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Abstract
We study a random measure which describes distribution of eigenvalues and

corresponding eigenfunctions of random Schrödinger operators on L2(Rd). We show
that in the natural scaling every limiting point is infinitely divisible.

1. Introduction

Let (�,F ,P) be a probability space. We consider a familyfH!g!2� of Schrödinger
operators parametrized by! 2 �:

H! := �4 + V!(x), on L2(Rd),

V!(x) :=
X
k2Zd

�k(!)U (x � k).

We assume thatV! satisfies the following condition.

H1. (1) U (6= 0) is bounded, measurable withj�(suppU )j = 0 and satisfies the fol-
lowing “overlapping condition”: for some positive constants c, C, r0 (r0 > 1=2), we have

c�B(0,1=2)(x) � U (x) � C�B(0,r0)(x)

where

B(a, r ) := fy = (y1, y2, : : : , yd) 2 Rd : d(y, a) < r g,
d(y, a) := max

j =1,2,:::,djy j � a j j,
is the cube of size 2r centered ata 2 Rd and �B is the characteristic function ofB.
For a subsetA of Rn, jAj is its n-dimensional Lebesgue measure.
(2) f�k(!)gk2Zd are independent, identically distributed real-valued random variables
whose common distribution has a bounded density� 2 L1 with supp� � [0,1) being
compact and 02 supp�.
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H1 is assumed so that there exist some intervals where the fractional moment bound
(1.1) and Wegner’s estimate (Lemma 3.2) are satisfied. It is known that� (H!) = [0,1),
a.s. [7] and we can findE1 > 0 such that the spectrum ofH! in I = [0, E1] are a.s. pure
point with exponentially decaying eigenfunctions. This phenomenon is called Anderson
localization. See e.g., [1, 2, 3, 15] and references therein. One method for proving this
is fractional moment method [1] and another one is multiscale analysis [2, 15]. The
purpose of this paper is to describe the distribution of eigenvalues and eigenfunctions
in I in the product space of energy and space, and study its properties. In order to do
that, we consider the following as is done in [6].

DEFINITION. We define a measure� on Rd+1 by setting

� (J � B) := Tr(�B(x)PJ(H )�B(x))

for J 2 B(R), B 2 B(Rd), where PJ(H ) is the spectral projection ofH w.r.t. J.

Since�B(x)PJ(H ) is Hilbert-Schmidt for boundedJ, B (Lemma 3.1),� is locally fi-
nite. We set some definitions and notations to state our results.

NOTATION. (1) Let M(Rn) (resp. Mp(Rn)) be the set of locally finite Borel
measures (resp. point measures) onRn with B(M(Rn)) its Borel field generated by
the vague topology. A random measure (resp. point process) on Rn is a measurable
mapping from (�, F , P) to (M(Rn), B(M(Rn))) (resp. to (Mp(Rn), B(Mp(Rn)))). For
a random measure� , E[� (dx)] is called its intensity measure. Sincef (H ) is weakly
measurable for bounded Borel functionf on R [3], and sinceB(M(Rn)) is generated
by mappingsf� 7! �(A)g for bounded Borel setsA 2 B(Rn), � a random measure
on Rd+1.
(2) A point process� is called an infinitely divisible point process iff for anyn 2
N there exists independent identically distributed sequence of point processesf�n, j gnj =1

such that� d
= �n,1 + �n,2 + � � � + �n,n.

(3) A sequencef�ng1n=1 of random measures is said to converge in distribution to a

random measure� (and we write�n
d�! � ) if the distribution of �n converges weakly

to that of � . It is equivalent to the following statement: for anyk 2 N, any interval
J1�B1, J2�B2,:::, Jk�Bk and anyA1,:::, Ak 2 B(R) such thatP(� (Jj�B j ) 2 �A j ) = 0
for j = 1, 2,: : : , k,

P(�n(Jj � B j ) 2 A j , j = 1, 2,: : : , k)
n!1���! P(� (Jj � B j ) 2 A j , j = 1, 2,: : : , k).
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(4) Let H3L := H j3L (3L := [�L=2, L=2]d) with the periodic boundary condition1. It
is known that, with probability 1, the following limit finitely exists for anyE 2 R and
is independent of! 2 �

N(E) := lim
L!1 1j3L j℄feigenvalues ofH3L � Eg,

which is called the integrated density of states, and the corresponding Borel measure� on R is called the density of states measure.

As is done in [6], we study the following two scaling limits.
(1) Macroscopic limit: we first consider the following scaling �M

L of � :

Z
Rd+1

f (E, x) d�M
L := L�d

Z
Rd+1

f
�

E,
x

L

�
d� ,

in another words,

�M
L (J � B) = L�d Tr(�L B PJ(H )�L B), J 2 B(R), B 2 B(Rd).

Theorem 1.1. Under H1, we have�M
L

v�! � 
 dx as L!1 almost surely.

v�! means vague convergence. Since� is interpreted as the number of states per unit
volume and per unit energy, this result is natural implying that eigenfunctions are dis-
tributed uniformly in the macroscopic scale. In fact, Theorem 1.1 follows quickly from
the ergodic theorem.
(2) Natural scaling limit: Pick a reference energyE0 2 R and consider the following
scaling�L of � :

Z
Rd+1

f (E, x) d�L :=
Z

Rd+1
f
�

Ld(E � E0),
x

L

�
d� ,

equivalently,

�L (J � B) = Tr(�L B(x)PE0+J=Ld (H )�L B(x)), J 2 B(R), B 2 B(Rd).

We note that if an eigenfunction� of H localizes in a box of sizeL, then the corre-
sponding energyE satisfiesjE � E0j ' L�d [12].

We wish to study the behavior of�L when E0 is in the localized regime (the region
where Anderson localization holds) ofH . In order to do that, we assume the following
fractional moment estimate.

1We always impose periodic boundary condition for the restriction H j3 of H .
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H2 (Fractional moment estimate). LetH3L := H j3L , 3L := [�L=2, L=2]d with
the periodic boundary condition. We can find positive constants s, Cs, � (0 < s < 1)
and an open intervalI � [0,1) such that for anyE 2 I , L > 0, k, l 23L\Zd we have

(1.1) sup�>0
E[k�kG3L (E + i �)�lksop] � Cse

��jk�l j
where�k := �B(k,1=2), G3L (z) := (H3L � z)�1, z 2 C n R is the resolvent ofH3L andk � kop is the operator norm.

It is known that H2 is satisfied ifI is in a neighborhood of 0 = inf� (H ) or if I �
(0,1) is an arbitrary bounded interval andk�k1 is sufficiently small under which
Anderson localization is proved [1].

Theorem 1.2. AssumeH1, H2. If E0 2 I is the Lebesgue point of�, we can

find a sequencefLkg1k=1 with Lk
k!1���!1 and an infinitely divisible point process� on

Rd+1 such that�Lk

d�! � as k!1. Furthermore

(1.2) E[� (d E dx)] � d�
d E

(E0) d E
 dx.

As for the related works, Molchanov [10] studied one-dimensional Schrödinger oper-
ator H called the Russian school model. LetHL := H j3L , 3L = [�L, L] under the
Dirichlet boundary condition and letfE j (3L )g j be its eigenvalues. He considered the
point process

(1.3) �L (d E) =
X

j

Æj3L j(E j (3L )�E0)(d E)

on R and proved that it converges in distribution to a Poisson process. Minami [9]
proved the same statement for multi-dimensional Anderson model onl 2(Zd). In [6] the
same model as [9] is studied and it is shown that�L converges to a Poisson process on
Rd+1. In view of those known results and their proofs, the conclusion of Theorem 1.2
is not surprising, but this paper aims at clarifying which conditions are sufficient to
prove this in the continuum case. We also note that, in physics literature, there is a
discussion on examples where� is infinitely divisible but not Poissonian [8].

REMARK 1.3. The uniqueness of� is not known. If we had Minami’s estimate

(1.4) P(℄feigenvalues ofH3L in Jg � 2)� CjJj2 � (Ld)2

then we would be able to prove that�L converges to the Poisson process onRd+1

whose intensity measure is equal to (d�=d E)(E0) d E 
 dx. However, (1.4) has not
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been proved yet. What we obtain from the infinite divisibility of � is that � has the
following representation:

� d
=
Z
M(Rd+1)

� d�(�)

where� is a Poisson process onM(Rd+1) [5, Lemma 6.5].

REMARK 1.4. Let U := [0, 1]d and define a random measure�L, f on R�U by
setting

�L, f (J � B) := Tr(�L B(x)PE0+J=Ld (H jLU )�L B(x))

for J � B(R), B � U . Then we can prove the same results for�L, f where� is now a
point process onR�U . Furthermore, the point process�L for H j3L converges to an
infinitely divisible point process onR along some subsequence. For one-dimensional
case, this is proved in [4].

REMARK 1.5. We used fractional moment bound to prove Theorem 1.2. Wecan
also use the multi-scale analysis, which is presented in Appendix 2, so that the same
conclusion also holds whenever the multiscale analysis is applicable.

REMARK 1.6. We can also study the distribution of localization centers (which
is done in [13] for discrete case) and can derive essentiallythe same results as Theo-
rem 1.2.

This paper is organized as follows. In Section 2, we prove Theorem 1.1, 1.2. Basical-
ly we follow the argument in [9, 6]: we divide the region in concern into small sub-
systems and approximate asH 'Lk Hk. Since=(H3L � z)�1 does not belong to trace
class in the continuum models, we take smooth functionsf 2 C1

c (R) instead and esti-
mate Tr(f (H )�Pk f (Hk)) by using the almost analytic extension off . Technically,
the proof consists of combination of several known methods.In Section 3, we recall
some basic estimates needed in Section 2. In Section 4, we prove Theorem 2.1 by us-
ing the multiscale analysis. In what follows, unimportant universal constants are writ-
ten simply as (const.).

2. Proof of Theorems

Proof of Theorem 1.1. We recall thatB(a, r ) is the cube of size 2r centered at
a 2 Rd and �k := �B(k,1=2), k 2 Zd. It is known that� has the following representa-
tion [3].

(2.1) �(J) = E[Tr(�0PJ(H )�0)], J 2 B(R).



850 F. NAKANO

Since � 
 dx is absolutely continuous w.r.t. the Lebesgue measure onRd+1, by the
density argument it suffices to show�M

L (A)! �(J)jBj, a.s. for any intervalA = J� B
with rational endpoints. LetA be such an interval and suppose that one of its endpoint
coincides with the origin. By Birkhoff’s ergodic theorem,

lim
L!1 �M

L (A) = lim
L!1 L�d

X
B(k,1=2)\(L B)6=; Tr(�k PJ(H )�k) = �(J)jBj, a.s.

A subtraction argument completes the proof.

Proof of Theorem 1.2 is done based on the argument in [6]: we first consider
the eigenfunctions ofH which are localized inL B, decomposeL B into small sets
like L B =

S
p Bp(L), and approximate these eigenvalues and eigenfunctions ofH by

those of H jBp(L). For that purpose, pick 0< � < 1 and let lL := [L�]. For p =
(p1, p2, : : : , pd) 2 Zd we set

Bp(L) := fx 2 Rd : p j lL � x j < (p j + 1)lL , j = 1, 2,: : : , dg,
HL, p := H jBp(L), with periodic boundary condition.

To approximate�L we consider the following random measure

�L, p(J � B) := Tr(�L B(x)PE0+J=Ld (HL, p)�L B(x)).

Since periodic boundary condition is imposed,f�L, pg are statistically independent though
V satisfies the overlapping condition (H1 (1)). Wegner’s estimate (Lemma 3.2) implies
that intensity measures of�L , �L, p are absolutely continuous (Lemma 3.4). The follow-
ing proposition is the key to the proof.

Proposition 2.1. For any f 2 Cc(Rd+1), we have

E

2
4
�������L ( f )�X

p2Zd

�L, p( f )

������
3
5 = o(1), L !1.

Proof. By Lemma 3.4 it suffices to show Proposition 2.1 forf (E, x) = �B(x)g(E)
with B (� Rd) bounded rectangle andg 2 C2

c (R). Let hL (�) := g(Ld(�� E0)). Then

�L ( f )�X
p

�L, p( f )

=
X

p

Tr(�Bp(L)�L B(hL (H )� hL (HL, p))�L B�Bp(L))
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=

0
� X

p : Bp(L)�(L B)

+
X

p : Bp(L)\(L B)6=;,Bp(L)\(L B)c 6=;
1
A

� Tr(�Bp(L)�L B(hL (H )� hL (HL, p))�L B�Bp(L))

=: K1 + K2.

Here we regardhL (HL, p) as an operator onL2(Rd): to be precisehL (HL, p) should be
replaced byPhL (HL, p)P where P is the orthogonal projection ontoL2(Bp(L)). We
first show E[jK2j] = o(1). Let J (� R) be an interval containing the support ofg.
Then by the inequalityjhL (�)j � kgk1�E0+J=Ld (�) and by Lemma 3.2 we have

E[jTr(�k�L BhL (H )�L B�k)j] � (const.)
jJj
Ld
kgk1,(2.2)

E[jTr(�k�L BhL (HL, p)�L B�k)j] � (const.)
jJj
Ld
kgk1(2.3)

for any k 2 Zd. Since℄fp: Bp(L)\ (L B) 6= ;, Bp(L)\ (L B)c 6= ;g = O((L=lL )d�1) and℄(Bp(L) \ Zd) = O(l d
L ) we have

E[jK2j] � X
p: Bp(L)\(L B)6=;, Bp(L)\(L B)c 6=;

X
k2Bp(L)\Zd

(E[jTr(�k�L BhL (HL )�L B�k)j]
+ E[jTr(�k�L BhL (HL, p)�L B�k)j])

� (const.)

�
L

lL

�d�1

l d
L � 1

Ld
= (const.)

�
lL

L

�
= o(1).

We next showE[jK1j] = o(1). In what follows, for simplicity, we write
P

k2Bp(L) in-

stead of
P

k2Bp(L)\Zd . If Bp(L) � (L B), then�Bp(L)�L B = �Bp(L) and hence

jK1j =
������

X
p: Bp(L)�(L B)

Tr(�Bp(L)(hL (H )� hL (HL, p))�Bp(L))

������
� X

p: Bp(L)�(L B)

X
k2Bp(L)

jTr(�k(hL (H )� hL (HL, p))�k)j.
Since℄fp 2 Zd : Bp(L) � (L B)g = O((L=lL )d), it suffices to show

�
L

lL

�d X
k2Bp(L)

E[jTr(�k(hL (H )� hL (HL, p))�k)j] = o(1).
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Take l 0L = o(lL ) and let

Int Bp(L) := fx 2 Bp(L) : d(x, �Bp(L)) � l 0Lg,
int Bp(L) := fx 2 Bp(L) : d(x, �Bp(L)) � 2l 0Lg.

We decompose the sum as

(2.4)

�
L

lL

�d X
k2Bp(L)

E[Tr(�k(hL (H )� hL (HL, p))�k)]

=

�
L

lL

�d
0
� X

k2int Bp(L)

+
X

k2Bp(L)nint Bp(L)

1
AE[Tr(�k(hL (H )� hL (HL, p))�k)]

=: I + II .

We show I = o(1), II = o(1).
Estimate ofII : By (2.2), (2.3) and the estimate℄(Bp(L) n int Bp(L)) = O(l d�1

L � l 0L )
we have

II � (const.)

�
L

lL

�d � l d�1
L l 0L � 2CWkgk1 jJj

Ld
� (const.)

l 0L
lL

= o(1).

Estimate ofI : Let h̃L be an almost analytic extension ofhL :

h̃L (x + iy) := (hL (x) + h0L (x)(iy)) (x + iy)

where 2 C1(C) and

 (x + iy) =

�
1 (jyj � 1 + jxj),
0 (jyj � 2 + 2jxj).

Let

G(z) = (H � z)�1, GL, p(z) = (HL, p � z)�1

be resolvents ofH , HL, p. We then have [11]

h̃L (H ) =
�1

2� i

Z
C

dz^ dz̄ �z̄h̃L (z)G(z), h̃L (HL, p) =
�1

2� i

Z
C

dz^ dz̄ �z̄h̃L (z)GL, p(z),

which gives the following representation.

(2.5) �k(hL (H )� hL (HL, p))�k =
�1

2� i

Z
C

dz^ dz̄(�z̄h̃L (z))�k(G(z)� GL, p(z))�k.
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Let 2 2 C1
c (Bp(L)) such that2 = 1 on IntBp(L) and jsuppr2 [ supp42j �

(const.)l d�1
L . As an operator onL2(Bp(L))

(2.6)
GL, p(z)[H , 2]G(z) = GL, p(z)f(H � z)2�2(H � z)gG(z)

= 2G(z)� GL, p(z)2.

We multiply�k from both sides, use the fact that suppr2, supp42 � Bp(L)n Int Bp(L),
and use Lemma 3.5. It follows that

(2.7)

�k(G(z)� GL, p(z))�k = �kGL, p(z)[H , 2]G(z)�k

=
X

l

�kGL, p(z)�l [H , 2]G(z)�k

=
X

l2Bp(L)nInt Bp(L)

�kGL, p(z)�l [H , 2]G(z)�k

=
X

l2Bp(L)nInt Bp(L)

�kGL, p(z)�l TL (z)G(z)�k.

RHS of the above equality now turns out to be in the trace classalthough�kG3(z)�k,�kGL, p(z)�k do not for d � 2. Substituting (2.7) into (2.5) we have

(2.8)

�k(hL (H )� hL (HL, p))�k

=
�1

2� i

Z
C

dz^ dz̄(�z̄h̃L (z))
X

l2Bp(L)nInt Bp(L)

�kGL, p(z)�l TL (z)G(z)�k.

We take trace and use the inequalitiesk�kGL, p(z)�lkop� k�kGL, p(z)�lksop�kGL, p(z)k1�s
op

(0< s< 1), kG(z)kop� j=zj�1, kGL, p(z)kop� j=zj�1 andkTL (z)k1 � Cd,z(lL )(d�1)(d+1).
Here we writez = x + iy and note that suppj�z̄h̃L (x + iy)j is compact inR2.

(2.9)

jTr(�k(hL (H )� hL (HL, p))�k)j
� (const.)

Z
R2

dx dyj�z̄h̃L (x + iy)j
� X

l2Bp(L)nInt Bp(L)

k�kGL, p(x + iy)�lksopjyj�(1�s)�1(lL )(d�1)(d+1).

We use H2 (1.1) here. Since supphL � I for L sufficiently large, and sincejk� l j � l 0L
for k 2 int Bp(L), l 2 Bp(L) n Int Bp(L), (1.1) implies

E[jTr(�k(hL (H )� hL (HL, p))�k)j]
� (const.)

Z
R2

dx dyj�z̄h̃L (x + iy)j(l d�1
L � l 0L )e��l 0L jyj�(1�s)�1(lL )(d�1)(d+1).

(2.10)
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By the definition of almost analytic extension andhL ,

j�z̄h̃L (x + iy)j � (const.)jyj 2X
j =0

jh( j )
L (x)j,

Z jh( j )
L (x)j dx �

8<
:

(const.)Ld ( j = 2),
(const.) (j = 1),
(const.)L�d ( j = 0),

which shows thatZ
R2

dx dyj�z̄h̃L (x + iy)j � jyj�(1�s)�1 � (const.)Ld.

With this estimate (2.10) yields

E[jTr(�k(hL (H )� hL (HL, p))�k)j] � (const.)L
e��l 0L
for some
 > 0. Substituting it into (2.4) and takingl 0L = � log L (= o(lL )) with � � 1
proves I = o(1).

REMARK 2.2. The argument of showingI = o(1) in the proof of Proposition 2.1
also proves

(2.11) E[jTr(�0( f (H )� f (H3L ))�0)j] = o(1), L !1,

for f 2 C1
0 (I ). We note Lemma 3.2 is not used in the estimate ofI .

The rest of our argument is similar to that in [6]. To prove theinfinite divisibility of� as a point process, we approximate�L, p by point processes. For that purpose letfE j , pg j be the eigenvalues ofHL, p and define point processes ˜�L, p

Z
Rd+1

f (E, x) d�̃L, p :=
X

j

f

�
Ld(E j , p � E0),

plL
L

�
, f 2 Cc(Rd+1).

Proposition 2.3. For f 2 Cc(Rd+1)

E

"X
p

����
Z

Rd+1
f (E, x) d�L, p � Z

Rd+1
f (E, x) d�̃L, p

����
#

= o(1).

Proof. ForÆ > 0 let

w(Æ) := supfj f (E, x)� f (E, x0)j; jx � x0j < Æ, E 2 Rg.
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Since f is uniformly continuous, limÆ!0 w(Æ) = 0. Let  j , p be the normalized eigen-
functions corresponding toE j , p. We then haveZ

Rd+1
f (E, x) d�L, p =

X
j

Z
Bp(L)

f
�

Ld(E j , p � E0),
x

L

�j j , p(x)j2 dx,

Z
Rd+1

f (E, x) d�̃L, p =
X

j

Z
Bp(L)

f

�
Ld(E j , p � E0),

plL
L

�j j , p(x)j2 dx.

Take an intervalJ � R such that suppf � J � Rd. Then����
Z

Rd+1
f d�L, p � Z

Rd+1
f d�̃L, p

���� � k f k1w
�

lL

L

�℄�eigenvalues ofHL, p 2 E0 +
J

Ld

�
.

Therefore, by Lemma 3.2

E

"X
p

����
Z

Rd+1
f (E, x) d�L, p � Z

Rd+1
f (E, x) d�̃L, p

����
#

� (const.)

�
L

lL

�dk f k1w
�

lL

L

� � l d
L � jJjLd

= o(1).

For the estimate on the intensity measure, we have

Proposition 2.4. Let E0 2 I be the Lebesgue point of�. For intervals J (� R),
A (� Rd) we have

E[�L (J � A)] ! d�
d E

(E0)jJj � jAj.
As in [6] Proposition 2.4 is proved by using (2.1) and the Lebesgue differentiation the-
orem.

REMARK 2.5. Remark 2.2, Lemma 3.4 imply that�L, f , �L (defined in Remark 1.4)
satisfy

E[�L, f (J � A)] ! d�
d E

(E0)jJj � jAj, E[�L (J)] ! d�
d E

(E0)jJj
for intervals J � R, A � U .

Theorem 1.2 is proved by combining these propositions.

Proof of Theorem 1.2. LetJ � R, B � Rd be bounded intervals. By Lemma 3.4
we haveE[�L (J � B)] � CWjBj � jJj. Thus Chebyshev’s inequality gives

lim
t!1 sup

L>0
P(�L (J � B) > t) = 0
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so thatf�Lg is relatively compact [5, Lemma 4.5]: we can find a sequencefLkg1k=1 and

a random measure� with �Lk

d! � . By Proposition 2.1, 2.3,�L �Pp �̃L, p
d! 0. Since

Mp(Rd+1) is closed inM(Rd+1) under the vague topology,� is a point process. By
Lemma 3.2

E[�̃L, p(J � B)] � E[Tr( PE0+J=Ld (HL, p))]

� X
B(k,1=2)\Bp(L)6=; E[Tr(�k PE0+J=Ld (HL, p)�k)]

� (const.)l d
L � jJjLd

.

Hencef�̃L, pg is a null-array:

lim
L!1 sup

p2Zd

P(�̃L, p(J � B) � 1) = 0

for any bounded intervalJ � R, B � Rd. Therefore� is infinitely divisible [5, The-
orem 6.1]. The estimate on the intensity measure (1.2) follows from Proposition 2.4

and the inequalityE[� (A)] � lim infn!1 E[�n(A)] if �n
d�! � .

3. Appendix 1: Some basic estimates

We recall some basic estimates used in Section 2. LetTp (1 � p � 1) be the
Schatten class: the ideal of compact operators onL2(Rd) with kTkp := (Tr(jT jp))1=p <1.

Lemma 3.1. Let g 2 L2(Rd) and let I (� R) be an bounded interval. Then
PI (H )g, gPI (H ) 2 T2.

Sketch of proof. Sincee�t H is bounded as an operator fromL2 into L1, its in-
tegral kernelK (x, y) satisfies ess-supx2Rd

R
Rd jK (x, y)j2 dy<1 implying ge�t H 2 T2

and thuse�t H g 2 T2. By the spectral theorem,kPI (H )g�k2 � (const.)ke�t H g�k2 for� 2 L2(Rd) which provesPI (H )g 2 T2.

The following lemma is fundamental to study�L , �L, p.

Lemma 3.2. We can find a positive constant CW such that for any interval J� I
and any k2 Bp(L),
(1) E[Tr(�k PJ(HL, p)�k)] � CWjJj,
(2) E[Tr(�k PJ(H )�k)] � CWjJj.

REMARK 3.3. In the statement of Lemma 3.2 (1),I can be any bounded interval
and H2 is not necessary to prove that.
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Proof. (1) is proved by the spectral averaging method [2, (4.19)]. The periodic
boundary condition onHL, p is used here. For (2), we takeL > 0, � > 0 and letH3L :=
H j[�L=2,L=2]d and f 2 C1

c (R, [0, 1]) with suppf � fx 2 R: d(x, J) < �jJjg\ I and f = 1
on J. By Remark 2.2,

E[Tr(�0PJ(H )�0)] � E[Tr(�0 f (H )�0)]

= E[Tr(�0 f (H3L )�0)] + E[Tr(�0( f (H )� f (H3L ))�0)]

� (1 + �)CWjJj + o(1), L !1.

Lemma 3.4 given below easily follows from Lemma 3.2.

Lemma 3.4. Let f 2 L1(Rd+1) with compact support. Then for sufficiently large L
(1) E

���R
Rd+1 f (E, x) d�L

��� � CWk f k1,

(2) E
���P

p

R
Rd+1 f (E, x) d�L, p

��� � CWk f k1.

Sketch of proof. (1) We first consider the case off (E, x) = �J(E) � �A(x) for
J � R, A � Rd intervals. We then have����

Z
f (E, x) d�L

���� =
���Tr
��A

� x

L

��J(Ld(H � E0))
����

� X
B(k,1=2)\(L A)6=; Tr(�k PE0+L�d J(H )�k).

Let r = d(E0, I c) > 0. SinceE0 + L�d J � E0 + [�r , r ] � I if J � [�r L d, r L d], we
use Lemma 3.2 and conclude

E
�����
Z

f (E, x) d�L

����
� � X

Bk\(L A)6=; CW L�djJj � CWjAj jJj.
A density argument proves

E
�����
Z

f (E, x)d�L

����
� � CWk f k1

for general f with supp f � Ld[�r , r ] � Rd. (2) is proved similarly.

The following lemma is a variant of [1, Lemma 3.3].

Lemma 3.5. Let 2 2 C1
c (Bp(L)) be as defined in the proof ofProposition 2.1

and let k2 int Bp(L). Then we can find a trace class operator T= TL (z) and a positive
constant Cd,z such that

[H , 2]G(z)�k = TL (z)G(z)�k, kTL (z)k1 � Cd,zl
(d�1)(d+1)
L ,
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where Cd,z is locally bounded w.r.t. z 2 �(H ) and k � k1 is the trace norm.

Proof. Take80 2 C1
c (Bp(L)) with 80 = 1 on suppr2 [ supp42 and let H0 =�4, G0 = (H0 + 1)�1. We then have

[H , 2]82
0G(z)�k

= [H , 2]80G0(H0 + 1)80G(z)�k

= [H , 2]80G0(80(z + 1� V) + [H , 80])82
1G(z)�k

= T082
1G(z)�k

where

T0 := [H , 2]80G0(80(z + 1� V) + [H , 80])

is a bounded operator and81 2 C1
c (Bp(L)) is a function which satisfies81 = 1 on

suppr80 [ supp480. It is possible to letjsupp81j � (const.)l d�1
L . Furthermore, by

the same argument,

82
1G(z)�k = 81G0(81(z + 1� V) + [H , 81])82

2G(z)�k

=: T182
2G(z)�k

with some82 2 C1
c (Bp(L)) satisfying82 = 1 on suppr81[supp481 and jsupp82j �

(const.)l d�1
L . We repeat this procedure: forj = 1, 2,: : : , n + 1 we can find8 j 2

C1
c (Bp(L)) with 8 j = 1 on suppr8 j�1 [ supp48 j�1 and jsupp8 j j � (const.)l d�1

L

such that

[H , 2]82
0G(z)�k = T0T1 � � � Tn82

n+1G(z)�k,

Tj := 8 j G0(8 j (z + 1� V) + [H , 8 j ]), j = 1, 2,: : : , n.

By the fact that

Tj = 8 j (H0 + 1)�1=2C j

for some bounded operatorC j and by Lemma 3.6,Tj 2 Ip for p > d with kTj kp �
(const.)l d�1

L . We note that the (const.) appearing in this inequality is locally bounded
w.r.t. z 2 �(H ). Taking n = d + 1, we haveT = T0T1 � � �Tn 2 I1. The estimate forkTk1
follows from the inequalitykTk1 � kT0kop

Qn
j =1 kTj kn.

Lemma 3.6 ([14]). Let g 2 L p(Rd), 2 � p � 1 and f is bounded measurable
on R with j f (�)j � C f h�i��. Then g(x) f (H ) 2 Ip for �p> d=2 and for some positive
constant Cf , p which depends only on p, d and Cf we have

kg(x) f (H )kp � C f , pkgkp.
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4. Appendix 2: Proof of Theorem 1.2 by the multiscale analysis

We first set some notations. Let

3L (x) :=

�
y 2 Rd : jy j � x j j � L

2
, j = 1, 2,: : : , d

�

be a finite box of sizeL centered atx 2 Rd and let

3out
L (x) := fy 2 3L (x) : d(y, �3L (x)) � 1g, �out3L (x) := 13out

L (x)

be a strip of width 1 on the boundary of3L (x) and its characteristic function. For
 > 0 and E 2 R we say3L (x) is (
 , E)-regular iff E =2 � (H3L ) and the following
estimate hold.

sup�>0
k�xG3L (x)(E + i �)�out3L (x)kop � e�
 L=2

whereG3L (x)(z) = (H3L (x)�z)�1 is the resolvent ofH3L (x) := H j3L (x) and�x = �B(x,1=2).
We assume

H3 (Initial length scale estimate). We can find a bounded open interval I � [0,1)
and 
 > 0 such that for eachE 2 I

P(3L0(0) is (
 , E)-regular)� 1� L�p
0 , p > 2d2 + 8d + 2

for sufficiently largeL0 = L0(E).

This condition for p> d together with Lemma 3.2 (1) are sufficient condition to prove
Anderson localization [15]. For a technical reasonp must be larger here. However we
can still find an intervalI � [0,1) such that H3 holds, in those situations described
after H2. By H3 we can deduce the following facts: let� = 2p=(p + 2d) and define a
set of growing scalesfLkg1k=1 as

Lk+1 := L�k , k = 0, 1, 2,: : : ,
then for anyx 2 Zd we have

(4.1) P(3Lk (x) is (
 , E)-regular)� 1� L�p
k , k = 1, 2,: : : .

Furthermore for
 0 = 
 =8, 3L := [�L=2, L=2]d and for k, m 2 3L \ Zd,

(4.2)
P
��! 2 � : sup�>0

k�kG3L (E + i �)�mkop � e�
 0jk�mj��

� 1� Cj3L j jk�mj�(p=2+d), jk�mj � L0
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for some positive constantC. These estimates (4.1), (4.2) are proved as in the dis-
crete case (see e.g., [3, 15]) by Lemma 3.2 (1) and the following geometric resolvent
estimate: for3L (x) � 30 and B � 30 n3L (x) we have

(4.3) k�xG30(z)�Bkop � (const.)k�xG3L (x)(z)�out3L (x)kop � k�out3L (x)G30(z)�Bkop.

We note that (4.3) follows from (2.6) and the argument in the proof of Lemma 3.5.

Theorem 4.1. AssumeH1, H3. Then the same conclusion as inTheorem 1.2
holds.

REMARK 4.2. It is known that H1, H3 withp > 2(d � 1) implies H2 [1, The-
orem 5.1]. However the argument in this section also appliesto various models (diver-
gence type Hamiltonian for instance) even when H1 is not satisfied, provided Lemma 3.2
(1) and H3 hold.

Proof. Statements in Proposition 2.3, 2.4 and the equationII = o(1) in the proof
of Proposition 2.1 follow from Lemma 3.2, Remark 3.3 and Remark 4.3 below. Hence
all we need to prove isI = o(1). We start from (2.8) withk 2 int Bp(L). By the argu-
ment to deduce (2.9), we have
(4.4)

E[jTr(�k(hL (H )� hL (HL, p))�k)j]
� X

m2Bp(L)nInt Bp(L)

Z
R2

dx dyj�z̄h̃L (x + iy)j E[jTr(�kGp(x + iy)�mTL (z)G(x + iy)�k)j]
� (const.)

X
m2Bp(L)nInt Bp(L)

Z
R2

dx dyj�z̄h̃L (x + iy)jC(L)jyj�1E[k�kGp(x + iy)�mkop]

whereC(L) = l (d�1)(d+1)
L . We define an eventGkm(E) by

Gkm(E) :=

(
! 2 � : sup� 6= 0

k�kGL, p(E + i �)�mkop � e�
 0jk�mj)

for E 2 I and k, m 2 Zd whose probability is estimated by (4.2)

P(Gkm(E)) � 1� CjBp(L)j jk�mj�(p=2+d), jk�mj � L0.

Therefore fork 2 int Bp(L) andm2 Bp(L)n Int Bp(L), and for sufficiently largeL with
l 0L > L0, we have

E[k�kGp(x + iy)�mkop; Gkm(x)] � e�
 0jk�mj � e�
 0l 0L ,(4.5)

E[k�kGp(x + iy)�mkop; Gkm(x)c] � (const.)jBp(L)j jk�mj�(p=2+d)jyj�1

� (const.)jBp(L)jl 0�(p=2+d)
L jyj�1.

(4.6)
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The second one (4.6) is dominant. Sincejyj�2 factor appears when (4.6) is substituted
into (4.4), we take higher order term in the definition of the almost analytic extension
of hL : we takeg 2 C3

c (R), hL (�) = g(Ld(�� E0)) and

h̃L (x + iy) :=

�
hL (x) + h0L (x)(iy) +

h00L (x)

2
(iy)2

� (x + iy).

Then we have

j�z̄h̃L (x + iy)j � (const.)jyj2 3X
j =0

jh( j )
L (x)j,

3X
j =0

Z jh( j )
L (x)j dx � (const.)L2d

so that

(4.7)
Z

R2
dx dyj�z̄hL (x + iy)j � jyj�2 � (const.)L2d.

Substituting (4.5), (4.6), (4.7) into (4.4) we have

E[jTr(�k(hL (H )� hL (HL, p))�k)j]
� (const.)

X
m2Bp(L)nInt Bp(L)

L2dl (d�1)(d+1)
L (e�
 0l 0L + l d

L l
0�(p=2+d)
L ).

Hence

(4.8)

Ld

l d
L

X
k2int Bp(L)

E[jTr(�k(hL (H )� hL (HL, p))�k)j]
� (const.)

Ld

l d
L

� l d
L � l 0L l d�1

L � L2dl (d�1)(d+1)
L � l d

L l
0�(p=2+d)
L

= (const.)L3dl (d�1)+(d�1)(d+1)+d
L l 0L � l 0�(p=2+d)

L .

Here we take

lL = L�, l 0L = L� , 0< � < � < 1.

In order to have RHS of (4.8) =o(1), �, � must satisfy

3d + �(d2 + 2d � 2) +��1� p

2
� d

� < 0,

which is possible whenp > 2d2 + 2d � 2.
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REMARK 4.3. The above argument also proves (2.11) without using Lemma 3.2.
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NOTE ADDED IN PROOF. Recently, Combes, Germinet, and Klein succeeded to
prove Minami’s estimate in the continuum Schrödinger operators.
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