PSEUDO-ANOSOV MAPS AND FIXED POINTS OF BOUNDARY HOMEOMORPHISMS COMPATIBLE WITH A FUCHSIAN GROUP

Chaohui ZHANG

(Received January 24, 2008, revised May 27, 2008)

Abstract

Let \tilde{S} be a Riemann surface of type (p, n) with $3 p-3+n>0$. Let F be a pseudo-Anosov map of \tilde{S} defined by two filling simple closed geodesics on \tilde{S}. Let $a \in \tilde{S}$, and $S=\tilde{S}-\{a\}$. For any map $f: S \rightarrow S$ that is generated by two simple closed geodesics and is isotopic to F on \tilde{S}, there corresponds to a configuration τ of invariant half planes in the universal covering space of \tilde{S}. We give a necessary and sufficient condition (with respect to the configuration) for those f to be pseudo-Anosov maps. As a consequence, we obtain infinitely many pseudo-Anosov maps f on S that are isotopic to F on \tilde{S} as a is filled in.

1. Statement of results

Let \tilde{S} be a Riemann surface of type (p, n), where p is the genus of \tilde{S} and n is the number of punctures of \tilde{S}. Assume that $3 p-3+n>0$. Let $a \in \tilde{S}$, and $S=\tilde{S}-\{a\}$. Let F be a pseudo-Anosov map on \tilde{S} in the sense that there exists a pair $\left(\mathcal{F}_{+}, \mathcal{F}_{-}\right)$of transverse measured foliations of \tilde{S} with $F\left(\mathcal{F}_{+}\right)=\lambda \mathcal{F}_{+}$and $F\left(\mathcal{F}_{-}\right)=(1 / \lambda) \mathcal{F}_{-}$for some $\lambda>1$. (See also FLP [7] and Penner [15].) In [10], Kra investigated the problem of finding pseudo-Anosov maps f on S so that f is isotopic to F on \tilde{S} as a is filled in. He showed that if \tilde{S} is compact with genus $p \geq 2$, then for some integer k, there is a pseudo-Anosov map f on S so that f is isotopic to F^{k} on \tilde{S}. In this article, we show that there always exist infinitely many pseudo-Anosov maps f on S so that f is isotopic to a pseudo-Anosov map F on \tilde{S} that is obtained from Thurston's construction [17].

To illustrate, let $\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \subset \tilde{S}$ be two filling simple closed geodesics, that is, each component of $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ is a disk or an once punctured disk. Let $t_{\tilde{\alpha}_{i}}$ denote the positive Dehn twist along $\tilde{\alpha}_{i}$. It is well known [17] (see also [2, 12, 16] for some variations) that a finite product

$$
\begin{equation*}
\tilde{\zeta}=\prod_{i=1}^{N} t_{\tilde{\alpha}_{2}}^{r_{i}} \circ t_{\tilde{\alpha}_{1}}^{-s_{i}}, \quad N, r_{i}, s_{i} \in \mathbb{Z}^{+} \tag{1.1}
\end{equation*}
$$

is isotopic to a pseudo-Anosov map F on \tilde{S}. Throughout the article we denote by $H_{t}(\cdot): \tilde{S} \rightarrow \tilde{S}, 0 \leq t \leq 1$, the isotopy between $\tilde{\zeta}$ and F. Note that $\tilde{\alpha}_{1}, \tilde{\alpha}_{2}$ can be viewed as curves on S (call them α_{1} and α_{2}, respectively), and thus the maps $\tilde{\zeta}$ are also defined on S. Clearly, if \tilde{S} is compact, $S-\left\{\alpha_{1}, \alpha_{2}\right\}$ consists of disks and only one once punctured disk. Hence $\tilde{\zeta}$ intimately represents a pseudo-Anosov mapping class on S that has the required property. However, if \tilde{S} is non-compact and in particular, if $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ only consists of once punctured disks, then one component of $S-\left\{\alpha_{1}, \alpha_{2}\right\}$ is a twice punctured disk (enclosing the puncture a), which means that the map (1.1) on S does not represent a pseudo-Anosov mapping class.

A question arises as to whether or not we can take another geodesic α_{2}^{\prime} on S as a substitution of α_{2} so that $\left\{\alpha_{1}, \alpha_{2}^{\prime}\right\}$ fills S and α_{2}^{\prime} is still homotopic to α_{2} on \tilde{S} as a is filled in. In [19], we constructed such a geodesic α_{2}^{\prime} with the required properties by utilizing topological methods. As a consequence, we showed that there exist infinitely many distinct pseudo-Anosov maps on S isotopic to on \tilde{S}.

Let \mathcal{F} be the set of isotopy classes of maps of S that are isotopic to the identity on \tilde{S}. The main purpose of this article is to develop a tool to detect in general whether or not a pair $\left\{\alpha_{1}, \alpha_{2}^{\prime}\right\}$, where $\alpha_{2}^{\prime}=f\left(\alpha_{2}\right)$ for some $f \in \mathcal{F}$, fills S; we will give a necessary and sufficient condition for the pair $\left\{\alpha_{1}, \alpha_{2}\right\}$ of geodesics on S to fill S. To do this, we need to transform the view of Dehn twists on S to the view of some special fiberpreserving automorphisms on the Bers fiber space $F(\tilde{S})$. (See Bers [4] and Kra [10] for more details.)

Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ be a hyperbolic plane, and let $\varrho: \mathbb{H} \rightarrow \tilde{S}$ be a universal covering with the covering group G. It is well known [4, 6] that G is isomorphic (via an isomorphism φ^{*}, see Bers [4]) to \mathcal{F}. Further, φ^{*} naturally extends to an isomorphism (call φ^{*} also) of the group of fiber preserving automorphisms of $F(\tilde{S})$ onto the group of mapping classes on S fixing the puncture a.

Let $\hat{\alpha}_{i} \subset \mathbb{H}, i=1,2$, be geodesics such that $\varrho\left(\hat{\alpha}_{i}\right)=\tilde{\alpha}_{i}$. Let $\left\{D_{i}, D_{i}^{\prime}\right\}=\mathbb{H}-\left\{\hat{\alpha}_{i}\right\}$. As we will explain in Section 3, the Dehn twist $t_{\tilde{\alpha}_{i}}: \tilde{S} \rightarrow \tilde{S}$ can be lifted to a quasiconformal map $\tau_{i}: \mathbb{H} \rightarrow \mathbb{H}$ with respect to D_{i}. The map τ_{i} determines a disjoint union of invariant half planes $D_{i}(j)$ with the property that the restriction of τ_{i} to the complement

$$
\begin{equation*}
H_{i}=\mathbb{H}-\bigcup_{j} D_{i}(j) \tag{1.2}
\end{equation*}
$$

is the identity. Furthermore, the map τ_{i} induces a fiber-preserving automorphism [τ_{i}] of $F(\tilde{S})$ such that, if $\hat{\alpha}_{i} \in\left\{\varrho^{-1}\left(\tilde{\alpha}_{i}\right)\right\}$ (and hence $\left.D_{i}\right)$ is chosen properly, $\varphi^{*}\left(\left[\tau_{i}\right]\right)=t_{\alpha_{i}}$ (see Lemma 3.3). Our main result is the following:

Theorem 1.1. Let $\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \subset \tilde{S}$ be arbitrary two simple closed geodesics so that $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ only consists of once punctured disks. Let $\alpha_{i}, i=1,2$, be two simple closed geodesics on S homotopic to $\tilde{\alpha}_{i}$ on \tilde{S}, and let τ_{i} be the corresponding lifts with
$\varphi^{*}\left(\left[\tau_{i}\right]\right)=t_{\alpha_{i}}$. Then the map

$$
\begin{equation*}
\prod_{i=1}^{N} t_{\alpha_{2}}^{r_{i}} \circ t_{\alpha_{1}}^{-s_{i}}, \quad r_{i}, s_{i} \in \mathbb{Z}^{+} \tag{1.3}
\end{equation*}
$$

represents a pseudo-Anosov mapping class on S (and projects to $\tilde{\zeta}$ on \tilde{S}) if and only if the intersection $H_{1} \cap H_{2}$, where H_{i} are defined as in (1.2), is empty.

Given any pair $\left\{\tau_{1}, \tau_{2}\right\}$ of lifts of $t_{\tilde{\alpha}_{1}}$ and $t_{\tilde{\alpha}_{2}}$ with $H_{1} \cap H_{2} \neq \emptyset$, it is easy to replace τ_{2} with a G-conjugation τ_{2}^{\prime} so that $H_{1} \cap H_{2}^{\prime}=\emptyset$. Therefore, via the Bers isomorphism, we are able to construct infinitely many pairs $\left\{\alpha_{1}, \alpha_{2}^{\prime}\right\}$ that fill S, where $\alpha_{2}^{\prime}=f\left(\alpha_{2}\right)$ for some $f \in \mathcal{F}$. There are several applications of Theorem 1.1.

We now assume that \tilde{S} is an F-minimal surface in the sense that $\mathcal{F}_{ \pm}$are defined by a quadratic differential ϕ on \tilde{S} (see Bers [5] for the definitions and terminology). If the genus $p \geq 2$, then by the Riemann-Roch theorem (see [9] for instance), there exists a finite number of zeros of ϕ on the compactification of \tilde{S}. Note that some zeros could be punctures of \tilde{S}.

If ϕ has non-puncture zeros z_{0}, we may choose $\hat{z}_{0} \in \mathbb{H}$ with $\varrho\left(\hat{z}_{0}\right)=z_{0}$, and thereby a pair $\left\{\tau_{1}, \tau_{2}\right\}$ of configurations of invariant half planes under the lifts of the Dehn twists such that $H_{1} \cap H_{2} \neq \emptyset$ and $\hat{z}_{0} \in H_{1} \cap H_{2}$. This implies that the map

$$
\begin{equation*}
\zeta=\prod_{i=1}^{N} \tau_{2}^{r_{i}} \tau_{1}^{-s_{i}}, \quad r_{i}, s_{i} \in \mathbb{Z}^{+} \tag{1.4}
\end{equation*}
$$

fixes $\hat{z}_{0} \in \mathbb{H}$. It is important to note that $\zeta: \mathbb{H} \rightarrow \mathbb{H}$ is a quasiconformal map compatible with G. It naturally extends to a map of $\overline{\mathbb{H}}$ onto itself, which is also denoted by ζ.

If ϕ has no non-puncture zeros, then some punctures (call z_{0} also) must be zeros of ϕ. In this case, we can still choose a pair $\left\{\tau_{1}, \tau_{2}\right\}$ of lifts of the Dehn twists such that $H_{1} \cap H_{2} \neq \emptyset$ and ζ fixes $\hat{z}_{0} \in \mathbb{R}$.

Under certain conditions ζ can be replaced with a pseudo-Anosov map \hat{F} so that $\varrho \circ \hat{F}=F \circ \varrho, \hat{F}\left(\hat{z}_{0}\right)=\hat{z}_{0}$ and $\left.\hat{F}\right|_{\partial H}=\left.\zeta\right|_{\partial H}$. Lemma 5.4 of Marden-Strebel [13] then asserts that ζ does not fix any other fixed points of G on $\hat{\mathbb{R}}$ (except for \hat{z}_{0} in the second case). Consider the maps $h \zeta$ for $h \in G$. Unfortunately, the existence of fixed points of $h \zeta$ is not guaranteed, and a question arises as to whether $h \zeta$ fixes some fixed points of G on $\hat{\mathbb{R}}$. It is easy to show that for certain elements h of $G, h \zeta$ fix some points on $\hat{\mathbb{R}}$ that may not be fixed points of G. Our second result states:

Theorem 1.2. Let \tilde{S} be an F-minimal surface of genus $p \geq 2$ and $n>0$. Let z_{0} be a zero of the corresponding quadratic differential ϕ which may or may not be a puncture of \tilde{S}. Then associated to each $\hat{z}_{0} \in \overline{\mathbb{H}}$ with $\varrho\left(\hat{z_{0}}\right)=z_{0}$, there exists a pair $\left\{\tau_{1}, \tau_{2}\right\}$ of lifts of the Dehn twists $t_{\tilde{\alpha}_{1}}$ and $t_{\tilde{\alpha}_{2}}$ with $H_{1} \cap H_{2} \neq \emptyset$, and hence a map ζ such that $h_{n} \zeta$ does not fix any fixed points of G on $\hat{\mathbb{R}}$ for an infinite sequence $\left\{h_{n}\right\} \subset G$.

We call ζ_{1} and ζ_{2} with forms (1.4) are conjugate if there is an element $h \in G$ such that $\zeta_{1}=h \zeta_{2} h^{-1}$, which is equivalent to saying that $\varphi^{*}\left(\left[\zeta_{1}\right]\right)$ and $\varphi^{*}\left(\left[\zeta_{2}\right]\right)$ with forms (1.3) are conjugate if there is a map $f \in \mathcal{F}$ so that $\varphi^{*}\left(\left[\zeta_{1}\right]\right)$ is isotopic to $f \circ \varphi^{*}\left(\left[\zeta_{2}\right]\right) \circ$ f^{-1}. As a consequence of Theorem 1.1 and Theorem 1.2, we have:

Theorem 1.3. Let \tilde{S} be a Riemann surface of type (p, n) with $p \geq 2$, and $n>0$. Let $\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ be a pair of filling simple closed geodesics on \tilde{S}. Let ζ be defined by (1.4) via an F-minimal surface and a pair $\left\{r_{1}, r_{2}\right\}$ with $H_{1} \cap H_{2} \neq \emptyset$. Then there are infinitely many mapping classes ω_{j}^{*} on S with these properties:
(1) all ω_{j}^{*} are pseudo-Anosov,
(2) every ω_{j}^{*} fixes a and projects to the mapping class represented by (1.1) as a is filled in,
(3) every ω_{j}^{*} is represented by two filling simple loops on S and is of form (1.3).

If in addition we assume that z_{0} is a non-puncture zero of ϕ so that $F\left(z_{0}\right)=z_{0}$ and the curve $H_{t}\left(z_{0}\right), 0 \leq t \leq 1$, is a trivial loop, then:
(4) $\varphi^{*}(\zeta)$ is pseudo-Anosov if z_{0} is a non-puncture zero of ϕ,
(5) $\varphi^{*}(\zeta)$ is not conjugate to any ω_{j}^{*}, and
(6) all ω_{j}^{*} lie in different conjugacy classes.

This article is organized as follows. In Section 2, we establish a correspondence between the set of pseudo-Anosov maps of S (that are isotopic to $\tilde{\zeta}$ on \tilde{S}) and the set \mathcal{L} of lifts of $\tilde{\zeta}$ that fix no fixed points of G. It follows from Lemma 5.4 of [13] (see Lemma 2.2 for a different approach) that elements in \mathcal{L} that do not fix any parabolic fixed points of G must be pseudo-Anosov mapping classes on S. Details appear in Sections 3. Sections 4, 5, and 6 are devoted to the proofs of the results.

2. Notation and background

To establish notation and terminology, we begin with an overview of relevant $\mathrm{Te}-$ ichmüller theory. For more information, we refer to [4, 10].

Let \tilde{S}_{1} be a Riemann surface with the same type (p, n). A marking of \tilde{S}_{1} is a homeomorphism $f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}$. By ($f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}$) we denote a marked Riemann surface. The Teichmüller space $T(\tilde{S})$ is defined as a set of marked Riemann surfaces $\left(f_{1}: \tilde{S} \rightarrow\right.$ $\left.\tilde{S}_{1}\right)$ quotient by an equivalent relation " \sim ", where $\left(f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}\right) \sim\left(f_{2}: \tilde{S} \rightarrow \tilde{S}_{2}\right)$ if and only if there is a conformal map $h: \tilde{S}_{1} \rightarrow \tilde{S}_{2}$ such that $h \circ f_{1}$ is isotopic to f_{2}.

We denote by $\left[f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}\right]$ the equivalence class of the marked surface $\left(f_{1}: \tilde{S} \rightarrow\right.$ \tilde{S}_{1}). Every marked surface ($f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}$) defines a new conformal structure μ_{1} on \tilde{S} via pullbacks. Two conformal structures μ_{1} and μ_{2} are called equivalent if and only if $\left(f_{1}: \tilde{S} \rightarrow \tilde{S}_{1}\right) \sim\left(f_{2}: \tilde{S} \rightarrow \tilde{S}_{2}\right)$. Let $[\mu]$ denote the equivalence class of a conformal structure μ on \tilde{S}. By Ahlfors-Bers [1], every conformal structure μ on \tilde{S} determines a quasiconformal mapping w^{μ} of \mathbb{C} that fixes 0,1 and is conformal on $\mathbb{H}^{*}=$ $\{z \in \mathbb{C}: \operatorname{Im} z<0\}$. The region $w^{\mu}(\mathbb{H})$ is a Jordan domain that only depends on $[\mu]$.

The Bers fiber space $F(\tilde{S})$ is defined as a collection $\left\{([\mu], z) ;[\mu] \in T(\tilde{S}), z \in w^{\mu}(\mathbb{H})\right\}$ of pairs endowed with a product structure. The natural projection $\pi: F(\tilde{S}) \rightarrow T(\tilde{S})$ defined by sending each point $([\mu], z)$ to $[\mu]$ is holomorphic. From Theorem 9 of Bers [4], There is an isomorphism $\varphi: F(\tilde{S}) \rightarrow T(S)$ such that

$$
\begin{equation*}
\pi=\iota \circ \varphi, \tag{2.1}
\end{equation*}
$$

where $\iota: T(S) \rightarrow T(\tilde{S})$ is the natural forgetful map.
The group of isotopy classes of self-maps f of \tilde{S} is the mapping class group $\operatorname{Mod}_{\tilde{S}}$, which naturally acts on $T(\tilde{S})$ as holomorphic automorphisms. Let $\bmod \tilde{S}$ denote the full group of fiber preserving holomorphic automorphisms of $F(\tilde{S})$ that projects to $\operatorname{Mod}_{\tilde{S}}$. Elements of $\bmod \tilde{S}$ are of forms $[\hat{f}]$, where $\hat{f}: \mathbb{H} \rightarrow \mathbb{H}$ is a lift of a selfmap f of \tilde{S}. [$\hat{f}]$ only depends on the boundary values $\left.\hat{f}\right|_{\hat{\mathbb{R}}}$. The Bers isomorphism $\varphi: F(\tilde{S}) \rightarrow T(S)$ induces an isomorphism φ^{*} of $\bmod \tilde{S}$ onto a group $\operatorname{Mod}_{S}^{a}$ of mapping classes of S fixing the puncture a.

An element $\theta \in \operatorname{Mod}_{S}^{a}$ is called a reducible mapping class if there is a curve system $\mathcal{C}=\left\{c_{1}, \ldots, c_{s}\right\}, s \geq 1$, of independent and disjoint simple closed geodesics on S with $f\left(\left\{c_{1}, \ldots, c_{s}\right\}\right)=\left\{c_{1}, \ldots, c_{s}\right\}$ for certain representative f of θ. There is a smallest positive integer K such that f^{K} maps each loop in \mathcal{C} to itself and the restriction of f^{K} to each component of $S-\left\{c_{1}, \ldots, c_{s}\right\}$ is either the identity or a pseudo-Anosov map. θ is called pure if $K=1$.

We now assume that θ is reducible and projects to a pseudo-Anosov mapping class $\tilde{\theta}$ on \tilde{S} that is induced by a map F. By Lemma 5.1 and 5.2 of [18], the curve system \mathcal{C} consists of only one curve c_{1} that bounds a twice punctured disk enclosing a and another puncture of \tilde{S}, which is equivalent to that c_{1} is peripheral on \tilde{S}. If we write $\varphi^{*-1}(\theta)=[\hat{f}]$, then $\hat{f}: \overline{\mathbb{H}} \rightarrow \overline{\mathbb{H}}$ fixes a parabolic fixed point of G. Conversely, each element $[\hat{f}]$ fixing the fixed point of a parabolic element of G corresponds to a reducible mapping class in $\operatorname{Mod}_{S}^{a}$ which is reduced by a single simple closed geodesic that is trivial on \tilde{S}. For hyperbolic fixed points, we have

Lemma 2.1 (Marden-Strebel [13]). Assume that \tilde{S} is F-minimal. Let z_{0} be a zero of ϕ, and let $\hat{z}_{0} \in \overline{\mathbb{H}}$ be such that $\varrho\left(\hat{z}_{0}\right)=z_{0}$. Suppose that $\hat{f}: \overline{\mathbb{H}} \rightarrow \overline{\mathbb{H}}$ fixes \hat{z}_{0}. Then \hat{f} does not fix any hyperbolic fixed point of G.

To proof our theorems, we need a slightly general version of the lemma that states:
Lemma 2.2. Let $\hat{f}: \overline{\mathbb{H}} \rightarrow \overline{\mathbb{H}}$ be any lift of a pseudo-Anosov map $F: \tilde{S} \rightarrow \tilde{S}$. Then \hat{f} does not fix any hyperbolic fixed point of G.

Remark 2.1. If \tilde{S} is F-minimal, the lemma is covered by the argument of Lemma 5.4 of [13]. Our approach however does not assume that \tilde{S} is F-minimal.

Proof of Lemma 2.1. Suppose that $\hat{f}(x)=x$ for a fixed point of a primitive hyperbolic element g of G. Let $\sigma: S \rightarrow S$ be a map that induces the mapping class $\varphi^{*}([\hat{f}])$. There are three cases to consider.

CASE 1. $g \in G$ is simple hyperbolic (the axis of g projects to a simple closed geodesic on \tilde{S}). We claim that σ is reduced by a pair $\{\alpha, \beta\}$ of geodesics which bounds a punctured cylinder enclosing a (throughout α and β are called parallel geodesics). Note that $g^{\prime}=\hat{f} g \hat{f}^{-1}$ is also an element of G that fixes $x . g^{\prime}$ cannot be parabolic. For otherwise, g^{\prime} and g would share the same fixed point x, it would follow that $\left\langle g, g^{\prime}\right\rangle \subset G$ is not discrete. We see that g^{\prime} is also hyperbolic. If g and g^{\prime} share only one fixed point x, by Theorem 4.3.5 of Beardon [3], the commutator [g, g^{\prime}] is parabolic whose fixed point is x. From Theorem 5.1.2 of [3], $\left\langle g,\left[g, g^{\prime}\right]\right\rangle \subset G$ is not discrete. This is a contradiction. We conclude that g and g^{\prime} share both fixed points. It follows that $g^{\prime}=g^{k}$, where $k= \pm 1$ since $g^{\prime}=\hat{f} g \hat{f}^{-1}$ and g is primitive in G.

Let $h^{*}: S \rightarrow S$ denote a map that induces the mapping class $\varphi^{*}(h)$ for an element $h \in G$. From Theorem 2 of [10] or Theorem 2 of [14], we can write $g^{*}=t_{\beta}^{-1} \circ t_{\alpha}$, where α, β are parallel geodesics. Hence $g^{\prime *}=g^{k^{*}}=t_{\beta}^{-k} \circ t_{\alpha}^{k}$. Recall that $g^{\prime}=\hat{f} g \hat{f}^{-1}$, we thus obtain

$$
t_{\beta}^{-k} \circ t_{\alpha}^{k}=\sigma \circ\left(t_{\beta}^{-1} \circ t_{\alpha}\right) \circ \sigma^{-1}=t_{\sigma(\beta)}^{-1} \circ t_{\sigma(\alpha)} .
$$

This means that $\sigma(\{\alpha, \beta\})=\{\alpha, \beta\}$, which says that σ is reduced by $\{\alpha, \beta\}$.
Observe that both α and β project to a non-trivial geodesic $\tilde{\alpha}$ on \tilde{S} as a is filled in. θ projects to $\tilde{\theta}$ that is reduced by $\tilde{\alpha}$. Hence $\tilde{\theta}$ is reducible, contradicting the hypothesis.

REmARK 2.2. Conversely, if σ is reduced by a pair $\{\alpha, \beta\}$ of parallel geodesics, then we claim that \hat{f} fixes a hyperbolic fixed point of G. In fact, σ commutes with $t_{\beta}^{-1} \circ t_{\alpha}$. From Theorem 2 of [10] or Theorem 2 of [14], there is a simple hyperbolic element $g \in G$ so that $g^{*}=t_{\beta}^{-1} \circ t_{\alpha}$. We see that \hat{f} commutes with g. That is,

$$
\begin{equation*}
g=\hat{f} g \hat{f}^{-1} \tag{2.2}
\end{equation*}
$$

Denote $\{x, y\}$ the attracting and repelling fixed points of g. It follows from (2.2) that $\hat{f}(\{x, y\})=\{x, y\}$. If $\hat{f}(x)=y$, then by (2.2) again, for any integer k,

$$
\begin{equation*}
g^{k}(\hat{f}(z))=\hat{f}\left(g^{k}(z)\right) \tag{2.3}
\end{equation*}
$$

for a $z \in \mathbb{H}$. As $k \rightarrow+\infty, g^{k}(\hat{f}(z)) \rightarrow x$ and $g^{k}(z) \rightarrow x$. It follows that $\hat{f}\left(g^{k}(z)\right) \rightarrow y$. This contradicts to (2.3).

CASE 2. g is essential hyperbolic (the axis of g projects to a filling geodesic on $\tilde{S})$. Then by Theorem 2 of [10], g^{*} is pseudo-Anosov. Using the same argument as in Case 1, we have $\hat{f} g \hat{f}^{-1}=g^{k}$ for $k= \pm 1$.

If $k=1$, then \hat{f} commutes with g. So σ commutes with g^{*}. Suppose that σ is pseudo-Anosov. Since g^{*} is pseudo-Anosov, by Theorem 7.5.A of [8], there are integers i, j such that $\sigma^{i}=g^{* j}$. This implies that σ^{i} projects to the trivial mapping class on \tilde{S}. But σ^{i} projects to the pseudo-Anosov mapping class represented by the map (1.1). This is impossible. Suppose that σ is reduced by a simple loop c on S which is peripheral on \tilde{S}. Recall that $\hat{f}=g \hat{f} g^{-1}$. We obtain $\sigma=g^{*} \circ \sigma \circ g^{*-1}$. This implies that σ is also reduced by a unique loop $g^{*}(c)$. It follows that $g^{*}(c)=c$, which says g^{*} is reducible. This is also a contradiction.

If $k=-1$, then we have $g=\hat{f}^{2} g \hat{f}^{-2}$ instead of (2.2). That is, \hat{f}^{2} commutes with g. The similar argument as above can be applied in this case.

CASE 3. $g \in G$ is a non-simple and non-essential hyperbolic element. By Theorem 2 of [10], g^{*} is a pure mapping class with a single component R on which g^{*} is pseudoAnosov. Write $g^{*}=f_{R}$. If $g=\hat{f} g \hat{f}^{-1}$, then $f_{R}=\sigma \circ f_{R} \circ \sigma^{-1}=f_{\sigma(R)}$. We conclude that σ keeps R invariant. Since σ is reduced by only one loop c which bounds a twice punctured disk Δ, c is the only boundary of R. That is, $R=S-\Delta$. Both f_{R} and σ restrict to commuting mapping classes on R. By Theorem 7.5.A of [8] again, there are integers i, j such that $f_{R}^{i}=\sigma^{j}$. That is, σ^{j} projects to the trivial mapping class on \tilde{S}. But σ projects to the pseudo-Anosov mapping class represented by (1.1). This is also impossible. The case that $g^{-1}=\hat{f} g \hat{f}^{-1}$ can be handled in the same way.

3. Special cases

In this section, we consider those elements in $\bmod \tilde{S}$ that come from some special mapping classes on \tilde{S}. We assume that \tilde{S} contains some punctures.

For $i=1$, 2, let $\hat{\alpha}_{i} \subset \mathbb{H}$ be a geodesic with $\varrho\left(\hat{\alpha}_{i}\right)=\tilde{\alpha}_{i}$, where $\tilde{\alpha}_{i}$ are filling simple closed geodesics on \tilde{S} as introduced in Section 1. Let D_{i}, D_{i}^{\prime} be the components of $\mathbb{H}-\hat{\alpha}_{i}$. The Dehn twist $t_{\tilde{\alpha}_{i}}$ can be lifted to a quasiconformal mapping τ_{i} of \mathbb{H} with respect to D_{i}. The construction is as follows. Let $g_{i} \in G$ be the primitive simple hyperbolic element keeping both D_{i} and D_{i}^{\prime} invariant. Throughout we assume that g_{i} is oriented as shown in Fig. 1.

In the figure, the arrow on $\hat{\alpha}_{i}$ indicates the orientation of g_{i} that points from the repelling fixed point to the attracting fixed point of g_{i}. We take an earthquake g_{i}-shift on D_{i} and leave D_{i}^{\prime} fixed. Then we define $\tau_{i}: \mathbb{H} \rightarrow \mathbb{H}$ via G-invariance, which gives rise to a collection \mathcal{U}_{i} of layered half planes in \mathbb{H} in a partial order. In Fig. 1, the arrow underneath $\hat{\alpha}_{i}$ points to the direction of the motion of τ_{i} on D_{i}.

There are infinitely many disjoint maximal elements $D_{i}(j)$ of \mathcal{U}_{i} each of which is invariant under τ_{i} (D_{i} is just one of them). Recall that H_{i} is defined as in (1.2). From the definition, the restriction $\left.\tau_{i}\right|_{H_{i}}=$ id. Since τ_{i} defined in this way is quasiconformal, it extends continuously to act on $\overline{\mathbb{H}}$. In particular, $\left.\tau_{i}\right|_{\hat{\mathbb{R}}}$ is quasisymmetric if we normalize so that " ∞ " lies outside of all maximal elements of \mathcal{U}_{i}.

Fig. 1.
Lemma 3.1. Let $x \in \hat{\mathbb{R}}$ be fixed by a parabolic element of G. There are only finitely many elements of \mathcal{U}_{i} that cover x.

Proof. Let $D_{i}(0)$ be the maximal element of \mathcal{U}_{i} that covers x. Pick a point z in H_{i}, and draw a geodesic ray $\hat{\Gamma}$ connecting z to $x . \hat{\Gamma}$ projects to a geodesic ray $\tilde{\Gamma}$ connecting $\varrho(z)$ to the puncture b of \tilde{S} corresponding to x.

Let \tilde{U} be a punctured disk around $b . \tilde{U}$ is chosen so small that is disjoint from $\tilde{\alpha}_{i}$ and $\tilde{U} \cap \tilde{\Gamma}$ is a single ray. Observe that $\tilde{\Gamma} \cap(\tilde{S}-\tilde{U})$ has finite hyperbolic length. It intersects $\tilde{\alpha}_{i}$ only finitely many times. So $\tilde{\Gamma}$ intersects $\tilde{\alpha}_{i}$ only finitely many times. This implies that $\hat{\Gamma}$ meets finite number of elements $D_{i}(0), \ldots, D_{i}(m)$ of \mathcal{U}_{i} and the horodisk U at x that corresponds to \tilde{U} is included in all $D_{i}(j)$.

For each parabolic fixed point $z \in \hat{\mathbb{R}}$, by Lemma 3.1, let $D_{i}(0) \supset D_{i}(1) \supset \cdots \supset$ $D_{i}(m), D_{i}(j) \in \mathcal{U}_{i}$, cover z. Let $g_{i k}, k=0,1, \ldots, m$, denote the primitive simple hyperbolic elements of G that keep $D_{i}(j)$ invariant and take the same orientation as $g_{i 0}$ (here we refer to Fig. 1 for $D_{i}=D_{i}(0)$ and $g_{i}=g_{i 0}$). Then $\tau_{i}(z)$ is defined as

$$
\begin{equation*}
\tau_{i}(z)=g_{i 0} g_{i 1} \cdots g_{i m}(z) \tag{3.1}
\end{equation*}
$$

For each $z \in \hat{\mathbb{R}}$ not covered by any element of $\mathcal{U}_{i}, \tau_{i}(z)=z$. Let $x \in \hat{\mathbb{R}}$ be arbitrary. Since the set of parabolic fixed points of G is dense on $\hat{\mathbb{R}}$, we choose a sequence $\left\{x_{j}\right\}$ of parabolic fixed points so that $x_{j} \rightarrow x$. We see that

$$
\begin{equation*}
\tau_{i}(x)=\lim _{j \rightarrow \infty} \tau_{i}\left(x_{j}\right) . \tag{3.2}
\end{equation*}
$$

We summarize some additional properties of τ_{i} which are derived from the definition: (1) If τ_{i} is with respect to D_{i}, then $\tau_{i}^{\prime}=g_{i}^{-1} \tau_{i}=\tau_{i} g_{i}^{-1}$ is also a lift of $t_{\tilde{\alpha}_{i}}$ and τ_{i}^{\prime} is with respect to D_{i}^{\prime}.
(2) For any point x covered by a maximal element D_{i} of $\mathcal{U}_{i}, \tau_{i}^{m}(x)$ and $\tau_{i}^{-m}(x), m \rightarrow$ ∞, tend to the attracting and repelling fixed point of $g_{i 0}$, respectively, and if $g_{i 0}$ is oriented as in Fig. 1, we have

$$
\tau_{i}^{m+1}(x)<\tau_{i}^{m}(x), \text { for } m \geq 1 .
$$

(3) For any $x, y \in \hat{\mathbb{R}}, x \leq y$ implies $\tau_{i}(x) \leq \tau_{i}(y)$, and $\tau_{i}(x)=x$ if and only if x does not lie in the interior of any maximal element of \mathcal{U}_{i}.
(4) For each hyperbolic element $h \in G$ and each maximal element D_{i} of $\mathcal{U}_{i}, h\left(D_{i}\right) \in$ \mathcal{U}_{i} if the repelling fixed point of h does not lie in D_{i}; and $h\left(\mathbb{H}-D_{i}\right) \in \mathcal{U}_{i}$ if D_{i} covers the repelling but not the attracting fixed point of h. Furthermore, $h\left(D_{i}\right)$ is also a maximal element of \mathcal{U}_{i} if D_{i} does not contain any fixed points of h.

We observe that the map τ_{i} determines a fiber-preserving automorphism $\left[\tau_{i}\right]$ of the Bers fiber space $F(\tilde{S})$. Let $\Delta \subset \mathbb{H}$ denote a fundamental region of G such that $\Delta \cap \hat{\alpha}_{i} \neq$ \emptyset. Let $\hat{a}=\varrho^{-1}(a) \cap \Delta$. Since a Bers isomorphism $\varphi: F(\tilde{S}) \rightarrow T(\tilde{S}-\{a\})$ is defined by picking up any point $a \in \tilde{S}$, we may choose a point $a \in \tilde{S}$ so that $\hat{a} \in D_{i}^{\prime}$. Under the isomorphism φ we then obtain a mapping class $\varphi^{*}\left(\left[\tau_{i}\right]\right) \in \operatorname{Mod}_{S}^{a}$.

Lemma 3.2. (1) $\varphi^{*}\left(\left[\tau_{i}\right]\right)$ is represented by the Dehn twist $t_{\alpha_{i}}$, where α_{i} is homotopic to $\tilde{\alpha}_{i}$ on \tilde{S} as a is filled in.
(2) For any simple closed geodesic α_{i} on S, let $\tilde{\alpha}_{i} \subset \tilde{S}$ be the geodesic homotopic to α_{i} on \tilde{S}. Then a geodesic $\hat{\alpha}_{i}$ in $\left\{\varrho^{-1}\left(\tilde{\alpha}_{i}\right)\right\}$, and thus a component D_{i} of $\mathbb{H}-\hat{\alpha}_{i}$ can be selected so that the map τ_{i} with respect to D_{i} satisfies the condition that $\varphi^{*}\left(\left[\tau_{i}\right]\right)=t_{\alpha_{i}}$.

Proof. For simplicity, we denote $\tau=\tau_{i}$ and $g=g_{i}$. Since $\varphi^{*}([\tau])$ is a mapping class, we denote by $f: S \rightarrow S$ the map that represents $\varphi^{*}([\tau])$. By construction, τ commutes with g. Thus $\varphi^{*}([\tau])$ commutes with $g^{*}=\varphi^{*}(g)$. By Theorem 2 of [10] or Theorem 2 of [14], $g^{*}=\varphi^{*}(g)$ is represented by $t_{\beta}^{-1} \circ t_{\alpha}$, where $\{\alpha, \beta\}$ bounds a punctured cylinder P containing a. we obtain

$$
f \circ\left(t_{\beta}^{-1} \circ t_{\alpha}\right) \circ f^{-1}=t_{\beta}^{-1} \circ t_{\alpha} .
$$

That is,

$$
\begin{equation*}
t_{f(\beta)}^{-1} \circ t_{f(\alpha)}=t_{\beta}^{-1} \circ t_{\alpha} \tag{3.3}
\end{equation*}
$$

From (3.3) we conclude that $f(P)=P$, i.e., f keeps $\{\alpha, \beta\}$ invariant.
Let $\tilde{f}: \tilde{S} \rightarrow \tilde{S}$ be the map isotopic to f as a is filled in. Since P is a cylinder containing a, it projects to a simple geodesic $\tilde{\alpha}$. $\tilde{\alpha}$ is the projection of the axis of g. It follows that \tilde{f} keeps $\tilde{\alpha}$ invariant. Thus it defines a map \tilde{f}_{0} on $\tilde{S}-\{\tilde{\alpha}\}$.

On the other hand, by (2.1), we know that f projects to the Dehn twist along $\tilde{\alpha}$. So $\tilde{f}=t_{\tilde{\alpha}}$. That is, $\tilde{f}_{0}=\mathrm{id}$, which says that $\left.f\right|_{S-P}$ is isotopic to the identity. In particular, this implies that $f(\alpha)=\alpha$ and $f(\beta)=\beta$. Hence, f can be written as $t_{\beta}^{-k+1} \circ$ t_{α}^{k}, where we may assume that $k \geq 1$.

To show that $k=1$, we consider $\tau^{\prime}=g^{-1} \tau$. By Property (1), τ^{\prime} is with respect to D^{\prime}, and is also a lift of $t_{\tilde{\alpha}}$. By the same argument as above, $\varphi^{*}\left(\left[\tau^{\prime}\right]\right)$ is represented by $t_{\beta}^{m} \circ t_{\alpha}^{-m+1}$ for $m \geq 1$. Thus $\varphi^{*}\left(\left[\tau^{\prime-1}\right]\right)$ is represented by $t_{\beta}^{-m} \circ t_{\alpha}^{m-1}$. Since $\tau^{\prime-1} \tau$ coincides with g on $\partial \mathbb{R}, \varphi^{*}\left(\left[\tau^{\prime-1} \tau\right]\right)$ is represented by $t_{\beta}^{-m-k+1} \circ t_{\alpha}^{m+k-1}$. Once again,
by Theorem 2 of [10] or Theorem 2 of [14], $\varphi^{*}(g)$ is represented by $t_{\beta}^{-1} \circ t_{\alpha}$. We see that

$$
t_{\beta}^{-m-k+1} \circ t_{\alpha}^{m+k-1}=t_{\beta}^{-1} \circ t_{\alpha}^{1} .
$$

It follows that $m+k-1=1$. Since $m \geq 1$ and $k \geq 1$, we conclude that $m=k=1$. This proves (1).

From (1), we see that either $\varphi^{*}([\tau])$ or $\varphi^{*}\left(\left[g^{-1} \tau\right]\right)$ is represented by a Dehn twist $t_{\alpha_{1}}$ along a simple closed geodesic α_{1} on S for which there is an element $\zeta \in \mathcal{F}$ such that $\zeta\left(\alpha_{1}\right)=\alpha$. Since $\varphi^{*}(G)=\mathcal{F}$, there is an element $h \in G$ such that $\varphi^{*}(h)=\zeta$. Now it is easy to see that $h(\hat{\alpha}) \subset \mathbb{H}$ is the desired geodesic, and thus either $h \tau h^{-1}$ or $h g^{-1} \tau h^{-1}$ is the desired lift of $t_{\tilde{\alpha}}$. This proves (2).

Lemma 3.3. Let τ_{1} and τ_{2} be any lifts of $t_{\tilde{\alpha}_{1}}$ and $t_{\tilde{\alpha}_{2}}$ with $H_{1} \cap H_{2}=\emptyset$. Then for sufficiently large integers r, s, the map $\tau_{2}^{r} \tau_{1}^{-s}$ does not fix any parabolic fixed points of G.

Proof. Suppose that $x \in \partial \mathbb{H}=\hat{\mathbb{R}}$ is a parabolic fixed point that is fixed by $\tau_{2}^{r} \tau_{1}^{-s}$. There is a parabolic element $T \in G$ so that $T(x)=x$.

Notice that H_{i} is closed. Thus $H_{1} \cap H_{2}$ is also closed. If x lies outside of any maximal elements of \mathcal{U}_{1} and \mathcal{U}_{2} (in the sense that x does not belong to any closed half plane in \mathcal{U}_{1} and $\left.\mathcal{U}_{2}\right)$, then x lies in the closure $\left(H_{1} \cap H_{2}\right) \cap \hat{\mathbb{R}}$. There is a fundamental region $\Delta \subset \mathbb{H}$ that takes x as a cusp and has an overlap with $H_{1} \cap H_{2}$. This in particular implies that $H_{1} \cap H_{2}$ is not empty. This is a contradiction.

Assume that $x \in D_{2}$ for a maximal element D_{2} of \mathcal{U}_{2}. If x does not lie in any maximal elements of \mathcal{U}_{1}, then $\tau_{1}^{-s}(x)=x$. Thus $\tau_{2}^{r} \tau_{1}^{-s}(x)=\tau_{2}^{r}(x) \neq x$. If $x \in D_{1}$ for a maximal element D_{1} of \mathcal{U}_{1}, but not lie in any maximal elements of \mathcal{U}_{2}, we use the same argument to prove that $\left(\tau_{2}^{r} \tau_{1}^{-s}\right)^{-1}(x) \neq x$.

For any half plane D in \mathcal{U}_{1} or \mathcal{U}_{2}, let ∂D denote the boundary of D in \mathbb{H}. Let $h \in G$ be a simple hyperbolic element so that $h(D)=D$. If x is a vertex of D, i.e., $x \in \partial D \cap \mathbb{H}$, then T and h would share a common fixed point x, and this would contradict to that G is discrete.

By the above discussion, we are left with the possibility that $x \in D_{2} \cap D_{1}$ for a maximal element D_{1} of \mathcal{U}_{1} and a maximal element D_{2} of \mathcal{U}_{2}. If ∂D_{2} intersects ∂D_{1}, the intersection point is in \mathbb{H}. It follows that $H_{1} \cap H_{2} \neq \emptyset$, contradicting the hypothesis.

Now we assume that $D_{2} \subset D_{1}$. Let $g_{i} \in G$ be hyperbolic such that $g_{i}\left(D_{i}\right)=D_{i}$, $i=1$, 2. Since $x \in D_{2}$, from (3.2),

$$
\begin{equation*}
g_{1}^{-s}(x) \leq \tau_{1}^{-s}(x) \tag{3.4}
\end{equation*}
$$

From Property (4), we know that $g_{1}^{-s}\left(D_{2}\right) \in \mathcal{U}_{2}$ is also maximal, and Property (2) says that τ_{2} keeps $g_{1}^{-s}\left(D_{2}\right)$ invariant. Thus $\tau_{2}^{r} g_{1}^{-s}(x) \in g_{1}^{-s}\left(D_{2}\right)$. Since ∂D_{2} projects to a
simple closed geodesic $\tilde{\alpha}_{2}, D_{2} \cap g_{1}^{-s}\left(D_{2}\right)=\emptyset$. We assert that

$$
\begin{equation*}
x<\tau_{2}^{r} g_{1}^{-s}(x) \tag{3.5}
\end{equation*}
$$

By Property (3), τ_{i} is monotonic. It follows from (3.4) and (3.5) that

$$
x<\tau_{2}^{r} g_{1}^{-s}(x) \leq \tau_{2}^{r} \tau_{1}^{-s}(x) .
$$

In particular, $\tau_{2}^{r} \tau_{1}^{-s}(x) \neq x$. If $x \in D_{1} \cap D_{2}$ and $D_{1} \subset D_{2}$, by using the same argument above, we conclude that the inverse $\left(\tau_{2}^{r} \tau_{1}^{-s}\right)^{-1}$ does not fix any parabolic fixed point of G, which is equivalent to that $\tau_{2}^{r} \tau_{1}^{-s}(x) \neq x$. Finally, we assume that $x \in D_{1} \cap D_{2}$ where $\partial D_{1} \cap \partial D_{2}=\emptyset$ and neither $D_{1} \subset D_{2}$ nor $D_{2} \subset D_{1}$. In this case, we can use Lemma 3.1 to prove that for large integers r and $\mathrm{s}, \tau_{2}^{r} \tau_{1}^{-s}(s) \in D_{1} \cap D_{2}$ is covered by more elements of \mathcal{U}_{1} than x is, from which we derive $\tau_{2}^{r} \tau_{1}^{-s}(x) \neq x$. Details are omitted. See [20] for more information. The lemma is proved.

4. Proof of Theorem 1.1

For the sufficient condition, suppose that $H_{1} \cap H_{2} \neq \emptyset$. Choose a point $\hat{z} \in H_{1} \cap H_{2}$ and let $z=\varrho(\hat{z})$, where $\varrho: \mathbb{H} \rightarrow \tilde{S}$ is the universal covering. Then z belongs to a component of $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$. By hypothesis, $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ consists of once punctured disks $\left\{Q_{1}, \ldots, Q_{k}\right\}$.

Assume that $z \in Q_{1}$, say. Let x_{0} be the puncture of Q_{1}. In Q_{1}, we connect z and the puncture x_{0} by an arc γ that avoids $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$. Obviously, γ can be lifted to an arc $\hat{\gamma} \subset \mathbb{H}$ connecting \hat{z} and a parabolic cusp \hat{x}_{0}. Since $\gamma \subset Q_{1}, \hat{\gamma} \subset H_{1} \cap H_{2}$. But $\left.\zeta\right|_{H_{1} \cap H_{2}}=$ id. It follows that $\left.\zeta\right|_{\hat{\gamma}}=$ id. Since ζ has a continuous extension to $\overline{\mathbb{H}}$, we see that $\zeta\left(\hat{x}_{0}\right)=\hat{x}_{0}$. Therefore, according to the discussion in Section 2, $\varphi^{*}([\zeta])$ is reducible by a single reduced loop on S that is the boundary of a twice punctured disk enclosing a.

For the necessary condition, we assume that $H_{1} \cap H_{2}=\emptyset$. By Lemma 3.2, the mapping class $\varphi^{*}\left(\left[\tau_{i}\right]\right)$ is induced by the Dehn twist $t_{\alpha_{i}}$, where α_{i} is a geodesic on S homotopic to $\tilde{\alpha}_{i}$ on \tilde{S}. It follows that $\varphi^{*}([\zeta]) \in \operatorname{Mod}_{S}^{a}$ is represented by (1.3).

From Lemma 3.3, $\tau_{2}^{r} \tau_{1}^{-s}$ does not fix any parabolic fixed point of G for large r and s, which says that if $\varphi^{*}\left(\left[\tau_{2}^{r} \tau_{1}^{-s}\right]\right)$ is reducible, it must be reduced by a loop c that is also non-trivial on \tilde{S}. It follows that $\varphi^{*}\left(\left[\tau_{2}^{r} \tau_{1}^{-s}\right]\right)$ projects to a reducible map F_{0} that is reduced by \tilde{c}. But since τ_{i} is a lift of $t_{\tilde{\alpha}_{i}}, F_{0}$ is isotopic to $t_{\tilde{\alpha}_{2}}^{r} \circ t_{\tilde{\alpha}_{1}}^{-s}$. By hypothesis, $\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ fills \tilde{S}. Thus $t_{\tilde{\alpha}_{2}}^{r} \circ t_{\tilde{\alpha}_{2}}^{-s}$ is isotopic to a pseudo-Anosov map. It follows that F_{0} can not be reducible. This is a contradiction.

We conclude that $\varphi^{*}\left(\left[\tau_{2}^{r} \tau_{1}^{-s}\right]\right)$ is pseudo-Anosov. Hence $\left\{\alpha_{1}, \alpha_{2}\right\}$ fills S. Now by the Theorem of $[17,2,12]$, for any integers $N, r_{i}, s_{i} \in \mathbb{Z}^{+}$,

$$
\zeta^{*}=\prod_{i=1}^{N} t_{\alpha_{2}}^{r_{i}} \circ t_{\alpha_{1}}^{-s_{i}}
$$

is pseudo-Anosov. This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

Let $\left\{\tau_{1}, \tau_{2}\right\}$ be such that $H_{1} \cap H_{2} \neq \emptyset$. Let $D_{i} \in \mathcal{U}_{i}$ be maximal half planes such that $\partial D_{1} \cap \partial D_{2} \neq \emptyset$. Let $D_{1}^{\prime} \in \mathcal{U}_{1}$ be another maximal element that is disjoint from both D_{1} and D_{2}. From Lemma 5.3.8 of Beardon [3], we can choose a hyperbolic element $h \in G$ whose repelling fixed point lies in D_{2} and whose attracting fixed point lies in D_{1}^{\prime}. For $j \geq 1, h^{j}\left(D_{2}\right)$ is a maximal half plane for $h^{j} \tau_{2} h^{-j}$ and the complement of $h^{j}\left(D_{2}\right)$ is contained in D_{1}^{\prime}. Thus for large $j \geq 1$, all pairs $\left(\tau_{1}, h^{j} \tau_{2} h^{-j}\right)$ satisfies the condition of Theorem 1.1. From the theorem we conclude that

$$
\begin{equation*}
\varphi^{*}\left(\left[\prod_{i} h^{j} \tau_{2}^{r_{i}} h^{-j} \tau_{1}^{-s_{i}}\right]\right) \tag{5.1}
\end{equation*}
$$

is a pseudo-Anosov mapping class projecting to the class represented by $\tilde{\zeta}$. This is equivalent to that

$$
\begin{equation*}
\prod_{i=1}^{N} h^{j} \tau_{2}^{r_{i}} h^{-j} \tau_{1}^{-s_{i}} \tag{5.2}
\end{equation*}
$$

does not fix any parabolic fixed point of G on $\hat{\mathbb{R}}$.

REMARK 5.1. To understand the mapping class (5.1) in topological term, we notice that the map that represents (5.1) is generated by the two geodesics α_{1} and $f\left(\alpha_{2}\right)$ where $f \in \mathcal{F}$ is determined by an element h of G. To see how the curve α_{2} is altered to $f\left(\alpha_{2}\right)$, we refer to Theorem 2 of Kra [10]. For example, if h is a simple hyperbolic, then $f=\varphi^{*}(h)^{j}$ is a multiple of a spin map, written as $t_{c}^{j} \circ t_{c_{0}}^{-j}$, where both c and c_{0} are homotopic to \tilde{c}, the projection of the axis of h. if h is parabolic, then f is an ordinary power of the Dehn twist along the boundary of a twice punctured disk on S enclosing a.

Note that τ_{i} determines an isomorphism $\chi_{i}: G \rightarrow G$ that is defined by

$$
\begin{equation*}
\tau_{i} h=\chi_{i}(h) \tau_{i} . \tag{5.3}
\end{equation*}
$$

It follows from (5.3) that (5.2) can be written as $g_{j} \zeta$ for $g_{j} \in G$.
We claim that for sufficiently large j,

$$
g_{j+1} \zeta \neq g_{j} \zeta
$$

Indeed, as discussed above, for large j, the complement of $D_{3}=h^{j}\left(D_{2}\right)$ is contained in D_{1}^{\prime}. This implies that $D_{3} \supset D_{1}$. Let $D_{4}=h\left(D_{3}\right)$. We have $D_{4} \supset D_{3} \supset D_{1}$ and D_{4} is

Fig. 2.
a maximal element for the map $h^{j+1} \tau_{2} h^{-j-1}$. For simplicity, we denote $\tau_{3}=h_{j} \tau_{2} h_{j}^{-1}$ and $\tau_{4}=h_{j+1} \tau_{2} h_{j+1}^{-1}$. Let

$$
\omega_{j}=\prod_{i=1}^{N}\left(\tau_{3}^{r_{i}} \tau_{1}^{-s_{i}}\right)
$$

and

$$
\omega_{j+1}=\prod_{i=1}^{N}\left(\tau_{4}^{r_{i}} \tau_{1}^{-s_{i}}\right) .
$$

Pick any point $x \in D_{1} \cap \hat{\mathbb{R}}$. Since D_{1} is maximal for $\tau_{1}, y=\tau_{1}^{-s_{1}}(x) \in D_{1} \cap \hat{\mathbb{R}}$. Note also that D_{3} is maximal for τ_{3}. Since $\tilde{\alpha}_{1}$ is simple, by Property (3), τ_{3} is monotonic on $D_{3} \cap \hat{\mathbb{R}}$. By (3.2), we conclude that for all positive integers $r_{1}, \tau_{3}^{r_{1}}(y) \in\left(D_{3}-D_{1}\right) \cap \hat{\mathbb{R}}$. By induction process, one can show that $\omega_{j}(x) \in\left(D_{3}-D_{1}\right) \cap \hat{\mathbb{R}}$.

On the other hand, since $D_{4} \supset D_{3}$ is a maximal element for τ_{4} and hence is invariant under the action of τ_{4}. Denote $\partial D_{4} \cap \hat{\mathbb{R}}=\{X, Y\}$ as shown in Fig. 2. Let $g_{4} \in G$ be the element that keeps D_{4} invariant and takes the same orientation as in Fig. 1.

Now $y=\tau_{1}^{-s_{1}}(x) \in D_{1} \cap \hat{\mathbb{R}} \subset D_{3} \cap \hat{\mathbb{R}}$. Hence we get that $g_{4}^{r_{1}}(y) \in g_{4}^{r_{1}}\left(D_{3}\right)$. Observe that $g_{4}^{r_{1}}\left(D_{3}\right)$ is disjoint from D_{3} (the shaded region in Fig. 2).

It is obvious that $g_{4}^{r_{1}}\left(D_{3}\right)$ contains $g_{4}^{r_{1}}\left(D_{1}\right)$. By Property (4), $g_{4}^{r_{1}}\left(D_{1}\right)$ is a maximal element of \mathcal{U}_{1}, which means that $\tau_{1}^{-s_{2}}$ keeps $g_{4}^{r_{1}}\left(D_{1}\right)$ invariant. It follows that

$$
\begin{equation*}
\tau_{1}^{-s_{2}} g_{4}^{r_{1}}(y) \in\left(D_{4}-D_{3}\right) \cap \hat{\mathbb{R}} . \tag{5.4}
\end{equation*}
$$

On the other hand, (3.2) and (3.2) along with Property (2) yield

$$
X<\tau_{4}^{r_{1}}(y)<g_{4}^{r_{1}}(y)
$$

Hence by Property (3) again, we obtain

$$
X<\tau_{1}^{-s_{2}} \tau_{4}^{r_{1}}(y)<\tau_{1}^{-s_{2}} g_{4}^{r_{1}}(y) .
$$

It follows from (5.4) that $\tau_{1}^{-s_{2}} \tau_{4}^{r_{1}}(y) \in\left(D_{4}-D_{3}\right) \cap \hat{\mathbb{R}}$ and that $\tau_{4}^{r_{2}} \tau_{1}^{-s_{2}} \tau_{4}^{r_{1}}(y) \in\left(D_{4}-\right.$ $\left.D_{3}\right) \cap \hat{\mathbb{R}}$. That is, $\tau_{4}^{r_{2}} \tau_{1}^{-s_{2}} \tau_{4}^{r_{1}} \tau_{1}^{-s_{1}}(x) \in\left(D_{4}-D_{3}\right) \cap \hat{\mathbb{R}}$.

By induction process, we can show that

$$
\left(\tau_{4}^{r_{N}} \tau_{1}^{-s_{N}}\right) \cdots\left(\tau_{4}^{r_{2}} \tau_{1}^{-s_{2}}\right)\left(\tau_{4}^{r_{1}} \tau_{1}^{-s_{1}}\right)(x) \in\left(D_{4}-D_{3}\right) \cap \hat{\mathbb{R}} .
$$

That is, $\omega_{j+1}(x) \in\left(D_{4}-D_{3}\right) \cap \hat{\mathbb{R}}$. In particular, we conclude that $\omega_{j+1}(x) \neq \omega_{j}(x)$. Similar argument yields that $\omega_{j+k}(x) \neq \omega_{j+l}(x)$ for $k \neq l$ and $k, l \geq 0$. This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

From Theorem 1.2, there are infinitely many elements $h_{j} \in G$ so that $\omega_{j}=h_{j} \zeta$ do not fix any fixed points of G. Hence all $\omega_{j}^{*}=\varphi^{*}\left(\left[\omega_{j}\right]\right)$ are pseudo-Anosov mapping class of S projecting to (1.1). From the construction, each ω_{j}^{*} is induced by a map with from (1.3). By the argument of Theorem 1.2, there are infinitely many distinct elements in the sequence $\left\{\omega_{j}^{*}\right\}$. This proves (1)-(3) of Theorem 1.3.

To prove (4)-(6) of Theorem 1.3, we choose a point in the Teichimüller space $T(\tilde{S})$ represented F-minimal surface denoted by \tilde{S}. Let G be the Fuchsian group so that $\mathbb{H} / G=\tilde{S}$. Let z_{0} be a zero of $\phi(\phi$ is defined by the pseudo-Anosov map $F)$, so that $F\left(z_{0}\right)=z_{0}$ and $H_{t}\left(z_{0}\right), 0 \leq t \leq 1$, is trivial if z_{0} is not a puncture. It may or may not be a puncture of \tilde{S}.

Associated to each $\hat{z}_{0} \in \overline{\mathbb{H}}$ with $\varrho\left(\hat{z}_{0}\right)=z_{0}$, there is a map ζ defined by (1.3). To see that $\varphi^{*}([\zeta])$ is pseudo-Anosov if z_{0} is a non-puncture zero, we refer to [18] and outline the proof as follows. Let l denote the (unique) Teichmüller geodesic in $T(\tilde{S})$ determined by $\tilde{\zeta}$ defined as (1.1). Let $\hat{l} \subset F(\tilde{S})$ be a lift of l defined by

$$
\hat{l}=\left\{\left([t \mu], w^{t \mu}\left(\hat{z}_{0}\right)\right), t \in(-1,1)\right\} \subset F(\tilde{S}) .
$$

Clearly, \hat{l} is a line in $F(\tilde{S})$ passing through \hat{z}_{0}. By [10], $\varphi(\hat{l}) \subset T(S)$ is a Teichmüller geodesic in $T(S)$. By the argument of Proposition 3 and Corollary 2 of [10], \hat{l} is invariant under a lift \hat{F} of F with $\hat{F}\left(\hat{z}_{0}\right)=\hat{z}_{0}$. From the assumption, $H_{t}\left(z_{0}\right)$ is a trivial loop. This implies that $\left.\zeta\right|_{\hat{\mathbb{R}}}=\left.\hat{F}\right|_{\hat{\mathbb{R}}}$. Therefore, $\varphi(\hat{l})$ is invariant under the action of $\varphi^{*}([\zeta])$. So by Bers [5], $\varphi^{*}([\zeta])$ is pseudo-Anosov.

We need to prove that all ω_{n}^{*}, for large j, are not conjugate to $\varphi^{*}([\zeta])$.
Suppose that for some $j \geq 1$, there is $h_{0} \in G$ such that

$$
\begin{equation*}
\prod_{i=1}^{N}\left(h^{j} \tau_{2} h^{-j}\right)^{r_{i}} \tau_{1}^{-s_{i}}=h_{0} \zeta h_{0}^{-1} \tag{6.1}
\end{equation*}
$$

where ζ is defined in (1.4). Note that $\left\{\tau_{1}, \tau_{2}\right\}$ possesses the property that $H_{1} \cap H_{2} \neq \emptyset$. If $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ consists of once punctured disks only, ζ fixes a parabolic fixed point of

Fig. 3.
G on \mathbb{R}. However, if $\tilde{S}-\left\{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}\right\}$ contains some disk components, for some ζ defined as (1.4), the existence of fixed points of ζ that are also fixed by elements of G is not clear. In this case, we use a different approach as follows.

For $i=1,2$, let D_{i} be maximal elements of \mathcal{U}_{i} so that ∂D_{1} intersects with ∂D_{2}. Let $\Omega=D_{1} \cap D_{2}$ and $\Lambda=\Omega \cap \hat{\mathbb{R}}$. See Fig. 3 .

Now we consider the action of ζ on Λ. The endpoint Y is moved to the right while the point Z is moved to the left. Since the action of ζ on Λ is continuous, there is a point $V \in \Lambda$ so that $\zeta(V)=V$ (according to Lemma 2.2, V is not a hyperbolic fixed point of G, but it could be a parabolic fixed point of G). Thus $h_{0} \zeta h_{0}^{-1}$ fixes $h_{0}(V) \in \hat{\mathbb{R}}$.

On the other hand, $\left\{\tau_{1}, h^{j} \tau_{2} h^{-j}\right\}$ has the property that $H_{1} \cap H_{2}=\emptyset$. By the same argument of Lemma 3.3,

$$
\prod_{i=1}^{N}\left(h^{j} \tau_{2} h^{-j}\right)^{r_{i}} \tau_{1}^{-s_{i}}
$$

does not fix any point on $\hat{\mathbb{R}}$. This contradicts to (6.1). The same methods can be used to prove that all ω_{j}^{*} lie in different conjugacy classes. Details are omitted.

Acknowledgment. I am grateful to the referee(s) for pointing out errors in the original version of this paper; and particularly for their helpful comments and thoughtful suggestions.

References

[1] L.V. Ahlfors and L. Bers: Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404.
[2] M. Bauer: Examples of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 330 (1992), 333-359.
[3] A. Beardon: The Geometry of Discrete Groups, Springer, New York, 1983
[4] L. Bers: Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89-126.
[5] L. Bers: An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), 73-98.
[6] J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, N.J., 1974.
[7] A. Faithi, F. Laudenbach and V. Poenaru: Travaux de Thurston sur les Surfaces, Seminaire Orsay, Asterisque, 66-67, Soc. Math. de France, 1979.
[8] N.V. Ivanov: Mapping Class Groups, manuscript, 1998.
[9] H.M. Farkas and I. Kra: Riemann Surfaces, Springer, New York, 1980.
[10] I. Kra: On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231-270.
[11] O. Lehto: Univalent Functions and Teichmüller Spaces, Graduate Texts in Mathematics 109, Springer, New York, 1987.
[12] D.D. Long: Constructing pseudo-Anosov maps; in Knot Theory and Manifolds (Vancouver, B.C., 1983), Lecture Notes in Math. 1144, Springer, Berlin, 1985, 108-114.
[13] A. Marden and K. Strebel: Pseudo-Anosov Teichmüeller mappings, J. Analyse Math. 46 (1986), 194-220.
[14] S. Nag: Non-geodesic discs embedded in Teichmüller spaces, Amer. J. Math. 104 (1982), 399-408.
[15] R.C. Penner: A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), 179-197.
[16] R.C. Penner: Probing mapping class groups using arcs, manuscript, 2005.
[17] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
[18] C. Zhang: Singularities of quadratic differentials and extremal Teichmüller mappings defined by Dehn twists, to appear in J. Aust. Math. (2009).
[19] C. Zhang: Remarks on Thurston's construction of pseudo-Anosov maps of Riemann surfaces, Chin. Ann. Math. Ser. B 29 (2008), 85-94.
[20] C. Zhang: Dehn twists combined with pseudo-Anosov maps, preprint (2009).

```
Department of Mathematics
Morehouse College
Atlanta, GA 30314
USA
e-mail: czhang@morehouse.edu
```

