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Abstract
Let f : Gn,k ! Gm,l be any continuous map between twodistinct complex

(resp. quaternionic) Grassmann manifolds of the same dimension. We show that the
degree of f is zero providedn, m are sufficiently large andl � 2. If the degree
of f is �1, we show that (m, l ) = (n, k) and f is a homotopy equivalence. Also,
we prove that the image underf � of every element of a set of algebra generators of
H �(Gm,l ;Q) is determined up to a sign,�, by the degree off , provided this degree
is non-zero.

1. Introduction

The purpose of this paper is to study degrees of maps between two distinct complex
(resp. quaternionic) Grassmann manifolds. It can be viewedas a continuation of the pa-
per [14] where the case of oriented (real) Grassmann manifolds was settled completely.
The same problem in the case of complex and quaternionic Grassmann manifolds was
initiated and settled in [14] in half the cases. The problem can be formulated purely
algebraically in terms of algebra homomorphism between thecohomology algebras of
the complex Grassmann manifolds concerned. These algebrashave additional structures,
arising from Poincaré duality and the hard Lefschetz theorem. Our results are obtained
by exploiting these properties. In view of the fact that the integral cohomology ring of
a quaternionic Grassmann manifold is isomorphic to that of the corresponding complex
Grassmann manifold via a degree doubling isomorphism, and since our proofs involve
mostly analyzing the algebra-homomorphisms between the cohomology algebras of the
Grassmann manifolds, we will only need to consider the case of complex Grassmann
manifolds. (In the course of our proof of Theorem 1.3, simply-connectedness of the
complex Grassmann manifold will be used; the same property also holds for the quater-
nionic Grassmann manifolds.) For this reason, we need only to consider the case of
complex Grassmann manifolds.

Let F denote the fieldC of complex numbers or the skew-fieldH of quaternions.
We denote byFGn,k the F-Grassmann manifold ofk-dimensional leftF-vector sub-
spaces ofFn. Let d := dimR F. Since we will mostly deal with complex Grassmann
manifolds, we shall writeGn,k instead ofCGn,k; the phrase ‘Grassmann manifold’,
without further qualification, will always mean a complex Grassmann manifold.
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Using the usual ‘hermitian’ metric onFn, one obtains a diffeomorphism?: FGn,k
�=

FGn,n�k. For this reason, it suffices to consider only thoseF-Grassmann manifoldsFGn,k

with 1 � k � [n=2]. Let 1� l � [m=2] be anotherF-Grassmann manifold having the
same dimension asFGn,k so that dimF FGn,k = k(n� k) = l (m� l ) =: N.

Complex Grassmann manifolds admit a natural orientation arising from the fact
they have a natural complex structure. Although the quaternionic Grassmann manifolds
do not admit even almost complex structures (cf. [11]), theyare simply connected and
hence orientable.

Let f : FGn,k! FGm,l be any continuous map. It was observed in [14] that when 1�
k < l � [m=2], the degree off is zero. Whenl = 1, one hasN = m�1 andFGm,l is just
theF-projective spaceFPN . The set of homotopy classes of mapsf : FGn,k! FPN are in
bijection with homomorphisms of abelian groupsZ �= Hd(FPN ; Z)! Hd(FGn,k; Z) �=
Z whered = dimR F, via the induced homomorphism. Furthermore the degree off is
determined byf � : Hd(FPN ; Z)! Hd(FGn,k; Z). (See [14] for details.)

We now state the main results of this paper.

Theorem 1.1. Let F = C or H and let d= dimR F. Let f : FGn,k! FGm,l be any
continuous map between twoF-Grassmann manifolds of the same dimension. Then,
there exist algebra generators ui 2 Hdi (FGm,l ; Q), 1 � i � l , such that the image
f �(ui ) 2 Hdi (FGn,k; Q), 1 � i � l , is determined up to a sign� by the degree of
f , provided this degree is non-zero.

Theorem 1.2. Let F = C or H. Fix integers2� l < k. Let m, n � 2k be positive
integers such that k(n � k) = l (m � l ) and f : FGn,k ! FGm,l any continuous map.
Then, degree of f is zero if(l 2� 1)(k2� 1)((m� l )2� 1)((n� k)2� 1) is not a perfect
square. In particular, degree of f is zero for n sufficiently large.

Theorem 1.3. Let F = C or H. Suppose that k(n � k) = l (m� l ), and 1 � l �
[m=2], 1� k � [n=2]. If f : FGn,k! FGm,l is a map of degree�1, then (m, l ) = (n, k)
and f is a homotopy equivalence.

Our proofs make use of the notion of degrees of Schubert varieties, extended to
cohomology classes. Theorem 1.3, which is an analogue in thetopological realm of
a result of K.H. Paranajape and V. Srinivas [13], is proved using Whitehead’s theo-
rem. Proof of Theorem 1.1 uses some properties of the cohomology of the complex
Grassmann manifolds arising from Hodge theory. (See Proposition 3.2.) Theorem 1.2
is proved by reducing it to a diophantine problem and appealing to Siegel’s Theorem
on solutions of certain polynomial equation of the formy2 = F(x). In our situation,
F(x) will be of degree 4 overQ having distinct zeros.

We now highlight the following conjecture made in [14]. Theorem 1.2 provides
the strongest evidence in support of the conjecture.
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Conjecture. Let F = C or H and let2� l < k � n=2< m=2 where k, l , m, n 2 N.
Assume that k(n� k) = l (m� l ). Let f : FGn,k ! FGm,l be any continuous map. The
degree of f is zero.

The paper is organized as follows. In§2 we recall basic and well-known facts
concerning the cohomology algebra of the complex Grassmannmanifolds. We shall
consider continuous maps from a cohomologically Kähler manifold and establish some
important properties in§3. They will be used in the course of our proofs. We prove
the above theorems in§4.

2. Cohomology of Grassmann manifolds

There are at least two well-known descriptions of the cohomology ring of a com-
plex Grassmann manifoldGn,k. We recall both of them.

Let n,k be the ‘tautological’ bundle overGn,k whose fibre over a pointV 2 Gn,k

is the k-dimensional complex vector spaceV . Evidently n,k is a rank k-subbundle
of the rankn trivial bundle En with projection pr1 : Gn,k � Cn ! Gn,k. The quotient
bundleEn=n,k is isomorphic to the orthogonal complement?n,k in En (with respect to

a hermitian metric onCn) of the bundlen,k. Let ci (n,k) 2 H2i (Gn,k; Z), be thei -th
Chern class ofn,k, 1� i � k. Denoting the total Chern class of a vector bundle� by
c(�) we see thatc(n,k) . c(?n,k) = 1.

Let c1, : : : , ck denote the elementary symmetric polynomials ink indeterminates
x1, : : : , xk. Define h j = h j (c1, : : : , ck) by the identity

Y
1�i�k

(1 + xi t)
�1 =

X
j�0

h j t
j .

Thus c j (?n,k) = h j (c1(n,k), c2(n,k), : : : , ck(n,k)), 1� j � n� k. (See [12].)
Consider the ringZ[c1, : : : , ck]=In,k where degree ofci = 2i , andIn,k is the idealhh j j j > n � ki. It can be shown that the elementsh j , n � k + 1 � j � n, gen-

erateIn,k. The homomorphism of graded ringsZ[c1, : : : , ck] ! H�(Gn,k; Z) defined
by ci 7! ci (n,k) is surjective and has kernelIn,k and hence we have an isomorphism
H�(Gn,k; Z) �= Z[c1, : : : , ck]=In,k. Henceforth we shall writeci to meanci (n,k) 2
H�(Gn,k; Z). We shall denote bȳc j the elementc j (?n,k) = h j 2 H2 j (Gn,k; Z).

As an abelian group,H�(Gn,k; Z) is free of rank
�n

k

�
. A Q-basis forH2r (Gn,k; Q)

is the setCr of all monomialsc j1
1 � � � c jk

k where ji � n � k, 8i , P1�i�k i j i = r . In

particular, cn�k
k generatesH2N(Gn,k; Q) �= Q. If j denotes the sequencej1, : : : , jk, we

shall denote bycj the monomialc j1
1 � � � c jk

k . If k � n=2, the setC̄r := fc̄j j cj 2 Cr g is

also a basis forH2r (Gn,k; Q) where c̄j := c̄ j1
1 � � � c̄ jk

k .

Schubert calculus. Another, more classical description of the cohomology ringof
the Grassmann manifoldGn,k is via the Schubert calculus. Recall thatGn,k = SL(n, C)=Pk
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for the parabolic subgroupPk � SL(n, C) which stabilizesCk � Cn spanned bye1, : : : , ek;
hereei , 1� i � n, are the standard basis elements ofCn. Denote byB � SL(n, C) the
Borel subgroup of SL(n, C) which preserves the flagC1 � � � � � Cn and by T � B
the maximal torus which preserves the coordinate axesCej , 1 � j � n. Let I (n, k)
denote the set of allk element subsets off1, 2,: : : , ng; we regard elements ofI (n, k)
as increasing sequences of positive integersi := i1 < � � � < ik where ik � n. One has a
partial order onI (n, k) where, by definition,i � j if i p � j p for all p, 1� p � k. Let
i 2 I (n, k) and let Ei 2 Gn,k denote the vector subspace ofCn spanned byfej j j 2 ig.
The fixed points for the action ofT � SL(n) on Gn,k are precisely theEi , i 2 I (n, k).

Schubert varieties inGn,k are in bijection with the setI (n, k). The B-orbit of the
T-fixed point Ei is the Schubert cell corresponding toi and is isomorphic to the affine
space of (complex) dimension

P
j (i j � j ) =: jij; its closure, denoted�i , is the Schubert

variety corresponding toi 2 I (n, k). It is the union of all Schubert cells correspond-
ing to thosej 2 I (n, k) such thatj � i. Schubert cells yield a cell decomposition of
Gn,k. Since the cells have even (real) dimension, the class of Schubert varieties form a
Z-basis for the integral homology ofGn,k. Denote by [�i ] 2 H2(N�jij)(Gn,k; Z) the fun-
damentaldual cohomology class determined by�i . (Thus [Gn,k] 2 H0(Gn,k; Z) is the
identity element of the cohomology ring.) We shall denote the fundamental homology
class ofGn,k by �n,k 2 H2N(Gn,k; Z).

Schubert varieties corresponding to (n � k + 1 � i , n � k + 2, : : : , n) 2 I (n, k),
0� i � n� k, are calledspecialand will be denoted�i . More generally, if� = �1 �� � � � �k � 0 is a partition of an integerr , 0� r � N, with �1 � n� k, we obtain an
elementi := (n� k + 1� �1, n� k + 2� �2, : : : , n� �k) 2 I (n, k) with jij = N � r . This
association establishes a bijection between such partitions andI (n, k), or, equivalently,
the Schubert varieties�i in Gn,k. It is sometimes convenient to denote the Schubert
variety �i by �� where� corresponds toi. This is consistent with our notation for a
special Schubert variety.

The special Schubert classes form a set of algebra generators of H�(Gn,k; Z). In-
deed, [�i ] = ci (?n,k) = c̄i , 1 � i � n � k. The structure constants are determined by
(i) the Pieri formula, which expresses the cup-product of anarbitrary Schubert class
with a special Schubert class as a linear combination of withnon-negative integral lin-
ear combination of Schubert classes, and, (ii) the Giambelli formula, which expresses
an arbitrary Schubert class as a determinant in the special Schubert classes [2, Chap-
ter 14].

The basisf[�i ] j i 2 I (n, k)g is ‘self-dual’ under the Poincaré duality. That is,
assume thati, j 2 I (n, k) are such thatjij + jj j = N. Then

h[�i ][�j ], �n,ki = Æi0,j ,
where i0 = (n + 1� ik, : : : , n + 1� i1) 2 I (n, k).
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The degreeof a Schubert variety�i of (complex) dimensionr is defined as the
integer h[�i ]c̄r

1, �n,ki 2 Z. It is well-known [8], [2] that

(1) deg(�i) =
r !
Q

1�t<s�k(is � i t )

(i1� 1)! � � � (ik � 1)!
.

In particular

(2) deg(Gn,k) = hc̄N
1 , �n,ki =

N! 1! � � � (k� 1)!

(n� k)! � � � (n� 1)!
.

More generally, deg([�i ][�j ]) := h[�i ][�j ]c̄
q
1, �n,ki = q! j1=(i r + jk+1� j � n � 1)!j

whereq = dim(�i) + dim(�j ) � dim Gn,k. (See [2, p. 274]. We caution the reader that
our notations for Grassmann manifolds and Schubert varieties are different from those
used in Fulton’s book [2].)

One has the following geometric interpretation for the degree of a Schubert variety.
More generally, given any algebraic imbeddingX ,! Pm of a projective varietyX of
dimensiond in the complex projective spacePm, the degreeof X is the number of
points in the intersection ofX with d hyperplanes in general position. The degree of
a Schubert variety defined above is the degree of the Plücker imbedding�j � Gn,k ,!
P(3k(Cn)), defined asU 7! 3k(U ), where3k(U ) denotes thek-th exterior power of
the vector spaceU .

Cohomology of quaternionic Grassmann manifolds. In the case of quaternionic
Grassmann manifoldHGn,k, one has a Schubert cell decomposition with cells only in di-
mensions 4j , 0� j � N, labeled by the same setI (n, k) as in the case of the complex
Grassmann manifoldCGn,k. Furthermore, denoting the quaternionic Schubert varietycor-
responding toi 2 I (n, k) by�H

i , the structure constants defining the integral cohomology
algebra ofHGn,k for the basisf�H

i g are identical to those in the case ofCGn,k. Thus, the
association [�i ] 7! [�H

i ] defines an isomorphism ofrings H�(CGn,k;Z)! H�(HGn,k;Z)
which doubles the degree. In particular one has theidentical formula, namely (1), for
the degrees of quaternionic Schubert classes. The orientation onHGn,k is chosen so that
the image of the positive generator ofH2N(CGn,k; Z) under the above isomorphism is
positive.

3. Maps from cohomologically Kähler manifolds

In this section the symbol d will have a different meaning from what it did in§1.
Let f : X ! Y be any continuous map between two compact connected oriented

manifolds of the same dimension. It is well-known that iff � has non-zero degree, then
the induced mapf � : H r (Y; Z) ! H r (X; Z) is split-injective for all r . In particular,
f � : H�(Y; Q)! H�(X; Q) is a monomorphism ofrings.

Recall that a compact connected orientable smooth manifoldX is calledc-symplectic
(or cohomologically symplectic) if there exists an element! 2 H2(X; R), called a
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c-symplectic class, such that!d 2 H2d(X; R) �= R is non-zero whered = (1=2) dimR X.
If ! is a c-symplectic class inX, then (X, !) is said to satisfy theweak Lefschetz
(respectivelyhard Lefschetz) condition if[!d�1: H1(X;R)! H2d�1(X;R) (respectively[!i : Hd�i (X; R)! Hd+i (X; R), 1� i � d) is an isomorphism. If (X, !) satisfies the
hard Lefschetz condition, thenX is calledc-Kähler or cohomologically Kähler. If (X,!)
is c-Kähler, and if! is in the image of the natural mapH2(X; Z) ! H2(X; R), we
call X c-Hodge. Note that if (X, !) is c-Kähler and if H2(X; R) �= R, then (X, t!) is
c-Hodge for somet 2 R.

Clearly Kähler manifolds arec-Kähler and smooth projective varieties overC are
c-Hodge. It is known thatP2#P2 is c-symplectic but not symplectic (hence not Kähler)
since it is known that it does not admit even an almost complexstructure. It is also
c-Kähler. Examples ofc-symplectic manifolds which satisfy the weak Lefschetz con-
dition but notc-Kähler are also known (cf. [10]).

Any c-symplectic manifold (X, !) is naturally oriented; the fundamental class of
X will be denoted by�X 2 H2d(X; Z) �= Z.

Let (X, !) be a c-Kähler manifold of dimension 2d. Let 1� r � d. One has a
bilinear form (�, �)! (or simply (�, �) when there is no danger of confusion) onH r (X;R)
defined as (�, �)! = h��!d�r , �Xi, �, � 2 H r (X; R). When (X, !) is c-Hodge, the
above form is rational, that is, it restricts to a bilinear form H r (X;Q)�H r (X;Q)!Q.
It will be important for us to consider the bilinear form on the rational vector space
H r (X; Q) rather than on the real vector spaceH r (X; R). The bilinear form (� , � ) is
symmetric (resp. skew symmetric) ifr is even (resp. odd). Note that the above form
is non-degenerate for allr . This follows from Poincaré duality and the hard Lefschetz
condition that� 7! � [!d�r is an isomorphismH r (X; Q)! H2d�r (X; Q). Further, if
r � d, the monomorphism[! : H r�2(X; Q)! H r (X; Q) is an isometric imbedding,
i.e., (�, �) = (�!, �!) for all �, � 2 H r�2(X; Q).

As in the case of Kähler manifolds (cf. [7], [16], [6]), one obtains an orthogonal
decomposition of the real cohomology groups of ac-Kähler manifold (X, !). The de-
composition, which preserves the rational structure when (X,!) is c-Hodge, is obtained
as follows: Let 1� r � d. Let Vr!, or more brieflyVr when! is clear from the con-
text, be the kernel of the homomorphism[!d�r +1 : H r (X; R) ! H2d�r +2(X; R). An
element ofVr will be called aprimitive class. One has theLefschetz decomposition

(3) H r (X; R) =
M

0�q�[r =2]

!qVr�2q.

We have the following lemma.

Lemma 3.1. Suppose that(X, !) is a c-Hodge manifold of dimension2d with
second Betti number equal to1. Let f : X ! Y be any continuous map of non-zero
degree where Y is a compact manifold with non-vanishing second Betti number. Then:
(i) ( � , � )t! = td�r ( � , � )! on Hr (X; Q) for t 2 Q, t 6= 0.
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(ii) (Y, ') is c-Hodge where' 2 H2(Y; Q) is the unique class such that f�(') = !.
Furthermore, f � preserves the Lefschetz decomposition(3), that is, f �(Vr') � Vr! for
r � d.
(iii) If �, � 2 H r (Y; Q), then ( f �(�), f �(�))! = deg(f )(�, �)' . In particular, degree of
f equalsh!d, �Xi=h'd, �Yi.

Proof. (i) This is trivial.
(ii) Let dim(X) = 2d. Since deg(f ) 6= 0, f � : H i (Y; Q)! H i (X; Q) is a mono-

morphism for all i � 2d. Comparing the second Betti numbers ofX and Y we con-
clude that f � : H2(Y; Q)! H2(X; Q) �= Q is an isomorphism. Let' 2 H2(Y; Q) be
the unique class such thatf �(') = !. Since f � is a homomorphism ofrings, we have
0 6= !d = ( f �('))d = f �('d) and so'd 6= 0.

Let r � d be a positive integer. One has a commuting diagram:

H r (Y; Q)

!f �
!['d�r

H2d�r (Y; Q)

! f �
H r (X; Q) ![!d�r

H2d�r (X; Q).

The vertical maps are monomorphisms since deg(f ) 6= 0. By our hypothesis onX,
the homomorphism[!d�r in the above diagram is an isomorphism. This implies that['d�r is a monomorphism. Since, by Poincaré duality, the vector spaces H r (Y; Q)
and H2d�r (Y; Q) have the same dimension,['d�r is an isomorphismand so (Y; ') is
c-Hodge. It is clear thatf �(Vr') � Vr!.

(iii) Suppose that�, � 2 H r (Y; R). Then

( f �(�), f �(�))! = h f �(�) f �(�)!d�r ; �Xi
= h f �(��) f �('d�r ); �Xi
= h f �(��'d�r ); �Xi
= h��'d�r , f�(�X)i
= deg(f )h��'d�r ; �Yi
= deg(f )(�, �)' .

The formula for the degree off follows from what has just been established by
taking � = � = '.

Observe that the summands in the Lefschetz decomposition (3) are mutually ortho-
gonal with respect to the bilinear form (� , � ). Indeed, let� 2 Vr�2p, � 2 Vr�2q, p< q.
Thus�!n�r +2p+1 = 0 and so�!n�r +p+q = 0. Therefore (!p�, !q�) = h��!n�r +p+q, �Xi= 0.
As observed earlier the form (� , � ) is non-degenerate. It follows that the form restricted
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to each summand in (3) is non-degenerate. In favourable situations, the form is either
positive or negative definite as we shall see in Proposition 3.2 below.

We shall recall some basic results from Hodge theory and use several facts con-
cerning harmonic forms, all of which can be found in [6,§15]. They will be needed
in the proof of Proposition 3.2.

Suppose thatX has been endowed with a Kähler metric with Kähler class! 2
H2(X;R). Recall that one has the decompositionH r (X;C)�= Lp+q=r H p,q(X;C) where

H p,q denotes thē�-cohomology. We identify theH p,q(X; C) with the space of har-
monic forms (with respect to the Kähler metric)Bp,q of type (p, q).

We shall follow the notations used in [6,§15.8]. One has the operatorsL and3 on H p,q(X; C) where L : H p,q(X; C) ! H p+1,q+1(X; C) equals wedging with the
Kähler class! and3: H p,q(X;C)�= Bp,q! Bp�1,q�1�= H p�1,q�1(X;C) is the operator
(�1)p+q#L# on Bp,q(X; C). The operator3 is dual to L with respect to the hermitian
scalar product denoted (� , � )�:
(4) (�, �)� :=

Z
X
� ^ #�

on H r (X; C) =
L

p+q=r Bp,q.

The kernel of3 is denoted byBp,q
0 . One has the Hodge decomposition

(5) H p,q(X) =
M

0�k�minfp,qg Bp,q
k

where Bp,q
k := Lk(Bp�k,q�k

0 ) is the space of all harmonic forms' of type (p, q) and
class k. Then the distinct summands in (5) are pairwise orthogonal with respect to

( � , � )�. Also, 3Lk is a non-zero scalar multiple ofLk�1 on Bp�k,q�k
0 for p + q � d,

1� k � minfp, qg.
Proposition 3.2. Suppose that(X, !) is a compact connected Kähler manifold

such that Hp,q(X; C) = 0 for p 6= q. Then the form(�1)q+r ( � , � )! restricted to!qV2r�2q � H2r (X; R) is positive definite for0� q � r , 1� r � [d=2].

Proof. First assume thatd = dimC X is even, sayd = 2s. In view of our hypoth-
esis, all odd Betti numbers ofX vanish and we haveBp,q

k = 0 for all p 6= q, k � 0,
so that

(6) H2r (X; C) = H r ,r (X; C) =
M

0�k�r

Br ,r
k .
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The real cohomology groupH2r (X;R)� H2r (X;C) = H r ,r (X;C) has an orthogonal
decomposition induced from (3):

(7) H2r (X; R) =
M

0�k�s

Er ,r
k

where Ep, p
k = f� 2 Bp, p

k j � = �̄g. Now taking r = s = d=2 one has #� = (�1)s+k� for� 2 Es,s
k . In particular the bilinear form (4) equals (�1)s+k Q where Q(�, �) =

R
X ��.

Therefore (�1)s+k Q restricted to eachEs,s
k is positive definite.

We shall show in Lemma 3.3 below that!kVd�2k = Es,s
k . The proposition follows

immediately from this since (�, �) = (!s�r�, !s�r�) for �, � 2 !kV2r�2k as d = 2s,
completing the proof in this case.

Now suppose thatd is odd. Consider the Kähler manifoldY = X � P1 where we
put the Fubini-Study metric onP1 with Kähler class� being the ‘positive’ generator
of H2(P1; Z) � H2(P1; R) and the product structure onY so that the Kähler class of
Y equals!+� =: '. By Künneth theoremH�(Y; R) = H�(X; R)
 H�(P1; R). We shall
identify the cohomology groups ofX and P1 with their images inH�(Y; R) via the
monomorphisms induced by the first and second projection respectively. Under these
identifications,H p,q(Y; C) = H p,q(X; C)� H p�1,q�1(X; C)
 H1,1(P1; C). In particular,
H p,q(Y; C) = 0 unlessp = q. By what has been proven already, the form (�1)r +k( � , � )
is positive definite on'kV2r�2k' � H2r (Y; R).

Choose a base point inP1 and consider the inclusion mapj : X ,! Y. The imbed-
ding j is dual to�. Also j �(') = !. It follows that j �('kV2r�2k' ) � !kV2r�2k! for 0 �
k< r , 1� r < d. Since the kernel ofj �: H2r (Y;R)! H2r (X;R) equalsH2r�2(X;R)

H2(P1; R), and mapsH2r (X; R) � H2r (Y; R) isomorphically ontoH2r (X; R), we must
have j �('kV2r�2k' ) = !kV2r�2k! .

Let �,� 2 H2r (X;R)� H2r (Y;R). Since j : X ,! Y is dual to�, we have j�(�X) =� \ �Y. Therefore,

( j �(�), j �(�))! = h j �(��) j �(!)d�2r ; �Xi
= h��!d�2r , j�(�X)i
= h��!d�2r , � \ �Yi
= h��!d�2r �, �Yi.

Since�2 = 0 we have'd�2r +1 = !d�2r +1 + (d � 2r + 1)!d�2r �. Furthermore,��!d�2r +1 2
H2d+2(X;R) = 0. Therefore, we conclude that (j �(�), j �(�))! = (1=(d�2r +1))h��'d�2r +1,�Yi = (1=(d� 2r + 1))(�, �)' . This shows that the bilinear form (� , � )! on H2r (X; R) is
a positive multiple of the form (� , � )' on H2r (Y; R) restricted toH2r (X; R). It follows
that the bilinear form (�1)r +k( � , � ) on H2r (X; R) restricted to!kV2r�2k(X) is positive
definite.
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We must now establish the following

Lemma 3.3. With notations as above, assume that d= 2s is even. Under the
hypothesis of the above proposition, Es�k,s�k

k equals!kVd�2k, 0� k � s.

Proof. SinceL preserves real forms, it suffices to show thatEr ,r
0 = V2r when

r � s. By definition Er ,r
0 = Br ,r

0 \ H2r (X; R) = f� 2 H r ,r (X; C) j 3(�) = 0, � = �̄g.
Let � 2 Er ,r

0 . Suppose thatp � 1 is the largest integer such that!d�2r +p� =:� is a non-zero real harmonic form of type (d � r + p, d � r + p). Since
Ld�2r +2p: H r�p,r�p(X;C)! Hd�r +p,d�r +p(X;C) is an isomorphism, and since! is real
there must be a real form� 2 H r�p,r�p(X; R) such thatLd�2r +2p(�) = � = Ld�2r +p(�).
Since p is the largest, using the decomposition (6) we see that� 2 Br�p,r�p

0 . Applying3d�2r +p both sides and (repeatedly) using3Lq� is a non-zeromultiple of Lq�1� when
r � p + q < d we see that� is a non-zero multiple of3p� = 0. Thus� = 0 and hence� = 0, which contradicts our assumption. ThereforeLd�2r +1(�) = 0 and so� 2 Vr

0. On
the other hand3 maps H2r (X; C) onto H2r�2(X; C). A dimension argument shows
that Er ,r

0 = V2r .

EXAMPLE 3.4. The Grassmann manifoldGn,k has the structure of a Kähler man-
ifold with Kähler class! := c̄1 = [�1] 2 H2(Gn,k; Z). (This fact follows, for example,

from the Plücker imbeddingGn,k ,! P(n
k)�1.) The bilinear form (� , � ) is understood

to be defined with respect to!. An orthogonal basis forV2r
n,k � H2r (Gn,k; Q) can be

obtained inductively using Gram-Schmidt orthogonalization process as follows. Recall
from §2 the basisC̄r for H2r (Gn,k; Q). Clearly ! � C̄r�1 = c̄1 � C̄r�1 = fc̄j 2 C̄r j j1 > 0g
is a basis for!H2r�2(Gn,k; Q). Therefore we see that the subspace spanned byC̄r ,0 :=fc̄j 2 C̄r j j1 = 0g is complementary to

L
q>0 Br�q,r�q

q � H2r (Gn,k;Q). The required ba-

sis is obtained by taking the orthogonal projection ofC̄r ,0 ontoV2r . Indeed, inductively
assume that an orthogonal basisfvj g for !H2r�2(Gn,k; Q) that is compatible with the

direct sum decomposition
L

q>0 Br�q,r�q
q has been constructed. We need only apply the

orthogonalization process to the (ordered) setfvj g[ fc̄j 2 C̄r j j1 = 0g with respect to an
ordering ofCr ,0 where c̄r is the last element. To be specific, we list the elementsc̄j

in the decreasingorder with respect to the lexicographic order of the exponents. (For
example, takingn = 12, k = 6, r = 6, the elements of̄C6,0 are ordered as̄c3

2, c̄2c̄4,
c̄2

3, c̄6.) We denote the basis element ofV2r obtained fromcj 2 C̄r ,0 by vj . Note that
when r � k, the span of the setfvj j jr = 0g � H2r (Gn,k; Q) equals the spaceD of
all decomposable elements inH2r (Gn,k; Q) since, according to our assumption on the
ordering of elements̄cj , the element̄cr is the last to occur and sovr does not occur
in any othervj . Thus vr � c̄r belongs toD � H2r (Gn,k; Q) and vj 2 D for all other
j , jj j = r .

We illustrate this forr = 2, 3. (Whenr = 1, V2 = 0.) The elementv2 = c̄2 �
((c̄2, !2)=(!, !))!2 = c̄2 � (degc̄2=degGn,k)!2 2 H4(Gn,k; Q) is a basis for the one-
dimensional spaceV4.
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Similarly, v3 is a basis forV6 where

v3 := c̄3� (c̄3, v2!)

(v2!, v2!)
v2! � (c̄3, !3)

(!3, !3)
!3

= c̄3� degc̄3

degGn,k
!3� degGn,k deg(̄c3c̄2)� degc̄2 degc̄3

degGn,k deg(̄c2
2)� (degc̄2)2

v2!.

This leads to

(v3, v3) = (v3, c̄3) = deg(̄c2
3)� (degc̄3)2

degGn,k
� deg(̄c3c̄2) degGn,k � degc̄2 degc̄3

degGn,k deg(̄c2
2)� (degc̄2)2

deg(̄c3v2).

The following calculation will be used in the course of the proof of Theorem 1.2.

Lemma 3.5. With the above notation, (v2,v2)=(degGn,k)(k2�1)((n�k)2�1)=(2(N�
1)2(N�2)(N�3)).

Proof. The proof involves straightforward but lengthy calculation which we work
out below.

Since (v2, c̄2
1) = 0, we get (v2, v2) = (v2, c2) = (c̄2, c̄2)� (degc̄2=degGn,k)(c̄2, !2) =

degGn,k(deg(̄c2
2)=degGn,k � (degc̄2=degGn,k)2).

Sincec̄2
2 =[�2]2 =[�4]+[�3,1]+[�2,2], we see that deḡc2

2=degGn,k =degc̄4=degGn,k +
deg�3,1=degGn,k + deg�2,2=degGn,k.

Now an explicit calculation yields, upon usingN = k(n� k):

degc̄4

degGn,k
=

(n� k� 1)(n� k� 2)(n� k� 3)(k + 1)(k + 2)(k + 3)

4! (N � 1)(N � 2)(N � 3)
,

deg�3,1

degGn,k
=

(n� k + 1)(n� k� 1)(n� k� 2)(k + 2)(k + 1)(k� 1)

2! 4(N � 1)(N � 2)(N � 3)
,

deg�2,2

degGn,k
=

N(k� 1)(k + 1)(n� k + 1)(n� k� 1)

2! 3 � 2(N � 1)(N � 2)(N � 3)
,

degc̄2

degGn,k
=

(k + 1)(n� k� 1)

2! (N � 1)
.

Substituting these in the above expression for (v2, v2) we get (v2, v2) = ((k + 1)(n�
k� 1)=(4!(N � 1)2(N � 2)(N � 3)))A where, again usingN = k(n� k) repeatedly,

A := (N � 1)f(n� k� 2)(k + 2)(n� k� 3)(k + 3)

+ 3(n� k� 2)(k + 2)(n� k + 1)(k� 1) + 2N(k� 1)(n� k + 1)g
� 6(N � 2)(N � 3)((n� k� 1)(k + 1))2)



1154 P. SANKARAN AND S. SARKAR

= (N � 1)f(N + 2(n� 2k)� 4)(N + 3(n� 2k)� 9)

+ 3(N + 2(n� 2k)� 4)(N � (n� 2k)� 1) + 2(N � (n� 2k)� 1)g
� 6(N � 2)(N � 3)(N + (n� 2k)� 1)

= 12(N � (n� 2k)� 1)

= 12(k� 1)(n� k + 1).

Therefore, (v2, v2) = (degGn,k)(k2 � 1)((n� k)2 � 1)=(2(N � 1)2(N � 2)(N � 3)).

REMARK 3.6. Although quaternionic Grassmann manifolds are notc-Kähler, one
could use the symplectic Pontrjagin class� := e1(n,k) 2 H4(HGn,k; Z) in the place of
c̄1 2 H2(CGn,k; Z) to define a pairing (� , � )� on H4r (HGn,k; Q) and the primitive
classesv j 2 H4 j (HGn,k; Q). We defineV4r � H4r (HGn,k; Q) to be the kernel of

[�N�2r +1 : H4r (HGn,k; Q)! H4N�4r +4(HGn,k; Q).

The form (� , � )� is definite when restricted to the space�qV4r�4q � H4r (HGn,k; Q).
The formula given in Lemma 3.5 holds without any change. These statements follow
from the degree doubling isomorphism from the cohomology algebra ofGn,k to that
of HGn,k which maps thei -th Chern class of the tautological complexk-plane bundle
over Gn,k to the i -th symplectic Pontrjagin class of the tautological leftH-bundle over
HGn,k.

4. Proofs of main results

In this section we prove the main results of the paper, namelyTheorems 1.1, 1.2
and 1.3.We will only consider the case of complex Grassmann manifolds. The proofs
in the case of quaternionic Grassmann manifolds follow in view of the fact that the
cohomology algebra ofHGn,k is isomorphic to that ofCGn,k via an isomorphism that
doubles the degree.

Recall that complex Grassmann manifolds are smooth projective varieties and that
Schubert subvarieties yield analgebraic cell decomposition. In particular their Chow
ring is isomorphic to singular cohomology (withZ-coefficients) via an isomorphism
that doubles the degree. It follows thatH p,q(Gn,k; C) = 0 for p 6= q. Therefore results
of the previous section hold forGn,k. The bilinear form (� , � ) is understood to be
defined with respect to! = c̄1 2 H2(Gn,k; Z) �= Z.

Lemma 4.1. Let f : Gn,k! Gm,l be any continuous map where k(n� k) = l (m�
l ) =: N. Suppose that f�(c1(?m,l )) = �c1(?n,k) where� 2 Z. Then

deg(f ) = �N degGn,k

degGm,l
.
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Proof. This follows immediately from Lemma 3.1 (i) and (iii).

Proof of Theorem 1.3. We may suppose thatF = C and thatl � k; otherwisek <
l � [m=2] in which case deg(f ) = 0 for any f by [14, Theorem 2].

Suppose that deg(f ) = �1 and thatl < k. We have

degGn,k

degGm,l
=

1! � � � (k� 1)! (m� l )! � � � (m� 1)!

1! � � � (l � 1)! (n� k)! � � � (n� 1)!

=
l ! � � � (k� 1)! (m� l )! � � � (m� 1)!

(n� k)! � � � (n� 1)!

=

0
� Y

1� j�k�l

(l � 1 + j )!

(n� k + j � 1)!

1
A
0
� Y

1� j�l

(m� j )!

(n� j )!

1
A.

Note that after simplifying (l + j �1)!=(n�k+ j �1)! for each j in the first product,
we are left with product of (k � l ) blocks of (n� k � l ) consecutive positive integers
in the denominator, thelargest to occur being (n � l � 1). Similar simplification in
the second product yields a product ofl blocks of (m� n) consecutive integers in the
numerator, thesmallestto occur being (n� l + 1). Since (k� l )(n� k� l ) = l (m� n)
we conclude that degGn,k > degGm,l .

In the notation of Lemma 4.1 above, we see that either deg(f ) = 0 orjdeg(f )j > j�jN � 1—a contradiction. Therefore (m, l ) = (n, k) if deg( f ) = �1. Now
f � : H�(Gn,k; Z)! H�(Gn,k; Z) induces an isomorphism. SinceGn,k is a simply con-
nected CW complex, by Whitehead’s theorem,f is a homotopy equivalence.

REMARK 4.2. (i) The above is a topological analogue of the result of Paranjape
and Srinivas [13] that any non-constant morphismf : Gn,k ! Gm,l is an isomorphism
of varieties provided theGm,l is not the projective space. Our conclusion in the top-
ological realm is weaker. Indeed it is known that there existcontinuous self-maps of
any complex and quaternionic Grassmann manifold which havelarge positive degrees.
See [1] and also [15].
(ii) Endomorphisms of the cohomology algebra ofGn,k having non-zero degree have
been classified by M. Hoffman [9]. These are either ‘grading homomorphisms’ defined
by ci 7! �i ci , 1 � i � k for some� or when n = 2k, the composition of a grading
homomorphism with the homomorphism induced by the diffeomorphism ? : Gn,k !
Gn,k defined asU 7! U?. If the degree of an endomorphismh of H�(Gn,k;Q) is zero,
then h(c1) = 0. Hoffman has conjectured in [9] that in this caseh vanishes in positive
dimensions. This conjecture has been established in [4] when n > 2k2 � 1 and it is
also known to hold whenk � 3.

Recall from Example 3.4 the construction of the primitive classesv j 2 H2 j (Gn,k;Q),
2 � j � k. To avoid possible confusion, we shall denote the primitiveclasses in
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H2 j (Gm,l ; Q) corresponding toj = 2, : : : , l by u j . Also V2r
m,l � H2r (Gm,l ; Q) will de-

note the space of primitive classes. The following lemma is crucial for the proof of
Theorem 1.1.

Lemma 4.3. Suppose that f: Gn,k ! Gm,l is a continuous map such that
f �(c1(?m,l )) = �c1(?n,k) = �c̄1 with � 6= 0. Let 2� j � l . Assume that k(n�k) = l (m� l ).
Then, with the above notations, f �(u j ) = � j v j where� j 2 Q is such that

�2
j = �2 j degGn,k

degGm,l

(u j , u j )

(v j , v j )

for 2� j � l .

Proof. The degree off equals�N degGn,k=degGm,l 6= 0 by Lemma 4.1.

Therefore f � : H2 j (Gm,l ; Q) ! H2 j (Gn,k; Q) is an isomorphism andf �(V2 j
m,l ) =

V
2 j
n,k, since f � is a monomorphism and the dimensions are equal asj � l . Note that

f � maps the space of decomposable elementsD
2 j
m,l � H2 j (Gm,l ;Q) isomorphically onto

D
2 j
n,k. Sinceu j ? D

2 j
m,l \V2 j

m,l we see that, by Lemma 3.1 (ii),f �(u j ) ? D
2 j
n,k\V2 j

n,k. As

the form (� , � ) on V
2 j
n,k is definite by Proposition 3.2 andV2 j

n,k = Qv j � (V2 j
n,k \ D

2 j
n,k)

is an orthogonal decomposition, we must havef �(u j ) = � j v j for some� j 2 Q.
Recall that deg(f ) = �N degGn,k=degGm,l . Note that

�N�2 j ( f �(u j ), f �(u j )) = ( f �(u j ), f �(u j ))�c̄1

= deg(f )(u j , u j )!
= �N degGn,k

degGm,l
(u j , u j )

by Lemma 3.1. Thus�2
j (v j , v j ) = ( f �(u j ), f �(u j )) = �2 j (degGn,k=degGm,l )(u j , u j ).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We need only consider the caseF = C. Recall that the co-
homology algebraH�(Gm,l ;Z) is generated bȳc1, : : : , c̄l where c̄ j = c j (?m,l ). Therefore
f � : H�(Gm,l ; Z)! H�(Gn,k; Z) is determined by the images of̄c j , 1� j � l .

As observed in Example 3.4, one hasu j � c̄ j 2 D
2 j
m,l , 2� j � l . It follows easily

by induction that each̄c j , 1� j � l , can be expressed as a polynomial with rational
coefficients inc̄1, u2, : : : , ul . Thereforec̄1 =: u1, u2, : : : , ul generateH�(Gm,l ; Q).

Lemma 4.1 implies thatf �(u1) = �c1(?n,k) where�N—and hence� up to a sign—
is determined by the degree off .

Now by Lemma 4.3, the image ofu j under f � equals� j v j where � j is deter-
mined up to a sign by the degree off , if deg(f ) 6= 0.
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Proof of Theorem 1.2. We assume, as we may, thatF = C. We preserve the no-
tations used in the above proof. Recall from Lemma 3.5 that (v2, v2) = (degGn,k)(k2�
1)((n� k)2 � 1)=(2(N � 1)2(N � 2)(N � 3)). Therefore, by Lemma 4.3 we have

�2
2 = �4 degGn,k

degGm,l

(v2, v2)

(u2, u2)

= �4

�
degGn,k

degGm,l

�2 (k2 � 1)((n� k)2� 1)

(l 2� 1)((m� l )2� 1)

= B2(k2 � 1)(l 2� 1)((n� k)2� 1)((m� l )2� 1)

where B := �2 degGn,k=(degGm,l (l 2� 1)((m� l )2� 1)) 2 Q. It follows that deg(f ) = 0
unlessQ := (l 2�1)(k2�1)((m� l )2�1)((n� k)2�1) is a perfect square. It remains to
show that there are at most finitely many values form, n for which the Q is a perfect
square. This is proved in the following proposition.

Proposition 4.4. Let 1 < a < b be positive integers. Then there are at most
finitely many solutions inZ for the system of equations

(8) y2 = Q(a, b, x, z), az = bx,

where Q(a, b, x, z) := (a2 � 1)(b2 � 1)(x2 � 1)(z2� 1).

Proof. Let r = gcd(a, b) and write a = rs, b = r t so that t x = sz. Then the sys-
tem of equations (8) can be rewritten asy2 = F(x) where F(x) := (1=s2)(a2 � 1)(b2 �
1)(x2 � 1)(t2x2 � s2). Note that F(x) 2 Q[x] has distinct zeros inQ. By a theorem
of Siegel [5, Theorem D.8.3, p. 349] it follows that the equation y2 = F(x) has only
finitely many solutions in the ringRS� K of S-integers whereK is any number field
and S any finite set of absolute valuations ofK , including all archimedean valuations.
In particular, takingK = Q and S the usual (archimedean) absolute value, we see that
there are only finitely many integral solutions of (8).

For the rest of the paper we shall only be concerned with the number theoretic
question ofQ(a, b, c, d) being a perfect square.

REMARK 4.5. (i) We observe that there areinfinitely many integers 1< a <
b < c < d such thatQ(a, b, c, d) is a perfect square. Indeed givena, b, let c be any
positive integer such that (a2�1)(b2�1)(c2�1) = Pu2 where P > 1 is square free. Let
(x, y) be any solution withx 6= 0 of the so called Pell’s equationy2 = 1 + Px2. Then
d = jyj is a solution wheneverd > c. Since the Pell’s equation has infinitely many
solutions, there are infinitely many suchd.
(ii) Suppose that (l 2 � 1)(k2 � 1)(c2 � 1) = x2 is a perfect square. (There exists such
positive integersc—in fact infinitely many of them—for which this happens if andonly
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if ( l 2 � 1)(k2 � 1) is not a perfect square.) Then there doesnot exist anyd > 1 such
that Q(l , k, c, d) is a perfect square. Assume further thatl j (kc)—this can be arranged,
for example, takingk to be a multiple ofl—and setn := c + k, m := kc=l so that
k(n� k) = l (m� l ). Then Q(l , k, n� k, m� l ) is not a perfect square.
(iii) We illustrate below situations in whichQ(l , k, n� k, m� l ) is not a perfect square
(assuming thatk(n�k) = l (m� l )) depending on congruence classes, modulo a suitable
prime power, of the parameters involved.

(1) For an odd primep, suppose thatk � p2r�1 � 1 mod p2r and none of the
numbersl , m� l , n� k is congruent to�1 mod p. Then p2r�1 j Q but p2r ∤ Q.
(2) Suppose thatm� l � 5 mod 8, andk � 7 mod 16. Then (m� l )2� 1 is odd,
l 2� 1� 8 mod 16,k2� 1� 16 mod 32 andl (m� l ) = k(n� k) implies (n� k) is
even and so (n� k)2 � 1 is odd. ThusQ � 27 mod 28.
(3) Suppose thatl � 0 mod 8,m� l mod 2, k � 3 mod 8. ThenQ � 8 mod 16.

We conclude the paper with the following

Proposition 4.6. Let c> 1 and let k= 3 or 7. Suppose that Q(2, k, 2c, kc) is
a perfect square. Then there exist integers� , �, v > 1 such that c= (1=2)(�2�2 + 1),�2�2� 3v2 = �2 and (i) �2� 3�2 = �2 when k= 3 and (ii) �2� 7�2 = �6 when k= 7.

Proof. Assume thatk = 7 and thatQ := Q(2, 7, 2c, 7c) = 3224(2c�1)(2c+ 1)(7c�
1)(7c+1) is a perfect square. There are several cases to consider depending on the gcd
of the pairs of numbers involved. Write (2c� 1) = �u2, 2c + 1 = �v2, 7c� 1 =  x2,
7c + 1 = Æy2, where�, �,  , Æ are square free integers. SinceQ is a perfect square
and since gcd(2c� 1, 2c + 1) = 1, gcd(7c� 1, 7c + 1) = 1 or 2, gcd(2c� 1, 7c� 1) = 1,
or 5, gcd(2c� 1, 7c� 1) = 1, 3, or 9, the possible values for (�, �) are: (1, 1), (1, 5),
(1, 3), (3, 1), (5, 1), (1, 15), (15, 1), (5, 3), (3, 5). The possible values for ( , Æ) are
the same as for (�, �) as well as (2�, 2�).

Suppose (�, �) = (1, 1). Since (2c� 1) + 2 = (2c + 1), we obtainu2 + 2 = v2 which
has no solution. If (�, �) = (3, 1), then 3u2 +2 = v2. This equation has no solution mod
3. Similar arguments show that if (�, �) = (5, 1), (1, 5), (1, 15), (15, 1), (5, 3), there are
no solutions foru, v. If (�, �) = (3, 5), then ( , Æ) = (5, 3) or (10, 6). If ( , Æ) = (5, 3)
again there is no solution mod 3 for the equation 5x2 + 2 = 3y2. When ( , Æ) = (10, 6)
we obtain 10x2 + 2 = 6y2. This has no solution mod 5.

It remains to consider the case (�, �) = (1, 3). In this case we obtain the equation
u2+2 = 3v2 which has solutions, for example, (u,v) = (5, 3). Now (�,�) = (1, 3) implies
( , Æ) = (3, 1) or (6, 2). If ( , Æ) = (3, 1) then we obtain the equation 3x2 +2 = y2 which
has no solution mod 3. So assume that ( , Æ) = (6, 2). As (�, Æ) = (1, 2) we obtain
4y2� 7u2 = 9, that is, 4y2� 7u2 = 9. Thus (2y� 3)(2y + 3) = 7u2. Either 7j (2y� 3)
or 7 j (2y + 3). Say 7j (2y� 3) and write (2y� 3) = 7z. Now z(7z + 6) = u2. Observe
that gcd(z, 7z + 6) divides 6. Since� = 3, 2c � 1 = u2 is not divisible by 3. Also,
u being odd, we must have gcd(z, 7z + 6) = 1. It follows that bothz and 7z + 6 are
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perfect squares. This forces 6 to be a square mod 7—a contradiction. Finally, suppose
that 7 j (2y + 3). Then repeating the above argument we see that both (2y � 3) =: �2

and (2y+3)=7 =: �2 are perfect squares. It follows that 7�2�6 = �2 is a perfect square.
Hence 2c� 1 = u2 = �2�2. Since 2c + 1 = 3v2, the proposition follows.

We now consider the casek = 3. We merely sketch the proof in this case. Let, if
possible,Q = 233(2c�1)(2c+1)(3c�1)(3c+1) be a perfect square. Write 2c�1 =�u2,
2c + 1 = �v2, 3c� 1 =  x2, 3c + 1 = Æy2, where�, �,  , Æ are square free integers and
u, v, x, y are positive integers. Arguing as in the casek = 7, following are the only
possible values for�, �,  , Æ: (�, �) = (1, 3), (3, 1), (3, 5), (5, 3), (1, 15), (15, 1), and
( , Æ) = (1, 2), (2, 1), (2, 5), (5, 2), (1, 10), (10, 1). It can be seenthat only the case
(�, �,  , Æ) = (1, 3, 2, 1) remains to be considered, the remaining possibilities leading
to contradictions. Thus we have 2c�1 = u2, 2c+ 1 = 3v2, 3c�1 = 2x2 and 3c+ 1 = y2.
Therefore, we have 4x2� 1 = 3u2, i.e., (2x� 1)(2x + 1) = 3u2 . Hence, 3j (2x� 1) or
3 j (2x + 1).

Suppose that 3j (2x � 1). Write 3z = 2x � 1, z 2 Z. Since z is odd, we have
gcd(z, 3z + 2) = 1. As z(3z + 2) = u2 we conclude thatz and 3z + 2 have to be perfect
squares. This implies that 2 is a quadratic residue mod 3—a contradiction. Therefore
3 ∤ (2x�1) and we must have 3j (2x +1) and bothz and 3z�2 will have to be perfect
squares. Writez = �2 and 3z�2 = �2 so that�2�3�2 = �2 andv2 = u2 + 2 = �2�2 + 2.
This completes the proof.

REMARK 4.7. (i) Let K = Q[
p

7] and let R be the ring of integers inK . If� + �p7 2 R, then � , � 2 Z. Denote the multiplicative ring of units inR by U . Note
that any element ofU has norm 1. (This is because�1 is a quadratic non-residue mod
7.) Using Dirichlet Unit theoremU has rank 1; indeedU is generated by� := (8+3

p
7)

and�1. The integers� ,� as in the above proposition yield an element� +�p7 of norm�6 and the setS� R of all elements of norm�6 is stable under the multiplication
action byU . An easy argument shows thatS is the union of orbits through� := 1+

p
7,�̄ = 1�p7. Thus S = f���k, ��̄�k j k 2 Zg.

Observe that if� , � are as in Proposition 4.6 (ii), then� +
p

7� 2 S. Listing ele-
ments� + �p7 2 S with � , � > 1 in increasing order of�, the first three elements are
13+5

p
7, 29+11

p
7, 209+79

p
7. Straightforward verification shows that when� +�p7

is any of these, then there does not exist an integerv such that�2�2 + 2 = 3v2. Since
the next term is 463+175

p
7, we have the lower bound 2c> 1752�4632 = 6565050625

in order thatQ(2, 7, 2c, 7c) be a perfect square (assumingc > 1).
(ii) Now, let K = Q[

p
3] and letR be the ring of integers inK . Note that if� +�p32

R, then� ,� 2 Z. Denote the multiplicative ring of units inR by U , which is generated
by (2 +

p
3) and�1.

Suppose thatQ(2, 3, 2c, 3c) is a perfect square,c > 1. Then the integers� , �, as
in the above proposition, yield an element� + �p3 of norm�2. The setS� R of all
elements of norm�2 is stable under the multiplication action byU . In fact it can be
verified easily thatS = f�(1 +

p
3)(2 +

p
3)m j m 2 Zg.
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Listing these with� , � > 1, in increasing order of�, the first five elements are
5 + 3

p
3, 19 + 11

p
3, 71 + 41

p
3, 265 + 153

p
3, 989 + 571

p
3. If � + �p3 equals

any of these, direct verification shows that there is no integer v satisfying the equation�2�2 + 2 = 3v2. The next term of the sequence being 3691 + 2131
p

3 we obtain the
lower bound 2c > 21312 � 36912 = 61866420601441.
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