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Abstract
An n-dimensional Hartogs domainDF can be equipped with a natural Kähler

metric gF . This paper contains two results. In the first one we prove that if gF is
an extremal Kähler metric then (DF , gF ) is holomorphically isometric to an open
subset of then-dimensional complex hyperbolic space. In the second one weprove
the same assertion under the assumption that there exists a real holomorphic vector
field X on DF such that (gF , X) is a Kähler–Ricci soliton.

1. Introduction and statements of the main results

The study of the existence and uniqueness of a preferred Kähler metric on a given
complex manifoldM is a very interesting and important area of research, both from
the mathematical and from the physical point of view. Many definitions of canonical
metrics (Einstein, constant scalar curvature, extremal, Kähler–Ricci solitons and so on)
have been given both in the compact and in the noncompact case(see e.g. [2], [15] and
[24]). In the noncompact case many important questions are still open. For example
Yau raised the question on the classification of Bergman Einstein metrics on strongly
pseudoconvex domains and S.-Y. Cheng conjectured that if the Bergman metric on a
strongly pseudoconvex domain is Einstein, then the domain is biholomorphic to the
ball (see [13]).

In this paper we are interested in extremal Kähler metrics and Kähler–Ricci soli-
tons on a particular class of complex domains, the so calledHartogs domains(see the
next section for their definition and main properties).

Our main results are the following theorems.

Theorem 1.1. Let (DF , gF ) be an n-dimensional Hartogs domain. Assume that
gF is an extremal Kähler metric. Then(DF , gF ) is holomorphically isometric to an
open subset of the n-dimensional complex hyperbolic space.

Theorem 1.2. Let (DF , gF ) be an n-dimensional Hartogs domain and let X be a
real holomorphic vector field on DF such that(gF , X) is a Kähler–Ricci soliton. Then
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gF is Kähler–Einstein. Consequently, (DF , gF ) is holomorphically isometric to an open
subset of the n-dimensional complex hyperbolic space.

Notice that (compare with Cheng’s conjecture above) the assumptions on the met-
ric gF in Theorem 1.1 and Theorem 1.2 are weaker than Einstein’s condition. To this
regard it is worth pointing out that whengF equals the Bergman metric onDF , then
(DF , gF ) is holomorphically isometric to an open subset of the complex hyperbolic
space (see Theorem 1.3 in [10] for a proof).

The paper is organized as follows. In the next section, afterrecalling the definition
of Hartogs domains, we analyze their pseudoconvexity, and we prove a lemma regard-
ing their generalized scalar curvatures. Sections 3 and 4 are dedicated to the proofs of
Theorem 1.1 and Theorem 1.2 respectively.

2. Hartogs domains

Let x0 2 RC [ {C1} and let F W [0, x0) ! (0,C1) be a decreasing continuous
function, smooth on (0,x0). The Hartogs domain DF � Cn associated to the function
F is defined by

DF D {(z0, z1, : : : , zn�1) 2 Cn j jz0j2 < x0, jz1j2C � � � C jzn�1j2 < F(jz0j2)}.

We shall assume that the natural (1, 1)-form onDF given by

(1) !F D i

2
�� log

1

F(jz0j2) � jz1j2 � � � � � jzn�1j2
is a Kähler form onDF (see Proposition 2.1 below for some conditions onDF equiva-
lent to this assumption). The Kähler metricgF associated to the Kähler form!F is the
metric we will be dealing with in the present paper. Observe that for F(x) D 1� x,
0� x < 1, DF equals then-dimensional complex hyperbolic spaceCHn and gF is the
hyperbolic metric, i.e.gF D ghyp. In the 2-dimensional case this metric has been con-
sidered in [11] and [21] in the framework of quantization of Kähler manifolds. In [20],
the first author studied the Kähler immersions of (DF , gF ) into finite or infinite dimen-
sional complex space forms, [9] is concerned with the existence of global symplectic
coordinates on (DF , !F ) and [10] deals with the Riemannian geometry of (DF , gF ) (in
particular in this paper one can find necessary and sufficientconditions in terms ofF
for the completeness of the metricgF ).

Proposition 2.1. Let DF be a Hartogs domain inCn. Then the following condi-
tions are equivalent:
(i) the (1, 1)-form !F given by(1) is a Kähler form;
(ii) the function�x F0(x)=F(x) is strictly increasing, namely�(x F0(x)=F(x))0 > 0 for
every x2 [0, x0);
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(iii) the boundary of DF is strongly pseudoconvex at all zD (z0, z1, : : : , zn�1) withjz0j2 < x0.

Proof. (i), (ii) Set

(2) AD F(jz0j2) � jz1j2 � � � � � jzn�1j2.

Then!F is a Kähler form if and only if the real-valued function8D� log A is strictly
plurisubharmonic, i.e. the matrixg� N� D (�28=(�z�� Nz�)), �, � D 0, : : : , n� 1 is positive
definite, where

(3) !F D i

2

n�1
∑

�,�D0

g� N� dz� ^ dNz� .

A straightforward computation gives

�28�z0� Nz0
D F 02(jz0j2)jz0j2 � (F 00(jz0j2)jz0j2C F 0(jz0j2))A

A2
,

�28�z0� Nz� D �
F 0(jz0j2)Nz0z�

A2
, � D 1, : : : , n� 1

and

�28�z�� Nz� D
Æ�� AC Nz�z�

A2
, �, � D 1, : : : , n� 1.

Then, by setting

(4) C D F 02(jz0j2)jz0j2 � (F 00(jz0j2)jz0j2C F 0(jz0j2))A,

one sees that the matrixh D (g� N�) D (�28=(�z�� Nz�))�,�D0,:::,n�1 is given by:

(5) h D 1

A2























C �F 0 Nz0z1 � � � �F 0 Nz0z� � � � �F 0 Nz0zn�1�F 0z0Nz1 AC jz1j2 � � � Nz1z� � � � Nz1zn�1
...

...
...

...�F 0z0Nz� z1Nz� � � � AC jz�j2 � � � Nz�zn�1
...

...
...

...�F 0z0Nzn�1 z1Nzn�1 � � � z� Nzn�1 � � � AC jzn�1j2























.
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First notice that the (n � 1) � (n � 1) matrix obtained by deleting the first row
and the first column ofh is positive definite. Indeed it is not hard to see that, for all
1� � � n� 1,

(6)
det







AC jz�j2 Nz�z�C1 � � � Nz�zn�1
...

...
...Nzn�1z� Nzn�1z�C1 � � � AC jzn�1j2







D An�� C An���1(jz�j2C � � � C jzn�1j2) > 0.

On the other hand, by the Laplace expansion along the first row, we get

det(h) D C

A2n
[ An�1C An�2(jz1j2C � � � C jzn�1j2)]

C F 0 Nz0z1

A2n
det











�F 0z0Nz1 z2Nz1 � � � zn�1Nz1�F 0z0Nz2 AC jz2j2 � � � zn�1Nz2
...

...
...�F 0z0Nzn�1 z2Nzn�1 � � � AC jzn�1j2











C � � �

C (�1)n
F 0 Nz0zn�1

A2n
det











�F 0z0Nz1 AC jz1j2 � � � zn�2Nz1�F 0z0Nz2 z1Nz2 � � � zn�2Nz2
...

...
...�F 0z0Nzn�1 z1Nzn�1 � � � zn�2Nzn�1











D C

A2n
[ An�1C An�2(jz1j2C � � � C jzn�1j2)]

C F 02jz0j2jz1j2
A2n

det











�1 z2 � � � zn�1�Nz2 AC jz2j2 � � � zn�1Nz2
...

...
...�Nzn�1 z2Nzn�1 � � � AC jzn�1j2











C � � �

C (�1)n
F 02jz0j2jzn�1j2

A2n
det











�Nz1 AC jz1j2 � � � zn�2Nz1�Nz2 z1Nz2 � � � zn�2Nz2
...

...
...�1 z1 � � � zn�2











D 1

AnC2
[C AC (C � F 02jz0j2)(jz1j2C � � � C jzn�1j2)].

By substituting (2) and (4) into this last equality one gets

(7) det(h) D � F2

AnC1

(

x F0
F

)0∣
∣

∣

∣

xDjz0j2.
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Hence, by (6) and (7), the matrix (�28=(�z�� Nz�)) is positive definite if and only if
(x F0=F)0 < 0.

Before proving equivalence (ii), (iii) we briefly recall some facts on complex
domains (see e.g. [16]). Let� � Cn be any complex domain ofCn with smooth
boundary��, and let z 2 ��. Assume that, for some neighbourhoodU of z in Cn,
there exists a smooth function� W U ! R (called defining function for� at z) satisfy-
ing the following: � < 0 on U \�, � > 0 on U n N� and� D 0 on U \ ��; grad� ¤ 0
on U \ ��. In this case�� is said to bestrongly pseudoconvex at zif the Levi form

L(�, z)(X) D n�1
∑

�,�D0

�2��z�� Nz� (z)X� NX�
is positive definite on

S� D
{

(X0, : : : , Xn�1) 2 Cn
n�1
∑

�D0

���z� (z)X� D 0

}

(it is easily seen that this definition does not depend on the particular defining func-
tion �).

(ii) , (iii) Let now � D DF and let us fixz D (z0, z1, : : : , zn�1) 2 �DF withjz0j2 < x0. Then, jz1j2C � � � C jzn�1j2 D F(jz0j2). In this case

�(z0, z1, : : : , zn�1) D jz1j2C � � � C jzn�1j2 � F(jz0j2)

is a defining function forDF at z, the Levi form for DF reads as

(8) L(�, z)(X) D jX1j2C � � � C jXn�1j2 � (F 0 C F 00jz0j2)jX0j2
and

(9) S� D {(X0, X1, : : : , Xn�1) 2 Cn j �F 0 Nz0X0C Nz1X1C � � � C Nzn�1Xn�1 D 0}.

We distinguish two cases:z0 D 0 and z0 ¤ 0. At z0 D 0 the Levi form reads as

L(�, z)(X) D jX1j2C � � � C jXn�1j2 � F 0(0)jX0j2
which is strictly positive forany non-zero vector (X0, X1, : : : , Xn�1) (not necessarily
in S�) becauseF is assumed to be decreasing.

If z0 ¤ 0 by (9) we obtainX0 D (Nz1X1C � � � C Nzn�1Xn�1)=F 0 Nz0 which, substituted
in (8), gives:

(10) L(X, z) D jX1j2C � � � C jXn�1j2 � F 0 C F 00jz0j2
F 02jz0j2 jNz1X1C � � � C Nzn�1Xn�1j2.
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We can assume thatNz1X1 C � � � C Nzn�1Xn�1 ¤ 0 (which by (9) is equivalent to
X0 ¤ 0) for otherwiseL(X, z) is clearly strictly positive for any non-zero vectorX 2
S� . Therefore we are reduced to show that:

(x F0=F)0 < 0 for x 2 (0, x0) if and only if L(X, z) is strictly positive for every
(X1, : : : , Xn�1) ¤ (0, : : : , 0) and every(z0, z1, : : : , zn�1) 2 �DF , 0< jz0j2 < x0.

If (x F0=F)0 < 0 then (F 0Cx F00)F < x F02 and, sinceF(jz0j2)D jz1j2C� � �Cjzn�1j2,
we get:

L(X, z) > jX1j2C � � � C jXn�1j2 � 1

F(jz0j2)
jNz1X1C � � � C Nzn�1Xn�1j2

D (jX1j2C � � � C jXn�1j2)(jz1j2C � � � C jzn�1j2) � jNz1X1C � � � C Nzn�1Xn�1j2jz1j2C � � � C jzn�1j2
and the conclusion follows by the Cauchy–Schwarz inequality.

Conversely, assume thatL(X, z) is strictly positive for every (X1, : : : , Xn�1) ¤
(0, : : : , 0) and eachzD (z0, z1, : : : , zn�1) such thatF(jz0j2) D jz1j2C � � � C jzn�1j2. By
inserting (X1, : : : , Xn�1) D (z1, : : : , zn�1) in (10) we get

L(z, z) D F(jz0j2)

(

1� F 0 C F 00jz0j2
F 02jz0j2 F(jz0j2)

) > 0

which implies (x F0=F)0 < 0.

REMARK 2.2. Notice that the previous proposition is a generalization of Propos-
ition 3.6 in [11] proved there for the 2-dimensional case.

Recall (see e.g. [18]) that the Ricci curvature and the scalar curvature of a Kähler
metric g on ann-dimensional complex manifold (M, g) are given respectively by

(11) Ric� N� D � �2

�z�� Nz� (log det(h)), �, � D 0, : : : , n� 1

and

(12) scalg D n�1
∑

�,�D0

g
N��Ric� N� ,

where g N�� are the entries of the inverse of (g� N�), namely
∑n�1�D0 g N��g� N
 D Æ�
 .
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When (M, g) D (DF , gF ), using (5) it is not hard to check the validity of the
following equalities.

g
N00D A

B
F ,(13)

g
N�0 D A

B
F 0z0Nz� , � D 1, : : : , n� 1,(14)

g
N�� D A

B
(F 0 C F 00jz0j2)z� Nz� , � ¤ �, �, � D 1, : : : , n� 1,(15)

g
N�� D A

B
[BC (F 0 C F 00jz0j2)jz� j2], � D 1, : : : , n� 1,(16)

where

B D B(jz0j2) D F 02jz0j2 � F(F 0 C F 00jz0j2).

Now, set

L(x) D d

dx

[

x
d

dx
log(x F02 � F(F 0 C F 00x))

]

.

A straightforward computation using (7) and (11) gives:

Ric0N0 D �L(jz0j2) � (nC 1)g0N0,(17)

Ric� N� D �(nC 1)g� N� , � > 0.(18)

Then, by (12), the scalar curvature of the metricgF equals

scalgF D �L(jz0j2)g
N00� (nC 1)

n�1
∑

�,�D0

g
N��g� N� D �L(jz0j2)g

N00� n(nC 1),

which by (13) reads as

(19) scalgF D � A

B
F L � n(nC 1).

We conclude this section with Lemma 2.3 below which will be used in the proof
of our results. This lemma is a generalization of a result proved by the first author for
2-dimensional Hartogs domains (see Theorem 4.8 in [21]). Wefirst recall the definition
of generalized scalar curvatures. Given a Kähler metricg on ann-dimensional complex
manifold M, its generalized scalar curvaturesare then smooth functions�0, : : : , �n�1

on M satisfying the following equation:

(20)
det(g� N� C tRic� N�)

det(g� N�)
D 1C n�1

∑

kD0

�ktkC1,
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where g� N� are the entries of the metric in local coordinates. Observe that for k D 0
we recover the value of the scalar curvature, namely

(21) �0 D scalg.

The introduction and the study of these curvatures (in the compact case) are due to
K. Ogiue [23] to whom the reader is referred for further results. In particular, in a
joint paper with B.Y. Chen [1], he studies the constancy of one of the generalized
scalar curvatures. Their main result is that, under suitable cohomological conditions,
the constancy of one of the�k

0s, kD 0,: : : , n�1, implies that the metricg is Einstein.

Lemma 2.3. Let (DF ,gF ) be an n-dimensional Hartogs domain. Assume that one
of its generalized scalar curvatures is constant. Then(DF , gF ) is holomorphically iso-
metric to an open subset of the n-dimensional hyperbolic space.

Proof. By (17), (18) we get

det(g� N� C tRic� N�)

det(g� N�)
D (1� (nC 1)t)n � t L(1� (nC 1)t)n�1 AF

B
.

So the generalized curvatures of (DF , gF ) are given by

(22) �k D (nC 1)k(�1)kC1

(

n� 1

k

)[

n(nC 1)

kC 1
C AF L

B

]

, k D 0, : : : , n� 1.

Notice that, fork D 0, we get�0 D �AF L=B� n(nC 1)D scalgF , (compare with
(19)) in accordance with (21).

Thus,�k is constant for some (equivalently, for any)kD 0,: : : , n�1 if and only if
AF L=B is constant. SinceAD F(jz0j2)� jz1j2� � � � � jzn�1j2 depends onz1, : : : , zn�1

while L F=B depends only onz0, this implies thatL D 0, i.e.

d

dx

[

x
d

dx
log(x F02 � F(F 0 C F 00x))

]

xDjz0j2 � 0.

Now, we continue as in the proof of Theorem 4.8 in [21] and conclude thatF(x) D
c1� c2x, x D jz0j2, with c1, c2 > 0, which implies thatDF is holomorphically isometric
to an open subset of the complex hyperbolic spaceCHn via the map

� W DF ! CHn, (z0, z1, : : : , zn�1) 7! (

z0p
c1=c2

,
z1p
c1

, : : : , zn�1p
c1

)

.
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3. Proof of Theorem 1.1

Extremal metrics were introduced and christened by Calabi [4] in the compact case
as the solution for the variational problem in a Kähler classdefined by the square in-
tegral of the scalar curvature. Therefore they are a generalization of constant scalar
curvature metrics. Calabi himself constructs nontrivial (namely with nonconstant scalar
curvature) metrics on some compact manifolds. Only recently extremal Kähler metrics
were rediscovered by several mathematicians due to their link with the stability of com-
plex vector bundles (see e.g. [3], [8], [14], [19] and [22]).Obviously extremal metrics
cannot be defined in the noncompact case as the solutions of a variational problem in-
volving some integral on the manifold. Nevertheless they can be alternatively defined
(also in the noncompact case) as those metrics such that the (1, 0)-part of the Hamilton-
ian vector field associated to the scalar curvature is holomorphic. Therefore, in local
coordinates an extremal metric must satisfy the following system of PDE’s (see [4]):

(23)
�� Nz

(

n�1
∑

�D0

g
N�� �scalg� Nz�

)

D 0,

for every �, 
 D 0, : : : , n � 1. Notice that in the noncompact case, the existence and
uniqueness of such metrics are far from being understood. For example, only recently
in [6] (see also [7]), there has been shown the existence of a nontrivial extremal and
complete Kähler metric in a complex one-dimensional manifold.

Proof of Theorem 1.1. In order to use equations (23) for (DF , gF ) we write the
entriesg N�� by separating the terms depending only onz0 from the other terms. More
precisely, (13), (14), (15) and (16) can be written as follows.

g
N00D P00C Q00(jz1j2C � � � C jzn�1j2),

g
N0� D Nz0z�[ P0a C Q0a(jz1j2C � � � C jzn�1j2)], � D 1, : : : , n� 1,

g N�� D F C Paajz�j2 � (1C Qaajz�j2)
∑

k¤� jzkj2 � Raajz�j4, � D 1, : : : , n� 1,

g
N�� D Nz�z�[ PabC Qab(jz1j2C � � � C jzn�1j2)], � ¤ �, �, � D 1, : : : , n� 1,

where

P00D F2

B
, Q00D � F

B
,

P0a D F 0F
B

, Q0a D � F 0
B

,

Paa D F(F 0 C F 00jz0j2)

B
� 1, Qaa D Raa D F 0 C F 00jz0j2

B
,

Pab D F(F 0 C F 00jz0j2)

B
, Qab D � F 0 C F 00jz0j2

B



516 A. LOI AND F. ZUDDAS

are all functions depending only onjz0j2. We also have (cfr. (19))

(24) scalgF D �n(nC 1)C G(F � jz1j2 � � � � � jzn�1j2)

where

G D G(jz0j2) D � L(jz0j2)F(jz0j2)

B(jz0j2)
.

Assume thatgF is an extremal metric, namely equation (23) is satisfied. We are going
to show that scalgF is constant and hence by Lemma 2.3 (DF , gF ) is holomorphically iso-
metric to an open subset of (CHn, ghyp). In order to do that, fixi � 1 and let us consider
equation (23) wheng D gF for � D 0, 
 D i .

We have

�scalgF� Nz0
D G0z0(F � jz1j2 � � � � � jzn�1j2)C z0GF0

�scalgF� Nzi
D �Gzi .

So, equation (23) gives

�� Nzi

{[

P00C Q00

n�1
∑

kD1

jzkj2
][

G0z0

(

F � n�1
∑

kD1

jzkj2
)

C z0GF0]

� z0G

[

P0a C Q0a

n�1
∑

kD1

jzkj2
]

n�1
∑

kD1

jzkj2
}

D 0,

namely

Q00zi

[

G0z0

(

F � n�1
∑

kD1

jzkj2
)

C z0GF0] � G0z0zi

[

P00C Q00

n�1
∑

kD1

jzkj2
]

� z0GQ0azi

n�1
∑

kD1

jzkj2 � z0zi G

[

P0a C Q0a

n�1
∑

kD1

jzkj2
]

D 0.

Deriving again with respect toNzi , we get

�2Q00G
0z0z2

i � 2GQ0az0z2
i D 0.

Let us assumez0zi ¤ 0. This implies Q00G0 C GQ0a D 0, i.e. GF0 C FG0 D 0 or,
equivalently,G D c=F for some constantc 2 R. The proof of Theorem 1.1 will be
completed by showing thatc D 0. In fact, in this caseG D 0 on the open and dense
subset ofDF consisting of those points such thatz0zi ¤ 0 and therefore, by (24), scalgF
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is constant onDF . In order to prove thatcD 0, let us now consider equation (23) for� D i , 
 D i .

�� Nzi

{

Nz0zi

[

G0z0

(

F � n�1
∑

kD1

jzkj2
)

C GF0z0

][

P0a C Q0a

n�1
∑

kD1

jzkj2
]

� Gzi

[

F C Paajzi j2 � (1C Qaajzi j2)
∑

k¤0,i

jzkj2 � Raajzi j4
]

� Gzi

∑

k¤0,i

jzkj2
[

PabC Qab

n�1
∑

kD1

jzkj2
]}

D 0.

This implies

�G0jz0j2z2
i

[

P0a C Q0a

n�1
∑

kD1

jzkj2
]

C Nz0z2
i Q0a

[

G0z0

(

F � n�1
∑

kD1

jzkj2
)

C GF0z0

]

� PaaGz2
i C Gz2

i Qaa

∑

k¤0,i

jzkj2C 2Gz3
i Nzi Raa � Gz2

i Qab

∑

k¤0,i

jzkj2.

If we divide by z2
i (we are assumingzi ¤ 0) and derive again the above expression

with respect toNzi we get

�G0jz0j2Q0a C G Raa D 0.

By the definitions made at page 515 this is equivalent to

G0F 0jz0j2C G(F 0 C F 00jz0j2)

B
D 0,

i.e. (GF0x)0 D 0, x D jz0j2. SubstitutingG D c=F in this equality we getc(F 0x=F)0 D
0. Since (F 0x=F)0 < 0 (by (ii) in Proposition 2.1)c is forced to be zero, and this
concludes the proof.

4. Proof of Theorem 1.2

A Kähler–Ricci solitonon a complex manifoldM is a pair (g, X) consisting of a
Kähler metricg and a real holomorphic vector fieldX on M such that

(25) Ricg D �gC L Xg,

for some� 2 R, where L Xg is the Lie derivative ofg along X, i.e.

(26) (L Xg)(Y, Z) D X(g(Y, Z)) � g([X, Y], Z) � g(Y, [X, Z]),
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for Y, Z vector fields onM. A real holomorphic vector field Xis the real part of
a holomorphic vector field, namely, in local complex coordinates (z0, : : : , zn�1) on an
open subsetU � M,

(27) X D n�1
∑

kD0

(

fk
��zk
C Nfk

�� Nzk

)

,

for some holomorphic functionsfk, k D 0, : : : , n� 1 on U .
We refer the reader to [5], [25], [26] for the existence and uniqueness of Kähler–

Ricci solitons on compact manifolds and to [12] for the noncompact case. Kähler–
Ricci solitons generalize Kähler–Einstein metrics. Indeed any Kähler–Einstein metric
g on a complex manifoldM gives rise to a trivial Kähler–Ricci soliton by choosing
X D 0 or X Killing with respect tog. Obviously if the automorphism group ofM is
discrete then a Kähler–Ricci soliton (g, X) is nothing but a Kähler–Einstein metricg.

Our Theorem 1.2 asserts that a Kähler–Ricci soliton (gF , X) on a Hartogs domain
DF is necessarily trivial. Notice that the automorphism groupof DF is not discrete
(see also [17]).

Proof of Theorem 1.2. Let (gF , X) be a Kähler–Ricci soliton. By applying both
sides of (25) to the pair (�=�z0, �=� Nz0) and taking into account (17) one gets:

(28) �L(jz0j2) D 
 g0N0C
n�1
∑

kD0

(

fk
�g0N0�zk

C Nfk
�g0N0� Nzk

)C n�1
∑

kD0

(� fk�z0
gkN0C � Nfk� Nz0

g0Nk
)

where

(29) 
 D �C (nC 1).

By (5), we have

(30) QC D n�1
∑

kD0

Ck( fk Nzk C Nfkzk)C C(�0C N�0) � F 0 n�1
∑

kD1

(

z0Nzk
� fk�z0
C Nz0zk

� Nfk� Nz0

)

where we have setQC D �A2L � 
C, Ck D A2�g0N0=�xk (xk D jzkj2) and�0 D � f0=�z0

(A and C are given by (2) and (4) respectively).
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Now, by applying the operator�4=(�2zi �2Nzi ) (i D 1, : : : , n � 1) to both sides of
this equation we get

�4L D n�1
∑

kD0

�4Ck�z2
i � Nz2

i

( fk Nzk C Nfkzk)C 2
n�1
∑

kD0

�3Ck�z2
i � Nzi

(

fkÆik C � Nfk� Nzi
zk

)

C 2
n�1
∑

kD0

�3Ck�zi � Nz2
i

( NfkÆik C � fk�zi
Nzk

)C 4
n�1
∑

kD0

�2Ck�zi � Nzi

(� fk�zi
Æik C � Nfk� Nzi

Æik

)

C n�1
∑

kD0

�2Ck�z2
i

�2 Nfk� Nz2
i

zk C n�1
∑

kD0

�2Ck� Nz2
i

�2 fk�z2
i

Nzk C 2
n�1
∑

kD0

�Ck�zi

�2 Nfk� Nz2
i

Æik

C 2
n�1
∑

kD0

�Ck� Nzi

�2 fk�z2
i

Æik C �4C�z2
i � Nz2

i

(�0C N�0)C 2
�3C�z2

i � Nzi

� N�0� Nzi

C 2
�3C�zi � Nz2

i

��0�zi
C �2C� Nz2

i

�2�0�z2
i

C �2C�z2
i

�2 N�0� Nz2
i

.

Since C and Ck are rotation invariant, by evaluating the previous expression at z1 D� � � D zn�1 D 0 and taking into account that

�4C0�z2
i � Nz2

i

∣

∣

∣

∣

{z1D���Dzn�1D0}

D �8x
F 03
F3

,

�2Ci�zi � Nzi

∣

∣

∣

∣

{z1D���Dzn�1D0}

D 2x
F 02
F2

,

�4C�z2
i � Nz2

i

∣

∣

∣

∣

{z1D���Dzn�1D0}

D 0,

we have

(31) L D 2x
F 03
F3

( f0Nz0C Nf0z0) � 2x
F 02
F2

(�i C N�i ),

where�i D � fi =�zi .
Now, let i D 1, : : : , n�1. By applying both sides of (25) to the pair (�=�zi , �=� Nzi )

one gets

(32) �
 gi Ni D
n�1
∑

kD0

(

fk
�gi Ni�zk
C Nfk

�gi Ni� Nzk

)C n�1
∑

kD0

(� fk�zi
gkNi C � Nfk� Nzi

gi Nk
)
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where
 is given by (29). By (5) and (18) this means

(33)

�
 AC jzi j2
A2

D n�1
∑

kD1

A�3[2jzi j2C A(1C Æik)]( fk Nzk C Nfkzk)

� A�3F 0(2jzi j2C A)( f0Nz0C Nf0z0) � F 0
A2

(� f0�zi
Nz0zi C � Nf0� Nzi

z0Nzi

)

C 1

A2

n�1
∑

kD1

[� fk�zi
(Nzkzi C Æki A)C � Nfk� Nzi

(zk Nzi C Æki A)

]

.

If we evaluate both sides of this equation atz1 D � � � D zn�1 D 0 we get

(34) �
 F D �F 0( f0Nz0C Nf0z0)C F(�i C N�i ).

Moreover, by multiplying equation (33) byA2, by applying the operator�2=(�zi � Nzi ) to
both sides and evaluating atz1 D � � � D zn�1 D 0 one gets

(35) 0D � F 0
F

( f0Nz0C Nf0z0)C (�i C N�i ).

Finally, by comparing (31) with (35), one getsL D 0 and hence, by the proof of
Lemma 2.3, (DF , gF ) is holomorphically isometric to an open subset of (CHn, ghyp)
and we are done. (Notice that equations (34) and (35) yield
 D 0 and by (25) with
gF D ghyp one gets thatX is a Killing vector field with respect toghyp, as expected).
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