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Abstract
Let (M , I , J, K , g) be a hyperkähler manifold, dimR M D 4n. We study posi-

tive, �-closed (2p, 0)-forms on (M , I ). These forms are quaternionic analogues of
the positive (p, p)-forms, well-known in complex geometry. We construct a mono-

morphismVp, p W 32p,0
I (M) ! 3nCp,nCp

I (M), which maps�-closed (2p, 0)-forms to
closed (nC p, nC p)-forms, and positive (2p, 0)-forms to positive (nC p, nC p)-
forms. This construction is used to prove a hyperkähler version of the classical
Skoda–El Mir theorem, which says that a trivial extension of aclosed, positive cur-
rent over a pluripolar set is again closed. We also prove the hyperkähler version of
the Sibony’s lemma, showing that a closed, positive (2p, 0)-form defined outside of
a compact complex subvarietyZ � (M , I ), codimZ > 2p is locally integrable in a
neighbourhood ofZ. These results are used to prove polystability of derived direct
images of certain coherent sheaves.

Contents
1. Introduction ......................................................................... 354

1.1. Hypercomplex manifolds and hyperkähler manifolds. .............. 354
1.2. Positive (2, 0)-forms on hypercomplex manifolds and quaternionic

Hermitian structures. ....................................................... 355
1.3. Positive (2p, 0)-forms on hypercomplex manifolds. ................ 357
1.4. Hyperholomorphic bundles and reflexive sheaves. ................... 359

2. Quaternionic Dolbeault complex ............................................... 362
2.1. Weights ofSU(2)-representations. ....................................... 362
2.2. Quaternionic Dolbeault complex: a definition. ....................... 363
2.3. The Hodge decomposition of the quaternionic Dolbeaultcomplex. 363

3. Quaternionic pseudo-Hermitian structures ................................... 365
4. Positive, closed (2p, 0)-forms .................................................. 367

4.1. The isomorphism3pCq,0
I (M)

Rp,q���! 3p,qC, I (M). ........................ 367
4.2. Strongly positive, weakly positive and real (2p, 0)-forms. ........ 369

4.3. The mapVp,qW 3pCq,0
I (M)!3nCp,nCq

I (M) on SL(n,H)-manifolds. 372
5. Sibony’s lemma for positive (2p, 0)-forms .................................. 377

5.1. !q-positive (1, 1)-forms. .................................................. 377
5.2. Positive (2p, 0)-forms on hypercomplex manifolds. ................ 378
5.3. !q-positive forms in a neighbourhood of a subvariety. ............ 379

6. Skoda–El Mir theorem for hyperkähler manifolds ........................ 381

2000 Mathematics Subject Classification. 32F17, 53C26, 32U05.
Misha Verbitsky is supported by CRDF grant RM1-2354-MO02.



354 M. VERBITSKY

1. Introduction

1.1. Hypercomplex manifolds and hyperkähler manifolds. Let M be a smooth
manifold, equipped with an action of the algebra

H D h1, I , J, K j I 2 D J2 D I J K D �1i
of quaternions on its tangent bundle. Such a manifold is called an almost hypercomplex
manifold. The operatorsI , J, K define three almost complex structures onM. If these
almost complex structures are integrable, (M, I , J, K ) is calleda hypercomplex manifold.

Hypercomplex manifolds can be defined in terms of complex geometry, using the
notion of a twistor space ([16], [26]). A scheme-theoretic definition of a hypercomplex
space also exists, allowing one to define hypercomplex varieties, and even hypercomplex
schemes ([26]).

Still, in algebraic geometry, the notion of a hyperkähler manifold is much more
popular. A hyperkähler manifold is a hypercomplex manifold(M, I , J, K ), equipped
with a Riemannian formg, in such a way thatg is a Kähler metric with respect toI ,
J and K .

Historically, these definitions were given in opposite order: Calabi defined the hyper-
kähler structure in 1978, and constructed one on the total space of a cotangent bundle
to CPn ([9]), and Boyer defined hypercomplex structures and classified compact hyper-
complex manifolds in quaternionic dimension 1 in 1988 ([8]). The hyperkähler structures
are much more prominent because of Calabi–Yau theorem, [35], which can be used to
construct hyperkähler structures on compact, holomorphically symplectic Kähler mani-
folds ([7]).

Let (M, I , J, K , g) be a hyperkähler manifold. Sinceg is Kähler with respect to
I , J, K , the manifoldM is equipped with three symplectic forms:

!I ( � , � ) WD g( � , I � ), !J( � , � ) WD g( � , J � ), !K ( � , � ) WD g( � , K � ).
A simple linear-algebraic calculation can be used to show that the form� WD !J Cp�1!K is of Hodge type (2, 0) with respect to the complex structureI (see e.g. [7]).
Since� is also closed, it is holomorphic. This gives a holomorphic symplectic struc-
ture on a given hyperkähler manifold. Conversely, each holomorphically symplectic,
compact, Kähler manifold admits a hyperkähler metric, which is unique in a given
Kähler class ([7]).

In algebraic geometry, the words “hyperkähler” and “holomorphically symplectic”
are used as synonyms, if applied to projective manifolds. There are papers on “hyper-
kähler manifolds in characteristicp” dealing with holomorphically symplectic, project-
ive manifolds in characteristicp.

The first occurrence of hyperkähler manifolds precedes the definition given by Calabi
by almost 25 years. In his work on classification of irreducible holonomy groups on
Riemannian manifolds, [6], M. Berger listed, among other groups, the group ofSp(n) of
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quaternionic unitary matrices. The holonomy of the Levi–Civita connection of a Kähler
manifold preserves its complex structure (this is one of thedefinitions of a Kähler mani-
fold). Therefore, the holonomy of a hyperkähler manifold preservesI , J, and K . We
obtained that the holonomy group of a hyperkähler manifold lies in Sp(n). The converse
is also true: if the Levi–Civita connection of a Riemannian manifold M preserves a com-
plex structure, it is Kähler (this is, again, one of the definitions of a Kähler manifold),
and if it preserves an action of quaternions, it is hyperkähler.

In physics, this is often used as a definition of a hyperkählerstructure.
Summarizing, there are three competing approaches to hyperkähler geometry.

(i) A hyperkähler manifold is a Riemannian manifold (M, g) equipped with almost
complex structuresI , J, K satisfying I Æ J D�JÆ I D K , such that (M, I , g), (M, J, g)
and (M, K , g) are Kähler.
(ii) A hyperkähler manifold is a Riemannian manifold with holonomy which is a sub-
group of Sp(n).
(iii) (for compact manifolds) A hyperkähler manifold is a compact complex manifold
of Kähler type, equipped with a holomorphic symplectic structure.

Returning to hypercomplex geometry, there is no hypercomplex analogue of Calabi–
Yau theorem, hence no definition in terms of algebro-geometric data such as in (iii). How-
ever, hypercomplex manifold can also be characterized in terms of holonomy.

Recall thatObata connectionon an almost hypercomplex manifold is a torsion-
free connection preservingI , J and K . Obata ([19]) has shown that such a connec-
tion is unique, and exists if the almost complex structuresI , J and K are integrable.
The holonomy of Obata connection obviously lies inGL(n, H). The converse is also
true: if a manifoldM admits a torsion-free connection preserving operatorsI , J, K 2
End(T M), generating the quaternionic action,

I 2 D J2 D K 2 D I J K D �IdT M,

then the almost complex structure operatorsI , J, K are integrable. Indeed, an almost
complex structure is integrable if it is preserved by some torsion-free connection.

We obtain that a hypercomplex manifold is a manifold equipped with a torsion-
free connectionr with holonomy Hol(r) � GL(n, H). If, in addition, the holonomy
of Obata connection is a compact group,M is hyperkähler.

Some notions of complex geometry have natural quaternionicanalogues in hyper-
complex geometry, many of them quite useful.

By far, the most useful of these is the notion of HKT-forms, which is a quaternionic
analogue of Kähler forms ([13], [3], [1]). Generalizing HKT-forms, one naturally comes
across the notion of closed, positive (2, 0)-forms on a hypercomplex manifold.

1.2. Positive (2, 0)-forms on hypercomplex manifolds and quaternionic Hermit-
ian structures. Let (M, I , J, K ) be a hypercomplex manifold. We denote the space of
(p,q)-forms on (M, I ) by 3p,q

I (M). The operatorsI and J anticommute, and therefore,
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J(3p,q
I (M)) D 3q, p

I (M). The map�! J( N�) induces an anticomplex endomorphism of3p,q
I (M). Clearly,

J2j3p,q
I (M) D (�1)pCqId.

For p C q even, � ! J( N�) is an anticomplex involution, that is, a real structure on3q, p
I (M). A (2p, 0)-form � 2 32p,0

I (M) is called real if � D J( N�). The bundle of real

(2p, 0)-forms is denoted32p,0
I (M, R).

The real (2, 0)-forms are most significant, because they can be interpreted as quater-
nionic pseudo-Hermitian structures.

Recall that a Riemannian metricg on an almost complex manifold (M, I ) is called
Hermitian if g is U (1)-invariant, with respect to theU (1)-action onT M defined by

t ! cost � idT M C sin t � I .

This is equivalent tog(I � , I � ) D g( � , � ).
When M is almost hypercomplex, it is natural to consider a groupG � End(T M)

generated byU (1)-action associated withI , J, K as above. It is easy to see thatG is
the group of unitary quaternions, naturally identified withSU(2). Thus obtained action of
SU(2) on3�(M) is fundamental, and plays in hypercomplex and hyperkählergeometry
the same role as played by the Hodge structures in complex algebraic geometry.

Recall that bilinear symmetric forms (not necessarily positive definite) onT M are
called pseudo-Riemannian structures.

A (pseudo-)Riemannian structureg on an almost hypercomplex manifold (M, I , J, K )
is calledquaternionic(pseudo-)Hermitianif g is SU(2)-invariant. In other words, a quater-
nionic pseudo-Hermitian structure is a bilinear, symmetric, SU(2)-invariant form onT M.

Given a real (2, 0)-form� 2 32,0
I (M, R), consider a bilinear form

g�(x, y) WD �(x, J y)

on T M. Since� is a (2, 0)-form, we have

�(I x , I y) D ��(x, y)

for all x, y 2 T M and therefore

g�(I x , I y) D g�(x, y).

Similarly, we obtaing�(J x, J y) D g�(x, y), because�(J( Nx), J( Ny)) D �(x, y).
Since � is skew-symmetric, andJ2 D �1, g� is symmetric. We obtained thatg�

is a pseudo-Hermitian form onT M. This construction is invertible (see Section 3),
and gives an isomorphism between the bundleH of real (2, 0)-forms and the bun-
dle 32,0

I (M, R) of quaternionic pseudo-Hermitian forms (Claim 3.1). The inverse iso-
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C H
complex manifold hypercomplex manifold3p, p(M, R) 32p,0

I (M, R)
d, dc �, �J

real (1, 1)-forms real (2, 0)-forms
closed positive definite (1, 1)-forms HKT-forms

Kähler potentials HKT-potentials

morphism H ! 32,0
I (M, R) is given as follows. Starting from a quaternionic pseudo-

Hermitian formg, we construct 2-forms!I , !J , !K as in Subsection 1.1. Then�g WD!J Cp�1!K is a real (2, 0)-form.
A real (2, 0)-form� is calledpositive definiteif the corresponding symmetric form

g� is positive definite.

There are two differentials on3�,0
I (M): the standard Dolbeault differential� W 3p,0

I (M) ! 3pC1,0
I (M), and �J , which is obtained from� by twisting with � !

J( N�). One could define�J as �J(�) WD �J N�(J�).
The pair of differentials�, �J behaves in many ways similarly to the operators

d, dc on a complex manifold. They anticommute, and satisfy�2 D �2
J D 0.

A positive definite (2, 0)-form� 2 32,0
I (M, R) is calledHKT-form if �� D 0. The

corresponding quaternionic Hermitian metric is calledthe HKT-metric. This notion was
first defined by string physicists [17], and much studied since then (see [13] for an
excellent survey of an early research).

In [3] (see also [1]), it was shown that HKT-forms locally always have a real-
valued potential', known as HKT-potential:� D ��J'. This function is a quaternionic
analogue of the Kähler potential.

We obtain the dictionary as in the above table of parallels between the complex
and hypercomplex manifolds. This analogy can be built upon,to obtain the notion of
positive (2p, 0)-forms.

1.3. Positive (2p, 0)-forms on hypercomplex manifolds.

DEFINITION 1.1 ([1]). A real (2p, 0)-form � 2 32,0
I (M, R) on a hypercomplex

manifold is calledweakly positiveif

�(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp)) > 0

for any x1, : : : , xp 2 T1,0
I M, and closed if �� D 0.

In modern complex geometry, the positive, closed (p, p) forms and currents play a cen-
tral role, due to several by now classical theorems, which were proven in 1960–1980-ies,
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building upon the ideas of P. Lelong (see [11] for an elementary exposition of the the-
ory of positive currents).

The hypercomplex analogue of these results could be just as significant.
In [1], a hypercomplex version of the classical Chern–Levine–Nirenberg theorem

was obtained. In the present paper, we prove quaternionic versions of two classical
theorems, both of them quite important in complex geometry.

Theorem 1.2 (“Sibony’s Lemma”). Let (M, I , J, K , g) be a hyperkähler mani-
fold, dimR M D 4n, and Z � (M, I ) a compact complex subvariety, codimZ > 2p.

Consider a weakly positive, closed form� 2 32p,0
I (MnZ, R). Then� is locally inte-

grable around Z.

Proof. See Theorem 5.5.

The classical version of this theorem states that a closed, positive (p, p)-form de-
fined outside of a complex subvariety of codimension> p is integrable in a neighbour-
hood of this subvariety. Its proof can be obtained by slicing.

In hypercomplex geometry, the slicing is possible only on a flat manifold, because
a typical hypercomplex manifold has no non-trivial hypercomplex subvarieties, even lo-
cally. In earlier versions of [28], Theorem 1.2 was proven for flat hypercomplex mani-
fold using slicing, and then extended to non-flat manifold byapproximation. The ap-
proximation argument was very unclear and ugly. In 2007, a new proof of Sibony’s
lemma was found ([33]), using the emerging theory of plurisubharmonic functions on
calibrated manifolds ([14], [15]) instead of slicing. In Section 5, we adapt this argu-
ment to hyperkähler geometry, obtaining a relatively simple and clean proof of The-
orem 1.2.

Theorem 1.2 was used in [28] to prove results about stabilityof certain coherent
sheaves on hyperkähler manifolds (Subsection 1.4). Theorem 1.2 was used to show that
the form representingc1(F) for such a sheaf is integrable. To prove theorems about sta-
bility, we need also to show that the corresponding current is closed. Then the integral
of the form representingc1(F) can be interpreted in terms of the cohomology.

Given a form� on MnZ, locally integrable everywhere onM, we can interpret�
as a current onM,

� ! ∫

MnZ
� ^ �.

This current is calleda trivial extension of� to M. A priori, it can be non-closed.
However, in complex geometry, a trivial extension of an integrable, closed and posi-
tive form is again closed. This fundamental result is known as Skoda–El Mir theorem
(Theorem 6.2). In Section 6, we prove a hypercomplex analogue of Skoda–El Mir
theorem.
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Recall that hypercomplex manifolds can be defined in terms ofholonomy (Sub-
section 1.1), as manifolds equipped with a torsion-free connectionr, with Hol(r) �
GL(n,H). A hypercomplex manifold (M, I , J, K ) is calledan SL(n,H)-manifold if its
holonomy lies inSL(n,H) � GL(n,H). Such manifolds were studied in [31] and [4]. It
was shown that (M, I , J, K ) is an SL(n, H)-manifold if and only if M admits a holo-
morphic, real (2n, 0)-form. In particular, all hyperkähler manifolds satisfy Hol(r) �
SL(n, H).

Theorem 1.3. Let (M, I , J, K ) be an SL(n,H)-manifold, and Z� (M, I ) a closed
complex subvariety. Consider a closed, positive form

� 2 32p,0
I (MnZ, R),

and assume that� is locally integrable around Z. LetQ� be the current obtained as a
trivial extension of� to M. Then� Q� D 0.

Proof. Theorem 6.3.

Theorem 1.3 is deduced from the classical Skoda–El Mir theorem. In Subsection 4.3,
we construct a mapVp,qW 3pCq,0

I (M)! 3nCp,nCq
I (M), which has the following properties.

Claim 1.4. Let � 2 32p,0
I (M) be a (2p, 0)-form on an SL(n, H)-manifold. Then

the (nC p, nC p)-form (
p�1)pVp, p(�) is real (in the usual sense) if and only if � is

real, positive if and only if� is positive, and closed if and only if�J� D �� D 0.

Proof. Follows immediately from Proposition 4.10.

To prove Theorem 1.3, take� 232p,0
I (M) which is closed and positive. As follows

from Claim 1.4, the (nC p, nC p)-form (
p�1)pVp, p(�) is closed and positive, in the

usual complex-analytic sense. Its trivial extension is closed and positive, by the Skoda–
El Mir theorem. Then (

p�1)pVp, p( Q�) is closed. Applying Claim 1.4 again, we find

that closedness of (
p�1)pVp, p( Q�) implies that� Q� D 0.

1.4. Hyperholomorphic bundles and reflexive sheaves.The results about posi-
tive (2, 0)-forms on hypercomplex manifolds are especiallyuseful in hyperkähler geom-
etry. In [28], we used this notion to prove theorems about stability of direct images of
coherent sheaves. The earlier arguments were unclear and flawed, and the machinery
of positive (2p, 0)-forms was developed in order to obtain clear proofs of these results.
Here we give a short sketch of main arguments used in [28]. Throughout this paper,
stability of coherent sheaves is understood in Mumford–Takemoto sense.

Let (M, I , J, K ) be a compact hyperkähler manifold, andB a holomorphic Hermit-
ian bundle on (M, I ). Denote the Chern connection onB by r. We say thatB is
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hyperholomorphicif its curvature2B 2 32(M) 
 EndB is SU(2)-invariant, with re-
spect to the natural action ofSU(2) on 32(M). This notion was defined in [24], and
much studied since then.

It is easy to check thatSU(2)-invariant 2-forms are pointwise orthogonal to the
Kähler form !I . Therefore, (B, r) satisfies the Yang–Mills equation32B D 0.1 In
other words,r is Hermitian–Einstein.

One can easily prove that Yang–Mills bundles are alwayspolystable, that is, ob-
tained as a direct sum of stable bundles of the same slope. Theconverse is also true: as
follows from Donaldson–Uhlenbeck–Yau theorem [34], a Yang–Mills connection exists
on any polystable bundle, and is unique.

In [24], it was shown that a polystable bundle on (M, I ) admits a hyperholomorphic
connection if and only if the Chern classesc1(B) andc2(B) areSU(2)-invariant.

In [25], it was shown that for any compact hyperkähler manifold (M, I , J, K ) there
exists a countable set

P � S2 D {a, b, c j a2C b2C c2 D 1}

with the following property. For any (a, b, c) � P, let L WD aI C bJ C cK be the
corresponding complex structure onM induced by the quaternionic action. Then all
integer (p, p)-classes on (M, L) are SU(2)-invariant. In particular, all stable bundles
on (M, L) are hyperholomorphic.

Many of these results can be extended to reflexive coherent sheaves. Recall that
a coherent sheafF on a complex manifoldX is called reflexive if the natural map
F ! F�� is an isomorphism. Here,F� denotes the dual sheaf,F� WD Hom(F , OX).
The following properties of reflexive sheaves are worth mention (see [20]).
• Holomorphic vector bundles are obviously reflexive.
• Let Z � X be a closed complex subvariety, codimZ > 2, and j W XnZ ! X the
natural embedding. Thenj�F is reflexive, for any reflexive sheafF on XnZ.
• The sheafF� is reflexive, for any coherent sheafF .
• For any torsion-free coherent sheafF , the natural mapF ! F�� is a mono-
morphism, andF�� is reflexive. Moreover,F�� is a minimal reflexive sheaf contain-
ing F .
• For any torsion-free coherent sheafF , the singular set Sing(F) has codimension> 2. If F is reflexive, Sing(F) has codimension> 3.
• A torsion-free sheaf of rank 1 is always reflexive.
• A torsion-free sheafF is stable if and only ifF�� is stable.

In [27], the definition of a hyperholomorphic connection wasextended to reflexive
coherent sheaves, using the notion of admissible connection defined by Bando and Siu
in a fundamental work [2].

1Here 3p,q
I (M)
 EndB ! 3p,q

I (M)
 EndB
is the standard Hodge operator, which is Hermitian adjoint to L(�) D !I ^ �.
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Let us recall what Bando and Siu did.

DEFINITION 1.5. Let (X,!) be a Kähler manifold,Z � X a closed complex sub-
variety, codimZ > 2, and F a holomorphic vector bundle onXnZ. Given a Hermitian
metric h on F , denote byr the corresponding Chern connection, and let2F be its
curvature. The metrich and the connectionr are calledadmissibleif
(i) 32F is uniformly bounded, where3 W 31,1

I (M) 
 EndB ! EndB is the Hodge
operator, which is Hermitian adjoint toL(�) D !I ^ �.
(ii) The curvature2F is locally L2-integrable everywhere onM.

Bando and Siu proved the following.
• Let (X, !) be a Kähler manifold,Z � X a closed complex subvariety, codimZ >
2, and F a holomorphic vector bundle onXnZ j,! X. Assume thatF is equipped
with an admissible connection. Thenj�F is a reflexive coherent sheaf. Conversely,
any coherent sheaf admits an admissible connection outsideof its singularities. Such a
connection is calledan admissible connection on F.
• A version of Donaldson–Uhlenbeck–Yau theorem is valid for stable reflexive sheaves.
Let F be a reflexive sheaf on a compact Kähler manifoldX. The admissible connection on
F is calledYang–Millsif 32F D cIdF , where2F is its curvature, andc some constant.
Bando and Siu proved that a Yang–Mills connection is unique, and exists if and only ifF
is polystable.

In [27], these results were applied to coherent sheaves on a hyperkähler manifold
(M, I , J, K , g). A hyperholomorphic connectionon a reflexive sheafF on (M, I ) is an
admissible connection withSU(2)-invariant curvature. Since anySU(2)-invariant form2F satisfies32F D 0, a hyperholomorphic connection is always Yang–Mills. In [27],
it was shown that any polystable reflexive sheaf withSU(2)-invariant Chern classes
c1(F), c2(F) admits a hyperholomorphic connection.

In [28], this formalism was used to prove polystability of derived direct images of
hyperholomorphic bundles. LetM1, M2 be compact hyperkähler manifolds, andB a
hyperholomorphic bundle onM1�M2. Denote the natural projectionM1�M2! M2 by� . It was shown that the derived direct image sheavesRi��B admit a hyperholomorphic
connection, outside of their singularities. Were this connection admissible, Bando–Siu
theorem would imply polystability ofRi��B outright. However,L2-integrability of its
curvature is difficult to establish. In [28], we proposed a roundabout argument to prove
polystability of F WD (Ri��B)��.

Let (M, I , J, K , g) be a compact hyperkähler manifold, dimR M D 4n, and F a re-
flexive coherent sheaf on (M, I ). Assume that outside of its singularities,F is equipped
with a metric, and its Chern connection hasSU(2)-invariant curvature. Consider a sub-
sheafF1 � F . Then, outside of singularities ofF , F1, the class�c1(F) is represented
by a form � with � � J(�) positive, and vanishing only ifF D F1� F2. This follows
from an argument which is similar to one that proves that holomorphic subbundles of
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a flat bundle have negativec1: the SU(2)-invariance of the curvature2F is equivalent
to 2F � J(2F ) D 0. From positivity and non-vanishing of�� J(�), one needs to infer
that degc1(F1) < 0, which would suffice to show thatF is polystable.

The expression

(1.1) degc1(F1) D � ∫
M
� ^ !2n�1

I D �1

2

∫

M
(� � J(�)) ^ !2n�1

I

would have been true were the form� � J(�) integrable, and closed as a current onM.
However, the (2, 0)-form�� corresponding to� as in Section 3 is�-closed, because� is
closed. This form is positive, because�� J(�) is positive, and�� satisfies 2�� D���J� ,
which is clear from its construction. This form is defined outside of the setS� M where
the sheavesF , F1 are not locally trivial. Since these sheaves are reflexive, codimS> 2,
and we could apply the hyperkähler version of Sibony’s lemma(Theorem 1.2) to obtain
that�� is integrable. Now, the hypercomplex version of Skoda–El Mirtheorem (The-
orem 1.3) implies that the trivial extension of�� is a�-closed current. Therefore, degF1

can be computed through the integral (1.1). Since� � J(�) is positive, this integral is
negative, and strictly negative unlessF D F1� F2. Therefore,F is polystable. We gave
a sketch of an argument showing thatF D (Ri��B)�� is polystable. For a complete
proof, please see [28].

2. Quaternionic Dolbeault complex

In this Section, we introduce the quaternionic Dolbeault complex

(
⊕3p,q

I ,C, dC),

used further on in this paper. We follow [29].

2.1. Weights of SU(2)-representations. It is well-known that any irreducible
representation ofSU(2) over C can be obtained as a symmetric powerSi (V1), where
V1 is a fundamental 2-dimensional representation. We say thata representationW has
weight i if it is isomorphic to Si (V1). A representation is said to bepure of weight
i if all its irreducible components have weighti . If all irreducible components of a
representationW1 have weight6 i , we say thatW1 is a representation of weight6 i .
In a similar fashion one defines representations of weight> i .

REMARK 2.1. The Clebsch–Gordan formula (see [18]) claims that the weight is
multiplicative, in the following sense: ifi 6 j , then

Vi 
 Vj D i
⊕

kD0

ViC j�2k,
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where Vi D Si (V1) denotes the irreducible representation of weighti .

A subspaceW �W1 is pure of weight i if the SU(2)-representationW0 �W1 gen-
erated byW is pure of weighti .

2.2. Quaternionic Dolbeault complex: a definition. Let M be a hypercomplex
(e.g. a hyperkähler) manifold, dimH M D n. There is a natural multiplicative action of
SU(2)� H� on 3�(M), associated with the hypercomplex structure.

REMARK 2.2. The space3�(M) is an infinite-dimensional representation ofSU(2),
however, all its irreducible components are finite-dimensional. Therefore it makes sense to
speak ofweightof3�(M) and its sub-representations. Clearly,31(M) has weight 1. From
Clebsch–Gordan formula (Remark 2.1), it follows that3i (M) is anSU(2)-representation
of weight6 i . Using the Hodge�-isomorphism3i (M) � 34n�i (M), we find that for
i > 2n, 3i (M) is a representation of weight6 2n� i .

Let V i � 3i (M) be a maximalSU(2)-invariant subspace of weight< i . The space
V i is well defined, because it is a sum of all irreducible representationsW � 3i (M) of
weight < i . Since the weight is multiplicative (Remark 2.1),V� D⊕

i V i is an ideal
in 3�(M). We also haveV i D 3i (M) for i > 2n (Remark 2.2).

It is easy to see that the de Rham differentiald increases the weight by 1 at most.
Therefore,dVi � V iC1, and V� � 3�(M) is a differential ideal in the de Rham DG-
algebra (3�(M), d).

DEFINITION 2.3. Denote by (3�C(M), dC) the quotient algebra3�(M)=V� It is
called the quaternionic Dolbeault algebra of M, or the quaternionic Dolbeault complex
(qD-algebra or qD-complex for short).

The space3iC(M) can be identified with the maximal subspace of3i (M) of weight
i , that is, a sum of all irreducible sub-representations of weight i . This way,3iC(M) can
be considered as a subspace in3i (M); however, this subspace is not preserved by the
multiplicative structure and the differential.

REMARK 2.4. The complex (3�C(M), dC) was constructed much earlier by
Salamon, in a different (and much more general) situation, and much studied since then
([21], [10], [5]).

2.3. The Hodge decomposition of the quaternionic Dolbeaultcomplex. Let
(M, I , J, K ) be a hypercomplex manifold, andL a complex structure induced by the
quaternionic action, say,I , J or K . Consider theU (1)-action on31(M) provided by

' �L�! cos'Id C sin' � L. We extend this action to a multiplicative action on3�(M).
Clearly, for a (p, q)-form � 2 3p,q(M, L), we have

(2.1) �L (')� D e
p�1(p�q)'�.
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This action is compatible with the weight decomposition of3�(M), and gives a
Hodge decomposition of3�C(M) ([29]).

3iC(M) D ⊕

pCqDi

3p,qC, I (M).

The following result is implied immediately by the standardcalculations from the
theory of SU(2)-representations.

Proposition 2.5. Let (M, I , J, K ) be a hypercomplex manifold and

3iC(M) D ⊕

pCqDi

3p,qC, I (M)

the Hodge decomposition of qD-complex defined above. Then there is a natural iso-
morphism

(2.2) 3p,qC, I (M) � 3pCq,0(M, I ).

Proof. See [29].

This isomorphism is compatible with a natural algebraic structure on
⊕

pCqDi 3pCq,0(M, I ), and with the Dolbeault differentials, in the following way.
Let (M, I , J, K ) be a hypercomplex manifold. We extend

J W 31(M)! 31(M)

to 3�(M) by multiplicativity. Recall that

J(3p,q(M, I )) D 3q, p(M, I )

becauseI and J anticommute on31(M). Denote by

�J W 3p,q(M, I )! 3pC1,q(M, I )

the operatorJ Æ N� Æ J, where N� W 3p,q(M, I )! 3p,qC1(M, I ) is the standard Dolbeault
operator on (M, I ), that is, the (0.1)-part of the de Rham differential. SinceN�2 D 0,
we have�2

J D 0. In [29] it was shown that� and �J anticommute:

(2.3) {�J , �} D 0.
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Consider the quaternionic Dolbeault complex (3�C(M), dC) constructed in Sub-
section 2.2. Using the Hodge decomposition, we can represent this complex as

(2.4)

30C, I (M)

! d1,0C, I !d0,1C, I

31,0C, I (M)

! d1,0C, I !d0,1C, I

30,1C, I (M)

! d1,0C, I !d0,1C, I

32,0C, I (M) 31,1C, I (M) 30,2C, I (M)

where d1,0C, I , d0,1C, I are the Hodge components of the quaternionic Dolbeault differential
dC, taken with respect toI .

Theorem 2.6. Under the isomorphism

3p,qC, I (M) � 3pCq,0(M, I )

constructed inProposition 2.5,d1,0C corresponds to� and d0,1C to �J :

(2.5)

30C(M)

! d0,1C !d1,0C
31,0C (M)

! d0,1C !d1,0C
30,1C (M)

! d0,1C !d1,0C
32,0C (M) 31,1C (M) 30,2C (M)

�

30,0
I (M)

! � !�J

31,0
I (M)

! � !�J

31,0
I (M)

! � !�J

32,0
I (M) 32,0

I (M) 32,0
I (M)

Proof. See [29] or [32]. For another proof Theorem 2.6, please see Claim 4.2.

3. Quaternionic pseudo-Hermitian structures

Further on in this paper, we shall use some results about diagonalization of certain
(2, 0)-forms associated to quaternionic pseudo-Hermitianstructures. The results of this
section are purely linear-algebraic and elementary. We follow [29], [30] and [1].

Let (M, I , J, K ) be a hypercomplex manifold. A quaternionic pseudo-Hermitian form
on M is a bilinear symmetric real-valued formg which is SU(2)-invariant. Equivalently,
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g is quaternionic pseudo-Hermitian if

g( � , � ) D g(I � , I � ) D g(J � , J � ) D g(K � , K � ).
If g is in addition positive definite,g is called quaternionic Hermitian. Notice that a
quaternionic Hermitian structure exists, globally, on anyhypercomplex manifold. In-
deed, one could take any Riemannian form, and average it withSU(2)

As in Subsection 1.1, we can associate three 2-forms!I , !J and!K with g,

!I ( � , � ) D g( � , I � ), !J( � , � ) D g( � , J � ), !K ( � , � ) D g( � , K � ).
An easy linear-algebraic calculation shows that�g WD !J C p�1!K has Hodge type
(2, 0) underI :

�g 2 32,0
I (M).

The involution� ! J( N�) gives a real structure on32,0
I (M). A (2, 0)-form � is called

real if � D J( N�). The bundle of real (2, 0)-forms is denoted32,0
I (M, R). It is easy

to see that the form�g is real. In [30], it was shown that the converse is also true:
any real (2, 0)-form� is obtained from a quaternionic pseudo-Hermitian form, which
is determined uniquely from�.

Claim 3.1. Let (M, I , J, K ) be a hypercomplex manifold, H the bundle of quater-
nionic pseudo-Hermitian forms, and32,0

I (M,R) the bundle of real(2, 0)-forms. Consider

the map H
��!32,0

I (M,R) constructed above, �(g)D �g. Then� is an isomorphism, and

the inverse map is determined by g(x, Ny) D �g(x, J( Ny)), for any x, y 2 T1,0
I (M).

Proof. This is Lemma 2.10, [1].

The standard diagonalization arguments, applied to quaternionic pseudo-Hermitian
forms, give similar results about real (2, 0)-forms on hypercomplex manifolds.

Proposition 3.2. Let (M, I , J, K ) be a hypercomplex manifold, dimRM D 4n, and�, �0 2 32,0
I (M,R) two real (2, 0)-forms. Then, locally around each point, � and �0 can

be diagonalized simultaneously: there exists a frame�1, J( N�1), �2, J( N�2), : : : , �n, J( N�n) 231,0
I (M), such that

� D∑
i

�i �i ^ J( N�i ), �0 D∑
i

�i �i ^ J( N�i ),

with �i , �i real-valued functions.
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Proof. Follows from Claim 3.1 and a standard argument which gives a simultan-
eous diagonalization of two pseudo-Hermitian forms.

In a similar spirit, the Gram–Schmidt orthogonalization procedure brings the follow-
ing statement.

A real form � 2 32,0
I (M, R) is calledstrictly positive, if it satisfies�(x, J( Nx)) > 0

for any non-zero vectorx 2 T1,0
I (M).

Let x1, : : : , xn 2 T1,0
I (M) be a set of vector fields. The set{xi } is calledorthogonal

with respect to� if

�(xi , x j ) D �(xi , J( Nx j )) D 0

wheneveri ¤ j .

Proposition 3.3 (Gram–Schmidt orthogonalization procedure).Let� 2 32,0
I (M,R)

be a real, strictly positive form on a hypercomplex manifold, and x1, : : : , xn 2 T1,0
I (M) a

set of vector fields, which are linearly independent everywhere. Then there exists functions�i , j , i > j , such that the vector fields

y1 WD x1,

y2 WD x2C �2,1y1,

y3 WD x3C �3,2y2C �3,1y1,

� � �
yk WD xk C∑

i<k

�k,i yi

� � �
are orthogonal.

Proof. Use Claim 3.1 and apply the Gram–Schmidt orthogonalization to the quater-
nionic Hermitian form associated with�.

4. Positive, closed (2p, 0)-forms

4.1. The isomorphism�pCq,0
I (M)

Rp,q���! �p,qC,I(M). Let (M, I , J, K ) be a hyper-
complex manifold. In Proposition 2.5, an isomorphism

⊕3pCq,0
I (M)

9�!⊕3p,qC, I (M)

was constructed. As shown in [29], this isomorphism is multiplicative. It is uniquely
determined by the values it takes on31(M): on 31,0

I (M), 9 is tautological, and on



368 M. VERBITSKY

30,1
I (M), we have9(x) D J(x). This isomorphism has an explicit construction, which

is given as follows.

Claim 4.1. Let (M, I , J, K ) be a hypercomplex manifold, and

Rp,q W 3pCq,0
I (M)! 3p,q

I (M)

map a form� 2 3pCq,0
I (M) to Rp,q(�), which is defined by

Rp,q(�)(x1, : : : , xp, Ny1, : : : , Nyq) WD �(x1, : : : , xp, J Ny1, : : : , J Nyq)

ThenRp,q is multiplicative, in the following sense:

Rp,q(�1 ^ �2) D ∑

p1Cp2Dp,
q1Cq2Dq

Rp1,q1(�1) ^Rp2,q2(�1).

Moreover, Rp,q induces the isomorphism

⊕3pCq,0
I (M)

 �!⊕3p,qC, I (M)

constructed above.

Proof. The multiplicativity ofRp,q is clear from its definition. The isomorphism
R is uniquely determined by the values it takes on31(M) and multiplicativity, hence
it coinsides withRp,q.

This map also agrees with the differentials, and the anticomplex involution�! J N�
acting on3pCq,0

I (M).

Claim 4.2. Let (M, I , J, K ) be a hypercomplex manifold, and

Rp,q W 3pCq,0
I (M)! 3p,q

I ,C(M)

the map constructed inClaim 4.1. Then
(i) Rp,q(J N�) D (�1)pqRq, p(�),

(ii) Rp,q(��) D d1,0C Rp�1,q(�),

(iii) Rp,q(�J�) D d0,1C Rp,q�1(�).

Proof. Claim 4.2 (i) is clear from the definition. Using Leibniz identity, we find
that it suffices to check Claim 4.2 (ii) and (iii) on some set ofmultiplicative gener-

ators of
⊕

p,q3pCq,0
I (M). For functions, these identities are clear. For�-exact 1-forms,
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Claim 4.2 (ii) is clear, because�2 D 0 and (d1,0C )2 D 0, hence

0D Rp,q(�� f ), and d1,0C Rp�1,q(� f ) D (d1,0C )2 f D 0.

For a �-exact 1-form� D � , with  a holomorphic function, Claim 4.2 (iii) fol-
lows from

Rp,q(�J� ) D �Rp,q(��J ) D �Rp,q(� J N� ) D 0.

The functions, together with 1-forms� D � , with  a holomorphic function, generate
the algebra3�,0

I (M) multiplicatively. Now, the Leibniz identity can be used toprove

that Claim 4.2 (ii) and (iii) is true on the whole3�,0
I (M).

Please notice that we just gave a proof of Theorem 2.6.

4.2. Strongly positive, weakly positive and real (2p, 0)-forms. The notion of
positive (2p, 0)-forms on hypercomplex manifolds was developed in [1] and in ongoing
collaboration with S. Alesker.

Let � 2 3p,q
I (M) be a differential form. SinceI and J anticommute,J(�) lies in3q, p

I (M). Clearly, J2j3p,q
I (M) D (�1)pCq. For pC q even, Jj3p,q

I (M) is an anticomplex

involution, that is, a real structure on3p,q
I (M). A form � 2 32p,0

I (M) is called real if

J( N�) D �. We denote the bundle of real (2p, 0)-forms by32p,0
I (M, R).

For a real (2p, 0)-form,

�(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp))

D N�(J(x1), J2( Nx1), J(x2), J2( Nx2), : : : , J(xp), J2( Nxp))

D N�( Nx1, J(x1), Nx2, J(x2), : : : , Nxp, J(xp))

(4.1)

for any x1, : : : , xp 2 T1,0
I (M). From (4.1), we obtain that the number

�(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp))

is always real.

DEFINITION 4.3. Let (M, I , J, K ) be a hypercomplex manifold, and� 232p,0
I (M)

a real (2p, 0)-form. It is calledweakly positive, if

�(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp)) > 0

for any x1, : : : , xp 2 T1,0
I (M).

Let dimR M D 4n. The complex line bundle32n,0(M) is equipped with a real
structure, hence it is a complexification of a real line bundle 32n,0

I (M, R). This real
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line bundle is trivial topologically. To see this, take a quaternionic Hermitian formq
on M (such a form always exists: see Section 3). Let� WD !J C p�1!K be the
corresponding (2, 0)-form. SinceJ!J D !J , J(!K ) D �!K , the form� is real. Then,�n is a nowhere degenerate, real section which trivializes32n,0

I (M, R).
The pairing

32p,0
I (M, R) �32n�2p,0

I (M, R)! 32n,0R (M, R)

is nowhere degenerate. Denote byCw �32�,0
I (M,R) the cone of weakly positive forms,

and Cs � 32�,0
I (M, R) the dual cone. This cone is calledthe cone of strongly posi-

tive forms.
This notion is well known in complex geometry; a complex analogue of the follow-

ing claim is often used as a definition of strongly positive cone, and then the above
definition becomes a (trivial) theorem.

Claim 4.4. Let M be a hypercomplex manifold. The coneCs � 32�,0
I (M, R) of

strongly positive real(2p, 0)-forms is multiplicatively generated by products of forms� ^ J( N� ), for � 2 31,0
I (M).

Proof. A form � is weakly positive if

h�, �1 ^ J( N�1) ^ �2 ^ J( N�2) ^ � � � ^ J( N�p)i > 0

for any �1, : : : , �p 2 31,0
I (M). Therefore, weakly positive cone is dual to the cone

generated by such products.

The strong positivity of a form implies its weak positivity.Unlike the complex
case, in the quaternionic case this is not immediate from itsdefinition.

For pD n, this implication can be seen as follows. For any�1, : : : , �p 2 31,0
I (M),

we have

�1 ^ J( N�1) ^ �2 ^ J( N�2) ^ � � � ^ J( N�n) D 1

n!
�n,

where�D∑�i ^ J( N�1) is a (2, 0)-form, which is obtained from a quaternionic Hermit-
ian form q as in Claim 3.1. The form�n is positive, because for{hxi , J( Nxi )} pairwise
orthogonal with respect toq, we have

�n(x1, J( Nx1), : : : , xn, J( Nxn)) D∏
i

q(xi , Nxi ),

and for{xi } non-orthogonal, this set can be orthogonalized, without changing�(x1, J( Nx1),: : : , xn, J( Nxn)), as shown in Proposition 3.3.
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This gives

(4.2)
1

n!
�n(x1, J( Nx1), : : : , xn, J( Nxn)) > 0

For p < n, we restrict� to a quaternionic subspace generated byx1, : : : , xp, and
find that the positivity of

�1 ^ J( N�1) ^ �2 ^ J( N�2) ^ � � � ^ J( N�p)(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp))

follows from (4.2).
Recall that a real (p, p)-form � on a complex manifoldX is calledweakly posi-

tive if

(�p�1)p�(x1, Nx1, : : : , xp, Nxp) > 0

for any x1, : : : , xp 2 T1,0(X).

Claim 4.5. Let (M, I , J, K ) be a hypercomplex manifold, and

Rp, p W 32p,0
I (M)! 3p, p

I (M)

the map constructed inSubsection 4.1. Consider a(2p, 0)-form � 2 32p,0
I (M). Then

(i) � is real if and only if (
p�1)pRp, p(�) is real (in the usual sense).

(ii) � is weakly positive if and only if(
p�1)pRp, p(�) is a weakly positive(p, p)-form.

Proof. Claim 4.5 (i) is clear from the definition. Indeed,

Rp, p(�)(x1, Nx1, : : : , xp, Nxp) D �(x1, J( Nx1), : : : , xp, J( Nxp)).

It is easy to see that a (p, p)-form � is real if and only if (
p�1)p� satisfies�(x1, Nx1, : : : ,

xp, Nxp) 2 R.
Claim 4.5 (ii) is also clear. Indeed,

�(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp))

D (�1)p(p�1)�(x1, x2, : : : , xp, J( Nx1), J( Nx2), : : : , J( Nxp)).

Therefore,

Rp, p(�)(x1, Nx1, : : : , xp, Nxp)Rp, p(�)(x1, : : : , xp, Nx1, : : : , Nxp)

D �(x1, : : : , xp, J( Nx1), : : : , J( Nxp)) D �(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp)).
(4.3)

Then, (4.3) is non-negative if and only if� is weakly positive, and this is equivalent
to (
p�1)pRp, p(�) being weakly positive, by definition of positive (p, p)-forms.
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4.3. The map Vp,q W �pCq,0
I (M) ! �nCp,nCq

I (M) on SL(n, H)-manifolds. Let
(M, I , J, K ) be a hypercomplex manifold, dimR M D 4n, and

Rp,q W 3pCq,0
I (M)! 3p,q

I ,C(M)

the isomorphism defined in Subsection 4.1. Consider the projection

(4.4) 3p,q
I (M)! 3p,q

I ,C(M),

and let

RW 3p,q
I (M)! 3pCq,0

I (M)

denote the composition of (4.4) andR�1
p,q.

Lemma 4.6. In these assumptions,

(4.5) R(�1 ^ � � � ^ �p ^ N�pC1 ^ � � � ^ N�pCq) D �1 ^ � � � ^ �p ^ J( N�pC1) ^ � � � ^ J( N�pCq),

for any �1, : : : , �pCq 2 31,0
I (M).

Proof. Denote byR0 the map defined by the formula (4.5). From the definition
of the SU(2)-action on3�(M) it is apparent thatR0(�) belongs to the sameSU(2)-

representation as�. Since R0(�) lies in 3pCq,0
I (M), it belongs to3�C(M). Therefore,

R0 vanishes on the kernel of (4.4). By definition,R is the unique map3p,q
I (M) !3pCq,0

I (M) vanishing on the kernel of (4.4) and satisfying

R ÆRp,q D Id3pCq,0
I (M).

To prove thatR0 D R it suffices now to check thatR(Rp,q(�)) D �, but this is obvious
from the definition.

REMARK 4.7. The formula (4.5) could be used as a definition ofR.

The mapR is compatible with Dolbeault differentials, in the following sense.

Lemma 4.8. Let (M, I , J, K ) be a hypercomplex manifold, and

RW 3p,q
I (M)! 3pCq,0

I (M)

the map defined above. Then

(4.6) R(��) D �R(�), and R( N��) D �J R(�).
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Proof. Lemma 4.8 follows immediately from Claim 4.2 andRÆRp,q D Id3pCq,0
I (M),

which is a part of the definition ofR.

Let 8I be a nowhere degenerate holomorphic section of32n,0
I (M). Assume that8I is real, that is,J(8I ) D N8I , and positive.

Existence of such a section is highly non-trivial. WhenM is hyperkähler, we could
take the top power of the holomorphic symplectic form� D !J C p�1!K . For a
general hypercomplexM, such a form8I is preserved by the Obata connection, and
reduces the holonomy of Obata connection to a subgroup ofSL(n,H). Such manifolds
were studied in [31] and [4].

A manifold with a nowhere degenerate, real, positive form8I 232n,0
I (M) is called

an SL(n, H)-manifold.

REMARK 4.9. Let (M, I , J, K , 8I ) be an SL(n, H)-manifold. For any section� 2 32n,0
I (M), positivity of � in the quaternionic sense is equivalent to positivity of� ^8I 2 32n,2n

I (M), in the usual sense.

Define the map

Vp,q W 3pCq,0
I (M)! 3nCp,nCq

I (M)

by the relation

(4.7) Vp,q(�) ^ � D � ^ R(�) ^ N8I

for any test form� 2 3n�p,n�q
I (M).

The mapVp, p is especially remarkable, because it maps closed, positive(2p, 0)-
forms to closed, positive (nC p, nC p)-forms, as the following proposition implies.

Proposition 4.10. Let (M, I , J, K , 8I ) be an SL(n, H)-manifold, and

Vp,q W 3pCq,0
I (M)! 34n�p,4n�q

I (M)

be the map defined above. Then
(i) Vp,q(�) D Rp,q(�) ^ V0,0(1).
(ii) The mapVp,q is injective, for all p, q.

(iii) (
p�1)(n�p)2

Vp, p(�) is real if and only� 2 32p,0
I (M) is real, and weakly positive

if and only if � is weakly positive.
(iv) Vp,q(��) D �Vp�1,q(�), and Vp,q(�J�) D N�Vp,q�1(�).
(v) V0,0(1)D �Rn,n(8I ), where� is a positive rational number, depending only on the
dimension n.
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Proof. The mapRW 3p,q
I (M)! 3pCq,0

I (M) is by construction multiplicative, and
satisfies

(4.8) R(Rp,q(�)) D �
for all � 2 3pCq,0

I (M). This gives

(4.9) Vp,q(�) ^ � D � ^ R(�) ^8I D R(Rp,q(�) ^ �) ^8I D V0,0(1)^Rp,q(�) ^ �
(to obtain the last equation, we take the test-form�0 WD Rp,q(�) ^ � and apply (4.7)).
Since� is arbitrary, (4.9) gives

Vp,q(�) D V0,0(1)^Rp,q(�).

This proves Proposition 4.10 (i).

Injectivity of Vp,q is clear, because for any� 2 3pCq,0
I (M) there exists� such that� ^ � ^8I ¤ 0. Using (4.8), we find that

Vp,q(�) ^Rn�p,n�q(�) D � ^ R(Rn�p,n�q(�)) ^8I D � ^ � ^8I ¤ 0.

We proved Proposition 4.10 (ii).
From Claim 4.2 (i), we obtain thatR( N�) D (�1)pqR(�), for any � 2 3p,q

I (M).
Then

Vp,q(J N�) D (�1)(n�p)(n�q)Vq, p(�)

as follows from (4.7). Then, (
p�1)pVp, p(�) is real if J N� D �. The “only if ” part

follows from injectivity of Vp, p.

To check the weak positivity of (
p�1)pVp, p, take� D �1^ N�1^ � � � ^ �n�p ^ �n�p,

with �1, : : : , �n�p 2 31,0
I (M). Then (�p�1)n�p� is positive. Such forms generate the

strongly positive cone. ThenR(�)D �1^ J( N�1)^� � �^�n�p^ J( N�n�p) is strongly positive
by definition, and, moreover,R(�), for all such�, generate the strongly positive cone.

The weak positivity of (�p�1)n�pVp,q(�) is equivalent to

(�p�1)n�pVp,q(�) ^ � > 0,

and the weak positivity of� is equivalent to

� ^ R(�) ^ N8I > 0.

These two inequalities are equivalent by the formula (4.7) which is a definition of
Vp,q(�). We proved Proposition 4.10 (iii).
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Proposition 4.10 (iv) follows from the Stokes’ formula
∫

M
�� ^ � D (�1)deg� ∫

M
� ^ ��,

where� or � have compact support.
Take an (n� q, n� p)-form � with compact support. By Lemma 4.8,
∫

M
Vp,q(��) ^ � D ∫

M
�� ^ R(�) ^ N8I D (�1)pCq�1

∫

M
� ^ �R(�) ^ N8I

D (�1)pCq�1
∫

M
� ^ R(��) ^ N8I

D (�1)pCq�1
∫

M
Vp�1,q(�) ^ ��

D ∫
M
�Vp�1,q(�) ^ �.

Applying complex conjugation to both sides ofVp,q(��) D �Vp�1,q(�) and using

Vp,q(J N�) D (�1)(n�p)(n�q)Vq, p(�)

and J N�� D �J J( N�), we obtain the second equation of Proposition 4.10 (iv).
Proposition 4.10 (v) follows from a direct (but tedious) linear-algebraic calculation.

The bundle3n,n
I ,C(M) is 1-dimensional, by Proposition 2.5. The formV0,0(1) lies in3n,n

I ,C(M). Indeed,

V0,0(1)^ � D R(�) ^ N8I ,

and therefore�! V0,0(1)^� vanishes on all forms of weight less than 2n. Therefore,
V0,0(1) has weight 2n, hence belongs to3n,n

I ,C(M). The form Rn,n(8I ) is a nowhere
degenerate section of3n,n

I ,C(M), by construction; therefore,V0,0(1) is proportional to
Rn,n(8I ):

V0,0(1)D �Rn,n(8I ),

where� is a smooth function onM. To prove Proposition 4.10 (v), we need to show
that � is a positive rational number depending only fromn. Since (

p�1)nRn,n(8I )
and (

p�1)nV0,0(1) are both real and positive, by Proposition 4.10 (iii) andClaim 4.5,� is real and positive. Taking� D 8I and applying (4.7), we obtain

1^8I ^ N8I D R(Rn,n(8I )) ^ N8I D V0,0(1)^Rn,n(8I ) D �Rn,n(8I )) ^Rn,n(8I ).

This gives an expression for�:

� D 8I ^ N8I

Rn,n(8I ) ^Rn,n(8I )
.
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From this formula, it is clear that� is independent from the choice of8I . Therefore,
we may assume that8I is associated with a quaternionic Hermitian formq as above:8I D �n, where� D !J Cp�1!K , and!J , !K are the Hermitian skew-linear forms
of (M, J) and (M, K ). From the definition ofRp,q, it is clear thatR1,1(�) D !I .
Using multiplicativity of Rp, p, we obtain

Rn,n(�n) D 5C(R1,1(�)n) D 5C(!n
I ),

where5C is the SU(2)-invariant projection to the3�C(M)-part. Since the metric on3�(M) is SU(2)-invariant, the weight decomposition of3�(M) is orthogonal; therefore,5C is an orthogonal projection to3�C(M).
Consider the algebraA� D ⊕

A2i generated by!I , !J , and !K . In [25], this
algebra was computed explicitly. It was shown, that, up to the middle degree,A� is a
symmetric algebra with generators!I , !J , !K . The algebraA� has Hodge bigrading
Ak D⊕pCqDk Ap,q, and its Ap, p-part is generated by the forms

!i
I ^ (� ^ N�) j ,

i , j D 0, 1, 2,: : : . From the Clebsch–Gordan formula, we obtain thatA2iC WD 32iC(M)\
A2i , for i 6 n, is an orthogonal complement toQ(A2i�4), where Q(�) D � ^ (!2

I C!2
J C !2

K ). The spaceAn,nC D ker Q�jAn,n is 1-dimensional, as we have shown above,
and generated byRn,n(�n). Clearly,

Q�(!i
I ^ (� ^ N�) j ) D !i�2

I ^ (� ^ N�) j C !i
I ^ (� ^ N�) j�2.

Therefore, kerQ�jn,n
A is generated by

(4.10) 4 WD !n
I � !n�2

I ^ (� ^ N�)C !n�4
I ^ (� ^ N�)2 � !n�6

I ^ (� ^ N�)3C � � � .
SinceRn,n(�n) is equal to the projection of!n

I to kerQ�, this gives

Rn,n(�n) D 4 � (!n
I , 4)

(4, 4)
D 4,

where is a rational coefficient which can be expressed through binomial coefficients
using (4.10). A similar calculation can be used to express

� D 8I ^ N8I

Rn,n(8I ) ^Rn,n(8I )
D �n ^ N�n

 24 ^4
through a combinatorial expression which would take half a page.
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5. Sibony’s lemma for positive (2p, 0)-forms

5.1. !q-positive (1, 1)-forms. Recall that a real (p, p)-form � on a complex
manifold is calledweakly positiveif for any complex subspaceV � TcM, dimC V D p,
the restriction�jV is a non-negative volume form. Equivalently, this means that

(
p�1)p�(x1, Nx1, x2, Nx2, : : : , xp, Nxp) > 0

for any vectorsx1, : : : , xp 2 T1,0
x M. A form is called strongly positiveif it can be

expressed as a sum

� D (
p�1)p

∑

i1,:::,i p

�i1,:::,i p�i1 ^ N�i1 ^ � � � ^ �i p ^ N�i p ,

running over some set ofp-tuples�i1, �i2, : : : , �i p 2 31,0(M), with �i1,:::,i p real and non-
negative functions onM.

The strongly positive and the weakly positive forms form closed, convex cones in
the space3p, p(M, R) of real (p, p)-forms. These two cones are dual with respect to
the Poincare pairing

3p, p(M, R) �3n�p,n�p(M, R)! 3n,n(M, R)

wheren D dimC M. For (1, 1)-forms and (n � 1, n� 1)-forms, the strong positivity is
equivalent to weak positivity.

DEFINITION 5.1. Let (M, !) be a Kähler manifold. A real (1, 1)-form� 231,1(M, R) is called!q-positive if !q�1 ^ � is a weakly positive form.

This notion was studied in [33], in connection with plurisubharmonic functions on
calibrated manifolds ([14], [15]). In [33], a characterization of !q-positivity in terms
of the eigenvalues was obtained. At each pointx 2 M, we can find an orthonormal
basis�1, : : : , �n 2 31,0

x (M), such that

� D �p�1
∑

i

�i �i ^ N�i .
The numbers�i are calledthe eigenvaluesof � at x.

The following theorem was proven in [33].

Theorem 5.2. Let (M,!) be a Kähler manifold, and � 231,1(M,R) a real (1, 1)-
form. Let �1(x), �2(x), : : : , �n(x) denote the eigenvalues of� at x 2 M. Then the
following conditions are equivalent.
(i) � is !q-positive.
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(ii) � ^ !q�1 is weakly positive.
(iii) � ^ !q�1 is strongly positive.
(iv) The sum of any q eigenvalues of� is positive, for any x2 M:

(5.1)
q
∑

kD1

�ik (x) > 0

for any q-tuple{i1, : : : , iq} � {1, 2,: : : , n}.

Proof. This is [33], Theorem 2.4. In [33], this statement wasstated for forms� D ddc', but the proof is purely linear-algebraic, and can be extended to arbitrary
(1, 1)-forms.

DEFINITION 5.3. A form � is calledstrictly !q-positive, if ��h! is !q-positive,
for some continuous, nowhere vanishing, positive functionh on M.

5.2. Positive (2p, 0)-forms on hypercomplex manifolds. Let (M, I , J, K ) be a
hypercomplex manifold. In Subsection 4.2, a notion of positivity for (2 p, 0)-forms on
M was defined. We say that a real (2, 0)-form� is �q-positive if � ^ �q�1 is posi-
tive, andstrictly positiveif � ^�q�1 � h�q is positive, for some continuous, nowhere
vanishing, positive functionh on M.

As shown in Claim 3.1, quaternionic pseudo-Hermitian formsare in (1, 1)-
correspondence with real (2, 0)-forms. This allows one to diagonalize a given (2, 0)-
form � locally in an orthonormal frame (Proposition 3.2).

Given a real (2, 0)-form� on a hyperkähler manifold, at any pointx 2 M there
exists an orthonormal frame�1, J N�1, : : : , �n, J N�n 2 31,0

I (M), such that�jx is written as

�jx D∑
i

�i �1 ^ J N�1,

with �i being real-valued functions. The condition of�q-positivity is equivalent to the
inequality

(5.2)
q
∑

kD1

�ik (x) > 0,

just like in Theorem 5.2.
Given a (1, 1)-form� 2 31,1

I (M), consider a (2, 0)-formR(�) 2 32,0
I (M),

R(�)(x, y) WD �(x, J(y)).

Clearly, R(�) is real and positive if� is real and positive. It is easy to see thatR
vanishes onSU(2)-invariant forms, and induces an isomorphism31,1C, I (M) ! 32,0

I (M)
described in Claim 4.1 (see Lemma 4.6 for a detailed argument).
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Lemma 5.4. Let M be a hyperkähler manifold, dimR M D 4n, and� 231,1(M,R)
a real (1, 1)-form, which is!2n�2p-positive. Then R(�) is �n�p-positive.

Proof. Denote by�0 the (1, 1)-form���inv, where�inv D (1=2)(�C J(�)) denotes
the SU(2)-invariant part of�. Clearly,

�0 D 1

2
(� � J(�)).

Since�J(�) has the same eigenvalues as�, by Theorem 5.2 (iv) it is also!2n�2p-
positive. Then�0 is !2n�2p-positive, too.

Using the orthonormal frame as in the proof of (5.2), we find that �0 can be writ-
ten as

�0 D �p�1
∑

i

�i �i ^ N�i ,
with �i an orthonormal basis in31,0

I (M) satisfying

J(�2i�1) D N�2i , J(�2i ) D �N�2i�1

(see Proposition 3.2). SinceJ(�0) D ��0, the eigenvalues of�0 occur in pairs:

(5.3) �2i�1 D �2i .

Renumbering the basis, we may assume that�1 6 �2 6 � � � 6 �2n. Now,!2n�2p-positivity
of �0 is equivalent to

(5.4) �1C �2C � � � C �2n�2p > 0.

By definition

R(�0) D 2
∑

i

�2i �2i�1 ^ �2i ,

hence (5.2) implies that�n�p-positivity of R(�0) is equivalent to�2 C �4 C � � � C�2n�2p > 0. From (5.3), this is equivalent to (5.4). We proved Lemma 5.4.

5.3. !q-positive forms in a neighbourhood of a subvariety. Now we can prove
the hypercomplex version of Sibony’s lemma.

Theorem 5.5. Let M be a hyperkähler manifold, Z � (M, I ) a compact com-
plex subvariety, codimC Z > 3, and � 2 32,0(MnZ, I ) a real and positive form, which
satisfies�� D 0. Then� is locally integrable everywhere in M.
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Proof. We adapt to hypercomplex situation the coordinate-free proof of the complex-
analytic version of Sibony’s lemma, obtained in [33]. In [33], the following result was
proven.

Proposition 5.6. Let M be a Kähler manifold, and Z� M a complex subvariety,
dimC Z < p. Then there exists an open neighbourhood U of Z, and a sequence{�i }

of !p-positive, exact, smooth(1, 1)-forms on U satisfying the following.
(i) For any open subset V� U , with the closure NV compact and not intersecting
Z, the restriction�i jV stabilizes as i!1. Moreover, �i jV is strictly !p-positive for
i � 0.
(ii) For all i , �i D 0 in some neighbourhood of Z.
(iii) The limit � D lim �i is a strictly !p-positive current on U.
(iv) The forms�i can be written as�i D ddc'i , where'i are smooth functions on U.
On any compact set not intersecting Z, the sequence{'i } stabilizes as i!1.

Proof. This is [33], Proposition 5.3.

We apply Proposition 5.6 to prove Theorem 5.5. Let'i be the sequence of func-
tions defined in a neighbourhoodU � Z and satisfying conditions of Proposition 5.6.
From Lemma 4.8, we obtain

(5.5) R(� N�'i ) D � J( N�'i ).

Therefore,R(�i ) is �-closed. By Lemma 5.4, this form is also�n�1-positive. Since�
is positive, to show that� is locally integrable on an open setU � M, it suffices to
prove that the integral

(5.6)
∫

D
� ^�n�1 ^ N�n

is universally bounded, for any compact subsetD � UnZ. Indeed,

∫

D
� ^�n�1 ^ N�n D∑

i

∫

D
�i VolM ,

where {�i } are the eigenvalues of� considered as functions onM. In (5.6), we may
replace�n�1 by any strictly positive real (n� 1)-form, and if this integral us bounded,
(5.6) is also bounded. Therefore, Theorem 5.5 would follow from a universal bound on

∫

D
� ^ � ^�n�2 ^ N�n,

where� D lim R(�i ) is the form constructed in Proposition 5.6 (it is smooth outside
of Z, because{�i } stabilizes). Now, a universal bound on

∫

D �^ � ^�n�2^ N�n would
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obviously follow from a universal bound on the integral

∫

D
� ^ R(�i ) ^�n�2 ^ N�nI

this integral is bounded by

∫

U
� ^ R(�i ) ^�n�2 ^ N�n,

because the forms� and R(�i ) ^�n�2 are positive.2

The last integral can be expressed by Stokes’ theorem as

(5.7)
∫

U
� ^ R(�i ) ^�n�2 ^ N�n D ∫�U � ^ J( N'i ) ^�n�2 ^ N�n

(see (5.5)). However, the integral
∫�U �^ J( N'i )^�n�2^ N�n stabilizes asi !1, because'i stabilizes in a neighbourhood of�U . This shows that (5.6) is universally bounded.

We proved Theorem 5.5.

6. Skoda–El Mir theorem for hyperkähler manifolds

We are going to prove a hypercomplex analogue of the classical Skoda–El Mir
theorem ([12], [23], [22], [11]).

DEFINITION 6.1. Let M be a connected complex manifold, andZ � M a closed
subset. Assume that there exists a nonconstant plurisubharmonic function ' W M !
[�1,1[, such thatZ � '�1(�1). Then Z is calledpluripolar.

Skoda–El Mir theorem is a result about extending a closed positive current over a
pluripolar setZ.

Theorem 6.2 ([12], [23], [22], [11]). Let X be a complex manifold, and Z a closed
pluripolar set in X. Consider a closed positive current2 on XnZ which is locally inte-
grable around Z. Then the trivial extension of2 to X is closed on X.

The hypercomplex analogue of this theorem goes as follows.

Theorem 6.3. Let M be a SL(n, H)-manifold, Z � (M, I ) a pluripolar set, and� 2 32p,0(MnZ, I ) a form satisfying the following properties.
(i) � D J( N�) (reality),

2The product�^ R(�i )^�n�2 is well defined on the wholeU , becauseR(�i ) vanishes in a neigh-
bourhood ofZ.
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(ii) �(x1, J( Nx1), x2, J( Nx2), : : : , xp, J( Nxp)) > 0 (weak positivity),
(iii) �� D 0 (closedness).
Assume that� is integrable around each point z2 Z. Then the trivial extension of�
to M is a �-closed(2p, 0)-current.

Proof. To prove Theorem 6.3, we could repeat the argument proving the Skoda–
El Mir theorem in the hypercomplex setting. However, it is much easier to deduce
Theorem 6.3 from the classical Skoda–El Mir. Consider the (p, p)-form Rp, p(�) 23p, p

I (M) obtained as

Rp, p(�)(x1, Ny1, : : : , xp, Nyp) D �(x1, J( Ny1), : : : , xp, J( Nyp)).

where xi , yi 2 T1,0(M) (see Subsection 4.1).
From Proposition 4.10, it follows that the (nC p, nC p)-form Rp, p(�n)^Rp, p(�)

is positive in the usual sense if and only if� is positive in the quaternionic sense, and
closed if and only if��D 0. Now, � is closed and positive onMnZ, henceRp, p(�n)^
Rp, p(�) is closed and positive onMnZ (in the usual sense). Applying the Skoda–
El Mir theorem, we obtain that a trivial extension ofRp, p(�n)^Rp, p(�) is closed on
M. Applying Proposition 4.10 again, we find that the trivial extension of� to M is�-closed. We proved Theorem 6.3.
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