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Abstract

In 1960, P.A. Smith raised an isomorphism problem. Is it theg the tangential
G-modules at two fixed points of an arbitrary smodihaction on a sphere with
exactly two fixed points are isomorphic to each other? Givefinide group, the
Smith set of the group means the subset of real represantdtig consisting of
all differences of Smith equivalent representations. Magsearchers have studied
the Smith equivalence for various finite groups. But the 8msigts for non-perfect
groups were rarely determined. In particular, the Smithfeset non-gap group has
not been determined unless it is trivial. We determine thettSset for the non-gap
groupG = S xCy x---xCa.

1. Introduction

Throughout this paper, le& be a finite group. In 1960, P.A. Smith [30] raised
next problem.

SMITH ISOMORPHISM PROBLEM s it true that the tangentiab-modules at two

fixed points of an arbitrary smoot3-action on a sphere with exactly two fixed points
are isomorphic to each other?

Following [25], two realG-modulesV and W are calledSmith equivalenif there

exists a smooth action o8 on a homotopy spher& such thatS® = {x, y} for two
points x andy at which T,(S) = V and Ty(S) @ W as realG-modules.

Let RO@G) denote the real representation ring ®f Define theSmith setSm(G)

to be

Sm@G) :={[V] - [W] € ROG) | V and W are Smith equivaleht

In general, we don't know whether S@) is a subgroup of RA%). The Smith iso-
morphism problem can be restated as follows.

SMITH ISOMORPHISM PROBLEM s it true that SmG) = 0?
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It is easy to show that the answer is affirmative@fis a group such that each
element has the order 1, 2 or 4. Important breakthroughs emtbblem came in the
following.

(1) M.F. Atiyah—R. Bott [1]: If G = C,, a cyclic group of orderp, where p an odd
prime, then Sng) = 0.

(2) J.Milnor [11]: If G is a compact group and the action semi-free, thei®) = Ty(S).
(3) C.U. Sanchez [28]: IfG is a group with odd-prime-power order @ is a group
with |G| = pq, wherep andq are odd primes, then S@) = 0.

(4) T. Petrie [24], [26]: IfG is an odd order finite abelian group with at least four
non-cyclic Sylow subgroups, then S8\ # O.

(5) S.E.Cappell-J.L. Shaneson [2]: @& is a cyclic group of order @ such thatm > 2
then SmG) # 0.

By the character theory, we have Spg] = 0 and SmDg) = 0 whereDg is a dihedral
group of order 6. SoCg is the smallest group with Si@) # 0. T. Petrie and his
collaborators found various pairs of non-isomorphic Sndtjuivalent realG-modules,
e.g. K.H. Dovermann-T. Petrie [3], K.H. Dovermann-D.Y. J6h

In 1996, in the case wher& is an Oliver group, E. Laitinen [10, Appendix]
lighted the problem again with the next conjecture.

Ag-Conjecture. If G is an Oliver group with @ > 2, then Sm@G) # 0.

After E. Laitinen—M. Morimoto [8], a finite grous is called anOliver group if
and only if G never admits a normal series

P<HJG

such that{P| and [G : H] are prime powers anéi /P is a cyclic group. For an element
g € G, let (g) denote the conjugacy class gfin G. The union §)* = (g) U (%)
is called thereal conjugacy clas®f g in G. Let ag denote the number of the real
conjugacy classesy)* in G such that the order off is not a prime power.

We have affirmative answers for th&s-Conjecture in the following cases.
e E. Laitinen—K. Pawalowski [10]G is a finite perfect group.
e E. Laitinen—K. Pawatowski [10]:G = A,, SL(2, p) or PSL(2,q) wheren is a
natural number, angp andqg are primes.
e K. Pawalowski—R. Solomon [21]G is a finite Oliver group of odd order.
e K. Pawatlowski—R. Solomon [21]G is a finite Oliver group with a cyclic quotient
of order pq for two distinct odd primesp andg.
e K. Pawatowski—R. Solomon [21]G is a finite non-solvable gap group arga 2
PXL(2, 27), where EL(2, 27) is the splitting extension of PSL(2, 27) by the group
AUt(IF27).
e M. Morimoto [13]: G = PXL(2, 27).
In 2006, M. Morimoto gave a counterexample to tAg-Conjecture.
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e M. Morimoto [14]: If G = Aut(Ag), thenag = 2 and SmG) = 0.
We refer to the articles [27], [4], [20], [6] for survey of eged results. K. Pawatowski—
T. Sumi claim SmG) # 0 for many Oliver groupss such thatag > 2 andG is not a
gap group. Recent information of this topic is found in [2[32] and [23].

For a primep, let G'P' denote the smallest normal subgrotip of G such that
[G: H] is a power ofp (possibly 1). LetG"! denote the smallest normal subgrobp
of G such thatG/H is nilpotent. It is known that

Gnil — m G{p}
p

We introduce notation for several families consisting dbgnoups ofG.

S(G) :={H = G}.
P(G) :={P € S(G) | P is a p-subgroup
for some primep (possibly a trivial group)
L(G) :={L € S(G) | G'P c L for some primep}.
GYG):={H € S(G) |IP < H and H/P is cyclic for someP € P(G)}.

Let X and) be families consisting of subgroups &. A real G-moduleV is said to
be X-freeif VH =0 for anyH € X. If M is a subset of RG) then for the families
X, Y, we define

My:={Xx=V-WeM|Re§ V =Re§ W for all H € &},
MY :={x=V-WeM|V andW are )-fred,
MY = My N MY,

Let HP(G) denote the set of all pairsH( P) consisting ofH € S(G) and P € P(H)
such thatP # H. A real G-moduleV is called agap moduleif it satisfies dimvP >
2dimVH for all pairs H, P) € HP(G). A finite group G is called agap groupif G
admits aL(G)-free gap module. LevV=" denote the set consisting of all pointss V
with isotropy subgroupGy, = H, and dimV=H as the maximum of the dimension of
all connected components ¥=". A real G-moduleV is said to satisfy theveak gap
condition if it satisfies the following.

(WG1) dimVP > 2dimV"H for all pairs H, P) € HP(G).

(WG2) If dimVP =2dimV" for a pair H, P) € HP(G), then H : P] = 2.

(WG3) If dmVP = 2dimVvH and dimvP = 2dimVK for pairs H, P), (K, P) €
HP(G) respectively, thenH, K) belongs toS(G) \ L(G).

(WG4) dimVP > 5 for all P € P(G).

(WG5) dimVv=H > 2 for all H € G}(G).

(WG6) If dimVP =2dimV*" for a pair H, P) € HP(G), then for allg € Ng(P) N
Ng(H), the associated transformatiogs V" — V" are orientation preserving.
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Throughout this paper leK, be a finite group isomorphic to a direct product of
groups isomorphic taC,, namely X, =~ C, x - - - x C, (n-fold) where C; is the cyclic
group of order 2. LetS be the symmetric group on the five letters, aAg be the
alternating group on the five letters.

Many authors have studied the Smith equivalence for variaute fgroups. But
the Smith sets Sm&) were rarely determined. In particular, whé&is a non-solvable,
non-perfect group, the Smith set S&)(was not determined except the case Sine
0. Most finite Oliver groups are gap group, while neiti&r nor Aut(Ag) is a gap
group. We have interested in the gro®, because it is an Oliver group which is
not a gap group, but it's subgroufs is an Oliver and gap group. In fact S&} =
Sm(As) = 0 ([21, Example E4, E5]). But what about the ce&&ex X, and As x X,?

Theorem A. If K = As x X, then Sm(K) = RO(K)7() = 22@-Y,

This theorem follows from the following 4 lemmas, and thekrar the Smith set
follows from Lemma 6.1 and Proposition 6.2.

Lemma 1.1 (K. Pawatowski—R. Solomon).If G is an Oliver gap group then
Sm@G) 2 ROG)5Q).

This result was given as [21, p.850, Realization Theorenflje fiext lemma is
well known (see [10, Lemma 2.6]).

Lemma 1.2. If G contains no elements of ord&; then SmG) = SMG)p ().

Lemma 1.3. If G/G"! is isomorphic to a direct product of groups isomorphic to
then SmG)p(c) € ROG)5Q)-

Cx
This lemma immediately follows from [14, Proposition 2.2].
Lemma 1.4. If K = As x X, then the following hold

(1) K is an Oliver gap group

(2) K does not contain an element of ord@r

(3) K"'= As and K/K" = Xj.

The purpose of this paper is to show the next.
Theorem B. If G = S x X, thenSm(G) = ROG)pg) = 22 L.
For G = S x X,, we can check the following.

(1) G is an Oliver, but not a gap group.
(2) G does not contain an element of order 8.
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(3) Gn" = As (g S;)) and G/Gn” ~ Cy x Xo.
To prove Theorem B, we need to obtain an extended result ofmarh.1. Thus we
will prove the next lemma.

Lemma 1.5. Let G be an Oliver groupFor x = Vo—Wp € RO(G)7(a) such that
Vo and W, are L(G)-free real G-modulesif there exists a real G-module U such that
Vo U and WU are L(G)-free and satisfy the weak gap conditighen xe Sm(G).

In addition, we will show

Lemma 1.6. Let G = S x X,. For each xe RO(G)fj((g)), there exist real
G-modules Y V and W such that x V—W, and Ve U and W U are £(G)-free
and satisfy the weak gap condition

Hence Theorem B follows from Lemmas 1.2, 1.3, 1.5 and 1.6, thadank of the
Smith set follows from Lemma 6.1 and Proposition 6.2. A keyptoving Lemma 1.6
is the next.

Lemma 1.7. If K = A5 x X, and G= S x X, then
Ind§ (RO(K)5{i)) = ROG)7(c).

The organization of the paper is as follows. Section 2 is til/¢o describing lem-
mas which are useful to construct smodihactions on spheres with non-isomorphic
Smith equivalent tangential modules for a general OliveugrG, and we give a proof
of Lemma 1.5. In Section 3 we exhibit results on the grolps: As xC, andG = S x
C, obtained by concrete computation and show that Ksjrgnd Sm(G) are isomorphic
to Z? and Z, respectively. In Section 4 we observe the induction honrpitiem
IndS : RO(K) — RO(G) and the restriction homomorphism KesROG) — RO(K),
and prove Lemma 1.7. In Section 5 we introduce the notion @fntation triviality.
Section 6 completes proofs of Theorems A and B.

2. Construction of non-isomorphic Smith equivalentG-modules
If G is not of prime power order, define a re@kmoduleV(G) by

V(G) := (R[G] - R) — P (R[G/G'P'] — R)
p

where p runs over the set of primes dividings|. Let kV(G) = V(G) & --- & V(G)
(k-fold). We recall some properties &f(G).
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Lemma 2.1 (E. Laitinen—M. Morimoto). For any finite group G the module
V(G) satisfies the following properties
(1) dimV(G)? > 2dimV(G)" for all (H, P) € HP(G).
(2) SupposgH, P) € HP(G) and Pe S(G)\ £(G). ThendimV(G)? = 2dimV(G)"
holds if and only if[H : P] = 2, [(H, G®): (P, G®)] =2 and (P, GIP") = G for
all odd prime p

This Lemma was given as [8, Theorem 2.3]. Reader can refe8]tdof funda-
mental properties oV (G).

Lemma 2.2. Let G be an Oliver groupn an integer> 1, and V and W real
G-modules Suppose the followingl)—(3):
(1) There exists a smooth G-action on a homotopy spbgrevith exactly one G-fixed
point x; say such that the tangential G-modulg,X;) at x; of X1 is isomorphic to
V & nV(G).
(2) There exists a smooth G-action on a homotopy spbgrevith exactly one G-fixed
point x, say such that T,(X,) is isomorphic to We nV(G).
(3) There exists a smooth G-action on a didkwith exactly two G-fixed pointsy;
and y say such that J,(A) and T,,(A) are isomorphic to V@nV(G) and WenV(G)
respectively
Then there exists a smooth G-action on a standard spbereith exactly two G-fixed
points z; and 2 say such that 7,(X) and T,,(X) are isomorphic to Vb nV(G) and
W & nV(G) respectively Hence the element ¥ W of RO(G) belongs toSm(G).

Proof. LetX;, ¥, and A be spheres and a disk appearing in (1)—(3) above. Let
33 denote the sphere obtained as the double\pfnamely X3 = A U A’, where A’ is
a copy of A. Then Eg consists ofy;, y», y; andy, such thatTy, (X3) = Ty, (X3) =
VonV(G) and Ty, (¥3) = Ty, (¥3) = WenV(G). Let 24 denote theG-connected sum
of X3 with X; and X, with respect to the pairs of pointsg/y( x1) and ., X2). Since
n>1, dmxf > 2 and &3 contains (infinitely many) points of isotropy subgrot
for each Sylow subgroup d&. By the [9, Proposition 1.3], we can obtain the standard
sphereX as the resulting manifold of iterate@-connected sum ok3 with copies of
G xp Res,? 3, where P runs over the set of all Sylow subgroups @f O

Lemma 2.3 (M. Morimoto). Let G be an Oliver group and V af(G)-free real
G-module satisfying the weak gap conditiofhen there exists a smooth G-action on
a sphereX; with exactly one G-fixed pointx; say such that T (2;) is isomorphic
to V.

Proof. By [18], Oliver group has a smooth fixed-point-fre¢i@t on a disk. Thus
we can construct a smooth action @fon a diskD = D(V) with exactly oneG-fixed
point x;. Taking the double oD, we obtain a smooth action @& on X; = D Uyp D
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with Ef = {X1, Xo}. Clearly ¥; =g S(R @ V). We can check that the action &
on X; satisfies Conditions (1)—(5) of [16, Theorem 36]. Therefar® can deletex;
from . Namely there exists a smooth action ®fon a spherez, with exactly one
G-fixed point. ]

Lemma 2.4 (B. Oliver, M. Morimoto—K. Pawatowski). Let G be an Oliver group
and { and W £(G)-free real G-modules such thﬁte§ V; is isomorphic toRe£ W,
for all Sylow subgroups PThen there exists an integer N such that for every N,
the m-dimensional disk, where m= dimV; +ndimV(G), admits a smooth G-action
with exactly two G-fixed pointsy; and y say such that J,(A) and T,(A) are iso-
morphic to \{ & nV(G) and W & nV(G) respectively

This lemma follows from [15, Theorem 0.3] but crucial parttbé proof was due
to [19].

Proof of Lemma 1.5. SeV; = Vo ® U andW; = Wy & U. Clearly, V; and W,
are L(G)-free realG-modules such that RE¥; = Re$W; for all Sylow subgroupsP.
Apply Lemma 2.4 toV;, and W, for finding an integeN such that for eactk > N,
putting n = 2k, there exists a smoot-action on a diskA described in Lemma 2.4.
SetV = V; & 2kV(G), andW = W; & 2kV(G), wherek > N. Apply Lemma 2.3
to V for obtaining a smoottG-action on a spher&; described in Lemma 2.4. Then
Vi @ 2kV(G) and W, @ 2kV(G) satisfy the weak gap condition. Obtal, for W
similarly to ¥; replacingV by W. Then by Lemma 2.2, we obtain a desired smooth
G-action on them-dimensional spher& for arbitrary k > N. O

3. Computation of SmS x Cy)

Proposition 3.1. The following equalities hold for G SxC, and K= AsxC,.
(1) SmK) = z? and Sm@G) = Z.
(2) Ind(SmK)) = SM@G).
Here the maplnd‘,i: RO(K) — RO(G) is the induction homomorphism

[V] = [R[G] ®g[k] V]

Proof. (1) By means of GAP [33], the irreducible complex cltaers of K =
As x C, are as in Table 1. The notation in the table reads that, fomplain the
case “5b”, the first letter 5 of “5b” indicates the order of deneent belonging to the
corresponding conjugacy class and the second letter b df i$lised to distinguish
conjugacy classes.

Since As is a simple group, it follows thak!? = Ag and KIP! = K (p # 2).
Thus K" = Ag, and K /K" =~ C,. Clearly K contains no elements of 8.

K is an Oliver group, becaug¢ is non-solvable. Letsj,1 <i < 8} be theZ-basis
of RO(K) such that the complification of; is §c. In fact, B3 + 385 + 87 + 28g +
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Table 1. The complex characters &f = As x C, where A =
—w—w*=(1-+5)/2, A=—-0?— =1+ V5)/2, v =

exp(2r v/—1)/5.

la 2a 3a 6a 2b 2c 5a 10a 5b 10b
S 1 1 1 1 1 1 1 1 1 1
S 1 -1 1 -1 1 -1 1 -1 1 -1
6% 3 3 0 0 -1 -1 A A A A
Sc 3 3 0 0 -1 -1 A A A A
8¢« 3 -3 0 0 -1 1 A -A A -A
%c 3 -3 0 0 -1 1 A —-A A -A
&« 4 4 1 1 0 0 -1 -1 -1 -1
Sgc 4 —4 1 -1 0 0 -1 1 -1 1
& 5 5 -1 -1 1 1 0 0 O 0
¢ 5 -5 -1 1 1 -1 0 0 O 0

89 + 3810 is a L(K)-free gapK-module, soK is a gap group. (The fact tha is a
gap group was theoretically proved by T. Sumi [31, Proposif3.3].) By Lemmas 1.1,
1.2, and 1.3, we get Si{() = RO(K)f;(('é)).

By a straightforward computation [33], Z-basis of ROK)z() is {x1, X2}, where
Xy = 83 — 85 — 287 + 208 + 89 — 810, X2 = 84 — 8¢ — 287 + 288 + 59 — 10

(2) By means of GAP [33], the irreducible complex characthss = S x C,
are as in Table 2.

Since As is a simple group, it follows thaG? = As andG!P' = G (p # 2). Thus
G"' = As, andG/G"! = C,xC,. Clearly G contains no elements of & is an Oliver
group, because is non-solvable. By Lemmas 1.2 and 1.3, 8)E ROG)AG).

Let {&, 1 <i < 14} be theZ-basis of ROG) such that the complification of;

is &c. By a straightforward computation [33], RGIf)((g)) =~ Z. We take theZ-basis

elementy = V — W of ROG)5g) such thatV = 2& + 27 + &10 + 12 + £14 and
W = 286 + 285 + &9 + §11 + &13. Let U = &5 + 2855 + 285 + 3610 + 3512. We can check
thatV & 2U and W @ 2U satisfy the weak gap condition. By Lemma 1.5, we obtain
ny € Sm(@G) for any n € Z, thus{y} is a Z-basis of SmMG).
Since the equalities
Indg 81 = & + &, Indg 8, = & + &,
Ind§ 83 = &13, Ind§ 84 = &13,
Ind 85 = &14, Ind$ 86 = £14,
Indg 87 = &5 + &7,  Ind$ 8g = & + &s,
INd 89 = &9 + &11,  INdS 810 = £10 + £12
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Table 2. The complex characters Gf = S x C,.
la 2a 2b 2c 3a 6a 2d 2 4a 4b 6b 6¢c 5ba 10a
§1c 11 1 1 1 1 1 1 1 1 1 1 1 1
£&¢ 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
& 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
& 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
bsc 4 4 -2 -2 1 1 0 O O O 1 1-1 -1
bgc 4 -4 -2 2 1 -1 0 O O O 1 -1 -1 1
E&c 4 4 2 2 1 1 0 0 0O 0-1 -1 -1 -1
gge 4 -4 2 -2 1 -1 0 O O O0-1 1 -1 1
& 5 5 1 1 -1 -1 1 1 -1 -1 1 1 0 0
gor 5 -5 1 -1 -1 1 1 -1 -1 1 1 -1 0 O
&4 5 5 -1 -1 -1 -1 1 1 1 1-1 -1 o0 0
gr 5 -5 -1 1 -1 1 1 -1 1 -1 -1 1 0 o0
& 6 6 0 O O 0-2 -2 0 0 0 0 1 1
&4 6 -6 0O O O 0-2 2 O O 0 0 1 -1
hold, we obtain Infi(x;) = Ind$(x2) = —y, which determines the induction map

Ind? : SmK) — SM@G).

O]

4. Induction and restriction

Let G be a finite group.

Lemma 4.1.

Proof.

If K <G, then

Ind§ (RO(K)p() € ROG)7Q)-

By definition,

RO@G)5(g) = RO(G)p() N ROG)“®).

So we will prove following (1) and (2).
(1) IndZ(RO(K)p()) S ROG)p(g)-
(2) IndS(RO(K)“(K)y C ROG)~(©.
(1) Letx=V—-W eRO(K)prk) whereV andW are realK-modules. It suffices

to prove

Reg(Indg V) = Res(Ind§ W)
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for all P € P(G). By the Mackey decomposition, we have

Reg(Indf V) = P  Indp g1 (9 ReSgipg V),
PgKeP\G/K

Reg(ndi W) = @ IndR5xq1(0- ResS g 1pg W).
PgKeP\G/K

SinceV — W € RO(K)p), it follows that

Res g 1pg V = R g 1pg W.

(2) Letx =V —W e ROK)*®) whereV andW are £(K)-free realK-modules.
By definition, VK™ = 0 = WK™ for all primes p. By the Mackey decomposition,
we have

Rei(p) (lnd% V) == @ IndgiziﬂgKgfl(g* Re§ﬁg,16(p)g V).
GIPlgKeGIP\G/K

Clearly [K : (K N G!P)] is a p-power. Thus we have

VKQG(p) — (VK“’))(KHG(D))/K“”

— O(KﬂG(P))/K(p)
0.
Similarly, WK"6"” = 0. Thus (Ind v)®" = 0 = (Ind¢ w)°®"" O

Lemma 4.2. If K <G, then
Reg (ROG)r(e) S ROK)p()-
Moreovey if GIP' = G (p # 2) and K2 G2 then
Reg: (ROG)5G) € ROK)AE).-
Proof. LetV —W € RO(G)pc) WhereV and W are realG-modules. So
Re$ V =~ Re§ W
for all P € P(K) € P(G). In general, ReS(Res; V) = Res V. Therefore
Regs (Reg V) = ResS (Resg W).
Thus,
Reg (ROG)p)) € ROK)p()-
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SupposeG!Pl = G (p # 2) andK 2 G2, SinceG!? = K N G? < K, we have
K2 c G2, SinceK!? < K andG'? C K, we getK? < G!?, For allg € G, we
obtain

gk@glc gegl=G?.

Let a € G, Then
a(gk?ghat = g(gtagK ?(gtag) tg~L.
Sinceglage G andK? <1 G!@, we get g~tagK @ (g~lag) = K1?. Thus
a(gK@g Hal=gK@gL

That isgk?g=t < G, Set

S=()gK®?g™
geG

Clearly, S<1 G. We know G*?/K!? is a subgroup ofK /K%, Since K/K? is a
2-group, it follows thatG'? /K2 is a 2-group. It is easy to show th&?/Sis a
2-group. SinceG/G? = (G/S)/(G*?/S), G/Sis a 2-group. Therefor&=G? = K2,

Let U; — U, € RO(G)#(® whereU; and U, are £(G)-free real G-modules. We
obtain

(Re )" =UP" =0
and

2
)K

(Re€ Uy)“ =ug” =o0. O

Let G =S x Xy andK = As x X, where X, = Cy x -+« x Co.

Proof of Lemma 1.7. The conjugacy classes of the maximal eh¢any subgroups
of G not belonging toK are represented bf; = Dg x X, and E; = Cg x X, As
E, C Hy = D1 x X3, by Brauer's theorem [29, p. 78]

RO(G) = Indg, RO(E1) + Indf, RO(Hz) + Indf RO(K).
Thus we have
1z = Indg t + Indf, u+ Indg v

for somet € RO(E;), u € RO(H;) and v € RO(K). Let x be an arbitrary element of
RO(G)f,((g)). Then we have

x = Indg (t-Re ) + Indf; (u-Reg}, X) + Indg (v - Rexg ).
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Since E; is a 2-group, R% x = 0 and hence
x = Ind§, (u- Res;, x) + Ind§ (v - Reg{ X).

Let H < G anda € RO(H). ThenP(H) is a subset of?(G). Thus forP € P(H),
we have

Reg (a- Reg; x) = Reg (a)(Res: (Reg; X))
_ Red!(@)(Re& )
=Regi(a)-0
=0.
Namely a - Reg; x € RO(H)p(n).

SupposeAs < H < G. Write a = U; — U, and x = V; — V, with real H-modules
U; and U, and £(G)-free realG-modulesV; and V.. Then noteV,™ = V,* = 0 and

a-Reg; x = {(U1 ® Reg; V1) @ (U ® Reg; Vs)}
—{(U1 ® Re§; Vo) & (U, ® Res; V1) .

Let W = (Uy®Re$; V1) @ (U@ Reg; Vo) and W, = (U ® Res; Vo) @ (U2 ® Res; V).
Since As does not have subgroups with index 2, we have

WS = (U; @ Re$ Vi)™ @ (U, @ Red Vo)™
= (U7 ® (Re§ V1)™) & (U7* ® (Res V2) ™)
= Uf*®0) @ (Us* ®0)
=0.
Similarly, WZAS = 0. Therefore,a-Re§ x € RO(H)f,((ﬂ)). Consequently,
x = Ind§ (u-Reg, X) + Indg (v - Reg X)
= Indg, X1 + Indg X
with x; = u-Re§}, x € RO(H2)p(,) andx, = v-Reg x € RO(K)f,((ﬁ)).
In order to show In[:‘]2 x1 = 0, we regard
RO(Hz) = RO(D12) ®z RO(Xz)

in a canonical way. For each < X, with [X,: T] < 2, there is a unique 1-dimensional
real X,-representatio§r such that the kernel afy is T. The set

Er 1T =Xy [X2:T] <2}
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is a Z-basis of ROK;). Thus we can regard
RO(Hz) = RO(D12)ét, ® RO(D12)ét, @ - - - ® RO(D12)ET,0-

We can writex; above in the form

2n
X1 =) ur &7
i=1

with ur, € RO(Dyp). Sincex € RO@G)7() and Inc x, € ROG)A).
RO(G)éi‘é),- Sincex; € RO(H2)p(hy), it must hold that

we get Ing, x; €

ur € RO(D12)7’2(D12)

for eachi and

on

> " ur, € RO(D12)py(01)
i=1

wherePy(H) := {P < H | P is a p-group.

RegardD;, = (a,b,c) with a = (1,2, 3),b = (1, 2), c = (4,5). By a straightforward
computation [33], we can check thet)y — U,, Us — Uy} is a basis of ROD12)p,,,),
whereU; are realD;>-modules of dimension 2 with action:

U-a+—>-10 b»—>-1 0] CH> 10
L (0 1) [0 -1 0 1]
_cosz sin2
_jT Ju— —7T - —
. 3 3 1 0 1 0
Us: am> Sinz COSZ , br—)_o _1_, C— 0 1i|,
| >13” 3"
1 0 1 0] -1 0
U3.a+—>_0 1:|, br—)_o 1) (o= 0 _1],
_cosz sin2
_jT Ju— —7T — —
. 3 3 1 0 -1 0
Us: a~> Sinz COSZ , br—>_0 1) CH— 0 _1],
| >13” 3"

and

(Ind3_(Uy —Uy) " =R,
(Indg, (U1 —U2)™ =R,

(Ind3_(Us —Ua))® =0,
(Ind3,(Us — Ua)™ = R.
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Then we can write Inﬁ2 X1 in the form

on

Indﬁ2 X1 = Z{mTi |nd§’12(U1 —Uy) + ny, |nd§12(U3 — U4)} &7
i=1

Note
(IndS, x1) = {mx, (IndZ, (U1 — U2))® + ny, (Ind3_(Us — Ux))*} - &
H, 1 - Xa D12 1 2 Xa D12 3 4 Xa
= my,R - &x,
=0.
This showsmy, = 0. Next note
(IndS, %) =" = [mr, (Ind3_(Us — Uy))™ + ny, (Ind3_(Us — Ua)) ¥} - &1
+ nxz(lnd‘az(Ug - U4))&~' - Ex,
=myR - &y,
=0.
This showsmy, = 0. Therefore we get the equality

2n
|I"Ida2 X1 = Z N, |nd§12(U3 —Uy) - &t
i=1

The equalities

(IndS, %)™ = ny, (INd3_(Us — Ua))™ - £x,
nx,R - &x,

=0

concludeny, = 0. Similarly, we can shownr = 0. Thus we have established
Indf, x; = 0. O

5. Orientation triviality

We use the following notation.
HP(G, 2):={(H, P) e HP(G) | [H : P] = 2},
HP(G, 2):= {(H, P) e HP(G, 2)| [(H, G?) : (P, G =2
and (P, G'%) = G for any odd primeq},
A(G) :={(H, g) € S(G) x G | g € Ng(H), 3P <« H satisfying H, P) € HP(G, 2)},
B(G) :={(H,g) e S(G) x G| ge Ng(H), 3P <« H satisfying H, P) € HP(G, 2)}.
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For each elemermt = V — W € RO(G), we define a map
¥ A(G) x ROG) — Z»
by
¥((H, 9), x) = Ori(g, V") — Ori(g, W")

where

Ori(g, V") = 0 if g:VH = VH s orientation preserving,
g |1 if g:vH = V" s orientation reversing.

The valuey ((H, g), x) is also written as Ori, x™).

Lemma 5.1. Forareal G-module V an¢H, g) € A(G), Ori(g, V") =dimV .9 —
dimV{H.9 (mod 2).

For a subse€ c A(G), x € RO(G) is calledorientation trivial onC if Ori(g, x") =

0 for all (H, g) eC.
In the following, we always invoke the next hypothesis.

HYPOTHESIS5.2. LetK be a gap subgroup d& of index 2.
Let U be aK-module and seV = Ind$ U. If H € K then we have

RE£| V= @ lnd:ﬂgflKg O« (ReézﬂgHgfl U)
HgKeH\G/K

(Resi U) @ g.(Reg( g g1 V)

whereg is an arbitrary element s \ K.

Lemma 5.3. Let U be a gap K-moduleThen for V= IndE U and (H, P) €
HP(K), the inequalitydimVP > 2dimV" holds

Proof. By the formula above, we get diff! =dimUH +dimU9H9" and dimv P =
dimUP 4+ dimU9%P9", SinceU is a gapK-module, we have dir® > 2 dimU*" and
dimU9PY" > 2dimU9HI" These imply dimvP > 2 dimVH. O

Lemma 5.4. Let W—Wp € RO(K),,E;(('E)) and W, a gap K-moduleThen \{ = Vo &
(dim Vo + 1)Uy and W, = Wp & (dim V + 1)U, are gap K-modulesFor V = Ind§ Vi,
W = Ind$ W; and U = 2(dimV; +1)V(G), the real G-modules U and WU fulfill
the gap condition for anyH, P) € HP(G) whenever H< K or (H, P) ¢ HP(G, 2).
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Proof. Let H, P) e HP(G). First observe the computation

dimVy —2dimV! =dimVy —2dimVy' + (dim Vo + 1)(dimUg —2dimUg')
> dimVy —2dimVy! 4 (dim Vo + 1)
> (dim Vo + 1) — dim
> 0.
Thus V; is a gapK-module. Similarly,W; is a gapK-module. By Lemma 5.3/ and
W fulfill the gap condition for the pairH, P) wheneverH < K.
Now assumeld, P) ¢ HP(G, 2),. By Lemma 2.1 (2), the inequality dim(G)P >
2dimV(G)" holds. Thus we get
dim(V & U)P — 2 dim(V @& U)" = dim(Ind$ V4)" — 2 dim(Indg ;)"
+ 2(dimV; 4+ 1)(dimV(G)P — 2dimV(G)")
> 2(dim Vs + 1) — dim(Indg ;)"
> 2(dimV; + 1) — dim Ind$ Vy
> 0.

This shows thai @ U fulfills the gap condition for the pairH{, P). Similarly, W& U
fulfills the gap condition for the pairH, P). 0

To apply Morimoto’s surgery result foy € Indﬁ (RO(K)f,((ﬁ))), we need to show

that y is orientation trivial on the set
B(G), := {(H, g) € B(G) | Ord(g) = 2 for somel e N andH & K}.

In Proposition 3.1, we checked the orientation trivialitylds for the groupG = S x
C,. In order to show that the orientation triviality holds f& = S x X, with X, =
C, x --- x Cy (n-fold) such thath > 2, we introduce the notation

B(G),,..:= ((H,9) € B(G), | |H| = 2 for somek € N}
and
E(\szodd = E(\sz \ E@zeven-
We can prove the following two lemmas without difficulties.

Lemma 5.5. Let G=Sx X; and a= (0,b) € G witho € §\ As and be X.
Then there exists an isomorphismm G — G such that

(1) ¢l0) =4,
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(2) ¢(x) =x for all x € As U X;, and
(3) pog =idc.

Lemma 5.6. Let G= & x X,. Then the implication

BG)C |J AWM

Y=<G
Y: 2-group

holds
Then we have the next lemma.

Lemma 5.7. The implication

BG),,c |J A

T<G
T=SxC,

holds

Proof. Let H, g) € B(G),,,, By definition, we getH ¢ As = G2 as well as
H € K. It is easy to show the following.
(1) [H|=2pfor p=3orb.
(2) H has a unique (normal) Sylow-subgroupP = (u) such that the order af is p.
(3) P is a unique (normal) Sylowp-subgroup ofL = (H, g) (C G).
(4) P C As.

Since p =3 or 5, H is isomorphic toCy, or Dy,. Thus, we can taka e H\ As
of order 2. Write

a=(o,h)
and
g=(r,0

with o, T € S andb, c € X,. SinceH £ K, o ¢ As. In addition, since the order af
is a power of 2 by definition, the order is 2 or 4. There existssamorphismp: G —
G such thatp(H) C S and ¢|x, = idx,. Theng(L) = (¢(H), ¢(9)) is a subgroup of
S x (c). Thus (, g) belongs toA(T) for someT < G such thatT = S x C,. O

Lemma 5.8. Let G= S x Xz and K = As x X,. For an arbitrary element »x
RO(K)fD((E)), y = Ind$ x is orientation trivial onB(\G/)z.
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Proof. By Lemmas 5.6 and 5.7, the implication

BGpc |J 4amu U Am

T=<G Y=<G
Tx=SxCy Y: 2-group

holds. Clearly,y is orientation trivial onA(Y) becauseY is a 2-group. In the proof

of Proposition 3.1, we saw that for the basis elemgnt V — W of RO(T)é((P), VvV @

2U and W & 2U satisfy the weak gap condition. Thus each element ofTRf;%)) is
orientation trivial on A(T). ]

6. Completion of proofs of Theorems A and B

In this section, we proceed as follows. Firstly, we give fsoof Lemmas 1.4
and 1.6. Secondly, fo6 = S x X, and As x X,, we compute the rank of the Smith
set of G.

Proof of Lemma 1.4. LeK = As x X,. Since As is a simple group, it follows
that K@ = As and K!P! = K (p # 2). Thusk™ = A, and K /K" = X,. Clearly K
contains no elements of & is an Oliver group, becausé is non-solvable. Clearly
P(K) N L(K) = @. Since As x C, is a gap group (see the proof of Proposition 3.1),
by [17, Theorem 0.4], it follows thaK is a gap group. O

Proof of Lemma 1.6. For arbitrary € RO(G)f,((g)), there exists an element €

RO(K)f;((E)) such thatx = Indﬁ y. Let y = Vo —Wp such thatVy and Wy are £(K)-free
real K-modules, andJy £(K)-free gapK-module. ThenV; = Vy & (dim Vo + 1)Ug
and Wy = Wp @ (dimVp + 1)U, are £(K)-free gapK-modules. Setv = IndS Vi,
W = Ind W; andU = max{6, 2(dimV; + 1)}V (G).

For subgroupH, K of G and a realG-module X,

Reé—sl (Ind(lz X) = @ Ind:ﬂgKgfl(g* Reiﬂgleg X)
HgKeH\G/K
_ [Resi X®g.Reg ., X if H=K (herege S\ As),
| ind o (Res i X) if HZK.
Hence

_ 6 wH _ [dimXH +dimX97He if H <K (herege S\ As),
dim(Indic X)* = {dim XHOK it HZK.
Let (H, P) € HP(G, 2).
Case H < K. By Lemma 54,V & U and W ¢ U satisfy the gap condition
for (H, P).
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Case P £ K. We obtain
dimVP —2dimVH = dimVv/™ — 2 dimVvK,
Note [HNK :PNK] =2, becauseP: PNK]=2and H:HNK]=2. Thus
dim V"™ —2dimV;7K > 0.
By Lemma 2.1 (1), dinruP > 2dimU". ThusV & U satisfies the gap condition for
(H, P). Similarly W & U satisfies the gap condition foH(, P).
CAse P <K, H £K. For an elemeng € H \ P, we obtain
dimVP —2dimVH = dim V> + dim vV P9 — 2 dim v, ¥,
SinceP<H andH N K = P, it follows that
dimV + dimvZ P9 - 2dimVHK = 2dimV,” — 2dimV,?

=0.

By Lemma 5.8,V — W is orientation trivial onZS(\GSZ. ThusV @ U satisfies (WGB6).
By [8, Corollary 3.5], 6/(G) satisfies (WG1)—(WG6). Hence ¢ U satisfies (WG1),
(WG2), (WG4), (WG5). By [12, Theorem 2.5V @& U satisfies (WG3). Similarly
W @ U satisfies the weak gap condition. O

Let H be a normal subgroup d&. We denote bybg 1 the number of real con-
jugacy classesgH)* in G/H of cosetsgH containing elements o6 not of prime
power order.

Lemma 6.1. If G" = G/P for some prime pthen

Rank; (ROG)7a)) = ac — bg -

Proof. By [21, p.858, Subgroup Lemma], we have

nil {p}
RO(G)e) € ROG)AY S ROG) e -

Since G]”” =GP, it follows RO(G)gs(”g; = ROG)pg). By [21, p.856, Second Rank
Lemma],

nil
Rank; (ROG)AS)) = Rank (ROG)ixg))
=ac — bG’GmI . D
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Proposition 6.2. Let G= S x X, and K= As x X, where % =Cy x---x Cy
(n-fold9. Then the following hold
(1) ag =1+3(-1)and s g = 2" - 1.
(2) ax =3(2"—1) and Ik gm =2"—1.

The proof is straightforward.
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