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Abstract
We study a random measure which describes distribution génealues and
corresponding eigenfunctions of random Schrodinger ¢pesan L%(RY). We show
that in the natural scaling every limiting point is infinigetlivisible.

1. Introduction

Let (22, F,P) be a probability space. We consider a family,},cq of Schrédinger
operators parametrized hy € Q:

Ho = —A+V,(x), on L%RY),
Vo(X) = D d(@)U (x — k).

kezd
We assume thaV, satisfies the following condition.

H1. (1) U (#0)is bounded, measurable witd(suppU)| = 0 and satisfies the fol-
lowing “overlapping condition”: for some positive constan, C, rg (ro > 1/2), we have

CxB(0,1/2)(X) < U(X) < Cxp(ore)(X)
where
B@, r)={y=(yn ¥2...., ya) € R d(y, a) < r},
dly, 2) = max Iy; —al,
is the cube of sizer2centered at € RY and xg is the characteristic function oB.
For a subsetA of R", |A| is its n-dimensional Lebesgue measure.
(2) {Ak(w)}keze are independent, identically distributed real-valueddoan variables

whose common distribution has a bounded dengity L> with suppe C [0, co) being
compact and @& suppp.

2000 Mathematics Subject Classification. 82B44, 81Q10.



846 F. NAKANO

H1 is assumed so that there exist some intervals where tledofral moment bound
(1.1) and Wegner's estimate (Lemma 3.2) are satisfied. Ihasvk thato (H,,) = [0, 00),
a.s. [7] and we can finé; > 0 such that the spectrum &f, in | =[0, E,] are a.s. pure
point with exponentially decaying eigenfunctions. Thiepbmenon is called Anderson
localization. See e.g., [1, 2, 3, 15] and references the@me method for proving this
is fractional moment method [1] and another one is multsaaalysis [2, 15]. The
purpose of this paper is to describe the distribution of mighies and eigenfunctions
in 1 in the product space of energy and space, and study its piegpem order to do
that, we consider the following as is done in [6].

DEFINITION. We define a measurg on R%*! by setting

§(J x B) := Tr(xs(x)Ps(H)x&(X))

for J € B(R), B € B(RY), where P;(H) is the spectral projection ofl w.r.t. J.

Since xg(Xx)P;(H) is Hilbert-Schmidt for bounded, B (Lemma 3.1),¢ is locally fi-
nite. We set some definitions and notations to state ourtsesul

NoTATION. (1) Let M(R") (resp. Mp(R")) be the set of locally finite Borel
measures (resp. point measures) Rh with B(M(R")) its Borel field generated by
the vague topology. A random measure (resp. point procasfX"ois a measurable
mapping from @, F, P) to (M(R"), B(M(R"))) (resp. to (Mp(R"), B(Mp(R"))). For
a random measure, E[¢(dX)] is called its intensity measure. SindgH) is weakly
measurable for bounded Borel functidnon R [3], and sinceB(M(R")) is generated
by mappings{ux +— w(A)} for bounded Borel setd € B(R"), & a random measure
on R4+,

(2) A point process; is called an infinitely divisible point process iff for any €
N there exists independent identically distributed seqeesfcpoint processe&,, J-}Tzl

such that¢ £ &1+ Enz+ - +&nn.
(3) A sequencelén}2, of random measures is said to converge in distribution to a

random measure (and we writeg, 9 ¢) if the distribution of &, converges weakly
to that of ¢. It is equivalent to the following statement: for akye N, any interval
I x By, I x By,..., Jx By and anyAq,..., Ax € B(R) such thatP(¢(J; x Bj) € 9A;) =0

for j=1,2,...,Kk

n—oo

P(En(‘]j X Bj)e Aj, i=1,2,...,kk— P(C(Jj X Bj)E Aj, i=12,...,k).



INFINITE DIVISIBILITY OF RANDOM MEASURES 847

(4) Let Hp, :=HJs, (AL :=[-L/2,L/2]% with the periodic boundary conditién It
is known that, with probability 1, the following limit finitg exists for anyE € R and
is independent of» €

1 .
——ti{eigenvalues oH,, < E},

N(E) = Lll—r;noo |[AL|

which is called the integrated density of states, and theesponding Borel measure
v on R is called the density of states measure.

As is done in [6], we study the following two scaling limits.
(1) Macroscopic limit: we first consider the following scajig of &:

M. —d X
me f(E, x)dgM = L /RM f(E, E) de,

in another words,

EMI x B) =L ¥ Tr(xLePs(H)xLe), J € B(R), B € BRY).
Theorem 1.1. Under H1, we haveg™ 5 v ® dx as L— oo almost surely

> means vague convergence. Sincés interpreted as the number of states per unit
volume and per unit energy, this result is natural implyihgtteigenfunctions are dis-
tributed uniformly in the macroscopic scale. In fact, Theorl.1 follows quickly from
the ergodic theorem.

(2) Natural scaling limit: Pick a reference ener§y € R and consider the following
scalingé, of &:

/RM f(E, x) d&, = /w f(LUE - Eo), %) dt,

equivalently,
£L(J x B) = Tr(xLe(X)Pegra/e(H)xLe(x)),  J € B(R), B € BRY).

We note that if an eigenfunctiop of H localizes in a box of sizé., then the corre-
sponding energ\E satisfies|E — Eq| >~ L9 [12].

We wish to study the behavior ¢f whenEy is in the localized regime (the region
where Anderson localization holds) &f. In order to do that, we assume the following
fractional moment estimate.

lWe always impose periodic boundary condition for the restm H|, of H.
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H2 (Fractional moment estimate). Led,, := H|x,, AL :=[-L/2,L/2]¢ with
the periodic boundary condition. We can find positive camtsta, Cs, 1 (0 < s < 1)
and an open intervdl C [0, 00) such that foranfE € I, L >0, k,| € A_NZ% we have

(11) SUPE[|| kG, (E +i€)nll5,] < Cse !

e>0

where xk := Xk 12, Ga (2 = (Ha, —2)7% ze€ C\ R is the resolvent ofH,, and
|l - llop is the operator norm.

It is known that H2 is satisfied it is in a neighborhood of 0 = inf(H) or if | C
(0, 00) is an arbitrary bounded interval antb|l» is sufficiently small under which
Anderson localization is proved [1].

Theorem 1.2. AssumeH1, H2. If Eq € | is the Lebesgue point of, we can
find a sequencél}p2, with Ly k2%~ and an infinitely divisible point process on

R such thaté|, 4 ¢ as k— oo. Furthermore
dv
(1.2) E[¢(dE dX] = = (Eo) dE® dx

As for the related works, Molchanov [10] studied one-dimenal Schrodinger oper-
ator H called the Russian school model. LB := H|,,, AL =[-L, L] under the
Dirichlet boundary condition and IgtEj(AL)}; be its eigenvalues. He considered the
point process

(1.3) PLAE) =) 8, (& (A0)-E9) (AE)
j

on R and proved that it converges in distribution to a Poissorcgss. Minami [9]
proved the same statement for multi-dimensional Andersodeihon|?(Z%). In [6] the
same model as [9] is studied and it is shown thatonverges to a Poisson process on
R, In view of those known results and their proofs, the coriolusf Theorem 1.2

is not surprising, but this paper aims at clarifying whicmditions are sufficient to
prove this in the continuum case. We also note that, in pbysierature, there is a
discussion on examples whegeis infinitely divisible but not Poissonian [8].

REMARK 1.3. The uniqueness af is not known. If we had Minami’'s estimate
(1.4) P(t{eigenvalues oH,, in J} > 2) < C|J|?- (LY)?

then we would be able to prove thgt converges to the Poisson process Rfi?
whose intensity measure is equal wv(dE)(E;) dE ® dx. However, (1.4) has not
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been proved yet. What we obtain from the infinite divisilgilitf ¢ is that¢ has the
following representation:

d
¢ = w dn(u)
M(Rd*l)

where is a Poisson process ohl{(RY*1) [5, Lemma 6.5].

REMARK 1.4. LetU :=][0, 1] and define a random measues on R x U by
setting

&L, 1(J x B) := Tr(xLe(X) Pgy+ayLe (HILu) xLB (X))

for J c B(R), B c U. Then we can prove the same results §pr; where¢ is now a
point process ofR x U. Furthermore, the point procegg for H|,, converges to an
infinitely divisible point process ofiR along some subsequence. For one-dimensional
case, this is proved in [4].

REMARK 1.5. We used fractional moment bound to prove Theorem 1.2 cé&ve
also use the multi-scale analysis, which is presented ineAgix 2, so that the same
conclusion also holds whenever the multiscale analysipicable.

REMARK 1.6. We can also study the distribution of localization eemt(which
is done in [13] for discrete case) and can derive essentiblysame results as Theo-
rem 1.2.

This paper is organized as follows. In Section 2, we proveofdra 1.1, 1.2. Basical-
ly we follow the argument in [9, 6]: we divide the region in @amn into small sub-
systems and approximate &5~ @, Hg. SinceJ(H,, —2)~! does not belong to trace
class in the continuum models, we take smooth functibrs C°(R) instead and esti-
mate Tr(f (H) — ", f(Hk)) by using the almost analytic extension &f Technically,
the proof consists of combination of several known methddsSection 3, we recall
some basic estimates needed in Section 2. In Section 4, we fifeeorem 2.1 by us-
ing the multiscale analysis. In what follows, unimportamiversal constants are writ-
ten simply as (const.).

2. Proof of Theorems

Proof of Theorem 1.1. We recall th&(a, r) is the cube of sizer2centered at
a € RY and xx = xsw.1/2, k € Z9. It is known thatv has the following representa-
tion [3].

(2.1) v(J) = E[Tr(xoPs(H)x0)], J € B(R).
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Since v ® dx is absolutely continuous w.r.t. the Lebesgue measurR®r, by the
density argument it suffices to sha'(A) — v(J)|B|, a.s. for any intervaA=J x B

with rational endpoints. Lef be such an interval and suppose that one of its endpoint
coincides with the origin. By Birkhoff's ergodic theorem,

lim gM(A) = lim L ¢ 2: Tr(uPy(H)xe) = v(J)|B|, a.s.
L—oo L—>oo
B(k,1/2)N(LB)#¢¥

A subtraction argument completes the proof. ]

Proof of Theorem 1.2 is done based on the argument in [6]: ve& dionsider
the eigenfunctions oH which are localized inLB, decomposeL B into small sets
like LB ={J, Bp(L), and approximate these eigenvalues and eigenfunctiorts bf
those of H|g,). For that purpose, pick & o < 1 and letl. := [L*]. For p =
(P1, P2s - - -, Pa) € Z9 we set

Bp(L):={x e RY: pjlL <xj <(pj+ 2, j=1,2,...,d},

HL,p := Hls,w), Wwith periodic boundary condition.
To approximatet, we consider the following random measure

ne,p(J x B) := Tr(xLe(X) Peg+a/Le (HL, p) xLB(X))-

Since periodic boundary condition is imposéd,  ,} are statistically independent though
V satisfies the overlapping condition (H1 (1)). Wegner'sreate (Lemma 3.2) implies
that intensity measures &f , 5., are absolutely continuous (Lemma 3.4). The follow-
ing proposition is the key to the proof.

Proposition 2.1. For any f e C,(R%1), we have

E{

Proof. By Lemma 3.4 it suffices to show Proposition 2.1 f¢E, X) = xg(x)g(E)
with B (C RY) bounded rectangle angle C2(R). Let h. (%) := g(LY(x — Ep)). Then

E(F) =Y nup(f)

pezd

:| =o(1l), L — oc.

EL(F) =D nup(f)
p

=Y Tr(xe,wxes(ie(H) — hu(He p))xee xs,w)
P
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p: Bp(L)C(LB)  p: Bp(LmB);w,Bp<L)m(LB)°¢w)

2.

x Tr(xs,wyxLe(he(H) = h(He p))xe xs,w))
Ky + Ko,

Here we regarch, (H. p) as an operator oh?(RY): to be preciseh (H.,p) should be
replaced byPh,(H. p)P where P is the orthogonal projection ontb?(Bp(L)). We
first show E[|K2|] = 0o(1). Let J (C R) be an interval containing the support gf
Then by the inequalityh, (A)| < 19lloo xEs+a/L4(A) and by Lemma 3.2 we have

J
22) ELTr e she (H)xe e 00l] = (const gl
J
@3 ELTr Gt she (He e xl] < (const g gl

for any k € 9. Sinceti{p: Bp(L)N(LB) #@, Bp(L)N(LB)® # @} = O((L/I )%t and
8(Bp(L) N 29 = O(IY) we have

E[IK2[] < > > ENTrmxsh(H)xeexi)ll
p: Bp(L)N(LB)ZY, Bp(L)N(LB)#¥ keBy(L)NZd

+E[TrGocxeshe (He p) xes xi)lD)

< (const L d71Id 1 = (const L =0(1)

We next showE[|K4|] = 0(1). In what follows, for simplicity, we writeZkeBp(L) in-
stead onkeBp(L)mzd. If Bp(L) C (LB), then xg,()xLs = xB,) and hence

Kyl = Z Tr(xs,w)(hL(H) — h(HL p))xB, )

p: Bp(L)C(LB)

< Y D ITrGu(he(H) = hi(He, p)x)l-

p: Bp(L)C(LB) keBp(L)

Sinceti{p € Z9: Bp(L) C (LB)} = O((L/1L)Y), it suffices to show

d
<l£> >~ ENTrOu(hi(H) = hi(HL p)xdll = o(1).

keBp(L)
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Takel{ =o(l.) and let

Int Bp(L) := {x € Bp(L): d(x, dBp(L)) =1},
int Bp(L) := {x € Bp(L): d(x, aBp(L)) > 2| }.

We decompose the sum as

d
(ﬁ) S ETr e (H) — he (o)) ]

ke Bp(L)

(2.4) d
:(L)( DS )E[Tr(xk(hL(H)—hL(HL,p»xk)]
keint Bp(L)

I keBp(L)\int Bp(L)
=1 +II.
We show! =o0(1), Il =0o(1).
Estimate ofll: By (2.2), (2.3) and the estimatgBy(L) \ int Bp(L)) = (’)(I‘E*l 10

we have

[J] It
— < (const.}= =0o(1).
[a = (const}= = o(1)

d
I < (const.(%) -I‘LHI’L - 2Cwll9llx
Estimate ofl: Let h, be an almost analytic extension bf:
hL(x +iy) = (h () + h{ (X)) (x +iy)
whereyy € C*(C) and

1 (lyl =1+x]),

plerly) = {0 (Y| = 2+ 2x)).

Let
G@=MH=-2" GLp@=(H,p—-2"
be resolvents oH, H_ ;. We then have [11]
” -1 . - -1 .
hL(H):—./dzAdzamL(z)G(z), A (HL p):—./ dz A dZoFL (26 p(2),
27T| C ' 27T| C '

which gives the following representation.

25) e (H) e (He e = o /C dz A 20z () 0(G(2) — GL. p@)xe.
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Let ® € C(Bp(L)) such that® = 1 on IntBy(L) and |suppV® U suppAB®| <
(const.)ﬂfl. As an operator orLZ(Bp(L))
GL,p(9[H, ©]G(2) = G, p(2{(H — 20 — ©(H — 2)}G(2)

(2.6)
=0G(2) — GL,p(206.

We multiply xx from both sides, use the fact that sSUpP, suppA® C Bp(L)\ IntBp(L),
and use Lemma 3.5. It follows that

xx(G(2) — GL,p(D)x« = xGL,p(2[H, O1G(2) xx
=Y G p(@n[H, O1G@)x«
|

(27) = Z XkGL,p(Z)X|[H’ @]G(Z)Xk
leBp(L)\Int By(L)

= Z xGL,p(@Dx TL(D)C(2) xx.-
leBp(L)\INt Bp(L)

RHS of the above equality now turns out to be in the trace dds®ugh xxGa(2)x«,
xkGL,p(2)xx do not ford > 2. Substituting (2.7) into (2.5) we have

xk(he(H) — h(He p))xx

-1 N
= o [dzndzohi@) Y aGL@n @@k
Tl Je leBp(L)\Int Bp(L)

(2.8)

We take trace and use the inequalitie&GL,p(2) xillop < I1XxGL,p(D 1 lI5p- ||GL,p(z)||égS
0<s<1), IG@llop = 1324, IGL p(Dllop < 327 and [ TL(D11 < Ca2(1) D,
Here we writez = x +iy and note that supgzh, (x +iy)| is compact inR?.

[Tr(xx(hL(H) = he(HL p))xw)l
< (const.)/ dx dylazhy (x +iy)|
R2

x Z Il xG L,p(X +iy)x ||gp|y|—(1—5)—l(| L)(d_l)(d+l).
leBp(L)\Int By(L)

(2.9)

We use H2 (1.1) here. Since suppcC | for L sufficiently large, and sincgk—1| > I{
for k e int Bp(L), | € Bp(L) \ Int By(L), (1.1) implies

E[ITr(e(he(H) — he(He, p)x)l

2.10 " :
@20 (consty f dx dylazhy (x +iy)I (£ -1D)e ey (9@ DeD,
R2
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By the definition of almost analytic extension ahd,

2
|9y (x +iy)| < (const)y] > Ih{(x)],
j=0
' (constL? (j =2),
/ |h(L’)(x)| dx < [(const.) §=12),
(constL~9 (j =0),

which shows that

dx dylazhy (x +iy)l - [yl @97 < (const.L.9.
R2

With this estimate (2.10) yields

E[ITr(xk(h (H) — hu(He, p)xi)l] < (const.)” e+t

for somey > 0. Substituting it into (2.4) and taking = glogL (=o(l.)) with 8> 1
proves| = o(1). O

REMARK 2.2. The argument of showiny=0(1) in the proof of Proposition 2.1
also proves

(2.11) E[ITr(xo(f(H) — f(Ha)x0)1 = (1), L — oo,
for f € Cg°(l). We note Lemma 3.2 is not used in the estimatd of
The rest of our argument is similar to that in [6]. To prove thénite divisibility of

¢ as a point process, we approximajg , by point processes. For that purpose let
{Ej,p}j be the eigenvalues dfl_ , and define point processes,

~ L plL N
/R f(E, x) dfi_p := 2,: f(l_d(E,-,p — Eo), T)’ f € Co(RY™).

} =0(1).

w(8) :=suf| f(E, x) — f(E, X)|; Ix—X| <3, Ee€R]}.

Proposition 2.3. For f € C,(R%™Y)
E[Z
p

Proof. Fors > 0 let

/ f(E,x)dnL,p—/ f(E, X) dijLp
Rd+1 Rd+1
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Since f is uniformly continuous, lin,ow(s) = 0. Let y; , be the normalized eigen-
functions corresponding t&; ,. We then have

L, (€0 dn,= JZ/BP(L) {(LYE;p — Eo) ) 19,009 dx,

. —— Py, 2
/Rmf(E,x)dnL,p_JZ/Bp(L)f(l_ (Ej.p — Eo), 3 )|¢,,p(x)| dx.

Take an intervald ¢ R such that supg c J x RY. Then

/ fdnp —/ fdiLp
Rd+1 Rd+1

| i J
=If IIWw(f)ﬁ{elgenvalues ofH_ p € Eo+ F]
Therefore, by Lemma 3.2

ip }
P

d
< (const.(%) | f ||oow<|tL> 9. |I_id| = o(1). O

For the estimate on the intensity measure, we have

/ f(E,X) dl]L,p—/ f(E,X) d7~7L,p
Rd+1 Rd+1

Proposition 2.4. Let Ey € | be the Lebesgue point of For intervals J (C R),
A (c RY we have

E[5L(J x A)] — S—E(Eo)IJI Al

As in [6] Proposition 2.4 is proved by using (2.1) and the Lsthee differentiation the-
orem.

REMARK 2.5. Remark 2.2, Lemma 3.4 imply that ¢, 1 (defined in Remark 1.4)
satisfy

dv dv
E[éL,t(I x A)] — d—E(Eo)IJI AL E[pc(I)] — d—E(Eo)IJI
for intervalsJ Cc R, AcC U.

Theorem 1.2 is proved by combining these propositions.

Proof of Theorem 1.2. Lefl c R, B c RY be bounded intervals. By Lemma 3.4
we haveE[£ (J x B)] < Cw|B| -|J|. Thus Chebyshev’s inequality gives

lim supP( (J xB)>1)=0
t—o0 L>0
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so that{ } is relatively compact [S, Lemma 4.5]: we can find a sequefigg.2, and

a random measure with &, 4 ¢. By Proposition 2.1, 2.35 — Zpﬁ,_,p <% 0. Since

Mp(R%Y) is closed inM(RY*) under the vague topology; is a point process. By
Lemma 3.2

E[iL,p(3 x B)] < E[Tr(Pegy+s/La(HL p))]
< ) EM(OPeasis(Hep)xw)]
B(k,1/2)NBp(L)#¥

N

< (const.)¢ . Ik

Hence({ij,p} is a null-array:

lim supP(ij,p(J x B)>1)=0

L—>o0 pezd

for any bounded intervall ¢ R, B ¢ RY. Therefore¢ is infinitely divisible [5, The-
orem 6.1]. The estimate on the intensity measure (1.2)vasllerom Proposition 2.4

and the inequalityE[s(A)] < lim info_ o E[&n(A)] if & = &. O

3. Appendix 1: Some basic estimates

We recall some basic estimates used in Section 2. Te{l < p < oc) be the
Schatten class: the ideal of compact operators RY) with || T || pi= (Tr(JTP)YP < co.

Lemma 3.1. Let ge L?(RY and let | (C R) be an bounded interval Then
Pi(H)g, 9P (H) € .

Sketch of proof. Since™'H is bounded as an operator frob? into L, its in-
tegral kernelK (x, y) satisfies ess-syprs [ra K (X, Y)[?dy < oo implying ge™" € 7
and thuse 'Hg € 7,. By the spectral theorem|P,(H)g¢||? < (const.)e " ge|? for
¢ € L3RY) which provesP, (H)g € T>. O

The following lemma is fundamental to study, n_ p.

Lemma 3.2. We can find a positive constantyCsuch that for any interval & |
and any ke By(L),
(1) E[TrOaPs(HL,p)xid] = CwlJdl,
(2) E[Tr(xcPs(H)xil = CwlJl.

REMARK 3.3. In the statement of Lemma 3.2 (1),can be any bounded interval
and H2 is not necessary to prove that.
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Proof. (1) is proved by the spectral averaging method [219¥. The periodic
boundary condition orH, , is used here. For (2), we take> 0, € > 0 and letH,, :=
Hl—L/2,L2¢ and f € CX(R, [0, 1]) with suppf C {x e R: d(x,J) <e€|J]}Nl and f =1
on J. By Remark 2.2,

E[Tr(xoP3(H)x0)] < E[Tr(xo f(H)xo)]
= E[Tr(xo f(Ha)xo)] + E[Tr(xo(f(H) — f(Ha.))x0)]
< (@ +€)Cw|J|+0(1), L — oco. O

Lemma 3.4 given below easily follows from Lemma 3.2.

Lemma 3.4. Let f e LY(R%*) with compact supportThen for sufficiently large L
(1) E[|fpen F(E,x)dEL]] < Cwll fll1,
() E[|X, Jren F(E,x)di,p|] < Cwll flla

Sketch of proof. (1) We first consider the case fofE, xX) = x3(E) - xa(x) for
J c R, AcRY intervals. We then have

‘/ f(E, x) d&_

= ‘Tr(m(E)XJ(Ld(H - Eo»)‘

= Z Tr(xk PegeL-a3(H) xk)-
B(k,1/2)N(LA)Z#

Letr =d(Eo, 1¢) > 0. SinceEg+L9J c Eg+[-r,r] c | if J c[-rLY rLY], we
use Lemma 3.2 and conclude

E[V f(E, x) d&,

A density argument proves

EH/ f(E, x)dé,

for general f with suppf c L9[—r, r] x RY. (2) is proved similarly. O

] < > CwL I =CwlAl|Jl
BN (LA)ZP

]ECW”f”l

The following lemma is a variant of [1, Lemma 3.3].

Lemma 3.5. Let ® € C(By(L)) be as defined in the proof dProposition 2.1
and let ke intBp(L). Then we can find a trace class operator=TT (z) and a positive
constant G, such that

[H, ©1G@)xk = TL@G@xk» I TL(@1 < Ca 1D,
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where G ; is locally bounded wit. z € p(H) and || - ||1 is the trace norm
Proof. Takedq € C°(Bp(L)) with ®p =1 on suppv® U suppA® and letHy =
—A, Gp=(Hp+1)t. We then have
[H, ©]95G(2)x«
=[H, 8]®oGo(Ho + 1)@ G(2) xk
=[H, ©]®oGo(Po(z+ 1 V) +[H, ®o]) IG(2) xk
= To®iG(2) xx

where
To :=[H, B]®eGo(Po(z+ 1~ V) +[H, &¢))

is a bounded operator ani; € C°(Bp(L)) is a function which satisfie®; = 1 on
suppV®g U suppAdg. It is possible to letisupp®;| < (const.)ﬁ‘l. Furthermore, by
the same argument,

®IG(2)xk = P1Go(P1(z+1— V) +[H, 1)) P5G(2)xx
= T1®5G(2) x«
with some®, € C°(Bp(L)) satisfying®, =1 on supp/ ®1UsuppA P, and [suppd;| <
(const.)ﬁ‘l. We repeat this procedure: fgr=1,2,...,n+ 1 we can find®; €

C(Bp(L)) with @; =1 on suppv®d;_; U suppAd;_, and [suppd;j| < (const.)‘ﬂfl
such that

[H, O]®3G(2)xk = ToTa - - - Ta®2,,G(@) xx,
Tj I:‘DJ‘Go(ij(Z'Fl—V)‘F[H,(Dj]), i=1,2,...,n
By the fact that
T; = @j(Ho + 1)V/2C;

for some bounded operat@; and by Lemma 3.6,T; € Z,, for p > d with ||Tj[l, <
(const.)ﬁ‘l. We note that the (const.) appearing in this inequality =ally bounded
w.rt. ze p(H). Takingn=d+1, we havel =TgT;---T, € Z;. The estimate fol| T||;
follows from the inequality|| Tl1 < [ Tollop 1_[?:1 1T lIn. O

Lemma 3.6 ([14]). Let ge LP(RY),2< p < oo and f is bounded measurable
on R with | f(A)] < C¢(x)~®. Then dx)f(H) € Z,, for ap > d/2 and for some positive
constant G,, which depends only on, and C; we have

1g() f(H)Ilp = Ct pllgllp-
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4. Appendix 2: Proof of Theorem 1.2 by the multiscale analysi

We first set some notations. Let
— d. L F—
AL(X) =1y e Ry — Xl =3 j=1,2,...,d

be a finite box of sizeL centered aix € RY and let

AM(X) == {y € AL(X): d(y, dAL(X)) <1}, XXTt(x) = oy

be a strip of width 1 on the boundary &f (x) and its characteristic function. For
y >0 andE € R we sayA(x) is (v, E)-regular iff E ¢ o(H,,) and the following
estimate hold.

SUOmXXGAL(x)(E +i E)X?\'it(x) ||0p < e*l’l—/2
€>

whereGa, (x(2) = (HAL(X)—Z)*l is the resolvent oHx () := Hla, (¢ @nd xx = xx,1/2)-
We assume

H3 (Initial length scale estimate). We can find a bounded optamial | C [0, co)
andy > 0 such that for eaclt € |

P(AL,(0) is (v, E)-regular)> 1 — L,°, p>2d®+8d+2
for sufficiently largeLq = Lo(E).

This condition forp > d together with Lemma 3.2 (1) are sufficient condition to prove
Anderson localization [15]. For a technical reaspmmust be larger here. However we
can still find an intervall C [0, co) such that H3 holds, in those situations described
after H2. By H3 we can deduce the following facts: det 2p/(p + 2d) and define a
set of growing scale$l}2, as

Lkea = LE, k=0,1,2,...,
then for anyx € 2% we have
4.2 P(AL(X) is (v, E)-regulan)>1—L, ", k=1,2,....

Furthermore fory’ = y/8, AL :=[-L/2,L/2]% and fork, me A NZ9,

P({w € Q: SuplxGa, (E +i€)xmllop < & 7K™ })

>0

4.2)
>1—C|AL| k—m=P2D |k —m| > L,



860 F. NAKANO

for some positive constant. These estimates (4.1), (4.2) are proved as in the dis-
crete case (see e.g., [3, 15]) by Lemma 3.2 (1) and the fallpvgeometric resolvent
estimate: forA (x) c A" and B C A’ \ A_(x) we have

43) G @xslop < (CONSLY xx G, 9@ L llop - 140G (@D x8llop:

We note that (4.3) follows from (2.6) and the argument in theop of Lemma 3.5.

Theorem 4.1. AssumeH1, H3. Then the same conclusion as Theorem 1.2
holds

REMARK 4.2. It is known that H1, H3 withp > 2(d — 1) implies H2 [1, The-
orem 5.1]. However the argument in this section also appiegarious models (diver-
gence type Hamiltonian for instance) even when H1 is nosfadi, provided Lemma 3.2
(1) and H3 hold.

Proof. Statements in Proposition 2.3, 2.4 and the equdtieno(1) in the proof
of Proposition 2.1 follow from Lemma 3.2, Remark 3.3 and Ren#a3 below. Hence
all we need to prove i3 =0o(1). We start from (2.8) wittk € int By(L). By the argu-
ment to deduce (2.9), we have
(4.4)

E[ITrOw(h(H) = ho(He p))x)l]
S /R dx Az (< +1y)] EIITrGaG o + 1Y) xn T @G + i) )]

meBp(L)\Int By(L)

stonst) > [ cxayoah (i) CLIYIED G+ )l

meBp(L)\Int Bp(L)

whereC(L) =14V e define an even®yn(E) by
Gkm(E) := {a) € Q: Sum)(kGL,p(E + iG)Xm”op < g7/ lk=ml
€#0

for E € | andk, m e Z9 whose probability is estimated by (4.2)
P(Gkm(E)) = 1 — CIBp(L)]| [k — m|=PZ*D [k —m| > L.

Therefore fork e intBp(L) andm e By(L)\ IntBy(L), and for sufficiently large. with
Il > Lo, we have

(4.5) E[llxkGp(X +iy) xmllop; Gkm(X)] < &7V k=M < g771L)

@5 E[llxkGp(X +iy) xmllop; Gkm(X)¢] < (const.)Bp(L)| |k — m|~(P/Z* Dy ~1
< (const.)By(L)[I,"P/# Dy,
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The second one (4.6) is dominant. Sirjgg2 factor appears when (4.6) is substituted
into (4.4), we take higher order term in the definition of tHma@st analytic extension
of h.: we takeg € C3(R), h. (1) = g(LYx — Eg)) and

h{ (x)

Futxriv) = (00 + L 0y) + 1

0w§wu+w>

Then we have

3
|9y (x +iy)| < (const)yl? Y W ()],
j=0

3
> /|hf_’)(x)| dx < (const.L. 2
j=0

so that
4.7 dx dylazh, (x +iy)| - |y|~2 < (const.L.%.
RZ

Substituting (4.5), (4.6), (4.7) into (4.4) we have

E[ITr(x(hL(H) —hL(He, p)xl]

< (const.) Z L2d] (Ld—l)(d+1)(e—y’|’L + |tLi|’Lf(p/2+d))_
meBp(L)\Int Bp(L)

Hence

Ld
— > ENTrGwhe(H) = he(HL p)xidl]
L keint Bp(L)
4.8 Ld "
“9 < (const g -1 I{IEE AR g 7029
L

= (Const_)_3d|(Ld—1)+(d—1)(d+1)+d|,L ) IL—(p/2+d).

Here we take
I =L¢, I’L=Lﬂ, O0<B<a<l
In order to have RHS of (4.8) e(1), «, 8 must satisfy

3d+a(d2+2d—2)+,3(1—§p—d> <0,

which is possible wherp > 2d2 + 2d — 2. O
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REMARK 4.3. The above argument also proves (2.11) without usingrhar.2.
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NOTE ADDED IN PROOF Recently, Combes, Germinet, and Klein succeeded to
prove Minami’'s estimate in the continuum Schrédinger omesat
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