalized scalar curvatureare then smooth functionsoo, ..., on1
on M satisfying the following equation:

H n-1
det@,; + tRic,z) 14 Z ke

(20) det@, ;) ar
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whereg,; are the entries of the metric in local coordinates. Obsemat for k = 0
we recover the value of the scalar curvature, namely

(21) po = scal.

The introduction and the study of these curvatures (in thepaxt case) are due to
K. Ogiue [23] to whom the reader is referred for further résulln particular, in a
joint paper with B.Y. Chen [1], he studies the constancy oé @i the generalized
scalar curvatures. Their main result is that, under swtalshomological conditions,
the constancy of one of the's, k =0,...,n—1, implies that the metrig is Einstein.

Lemma 2.3. Let(Df,gr) be an n-dimensional Hartogs domain. Assume that one
of its generalized scalar curvatures is constant. TkiBg, gr) is holomorphically iso-
metric to an open subset of the n-dimensional hyperbolicespa

Proof. By (17), (18) we get

det@,s + tRic,z)
det@,z)

=1-(M+D)"—tL@A-(n+ 1)t)“*1%':.

So the generalized curvatures db{, gr) are given by

22 =0+ 1)"(—1)k+1(” - 1) [n(n +1)  AFL

K K11 5 ] k=0,...,n—1.

Notice that, fork = 0, we getpp = —AFL/B —n(n + 1) = sca},, (compare with
(19)) in accordance with (21).

Thus, pi is constant for some (equivalently, for any}=0,...,n—1 if and only if
AFL/B is constant. Since\ = F(|z|?) — |z1|2—- - - — |zn—1|?> depends orzy, ..., z,_1
while LF /B depends only orzy, this implies thatL = 0, i.e.

Il
o

d d
— | x— log(xF? — F(F' + F"x
i O FE  E)|

Now, we continue as in the proof of Theorem 4.8 in [21] and Gaoe thatF (x) =
C1 — CoX, X = |29|%, with ¢y, ¢, > 0, which implies thatDr is holomorphically isometric
to an open subset of the complex hyperbolic sp@¢¢” via the map

Z Zn—
¢: Df — CH", (20,21,...,Zn_1)l—)( i L n 1)
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3. Proof of Theorem 1.1

Extremal metrics were introduced and christened by Cakibin[the compact case
as the solution for the variational problem in a Kahler cldefined by the square in-
tegral of the scalar curvature. Therefore they are a gdmatian of constant scalar
curvature metrics. Calabi himself constructs nontrivizrfiely with nonconstant scalar
curvature) metrics on some compact manifolds. Only regestremal Kahler metrics
were rediscovered by several mathematicians due to timgimlith the stability of com-
plex vector bundles (see e.g. [3], [8], [14], [19] and [22Dbviously extremal metrics
cannot be defined in the noncompact case as the solutions afiational problem in-
volving some integral on the manifold. Nevertheless they ba alternatively defined
(also in the noncompact case) as those metrics such that t@egdart of the Hamilton-
ian vector field associated to the scalar curvature is hotphio. Therefore, in local
coordinates an extremal metric must satisfy the followiggtem of PDE’s (see [4]):

(23) (Z ﬁ“ascab) 0,
$=0

for everya, y =0,...,n—1. Notice that in the noncompact case, the existence and
uniqueness of such metrics are far from being understood eXxample, only recently

in [6] (see also [7]), there has been shown the existence ajrdrimial extremal and
complete Kahler metric in a complex one-dimensional mahifo

Proof of Theorem 1.1. In order to use equations (23) f,(gr) we write the
entriesg?® by separating the terms depending only znfrom the other terms. More
precisely, (13), (14), (15) and (16) can be written as folow

g% = Poo + Qool|za[? + - - + |za-1/?),
0% = 2Z[Poa + Quallzal* + -+ + [z0-aP), @ =1,...,n—1,

0% = F + PaalZ’ = (1 + QaalZ/) D 12* ~ Raalza|®, @ =1,....n-1,
k#£a

0% = 22,[Pap + Qan(|zal? + -+ + [0 1], @ #B, &, B=1,...,n—1,

where
F2 F
P = —, = ——,
oo =7 Qoo B
F'F F/
P = , = -,
Oa B QOa B
FF/_I_F//ZOZ F/+F//ZOZ
Paa—g 1, Qaa= Raa=¢,
B B
F(F' + F"|2ol%) F'+ Flzf?
Pab = Tr Qab = _T
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are all functions depending only dag|?>. We also have (cfr. (19))
(24) scaf. = —n(n+ 1)+ G(F — [z]* —--- — |z0-1])

where

L(1zo|?)F(|20|?)
B(|20|?)

Assume thagg is an extremal metric, namely equation (23) is satisfied. Weyaing
to show that scgl is constant and hence by Lemma 2[3( gr) is holomorphically iso-
metric to an open subset dH", gnyp). In order to do that, fix > 1 and let us consider
equation (23) whelg = g fora =0,y =ii.

We have

G = G(|z) = -

dJsca
9% _ Grag(F — [n2— -+ — |z 1) + 2GF
07y
dscal,.

- —Gz.
07 A

So, equation (23) gives

n—1 n-1
%{ |:Poo + Qooz |Zk|21| |:G/20(F - Z |Zk|2) + 20G F’:|

k=1 k=1
n—-1 n—-1
_ZOG|:POa+ QOaZ|Zk|2] |Zk|2} =0,
=) =)

namely

n-1 n—1
Qooz |:G/ZO(F - |Zk|2) + 20G F/j| — G'zpz, |:Poo + Qoo Y |Zk|2i|
k=1 k=1
n-1 n—1
—20G Qoaz Z |2|? — ZOZiG|:POa + Qoa Z |Zk|2j| =0.
k=1 k=1

Deriving again with respect t@, we get
—2Q00G'207 — 2G QazoZ’ = 0.

Let us assumepz; # 0. This impliesQuG’ + GQpa = 0, i.e.GF' + FG' = 0 or,
equivalently, G = ¢/F for some constant € R. The proof of Theorem 1.1 will be
completed by showing that = 0. In fact, in this cas&s = 0 on the open and dense
subset ofDr consisting of those points such that; # 0 and therefore, by (24), sgal
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is constant orDg. In order to prove that = 0, let us now consider equation (23) for
a=i,y=I.

9 . ) n—1 / n—1
E[Zozi [G ZO(F -> |zk|2) +GF 20} [POa + Qua ) |l
k=1 k=1

-Gz |:F + Paalzi | — (1 + Qaalz ) Z |z|* — Raa|zi|4:|

k£0,i

n—1
-Gz Z |Zk|2|:Pab+ Qabz |Zk|2:” =0

k#0,i k=1
This implies
n-1 n—1
_G/|ZO|22i2|:POa + Qoa Z |Zk|2i| + 7OZi2QOa|:G,ZO(F - Z |Zk|2) + G F/Zoj|
k=1 k=1

- PaaGZ|'2 + GZ'ZQaa z |Zk|2+ZGZ'32 Raa_Gz|'2Qab Z |Zk|2-

K40, kA0,

If we divide by z? (we are assuming; # 0) and derive again the above expression
with respect toz we get

~G'|20]*Qoa + G Rea = 0.

By the definitions made at page 515 this is equivalent to

G'F'|zo]* + G(F" + F"|zo*) _

0,
B

i.e. (GF'x) =0, x = |z|%. SubstitutingG = c/F in this equality we get(F'x/F) =
0. Since E'x/F) < 0 (by (ii) in Proposition 2.1)c is forced to be zero, and this
concludes the proof. O

4. Proof of Theorem 1.2

A Kahler-Ricci solitonon a complex manifoldM is a pair @, X) consisting of a
Kahler metricg and a real holomorphic vector field on M such that

(25) Rig = Ag + Lx0,
for somea € R, whereLxg is the Lie derivative ofg along X, i.e.

(26) Lx9)(Y, Z2) = X(g(Y, 2)) — 9([X, Y], 2) — a(V, [X, Z]),
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for Y, Z vector fields onM. A real holomorphic vector field Xs the real part of
a holomorphic vector field, namely, in local complex cooades ¢, ..., z,-1) on an
open subset C M,

(27) X = Z(fka_zk + fk%),

for some holomorphic functiondx, k =0,...,n—1 onU.

We refer the reader to [5], [25], [26] for the existence andjuaness of Kahler—
Ricci solitons on compact manifolds and to [12] for the nanpact case. Kahler—
Ricci solitons generalize Kéhler—Einstein metrics. Intlemy Kahler—Einstein metric
g on a complex manifoldV gives rise to a trivial Kahler—Ricci soliton by choosing
X =0 or X Killing with respect tog. Obviously if the automorphism group & is
discrete then a Ké&hler—Ricci solito,(X) is nothing but a Kahler—Einstein metri:

Our Theorem 1.2 asserts that a Kahler—Ricci solitgy, X) on a Hartogs domain
De is necessarily trivial. Notice that the automorphism graipDg is not discrete
(see also [17]).

Proof of Theorem 1.2. Letgg, X) be a Kéhler—Ricci soliton. By applying both
sides of (25) to the paird(dzy, 3/0%) and taking into account (17) one gets:

900\ | < (0 fy 3 fi
28)  —L(120l®) = ygos + (f—+f&)+ (— o+ —— )
(28) (120l%) = ¥ 900 Z K5z k53 kzo azogko 9% Yok
where
(29) y =i+ (+1).

By (5), we have

n—1 n—1

a fx of
@0) € =3 Culli+ ) + Ol ) - FZ( 4E+zozka—zg)

where we have sef = —A?L —yC, Cx = A230y5/0% (X = |z|?) and ¢o = 8 fo/d20
(A andC are given by (2) and (4) respectively).



CANONICAL METRICS ONHARTOGS DOMAINS 519

Now, by applying the operatod*/(9%z0%z) (i = 1,...,n — 1) to both sides of
this equation we get

n-1 4 n-1 3 3
0°Cx Ck o fx
—A4AL = f fez fid —2
Zazazg(kzk"i_ kZk) + 2 kg(;azaz(klk-l-az k)
n—-1 n-1 3
33C (- fi_ 82Cy [ 0 fy a fi
+ 23 32|2(k|k+ zk)+ kg:;aziaz(azi |k'|‘82 |k)
-1 n-1 e
92Cy 92 fk 1 92Cy 92 i dC 92 fi
+ — 4 +2 — ——0ik
kz(; 02 a;z Z; 07 07 kzz(; 9z 07
n—-1 _
3Cx 92 fi ¥C 33C 0¢o
+2) ——8k+ + ¢o) + 2——
; 07 922 K 28;2(4)0 ¢o) 27207 7

93C 9py  9%C 3%y  92C 92%¢y

2 — 4 =t ——
* 9202 0z, 92 92 9z2 37

Since C and Cy are rotation invariant, by evaluating the previous expogssit z; =
-+ = z,_1 = 0 and taking into account that

9*C F3
0Z0F |7z, 1—0) F
92C; F2
I_ = 2X_2|
92107 (z1="=2,_1=0} F
9*C
DN PN = 01
0Z70Z |(zy=..=z, =0}
we have
F - F2 .
(31) L= ZXE(fOZ) + fozo) — ZXE((Pi + ¢i),

where¢; = 0 fj /0.

Now, leti =1,...,n—1. By applying both sides of (25) to the pali/0z, 9/0%)
one gets

S (1 29, ;99 of . 0
32 —v0r = f, 1L 1 -4+ —"g:
(32) Vi Z( k 32 + f 8Zk) + ;(BZI Oq + 9z glk)

k=0
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wherey is given by (29). By (5) and (18) this means

A+1aP o pa 2 .
e = 2 ATRIZE + A+ 50l + iz
k=1
_ . F' (dfo_ afg _
33 — AF' 2z > + A(f fozo) — < —2z + —
(33) 2zi° + A)(foz + fozo) Az(azizOZ.JrazzOz)
b E afk(‘ Z + 8 A) + 8f_"(z Z + 8 A)
A2 s 3Zi 4Zi ki 32 k4 ki .
If we evaluate both sides of this equationzat=--- =z, ; = 0 we get
(34) —yF = —F'(foz + fozo) + F(¢i + ).
Moreover, by multiplying equation (33) by?, by applying the operato#?/(dz 3z) to
both sides and evaluating at = --- = z,_ ;1 = 0 one gets
Foo_ . -
(35) 0= —F(fozo + fozo) + (i + ).

Finally, by comparing (31) with (35), one gets= 0 and hence, by the proof of
Lemma 2.3, D, g¢) is holomorphically isometric to an open subset 6fH", gnyp)
and we are done. (Notice that equations (34) and (35) yjetd 0 and by (25) with
OF = Onyp ONe gets thai is a Killing vector field with respect t@ny,, as expected).

O
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