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Abstract

Gordon and Luecke showed that knots are determined by tleiplements.
Therefore a non-trivial Dehn surgery on a non-trivial knated not yield the
3-sphere. But the situation for links is different from tHatr knots. Berge con-
structed some examples of Dehn surgeries of 2-componésst yiielding the 3-sphere
with interesting properties. By extending Berge's exampl® construct infinitely
many examples of tunnel number one links in the 3-sphereh that their compo-
nents are non-trivial, and that non-trivial Dehn surgepesthem yield the 3-sphere.

1. Introduction and results

Let S° be the 3-sphere. By a Dehn surgery or Dehn filling yield#ignd a Heegaard
diagram forS?, we mean a Dehn surgery or Dehn filling yielding a 3-manifotenieo-
morphic toS® and a Heegaard diagram for a 3-manifold homeomorphi® t@spectively
throughout this paper.

Gordon and Luecke [5] showed that knots are determined by deenplements.
In other words a non-trivial Dehn surgery on a non-triviabkin S* does not yieldSs®.
But the situation for links is different from that for knott fact, there is a link inS®
which admits a non-trivial Dehn surgery yieldirf. Here a non-trivial Dehn surgery
means a Dehn surgery along a non-meridional slopes. If aHaska trivial component
or has a non-separating essential annulus in its exterier,can easily see that the
link admits infinitely many such surgeries. These are catlddal examples. Non-
trivial examples of links with such surgeries have been tanted. Berge [1] gave
some examples of tunnel number one links. Kawauchi [8], [@jvweed that we can
construct infinitely many examples of hyperbolic links ofyamumber of components
by using imitation theory. Teragaito [13] gave an exampleanfn-component link of
which tunnel number i1 — 1 for anyn > 2. Classes of links without such surgeries
are also known. See for example [10].

Let L be a knot or link in a closed, orientable 3-manifaN] and letM be the
exterior of L in N. L is atunnel number one linik M is homeomorphic to a handle-

2000 Mathematics Subject Classification. Primary 57M25; 8éany 57N10.
This research was partially supported by Fellowships of Xhpan Society for the Promotion of
Science for Japanese Junior Scientists.



190 K. ISHIHARA

body H of genus two with a single 2-handle attachedHaalong a simple closed curve
C in 9H. Note thatL is a knot if and only ifC is a non-separating curve inlH, and
L is a two component link if and only i€ is a separating curve iaH.

Berge [1] determined whether sudi can be embedded i8® or not, and found
all such embeddings if they exist. He showed thak ifs a tunnel number one link in
S®, whose exterioE(L) does not contain any non-separating essential annulusiand
Dehn filling on one of the boundary componentskqiL) does not yield the solid torus,
then L has at most five non-trivial Dehn surgeries yieldi6§ Also, he described a
Heegaard diagram for the exterior of a link with five noniiivDehn surgeries yield-
ing S3.

Let M be a 3-manifold whose boundary componentslateri T; (i =1,...,Kk),

A be a subset ofl,..., k} andmj, m| (j € A) be essential simple closed curves in
T;j. The Dehn filing ofM along UJ-GA m; is said to be equivalent to that off along
Ujea m; if Ujca mj is isotopic tolJ;c, m; in dM. Two Dehn surgeries of a link

in S® are said to be equivalent if their corresponding Dehn filimg the exteriorE(L)

of L are equivalent.

Theorem 1.1. There is an infinite family of mutually distinct tunnel numioae
links {Ln}52, in S® such that each } has exactly five non-trivial Dehn surgeries yield-
ing S up to equivalence

REMARK 1.1. Sincel, has only finite non-trivial Dehn surgeries yieldirfsf,
L, has the following properties.
(1) L, has no trivial component.
(2) The exteriorE(L,) of L, does not contain any non-separating essential annulus.
(3) Any Dehn filling on one of the boundary componentskdfL,,) does not yield the
solid torus.
Becausel,, must have infinitely many non-trivial Dehn surgeries yietgliS® up to
equivalence if one of (1), (2) and (3) does not hold. All tunnember one links
whose exteriors contain a non-separating essential amrawkl determined by [3], and
all these links have a trivial component.

Theorem 1.2. There is an infinite family of mutually distinct pairs of tuwhmum-
ber one links{Ln, L/}2%, in S* with the following properties
(1) L, has no trivial component
(2) L;, has a trivial component
(3) E(Ln) is homeomorphic to @&).

=

REMARK 1.2. Berge [1] gave an example of a pair of distinct hyperbttiks
without trivial component whose exteriors are homeomarpbieach other. The exam-
ples of Theorem 1.2 are entirely different from Berge’'s one.
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2. Basic facts and notions for proofs of Theorems

In this section we will prepare some basic facts and notatfon proofs of Theo-
rems 1.1 and 1.2.

Following [6] we will recall Heegaard diagrams for 3-matife. Let H, be a
handlebody of genus. A set of simple closed curvas, u,,...,u, C dH, is ameridian
system of H, if there are diskd1, Dy, ..., D, C H, such thatD; NaH = dD; = y;
(for eachi € {1,2,...,n}), D; N Dj =0 (if i # j), and C(Hy, — N(U_; Di)) is
homeomorphic to the 3-balB3. Here CI() means the closure and N(means regular
neighborhood.

Let H Ug H’ be Heegaard splitting of a closed orientable 3-manifieldand {u;,
Uz, ..., Un} (resp.{uj, us, ..., uy}) be a meridian system ofl (resp.H’). We call
D = (F;{ug, Us, ..., Un}, {Uy, U5, ..., uy}) a Heegaard diagramof genusn. This def-
inition is extended to the definition of Heegaard diagranrsnfon-closed compact ori-
entable 3-manifoldsH, H’ are compression bodies), by choosing collections of core
curves of 2-handles for each of compression bodiiedH’. A Heegaard diagranb =
(F;{us,Uz,...,Un}, {u, Uy, up)) is said to benormalizedif (L, ui)n (U7, uj) con-
tains no isotopically removable point. WheéJi_, ui) U (-, u;) is connectedD is
called aconnected diagramFor normalized Heegaard diagrdih= (F;{uy, Up,..., Un},
{u},u5,...,uy}), a simple araw in F is called awaveif w satisfies the following con-
ditions:

(1) there is a meridiam € {uy, Uy, ..., U} U{u}, Uj, ..., u;} satisfyingw N (Ui, ui) U
Uiz uj)) =wnu=dw,

(2) a small neighborhood M{v; w) of dw in w is the same side ofi, that is, the
closure of one component of d)— u contains N§w; w),

(3) each component af — dw intersects{uy, Uy, ..., Un} U {uf, us, ..., uy} —{u}.
The wavew is said to beassociated with wspecifying the meridian whiclw attaches.
Note that any non-connected, normalized Heegaard diagfagerus two forS® is the
standard ondq = (F;{uy, uz}, {uj, us}), whereDg is normalized and satisfiesﬂu’j =
fapoint if i =jandunu; =0 if i #jfori,je{l, 2.

Theorem 2.1 (Homma, Ochiai and Takahashi [6])Any connected normalized
Heegaard diagram of genus two for ®as a wave

For a survey of the proof, see [4].

Birman and Hilden [2] showed that every 3-manifold with a be&rd splitting of
genus two is two-sheeted cyclic branched coverSdfbranched over a knot or link
in S°, see Takahashi [12] for alternative proof. By a solution leé Smith conjecture
[11], we obtain the following well known theorem.

Theorem 2.2. Let N be a closedconnected simply connected®-manifold with
a Heegaard splitting of genus tw@hen N is homeomorphic t0S
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By loop theorem and Schoenflies theorem, we obtain the foligwvell known
theorem.

Theorem 2.3. Let M be a3-manifold homeomorphic to the exterior of a knot
Then M is homeomorphic to the solid torus if and only if thedamental groupr;(M)
is isomorphic to the infinite cyclic groug.

The following is the Dehn filling version theorem of Gordonsecke [5].

Theorem 2.4. Let M be a3-manifold homeomorphic to the exterior of a non-
trivial knot in S*. Then the Dehn filling of M yielding®3s unique up to equivalence

3. Proofs of Theorems

In this section, we will prove Theorems 1.1 and 1.2 by usingd#ard diagrams.

3.1. Definitions, Key Lemma and Basic Lemma. Let M be a handlebodH
of genus two with a single 2-handle attachedHoalong a separating simple closed
curve C in 9H, and{uy, u;} be a meridian system dfl. ThenD = (dH; {us, uy}, C)
is a Heegaard diagram fovl. Some definitions in the section 2 for a Heegaard diagram
for a closed orientable 3-manifold can be extended to thasdich a Heegaard diagram
D. The Heegaard diagrar® = (dH; {uy, up}, C) is said to benormalizedif (u, U
uz) N C contains no isotopically removable point. For normalizedetiard diagram
D = (0H; {uy, up}, C), a simple arcw in dH is called awave associated with @ w
satisfies the following conditions:

1) wNUuUu,UC)=wnNC = dw,

(2) a small neighborhood Mfv; w) of dw in w is the same side o€, that is, the
closure of one component of 8f — C contains Nyw; w),

(3) each component df — dw intersectsu; U u,.

For Heegaard diagrar® = (dH; {uy, uy}, C) of genus two, by cuttingH open
alongu; andu,, we obtain the 2-sphere with four disks (we name th&sa, B andb,
where disksA, a are obtained by cuttingH open alongu; and disksB, b are obtained
by cuttingdoH open alongu,). Throughout this section, we consider such diagrams.

Key Lemma 3.1.1. Let M be a handlebody H of genus two with a singdeandle
attached to H along a separating simple closed curve @Hh Let D= (0H;{uy,u,},C)
be a Heegaard diagram for M whef@;, u,} is a meridian system of HSuppose that
D is of the type as shown iRig. 1 below where each arc represents a family of arcs
parallel to it, the labels ¢ d, e, f for arcs indicate the numbers of arcs in each family
respectivelyand wiy (i € {1,2, 3, x € {l, r}) is a wave associated with C in.[Let my
(ie{1,2,3, xe{l,r}) be the simple closed curvasy U ajx Whereq;jy is a component
of C — wiy. If ¢, d, e f > 1, then for any Dehn filling of M yielding 3(if it exists,
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Fig. 1.

one of the two simple closed curveg mm, in 9H — C corresponding to this Dehn filling
coincides with one of g, my, mg, My, My and my. up to isotopy on the closure of one
component obH — C.

Proof. Our proof is based on the idea of Berge [1]. We may asstimt (1)
(m um;) N (uyUuy) contains no isotopically removable point by isotopy kegpim U
m;) N C = @. The triplet D’ = (dH; {uy, uz}, {m;, m:}) is a Heegaard diagram for
S®. Suppose thaD’ is the standard Heegaard diagram ®% Then, without loss of
generality, we may assume (8) Nm, = {a poinf, u,Nm, = {a poin§, uy;NmM, = @,
uNm =0. By (2), (mum)NC =@ and Fig. 1,C must containc simple closed
curves parallel ton, and d simple closed curves parallel tm,. This is contradicts
connectivity of C because oft + d > 2. ThereforeD’ is not the standard Heegaard
diagram for S® and soD’ is connected. Then, by Theorem 2.D/ has a wavew
associated wittm, (x =1 orr) oru; (j =1 or 2). We may assume that (3 N C
has no isotopically removable point by isotopy if necessary

CAsSE 1. Suppose thatv is a wave associated witm, (X =1 orr). Then we
have w N C # @ because, ifw N C = #, w must be an arc as shown in Fig. 2 of
D’ obtained by cuttinggH along m; and m;, where one of the two components of
my — dw does not interseat; U up, and so is hot a wave associated with (x = |
orr). By ow ¢ my C dH —C, dw is contained in one of two components &f —C
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or

u CuyUuy
case of x =1/ case of x =r

Fig. 2.

and so, byw N C # @, w contains a subarac such that (4)wc N C = dwe, we N
(UuUu,Umum) =60, andwc —odwc C F; where F; is the component ofH —C
containingmy (y # X, y =1 orr). Then, by (3) and (4)wc is a wave associated
with C. Let B,. be any one of the two componengs, B> of C —dwc and Fy be the
closure of Fj. (Note that two simple closed curvesc U 81 and wc U p, are isotopic
in Fy.) Then by (3),wc U B.. is an essential simple closed curve fiy and so by
(wcUBu)Nmy CwUC)NmMy = (wnmy)U(Cnmy) =9, wecU B, Iis isotopic
to my in Fy. By (3), wc is isotopic (in Fy) to one wavew;y, (i € {1, 2, 3) keeping
(wec — dwc) NC = @ and dwc in C, and sowc U B, is isotopic tom;y in oH.
Therefore, we haveny = miy up to isotopy inFy.

CAsSE 2. Suppose thatv is a wave associated with; (j =1 or 2). We may
consider Fig. 1 a graph in a 2-spheXe For a wavew in X, there is a simple closed
curve u € {0A, 9a, 9B, ab} satisfying (5)w N (dAUdaU B UIb) = wNu = Jdw.
Let G be a component ofi — dw. Then the simple closed curwe U U in X separates
v Uu’uUu” into v Uu” andu” where{u, u’} = {0 A, da} or {aB, db}, and{u”,u”} =
{0A, 9a, aB, ob} — {u, u’}. Since the number of subarcs @f in Fig. 1 connecting
U uUu” andu” is one of the integersl + f, d+e, c+ f andc+ e, w intersectsC
at more than two points because @f+ f,d +e ¢+ f,c+e> 2. Thenw contains
a subarcwc such that (6)wc NC = dwc andwc N (U Uu, Um Umy) = @. By (3)
and (6), wc is a wave associated witB. Choosemy (y =1 or r) such that bothm,
and we — dwc are contained in the same componeﬁj,t of dH — C. Let F, be the
closure of Fj. By (3) and (6), wc is isotopic (in Fy) to one wavewiy (i € {1, 2, 3)
keeping fvc — dwc) N C = @ and dwc in C. By the same argument in Case 1, we
have my, = m;y up to isotopy inFy. O
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Let « and B be p-based closed curves iH — dH as shown in Fig. 3, wher®
is base point. Letd], (resp. B]p) be the p-base homotopy class ef (resp.g) in
H. The fundamental groug:(H) (= 71(H, p)) of H is the free group generated by
[e]p and [Blp. Put A = [a]p,, B =[B]p anda = A™', b = B! in order to get a
word expression for an element afi(H) easily. For any (oriented) closed curye
in H, its free homotopy classy| in H contains ap-based closed curve, € [y].
And [yplp (€ mi(H) = (A, B)) is represented by a word/(y) defined for a closed
curve y is unique up to conjugation imy(H) = (A, B). If an oriented simple closed
curve y in 9H has finite transversal intersections with U u, and a starting point
g € y — (U1 U uyp) is given, then we can obtain a wol¥(y) uniquely by reading the
intersectiony N (uy U up) along y starting fromq. This is a well-known algorithm to

get W(y).
LetW (i =1,...,m) be a word in the alphabets; (j = 1,...,n) ande be the unit
element of the free groupAy, . .., Ay). Let N(W4, ..., W) be the smallest normal sub-

group of (Ay,..., Ay) containing{Wi, ..., Wy}. The factor groug Aq, ..., An)/N(Wy,.. .,
W) is denoted by(A;--- Ay | WL =¢€,..., Wy, = €). Note that(A;--- Ay | Wy =
e....,Wn=¢6)=(A--- Ay | W] =g ..., W, =e) holds if W, is conjugate toA/ in
(Aq, ..., Ay) for eachi = 1,..., m. For two groupsG; andG,, G; = G, means that
G, is isomorphic toG,. By van Kampen’s theorem, the next lemma holds.

Basic Lemma 3.1.2. Let M and C be the same ones Key Lemma 3.1.1.Let
my (resp m;) be an essential simple closed curve in one compofresp the other
componentof dH — C. Let M(m;) (resp M(m;)) be a 3-manifold obtained by Dehn
filling of M along m (resp m;) as a meridian and Nim;, m;) be the one along m
and m as meridians Then the followings hold
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(1) m(M) = (A B|W(C) =e).
(2) m(M(m)) = (A, B[ W(m) =€), m(M(mr)) = (A, B | W(my) = e).
) m(M(m, m)) = (A, B [W(m) = e W(m) = e).

-

REMARK 3.1. Since
W W (m ) Wi W, P W(m ) W, = W(C)
= W, W(m, )Wy W5 tw(m, )~

holds for certain word&V;, Wo, W], W) € (A, B) = w1(H), W(m) = e (resp.W(m,) =
e) implies W(C) = e and,

N(W(C), W(mi)) = N(W(my)),  N(W(C), W(m,)) = N(W(m;))

and
N(W(C), W(m), W(m,)) = N(W(m;), W(m;))
hold. And so,
(A, B|W(C) =e W(m) =¢€) = (A B|W(m) =e),
(A,BI|W({C)=e,Wm)=¢)=(A B|Wm)=¢)
and

(A, B|W(C) =¢e, Wim) =, Wm;)=¢e) = (A B|W(m)=e Wm)=¢e)
hold.

3.2. Proof of Theorem 1.1. Let D, be a Heegaard diagrand i ; {u, Uz}, Cy)
shown by Fig. 4 below where is a positive integer. Note thdD, is a special case
of D in Key Lemma 3.1.1. Throughout this subsection, we assiime D,, My, C,
meanM, C in Key Lemma 3.1.1 respectively andiy, mix (i € {1,2,3, x € {l,r})
mean the ones in Key Lemma 3.1.1 in the caseDof D, respectively.

REMARK 3.2. A Heegaard diagrar®; is an example given by Berge [1].

Lemma 3.2.1. If C,, my, my, Mg, My, My and my are oriented as shown
in Fig. 4 respectively then there exists a starting point on each of these simplgedo
curves respectively such that the following equations .hold

1)
W(C,) = B(abAB™Va(B Abg " YB A(BabA™ VB B(AbaB) "V AA(BabA"D
x B(AbaB)"VYAb(ABab ™V A(baB A" Pba(b ABa"Vbb(aB ApY
x aa(b ABa"Vb(aB Ah"Ya.
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Fig. 4.

(2) W(my) = b(ABah™DA(baB A Vba(b ABa™Vbb(aB Ah("Va.
(3) W(my) = a(bABa™ Vb(aB Ah"VaB(ab AB)"Ya(B Aba™1B.

(4) W(mg) = A(BabA™-DBB(AbaB)™DAABabA™VB(AbaB) DA,
(5) W(my) = (BAba™bBA(BabAMVBB(AbaB)(™DAABabA™-IB.
(6) W(my) = b(aBAB"Daa(b ABa"™ Db(aB Ah"DaB@abAB)" Va,
(7) W(mg) = (AbaB)™YAb(ABab™YA(baB A" Ybab ABabb.

Proof. Letc, d, &, fi, g andh; be subarcs ofC, respectively as shown in
Fig. 4. ThenC, can be represented by connecting theses subarcs as

n-2 n-2
C1 H(dm +2€12 +6C12i +8 F121 +12)d1n-10 1_[(012(n—i )-9€12(1-i)-110121-i)-15 F12(1i)-17),
i=0 i=0
n-2 n-2
C3€1 l_[( f12i 12012 + 4812 18C12 1+ 10) Fron—10h2 l_[(elszi )—9012(1-i)-13 F120-i)-15C12(1—i)-19),
i=0 i=0
n-2 n-2

€301 H( f12 14012 16€121 1 10C12 +12) f1n 8 1_[(612(n7i )=701201-i)-11 F12(0-i)-13C12(01-i)-17),
i=0 i=0
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n-2 n-2
esd; H(Clzi +2 f12i 16012 4 88121+ 12)C1n—10 H(dl2(n—i )9 F12—i)-11C12(1—i)-15€12(1—i)~17)
i=0 i=0
n—2 n—2
ds fy H(em +2C12 44 T12 18012 10)€120—10N1 1_[( f1201-i)—-9C12(1—i)-13€1201—i)-15012(1—i)—19),
i=0 i=0
n-2 n—2
fage H(em‘ +4C12 16 121110012 +12)€120-8 H( f12(1-i)-7C12(1i)-11€12(1-i)-13012(—i)-17) 5.
i=0 i=0

Take a starting point on; —dc; for C,, and a starting point omix —dwix (i € {1, 2, 3,
x € {l, r}) for mix respectively. Ul

For two wordsW, W’ € (A, B) = m1(H), W = W’ means thaW is conjugate to
W in (A, B) = m1(H).

Lemma 3.2.2. Let ¢: (A B) — (A, B) (resp ¢': (A, B) — (A, B)) be an iso-
morphism defined by(A) = B and ¢(B) = A (resp ¢'(A) = A and ¢'(B) = ab) and
¢": (A, B) — (A, B) be the composed isomorphispho ¢ (and so¢”(A) = ab and
¢"(B) = A). Then the followings hold
(1) o(W(my)) = W(mz), o(W(mz)) = W(mg ), ¢(W(mg)) = W(my),

P(W(mz )(W(m3))?) = W(my)(W(ma))>,

P(W(my )(W(mgr))?) = W(mg )(W(my))>,

P(W (Mg )(W(myr))?) = W(mz)(W(mg))>.

(2) ¢'(W(my)) = W(my), ¢ (W(ma)(W(mz))?) = W(ma)(W(ma))>.
(3) ¢"(W(my)) = W(mz), ¢"(W(mz )(W(mg))?) = W(my )(W(ma))>.

And so the followings hold
4) (A,B|W(mix) =¢€)= (A, B|W(@my)=¢) foranyie{l,2,3 and any xe {l,r}.
(5) Each of five groupgA, B | W(my) = e, W(my )(W(mx))? = e),

(A BIW(mg) =6, W(mg )(W(my))?=6), (A B|W(my) =6, W(my)(W(mg))>=¢),

(A, B|W(mz) =6, W(my)(W(mz))*=e), (A, B|W(mz)=e, W(mz)(W(my))*=e)

is isomorphic to

(A, B | W(my) = & W(mz )(W(mx))* = €).

Proof. We define word&Vy, Wy, Wy, Wy, Wor, Wa € (A, B) as follows.
Wy = b(ABab™ D A(baB A™ b,
W, = a(bABa) " Yb@B Ah"La,
Wy = A(BabA" VB B(AbaB) ™ YA,
Wy, = (BAba™YBABabAM VB,
Wy, = b(aBAh™Vaa(b ABa" b,
Wy = (AbaB)™DAb(ABah DA,
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Then we can check the followings.

1)
P(W(my)) = Wi W(my )Wa,
P(W(mz)) = W W(mg, )Ws,
P(W(mg)) = Wi, "W(my, )Wy,
P(W(mz )(W(m3))?) = Wy W (my )(W(mz ) > Wy,
P(W(my )(W(mz))?) = Wy "W (mg )(W(my))* Wy,
P(W(mg )(W(myr))?) = Wy 'W(mz )(W(mg ))*Wa.
(2
¢ (W(my)) = Wi W(my )Wy,
@' (W(mz ) (W(mg))?) = Wy 'W(ma ) (W(mg ))>Wa.
(3

@"(W(my)) = aW(my)A,
@ (W(mg )(W(mg))?) = aW(my )(W(mz))?A. O

Lemma 3.2.3. If mix (i € {1,2,3, x €{l,r}) is oriented as shown ifig. 4, then
the followings hold
1) For each my (i € {1,2,3, x € {l,r}), there exists an oriented simple closed curve
mix in the component F(x € {l, r}) of 9H — C, intersecting rm, such that Wimiy) =
W(mix) and mix is isotopic to m.
2) For each word Wmix)(W(mix))? (G, j) € {(1, 2), (2, 3), (3, 1), x € {I, r}), there
exists an oriented simple closed cummg;jy in the component odH — C,, intersecting
mix U mjx such that Wmijjx) = W(m;x)(W(mjx))>.

Proof. LetF, be the closure ofF; and Fjx (j € {1, 2,..., 24n — 15}) be the
closure of each component d&f, — (uy U up) such thatFy D e U g Ud;, Fy D
ctU fi U0, Fir D CiongUhyUepn 7 and Fy D fion7 U dizng U hy. Note that
Fijx N(u1Uuy) has three arc-components fpre {1,2}, x € {l,r} or two arc-components

for other case. Thelujzina‘lg’ Fjx consists of three bands connectifg, and F, for

eachx € {I,r}. By Fy = ¥ Fjx and the subarc-expression 6% in the proof

of Lemma 3.2.1,F can be shown as in Fig. 5 up to homeomorphism. Note that i)
dFx = C, and ii) all subarcs ofi;Uu; in Fy are in three bands obtained by connecting
Fix (j €{3,...,24n—15}) along two subarcs or one subarc wf U u,.

1) By deformingmiy isotopically, we obtain a simple closed curig, in Fy —
dFx = Fx—Cy such thatmix U Fj, and mix U Fjx are both empty or parallel (two) arcs
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Fig. 5.

FyDmy Fi D my
Fig. 6.

in Fjx for any j € {1, 2,..., 24n — 15}. Suppose thafii, has an orientation induced
by that of mix and a starting point on an open aig N (Fix — dF1). Then we have
W(mix) = W(mix). (See Fig. 6 for the case of=1,x =1.)

2) Since wavesviy, wax, wax (X € {I, r}) are mutually disjoint and each compo-
nent of C, —dwix contains one point odw;jy for anyi € {1,2,3 and anyj € {1,2,3 —
{i}, we may assume that any two simple closed curvedwgf My, andmgy (x € {I,r})
in (1) intersect transversely at one pointha, —dFi. For (, j) € {(1, 2), (2,3),(3,1)
and x € {l, r}, let m;j;x be an oriented simple closed curve obtained fram with
the orientation in (1) by applying the Dehn twist i along m;, twice. Suppose that
a starting point offfyjjx is the initial point of the oriented subartij;x N M of M.
Then we haveW(mijjx) = W(mix)(W(mjx))Z. (See Fig. 7 for the case of,(j) = (1, 2)
andx =1.) ]

Lemma 3.2.4. 1) Each of the six fundamental groups

T (Mn(My, M33)), ma(Mn(Mar, M2a)),  m1(Mn(Ma, Ma1y)),

1 (Mn(Mo33, Myr)),  m(Mn(Mi2a, Myx)),  71(Ma(Ma11, Mar))

is trivial.
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)

Fy; D iy, my F; D miy
Fig. 7.

2) Eachm(Mn(mix)) (i € {1, 2, 3, x € {l, r}) is not isomorphic to the infinite cycle
group Z.

Proof. 1) The presentations of the groups can be simplifiedudigg “mutual
substitutions” defined by Kaneto, see Definition 1 and Theo& in [7]. Here we
demonstrate how mutual substitutions can be applied.

1(Mn(My, M233))
(A B | W(y) = & W(Mpsa) =€) = (A B | W(my) =&, W(my)(W(mg))* = e)
b(ABah™ Y A(baB A Vba(bABa " YbhaB A" Va = e,
= <A B b(aBAb(”‘l)aa(bABa)(”‘l)b(baBA)(”‘l)ba(bABa)(”‘l)b(AbaB)(“‘l)Ax>
b(ABah™ Y A(baB A" Yba(b ABa" Vb = e
_ < B b(ABab™ Y A(baB A Vba(b ABa"YbhaB Ah"Ya = e,>
“\"" | b(baBA™VbabABa"Vb =e
= (A,B|b=e¢e b(baBA"Ybab ABa" Vb = e)
=(A,B|b=¢e a=¢) = {e}.

By Basic Lemma 3.1.2 and Lemma 3.2.2 (5), we obtain the cseimiul) of Lem-
ma 3.2.4.
2) For a natural numbeN, let &y be anN-th primitive root of unity, and put

_(é¢ O

oaN = 0 éjﬁl
0 1

= (1 o)

Let p: (A, B) - GL(2,C) be a homomorphism defined y(A) = any and p(B) = 8

and
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§§8n+5 0
0 S[&\}‘n—s
o(W(my)) = e, and sop keeps the relationN(fy) = e. Then we obtain the in-
duced homomorphisng: (A, B | W(fhy) = €) = (A, B)/N(W(hy)) - GL(2,C), so
that 5(A) = aen-s, 5(B) = B, here AN(W(iy)), BN(W(My)) € (A, B)/N(W(y))
are denoted byA, B respectively for convenience. Since two elemeds s and g
in GL(2, C) are non-commutative{A, B | W(fhy) = €) is not isomorphic toZ. By
Lemma 3.2.2, each groupA, B | W(hix) =€) (i € {1, 2,3, x € {l,r}) is not iso-
morphic toZ. By Basic Lemma 3.1.2, each groap(Mn(Mix)) (i € {1,2,3, x €{l,r})
is not isomorphic taZ. ]

Since p(W(My)) = p(W(my)) = o 2 = ( ) by putting N = 8n — 5,

Lemma 3.2.5. If n # n/, thenz1(M,) is not isomorphic tari(My).

Proof. Leté&n, an, B and p be same ones in the proof of Lemma 3.2.4. Since
p(W(Cp)) = a0 = <5n116; 10 Sl?rww)’ by putting N = 16n — 10, o(W(C,)) = ¢,
and sop keeps the reIatiorW(C,S = e. Then we obtain the induced homomorphism
o: (A B | W(C,) =€) = (A B)/N(W(C,)) - GL(2,C). Let Gy be the subgroup
of GL(2,C) generated byy and 8. If 71(Mpy) is isomorphic tom(My) for n’ <
n, by Basic Lemma 3.1.2, there is a surjective homomorphismA, B | W(Cy) =
e) = (A, B)/N(W(Cy)) - Gie—10- Sincer is surjective, two elements(A), 7(B)
are generators oB1e-10- Any element ofGy is represented byh or ahﬂ for some
integerk, because ofg? = (é 2) and Bak = (;:5 ggk> = ayp. Hence, any pair
of two generators of5y is represented byuf, o\ 8} or {«k 8, ol B}, wherek, | are
integers,k and N are relatively prime. Note thﬁ,‘f, is also anN-th primitive root of
unity if and only if k and N are relatively prime. Then there are following four cases
for (A) and z(B).

1) If 7(A) = ¥y, ;o and 7(B) = alg, 108, thent(W(Cy)) = Lo 710K

(2) If 7(A) = ok, 108 and (B) = a¥;, 1o thent(W(Cy)) = (i 130K,

(3) If 7(A) = oy 108 and 7(B) = alg, 108, thent(W(Cr)) = o, 55",

(4) If 7(A) = ok, 108 and 7(B) = X! |8, thent(W(Cp)) = a{t 20K,

Herek and 16— 10 are relatively prime. On the other hand, siMi¢C,,) represents a
unit element of(A, B | W(Cw) = €) = (A, B)/N(W(Cy)), t(W(Cr)) = (é 2) holds.

In each case of (1), (2), (3) and (4),= n’ holds, becausefm_lo is a (16 — 10)-th
primitive root of unity and 16" — 10 < 16n — 10. O

Here recall the definition of equivalence for Dehn fillingsaB-manifoldM with
dM consisting of two tori. Two Dehn fillings oM yielding M(my, mp) and M(m}, m5)
respectively are said to be equivalentnif U m; is isotopic tom; Um; in M.
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Proposition 3.2.1. 1) The Dehn fillings of Myielding S are exactly the six ones
yielding My(fy, Mp3a ), Mn(far, Mi2a), Ma(Mar, Ma1xr ), Mn(Masa, My ), Mn(Mi2a, M)
and M, (fg1q, Mg ) respectively up to equivalence
2) If n #n’, then M, is not homeomorphic to M

Proof. 1) By Lemma 3.2.4 1) and Theorem 2.2, each of Dehn d#lil,(my,
Mo33 ), Mn(My, Mi2a ), M (Mg, Ma11r), M (Mp33, My ), Mp(Maoz, My ) andMp (Mayy, Mar)
of M, is homeomorphic t&. We assume that a Dehn filling,(m;, m;) of M, yielding
S°. By Key Lemma 3.1.1, one of two simple closed curag m, in 9H —C, coincides
with one ofmy, my, mg, my, My andmg. up to isotopy ordoM,. Recall thatfy (i €
{1,2,3, x € {l,r}) is isotopic tom;x in 9M,. By Lemma 3.2.4 2) and Theorem 2.3, each
of Dehn fillings Mp(My), Mn(fg), Ma(fg), Ma(fyr), Ma(fy) and Mp(fg) of M, is
homeomorphic to the exterior of a non-trivial knot, becatise exterior of the trivial
knot is homeomorphic to the solid torus. Then, by Theorem 244U m, is isotopic to
one of My U Mpzy, My UMiza, My U Mgy, Maag UMy, Mipg UMy andzyy U Mg
on oM.

2) If n#n’, then, by Lemma 3.2.5M, is not homeomorphic tiMy,. 0

By Proposition 3.2.1, there exists a homeomorphismM,(fy, Mz ) — S°. The
closure of M, (M, Mp3z) — My, consists of two solid toriN;, N, such thataN; D my
anddN, D Myza. Then there are two homeomorphisimg: D?x St — N, (x € {I,r}).
Let Ky (x € {I,r}) be the simple closed curgy(0x S') where0 is the center of unit
disk D2. Let Kny (X € {I,r}) be the knothn(K,y) in S® and L, be the linkKp UK, in
S8, By the definitions ofM, and My(fiw, Mbsa ), the link Ky U Koy in Ma (M, Moz )
is tunnel number one, and so the litkk, U K, in S is tunnel number one.

In order to complete the proof of Theorem 1.1, we will show tiext proposition.

Proposition 3.2.2. 1) Each tunnel number one linkLin S* has exactly five
nontrivial Dehn surgeries yielding3up to equivalence
2) Two links L, L’ are said to be equivalent if there is a homeomorphisngh— S
satisfying L) = L’. If n # n/, then L, is not equivalent to .

Proof. By the definition of a link.,,, the exteriorE(L,) of L, is homeomorphic
to M. Then we obtain 1) of Proposition 3.2.2 from 1) of Proposith2.1. Ifn # n’,
by 2) of Proposition 3.2.1,E(L,) is not homeomorphic tE(L). Then L, is not
equivalent toL . O

Theorem 1.1 follows from Proposition 3.2.2.

3.3. Proof of Theorem 1.2. Let D, be a Heegaard diagrandl; {us, u,}, Cp)
shown by Fig. 8 below where is a positive integer. Note théD, is a special case
of D in Key Lemma 3.1.1. Throughout this subsection, we assime D,,, M, C,
meanM, C in Key Lemma 3.1.1 respectively andiy, mix (i € {1,2,3, xe{l,r})
mean the ones in Key Lemma 3.1.1 in the caséDof Dy respectively.
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Fig. 8.

Lemma 3.3.1. If C,,, my, my, mg, My, My and ny are oriented as shown
in Fig. 8 respectively then there exists a starting point on each of these simplsedio
curves respectively such that the following equations .hold
(1) W(C,) = BABBAAbabA"babbagBAB3".

(2) W(my) = babba

(3) W(my) = a(BABa"B.

(4) W(mg) = ABBAAbabA".
(5) W(my) = (BABa"BABB.
(6) W(my) = baa

(7) W(mgz) = AA(babA"bah.

Proof. Letgc, d, &, fi, g andh; be subarcs ofC, respectively as shown in
Fig. 8. ThenC, can be represented by connecting theses subarcs as

n-1

181 foni2h2€n 4301 H(dszi)ﬂ fon—i)+1€2i +-2C2i +2),
i=0
n-1

di f1eony 21 foniag H(CZ(nfiHleZ(nfiHl f2 1202 42).
i=0
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Take a starting point om; — dc; for C,, and a starting point omwjx — dwix (i €
{1, 2, 3, x €{l, r}) for my, respectively. ]

Lemma 3.3.2. If mix (i € {1,2,3, x €{l,r}) is oriented as shown ifig. 8, then
the followings hold
1) Foreach my (i € {1,2,3, xe{l,r}), there exists an oriented simple closed curve
mix in the component F(x € {l, r}) of 9dH — C, intersecting ny such that Wmiy) =
W(mix) and mix is isotopic to n.
2) There exists an oriented simple closed cuff¥gn+y in the component odH — C,
intersecting m U my such that Wippney) = W(mg )(W(my))"+1.

Lemma 3.3.2 can be proved by same argument in the proof of l&a@d3.

Lemma 3.3.3. 1) Each of the two fundamental groups (M, (fy, Mz )) and
1 (Mn(fMopns1, My )) is trivial.
2) Each of the two fundamental groups(M,(My)) and r1(M, (Mg )) is not isomorphic
to the infinite cycle groug.
3) The fundamental group:(M,(My)) is isomorphic to the infinite cycle group.

Proof. 1) We will check them by using mutual substitutions.

71 (Mn (Mg, Mg ))
= (A B|W(My) =€, W(Mg) =€)
= (A B[ W(mz) =e W(mg) = e€)
= (A, B|a(BAB3"B = ¢, AA(babA"bab=¢€)
= (A B | A(babA"b = e, AA(babA"bab= e)
= (A B| AbabA"b=¢, b=¢)
=(AB|A=¢e b=¢) = {e}.
71 (Mn(Magesay, My )
= (A, B | W(ppiy) =€ W(My) =€)
= (A, B | W(mz)(W(my))"! = e, W(my) =€)
= (A, B | a(BAB3"abbababbg" = e, baa= €)
= (A B | (aBAB"aabbgbabbg" = e, aab=¢€)
= (A, B | (aBAB"VYaabbgbabbg™? = e, aab= ¢€)

= (A, B |aabba= ¢, aab=¢)
= (A, B|ba=e aab=¢€e)= (A, B|ba=¢ a=¢)
=(AB|b=¢ a=¢) = {e}.
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2) Letéy, an, B andp be same ones in the proof of Lemma 3.2.4 and A, B) —
GL(2, C) be a homomorphism defined by A) = an'B8, o(B) = B. Sinceo (W(My)) =
o (W(mz)) = o andp(W(Ms)) = p(W(m)) = o', by puttingN’ = 2n+1, N =
2n+ 3, o(W(My)) = e, p(W(Mg)) = e, and sar (resp,p) keeps the relatiolV(fiy) = e
(resp.W(Mg) = €). Then we obtain the induced homomorphiséns(A, B | W(ify) =
e) = (A B)/N(W(Mp)) — GL(2,C) andj: (A, B | W(Mg) = &) = (A, B)/N(W(Tg)) —
GL(2, C). Since two elementay,18 and B (resp.azn.3 and g) in GL(2, C) are non-
commutative,(A, B | W(y) = €) (resp.(A, B | W(mg ) = €)) is not isomorphic tdz.
By Basic Lemma 3.1.271(Mp(My)) (respar1(Mn(Mg))) is not isomorphic tdz.

3) By changing generatoré and B of free group (A, B) into A and B’ :=
W(my ) = W(my ) = baa, we can check the following.

mi(Mn(er)) = (A, B|W(y) =€) = (A B |B'=¢e)=(A| —)=2Z. [
Lemma 3.3.4. If n # ', thenz1(M,) is not isomorphic tari(My).

Proof. Let&n,an, B andp be same ones in the proof of Lemma 3.2.4 &l be

—4n—6
same one in the proof of Lemma 3.2.5. Sing@V(C,)) = aﬁ4”‘6 = (SNO 48+6>,
N

by putting N = 4n + 6, p(W(C,)) = e, and sop keeps the relatioW(C,) = e. Then
we obtain the induced homomorphistn (A, B | W(C,)) = €) = (A, B)/N(W(C,))) —
GL(2,C). If m(My) is isomorphic tor;(My) for n” < n, by Basic Lemma 3.1.2, there
is a surjective homomorphism: (A, B | W(Cy) =€) = (A, B)/N(W(Cy)) — Gunie.
Sincer is surjective, two elements(A), t(B) are generators dB4, 6. By same argu-
ment in the proof of Lemma 3.2.5, there are following fouresa$or t(A) and z(B).
1) If ©(A) = ok, s and 7(B) = &, 6B, then T(W(Cp)) = el oK.

(2) If T(A) = )y, 6B and t(B) = o, .6, thent(W(Cpy)) = o .

(3) If T(A) = ol o8 and t(B) = oy, 6B, thent(W(Cn)) = a, 15 ™.

(4) If T(A) = aly,, 6B and t(B) = ol (B, thent(W(Cp)) = aim & 7.

Herek and 4 + 6 are relatively prime. On the other hand, sintgC, ) represents a
unit element of(A, B | W(Cy) = €) = (A, B)/N(W(Cy)), 7(W(Cy)) = ((1) (1’) holds.
In the case (1),h = n’ holds, becausefjfmr6 is a (4 + 6)-th primitive root of unity
and 4V 4+ 6 < 4n + 6. The other cases (2), (3) and (4) do not happen, becﬁmg
is a (4 + 6)-th primitive root of unity and 2,4 + 2 < 4n + 6. L]

Proposition 3.3.1. 1) Each of the two Dehn fillings My, Mg ) and M,(Mon+1;,
My ) is homeomorphic to S
2) Each of the two Dehn fillings Mmy) and M,(fg ) is not homeomorphic to the
solid torus
3) A Dehn filling M,(fy) is homeomorphic to the solid torus
4) If n #n/, then M, is not homeomorphic to M
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Proof. 1) By Lemma 3.3.3 1), each of the fundamental grou®1, (M, Ms;))
and 1 (Mn(Mppnsyy, My)) is trivial. Then, by Theorem 2.4, each of,(my, Mg ) and
Mn(Mppneay, My) is homeomorphic tcs®.

2) By Lemma 3.3.3 2) and Theorem 2.3, eachM{f(my) and M(mg;) is not
homeomorphic to the solid torus.

3) A Dehn filling Mp(my) is a submanifold of a Dehn filling oMy (Myqn-+1, My ).
By 1), My (fMppsy, My ) is homeomorphic toS3. By Lemma 3.3.3 3),71(My(fyr)) is
isomorphic toZ. Then, by Theorem 2.3M,(My) is homeomorphic to the solid torus.

4) If n#n/, then, by Lemma 3.3.4M, is not homeomorphic tM,,. ]

By Proposition 3.3.1, there exists two homeomorphisimisM,, (M, My ) — S° and
h! : Mn(fogey, My ) — S5, The closure oM, (Mg, Mg ) — My (resp.Mp (Moo, M) —
M,) consists of two solid torN;, Ny (resp.N/, N;) such tha®N, D> my andaN, D Mg
(resp.dN/ D Mypiy anddN; D My ). Then there are four homeomorphisims: D? x
S' - Ny (x € {I,r}) andh/,: D2 x St — N, (x € {I,r}). Let Kny (resp.K/,) (x €
{I, r}) be the simple closed curigy(0 x S) (resp.h/, (0 x S)) where0 is the center
of unit disk D2. Let Kny (resp.K},,) (x € {I, r}) be the knoth,(Knx) (resp.hn(K},)) in
S® andLy (resp.L},) be the linkKp U Ky (resp.K/, U K/,) in S*. By the definitions of
Mn, Mn(fMr, Mg ) and M (fpgey, My ), each of the two linkK n U Ky in M (i, M)
and K/, U K/, in Mp(Myps1, Ml ) is tunnel number one, and so each of the two links
Kni U Kpr and K/, U K/ in S? is tunnel number one.

In order to complete the proof of Theorem 1.2 we will show tlextrproposition.

Proposition 3.3.2. 1) L, has no trivial component
2) Ly has a trivial component
3) E(Ln) is homeomorphic to &).
4) If n #n', then L, is not equivalent to k.

Proof. 1) By the definition ofL,, E(K;) (resp. E(K;)) is homeomorphic to
Mn (g ) (resp.Mn(fy)). By Proposition 3.3.1, each d&(K;), E(K;) is not homeo-
morphic to the solid torus. Hence each Kf, K; is not a trivial knot.

2) By the definition ofL;, E(K|) is homeomorphic toMn(fy). By Proposi-
tion 3.3.1, E(K;) is homeomorphic to the solid torus. Henkg is a trivial knot.

3) By the definition ofL, and L, each of the exterior&(L,), E(L}) is homeo-
morphic to M,. HenceE(L,) is homeomorphic taE(L;).

4) If ns n', then, by Proposition 3.3.1M, is not homeomorphic tiM,, and
so E(Ln) is not homeomorphic t&E(Ly). Hencel, is not equivalent tal . O

Theorem 1.2 follows from Proposition 3.3.2.
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