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Abstract
Let S̃ be a Riemann surface of type(p, n) with 3p � 3 + n > 0. Let F

be a pseudo-Anosov map of̃S defined by two filling simple closed geodesics on
S̃. Let a 2 S̃, and S = S̃ � fag. For any map f : S ! S that is generated by
two simple closed geodesics and is isotopic toF on S̃, there corresponds to a
configuration� of invariant half planes in the universal covering space ofS̃. We
give a necessary and sufficient condition (with respect to the configuration) for
those f to be pseudo-Anosov maps. As a consequence, we obtain infinitely many
pseudo-Anosov mapsf on S that are isotopic toF on S̃ as a is filled in.

1. Statement of results

Let S̃ be a Riemann surface of type (p, n), where p is the genus ofS̃ and n is
the number of punctures of̃S. Assume that 3p�3+n > 0. Let a 2 S̃, and S= S̃�fag.
Let F be a pseudo-Anosov map oñS in the sense that there exists a pair (F+, F�) of
transverse measured foliations ofS̃ with F(F+) = �F+ and F(F�) = (1=�)F� for some� > 1. (See also FLP [7] and Penner [15].) In [10], Kra investigated the problem of
finding pseudo-Anosov mapsf on S so that f is isotopic toF on S̃ as a is filled in.
He showed that ifS̃ is compact with genusp � 2, then for some integerk, there is
a pseudo-Anosov mapf on S so that f is isotopic to Fk on S̃. In this article, we
show that there always exist infinitely many pseudo-Anosov maps f on S so that f is
isotopic to a pseudo-Anosov mapF on S̃ that is obtained from Thurston’s construc-
tion [17].

To illustrate, let ˜�1, �̃2 � S̃ be two filling simple closed geodesics, that is, each
component ofS̃� f�̃1, �̃2g is a disk or an once punctured disk. Lett�̃i denote the
positive Dehn twist along ˜�i . It is well known [17] (see also [2, 12, 16] for some
variations) that a finite product

(1.1) �̃ =
NY

i =1

t r i�̃2
Æ t�si�̃1

, N, r i , si 2 Z+
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is isotopic to a pseudo-Anosov mapF on S̃. Throughout the article we denote by
Ht ( � ) : S̃! S̃, 0 � t � 1, the isotopy betweeñ� and F . Note that ˜�1, �̃2 can be
viewed as curves onS (call them�1 and �2, respectively), and thus the maps�̃ are
also defined onS. Clearly, if S̃ is compact,S�f�1, �2g consists of disks and only one
once punctured disk. Hencẽ� intimately represents a pseudo-Anosov mapping class
on S that has the required property. However, ifS̃ is non-compact and in particular, if
S̃�f�̃1, �̃2g only consists of once punctured disks, then one component ofS�f�1, �2g
is a twice punctured disk (enclosing the puncturea), which means that the map (1.1)
on S does not represent a pseudo-Anosov mapping class.

A question arises as to whether or not we can take another geodesic �02 on S as
a substitution of�2 so thatf�1, �02g fills S and �02 is still homotopic to�2 on S̃ as a
is filled in. In [19], we constructed such a geodesic�02 with the required properties by
utilizing topological methods. As a consequence, we showedthat there exist infinitely
many distinct pseudo-Anosov maps onS isotopic to onS̃.

Let F be the set of isotopy classes of maps ofS that are isotopic to the identity on
S̃. The main purpose of this article is to develop a tool to detect in general whether or
not a pairf�1,�02g, where�02 = f (�2) for some f 2 F , fills S; we will give a necessary
and sufficient condition for the pairf�1, �2g of geodesics onS to fill S. To do this,
we need to transform the view of Dehn twists onS to the view of some special fiber-
preserving automorphisms on the Bers fiber spaceF(S̃). (See Bers [4] and Kra [10]
for more details.)

Let H = fz 2 C: Im z> 0g be a hyperbolic plane, and let%: H! S̃ be a universal
covering with the covering groupG. It is well known [4, 6] thatG is isomorphic
(via an isomorphism'�, see Bers [4]) toF . Further, '� naturally extends to an iso-
morphism (call'� also) of the group of fiber preserving automorphisms ofF(S̃) onto
the group of mapping classes onS fixing the puncturea.

Let �̂i � H, i = 1, 2, be geodesics such that%(�̂i ) = �̃i . Let fDi , D0
i g = H� f�̂i g.

As we will explain in Section 3, the Dehn twistt�̃i : S̃! S̃ can be lifted to a quasi-
conformal map�i : H! H with respect toDi . The map�i determines a disjoint union
of invariant half planesDi ( j ) with the property that the restriction of�i to the com-
plement

(1.2) Hi = H�[
j

Di ( j )

is the identity. Furthermore, the map�i induces a fiber-preserving automorphism [�i ]
of F(S̃) such that, if ˆ�i 2 f%�1(�̃i )g (and henceDi ) is chosen properly,'�([�i ]) = t�i

(see Lemma 3.3). Our main result is the following:

Theorem 1.1. Let �̃1, �̃2 � S̃ be arbitrary two simple closed geodesics so that
S̃� f�̃1, �̃2g only consists of once punctured disks. Let �i , i = 1, 2, be two simple
closed geodesics on S homotopic to�̃i on S̃, and let �i be the corresponding lifts with
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'�([�i ]) = t�i . Then the map

(1.3)
NY

i =1

t r i�2
Æ t�si�1

, r i , si 2 Z+,

represents a pseudo-Anosov mapping class on S(and projects to�̃ on S̃) if and only
if the intersection H1 \ H2, where Hi are defined as in(1.2), is empty.

Given any pairf�1, �2g of lifts of t�̃1 and t�̃2 with H1\H2 6= ;, it is easy to replace�2 with a G-conjugation� 02 so thatH1\ H 0
2 = ;. Therefore, via the Bers isomorphism,

we are able to construct infinitely many pairsf�1, �02g that fill S, where�02 = f (�2) for
some f 2 F . There are several applications of Theorem 1.1.

We now assume that̃S is an F-minimal surface in the sense thatF� are defined
by a quadratic differential� on S̃ (see Bers [5] for the definitions and terminology).
If the genusp � 2, then by the Riemann-Roch theorem (see [9] for instance), there
exists a finite number of zeros of� on the compactification of̃S. Note that some zeros
could be punctures of̃S.

If � has non-puncture zerosz0, we may choosêz0 2H with %(ẑ0) = z0, and thereby
a pair f�1, �2g of configurations of invariant half planes under the lifts ofthe Dehn
twists such thatH1 \ H2 6= ; and ẑ0 2 H1 \ H2. This implies that the map

(1.4) � =
NY

i =1

� r i
2 ��si

1 , r i , si 2 Z+

fixes ẑ0 2H. It is important to note that� : H!H is a quasiconformal map compatible
with G. It naturally extends to a map ofH onto itself, which is also denoted by� .

If � has no non-puncture zeros, then some punctures (callz0 also) must be zeros
of �. In this case, we can still choose a pairf�1, �2g of lifts of the Dehn twists such
that H1 \ H2 6= ; and � fixes ẑ0 2 R̂.

Under certain conditions� can be replaced with a pseudo-Anosov mapF̂ so that% Æ F̂ = F Æ %, F̂(ẑ0) = ẑ0 and F̂ j�H = � j�H . Lemma 5.4 of Marden-Strebel [13] then
asserts that� does not fix any other fixed points ofG on R̂ (except forẑ0 in the second
case). Consider the mapsh� for h 2 G. Unfortunately, the existence of fixed points of
h� is not guaranteed, and a question arises as to whetherh� fixes some fixed points
of G on R̂. It is easy to show that for certain elementsh of G, h� fix some points
on R̂ that may not be fixed points ofG. Our second result states:

Theorem 1.2. Let S̃ be an F-minimal surface of genus p� 2 and n> 0. Let
z0 be a zero of the corresponding quadratic differential� which may or may not be
a puncture ofS̃. Then associated to eacĥz0 2 H with %(ẑ0) = z0, there exists a pairf�1,�2g of lifts of the Dehn twists t�̃1 and t̃�2 with H1\H2 6= ;, and hence a map� such
that hn� does not fix any fixed points of G on̂R for an infinite sequencefhng � G.
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We call �1 and �2 with forms (1.4) are conjugate if there is an elementh 2 G such
that �1 = h�2h�1, which is equivalent to saying that'�([�1]) and '�([�2]) with forms
(1.3) are conjugate if there is a mapf 2 F so that'�([�1]) is isotopic to f Æ'�([�2]) Æ
f �1. As a consequence of Theorem 1.1 and Theorem 1.2, we have:

Theorem 1.3. Let S̃ be a Riemann surface of type(p, n) with p� 2, and n> 0.
Let f�̃1, �̃2g be a pair of filling simple closed geodesics onS̃. Let � be defined by
(1.4) via an F-minimal surface and a pairfr1, r2g with H1 \ H2 6= ;. Then there are
infinitely many mapping classes!�j on S with these properties:
(1) all !�j are pseudo-Anosov,
(2) every!�j fixes a and projects to the mapping class represented by(1.1) as a is
filled in,
(3) every!�j is represented by two filling simple loops on S and is of form(1.3).
If in addition we assume that z0 is a non-puncture zero of� so that F(z0) = z0 and
the curve Ht (z0), 0� t � 1, is a trivial loop, then:
(4) '�(� ) is pseudo-Anosov if z0 is a non-puncture zero of�,
(5) '�(� ) is not conjugate to any!�j , and
(6) all !�j lie in different conjugacy classes.

This article is organized as follows. In Section 2, we establish a correspondence
between the set of pseudo-Anosov maps ofS (that are isotopic tõ� on S̃) and the set
L of lifts of �̃ that fix no fixed points ofG. It follows from Lemma 5.4 of [13] (see
Lemma 2.2 for a different approach) that elements inL that do not fix any parabolic
fixed points of G must be pseudo-Anosov mapping classes onS. Details appear in
Sections 3. Sections 4, 5, and 6 are devoted to the proofs of the results.

2. Notation and background

To establish notation and terminology, we begin with an overview of relevant Te-
ichmüller theory. For more information, we refer to [4, 10].

Let S̃1 be a Riemann surface with the same type (p, n). A marking of S̃1 is a
homeomorphismf1 : S̃! S̃1. By ( f1 : S̃! S̃1) we denote a marked Riemann surface.
The Teichmüller spaceT(S̃) is defined as a set of marked Riemann surfaces (f1: S̃!
S̃1) quotient by an equivalent relation “�”, where (f1: S̃! S̃1) � ( f2: S̃! S̃2) if and
only if there is a conformal maph : S̃1! S̃2 such thath Æ f1 is isotopic to f2.

We denote by [f1: S̃! S̃1] the equivalence class of the marked surface (f1: S̃!
S̃1). Every marked surface (f1 : S̃! S̃1) defines a new conformal structure�1 on S̃
via pullbacks. Two conformal structures�1 and �2 are called equivalent if and only
if ( f1 : S̃! S̃1) � ( f2 : S̃! S̃2). Let [�] denote the equivalence class of a confor-
mal structure� on S̃. By Ahlfors-Bers [1], every conformal structure� on S̃ deter-
mines a quasiconformal mappingw� of C that fixes 0, 1 and is conformal onH� =fz 2 C : Im z < 0g. The regionw�(H) is a Jordan domain that only depends on [�].
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The Bers fiber spaceF(S̃) is defined as a collectionf([�], z); [�] 2 T(S̃), z 2 w�(H)g
of pairs endowed with a product structure. The natural projection � : F(S̃)! T(S̃) de-
fined by sending each point ([�], z) to [�] is holomorphic. From Theorem 9 of Bers
[4], There is an isomorphism' : F(S̃)! T(S) such that

(2.1) � = � Æ ',

where � : T(S)! T(S̃) is the natural forgetful map.
The group of isotopy classes of self-mapsf of S̃ is the mapping class group

ModS̃, which naturally acts onT(S̃) as holomorphic automorphisms. Let modS̃ denote
the full group of fiber preserving holomorphic automorphisms of F(S̃) that projects to
ModS̃. Elements of modS̃ are of forms [f̂ ], where f̂ : H ! H is a lift of a self-
map f of S̃. [ f̂ ] only depends on the boundary valuesf̂ jR̂. The Bers isomorphism' : F(S̃)! T(S) induces an isomorphism'� of mod S̃ onto a group ModaS of map-
ping classes ofS fixing the puncturea.

An element� 2Moda
S is called a reducible mapping class if there is a curve system

C = fc1, : : : , csg, s� 1, of independent and disjoint simple closed geodesics onS with
f (fc1, : : : , csg) = fc1, : : : , csg for certain representativef of � . There is a smallest
positive integerK such that f K maps each loop inC to itself and the restriction of
f K to each component ofS� fc1, : : : , csg is either the identity or a pseudo-Anosov
map. � is called pure ifK = 1.

We now assume that� is reducible and projects to a pseudo-Anosov mapping class�̃ on S̃ that is induced by a mapF . By Lemma 5.1 and 5.2 of [18], the curve sys-
tem C consists of only one curvec1 that bounds a twice punctured disk enclosinga
and another puncture of̃S, which is equivalent to thatc1 is peripheral onS̃. If we
write '��1(�) = [ f̂ ], then f̂ : H! H fixes a parabolic fixed point ofG. Conversely,
each element [̂f ] fixing the fixed point of a parabolic element ofG corresponds to a
reducible mapping class in Moda

S which is reduced by a single simple closed geodesic
that is trivial on S̃. For hyperbolic fixed points, we have

Lemma 2.1 (Marden-Strebel [13]). Assume thatS̃ is F-minimal. Let z0 be a
zero of�, and let ẑ0 2 H be such that%(ẑ0) = z0. Suppose thatf̂ : H! H fixes ẑ0.
Then f̂ does not fix any hyperbolic fixed point of G.

To proof our theorems, we need a slightly general version of the lemma that states:

Lemma 2.2. Let f̂ : H! H be any lift of a pseudo-Anosov map F: S̃! S̃. Then
f̂ does not fix any hyperbolic fixed point of G.

REMARK 2.1. If S̃ is F-minimal, the lemma is covered by the argument of Lem-
ma 5.4 of [13]. Our approach however does not assume thatS̃ is F-minimal.
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Proof of Lemma 2.1. Suppose thatf̂ (x) = x for a fixed point of a primitive hyper-
bolic elementg of G. Let � : S! S be a map that induces the mapping class'�([ f̂ ]).
There are three cases to consider.

CASE 1. g 2 G is simple hyperbolic (the axis ofg projects to a simple closed ge-
odesic onS̃). We claim that� is reduced by a pairf�, �g of geodesics which bounds a
punctured cylinder enclosinga (throughout� and� are called parallel geodesics). Note
that g0 = f̂ g f̂ �1 is also an element ofG that fixesx. g0 cannot be parabolic. For other-
wise, g0 and g would share the same fixed pointx, it would follow that hg, g0i � G is
not discrete. We see thatg0 is also hyperbolic. Ifg andg0 share only one fixed pointx,
by Theorem 4.3.5 of Beardon [3], the commutator [g, g0] is parabolic whose fixed point
is x. From Theorem 5.1.2 of [3],hg, [g, g0]i � G is not discrete. This is a contradiction.
We conclude thatg andg0 share both fixed points. It follows thatg0 = gk, wherek =�1
sinceg0 = f̂ g f̂ �1 and g is primitive in G.

Let h� : S! S denote a map that induces the mapping class'�(h) for an element
h 2 G. From Theorem 2 of [10] or Theorem 2 of [14], we can writeg� = t�1� Æ t�, where

�, � are parallel geodesics. Henceg0� = gk� = t�k� Æ tk� . Recall thatg0 = f̂ g f̂ �1, we thus
obtain

t�k� Æ tk� = � Æ (t�1� Æ t�) Æ ��1 = t�1� (�) Æ t� (�).

This means that� (f�, �g) = f�, �g, which says that� is reduced byf�, �g.
Observe that both� and� project to a non-trivial geodesic ˜� on S̃ asa is filled in.� projects to�̃ that is reduced by ˜�. Hence�̃ is reducible, contradicting the hypothesis.

REMARK 2.2. Conversely, if� is reduced by a pairf�, �g of parallel geodesics,
then we claim thatf̂ fixes a hyperbolic fixed point ofG. In fact, � commutes with
t�1� Æ t�. From Theorem 2 of [10] or Theorem 2 of [14], there is a simple hyperbolic

elementg 2 G so thatg� = t�1� Æ t�. We see thatf̂ commutes withg. That is,

(2.2) g = f̂ g f̂ �1.

Denotefx, yg the attracting and repelling fixed points ofg. It follows from (2.2) that
f̂ (fx, yg) = fx, yg. If f̂ (x) = y, then by (2.2) again, for any integerk,

(2.3) gk( f̂ (z)) = f̂ (gk(z))

for a z 2 H. As k! +1, gk( f̂ (z))! x and gk(z)! x. It follows that f̂ (gk(z))! y.
This contradicts to (2.3).

CASE 2. g is essential hyperbolic (the axis ofg projects to a filling geodesic on
S̃). Then by Theorem 2 of [10],g� is pseudo-Anosov. Using the same argument as in
Case 1, we havêf g f̂ �1 = gk for k = �1.
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If k = 1, then f̂ commutes withg. So � commutes withg�. Suppose that� is
pseudo-Anosov. Sinceg� is pseudo-Anosov, by Theorem 7.5.A of [8], there are integers
i , j such that� i = g� j . This implies that� i projects to the trivial mapping class oñS.
But � i projects to the pseudo-Anosov mapping class represented bythe map (1.1). This
is impossible. Suppose that� is reduced by a simple loopc on S which is peripheral
on S̃. Recall that f̂ = g f̂ g�1. We obtain� = g� Æ � Æ g��1. This implies that� is also
reduced by a unique loopg�(c). It follows that g�(c) = c, which saysg� is reducible.
This is also a contradiction.

If k = �1, then we haveg = f̂ 2g f̂ �2 instead of (2.2). That is,f̂ 2 commutes with
g. The similar argument as above can be applied in this case.

CASE 3. g 2 G is a non-simple and non-essential hyperbolic element. By Theorem
2 of [10], g� is a pure mapping class with a single componentR on whichg� is pseudo-
Anosov. Writeg� = fR. If g = f̂ g f̂ �1, then fR = � Æ fR Æ ��1 = f� (R). We conclude
that � keepsR invariant. Since� is reduced by only one loopc which bounds a twice
punctured disk1, c is the only boundary ofR. That is, R = S� 1. Both fR and �
restrict to commuting mapping classes onR. By Theorem 7.5.A of [8] again, there are
integersi , j such that f i

R = � j . That is, � j projects to the trivial mapping class oñS.
But � projects to the pseudo-Anosov mapping class represented by(1.1). This is also
impossible. The case thatg�1 = f̂ g f̂ �1 can be handled in the same way.

3. Special cases

In this section, we consider those elements in modS̃ that come from some special
mapping classes oñS. We assume that̃S contains some punctures.

For i = 1, 2, let �̂i � H be a geodesic with%(�̂i ) = �̃i , where �̃i are filling sim-
ple closed geodesics oñS as introduced in Section 1. LetDi , D0

i be the components
of H � �̂i . The Dehn twistt�̃i can be lifted to a quasiconformal mapping�i of H
with respect toDi . The construction is as follows. Letgi 2 G be the primitive simple
hyperbolic element keeping bothDi and D0

i invariant. Throughout we assume thatgi

is oriented as shown in Fig. 1.
In the figure, the arrow on ˆ�i indicates the orientation ofgi that points from the

repelling fixed point to the attracting fixed point ofgi . We take an earthquakegi -shift
on Di and leaveD0

i fixed. Then we define�i : H! H via G-invariance, which gives
rise to a collectionUi of layered half planes inH in a partial order. In Fig. 1, the
arrow underneath ˆ�i points to the direction of the motion of�i on Di .

There are infinitely many disjoint maximal elementsDi ( j ) of Ui each of which
is invariant under�i (Di is just one of them). Recall thatHi is defined as in (1.2).
From the definition, the restriction�i jHi = id. Since �i defined in this way is quasi-
conformal, it extends continuously to act onH. In particular, �i jR̂ is quasisymmetric
if we normalize so that “1” lies outside of all maximal elements ofUi .
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Fig. 1.

Lemma 3.1. Let x 2 R̂ be fixed by a parabolic element of G. There are only
finitely many elements ofUi that cover x.

Proof. Let Di (0) be the maximal element ofUi that coversx. Pick a pointz in
Hi , and draw a geodesic raŷ0 connectingz to x. 0̂ projects to a geodesic raỹ0
connecting%(z) to the punctureb of S̃ corresponding tox.

Let Ũ be a punctured disk aroundb. Ũ is chosen so small that is disjoint from�̃i and Ũ \ 0̃ is a single ray. Observe that̃0 \ (S̃� Ũ ) has finite hyperbolic length.
It intersects ˜�i only finitely many times. Sõ0 intersects ˜�i only finitely many times.
This implies that0̂ meets finite number of elementsDi (0), : : : , Di (m) of Ui and the
horodiskU at x that corresponds tõU is included in all Di ( j ).

For each parabolic fixed pointz 2 R̂, by Lemma 3.1, letDi (0) � Di (1) � � � � �
Di (m), Di ( j ) 2 Ui , cover z. Let gik , k = 0, 1,: : : , m, denote the primitive simple
hyperbolic elements ofG that keepDi ( j ) invariant and take the same orientation as
gi 0 (here we refer to Fig. 1 forDi = Di (0) and gi = gi 0). Then �i (z) is defined as

(3.1) �i (z) = gi 0gi 1 � � � gim(z).

For eachz 2 R̂ not covered by any element ofUi , �i (z) = z. Let x 2 R̂ be arbitrary.
Since the set of parabolic fixed points ofG is dense onR̂, we choose a sequencefx j g
of parabolic fixed points so thatx j ! x. We see that

(3.2) �i (x) = lim
j!1 �i (x j ).

We summarize some additional properties of�i which are derived from the definition:
(1) If �i is with respect toDi , then � 0i = g�1

i �i = �i g
�1
i is also a lift of t�̃i and � 0i is

with respect toD0
i .

(2) For any pointx covered by a maximal elementDi of Ui , �m
i (x) and��m

i (x), m!1, tend to the attracting and repelling fixed point ofgi 0, respectively, and ifgi 0 is
oriented as in Fig. 1, we have

�m+1
i (x) < �m

i (x), for m� 1.
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(3) For anyx, y 2 R̂, x � y implies �i (x) � �i (y), and�i (x) = x if and only if x does
not lie in the interior of any maximal element ofUi .
(4) For each hyperbolic elementh 2 G and each maximal elementDi of Ui , h(Di ) 2
Ui if the repelling fixed point ofh does not lie inDi ; and h(H � Di ) 2 Ui if Di

covers the repelling but not the attracting fixed point ofh. Furthermore,h(Di ) is also
a maximal element ofUi if Di does not contain any fixed points ofh.

We observe that the map�i determines a fiber-preserving automorphism [�i ] of the
Bers fiber spaceF(S̃). Let 1�H denote a fundamental region ofG such that1\�̂i 6=;. Let â = %�1(a)\1. Since a Bers isomorphism' : F(S̃)! T(S̃�fag) is defined by
picking up any pointa 2 S̃, we may choose a pointa 2 S̃ so thatâ 2 D0

i . Under the
isomorphism' we then obtain a mapping class'�([�i ]) 2 Moda

S.

Lemma 3.2. (1) '�([�i ]) is represented by the Dehn twist t�i , where�i is homo-
topic to �̃i on S̃ as a is filled in.
(2) For any simple closed geodesic�i on S, let �̃i � S̃ be the geodesic homotopic to�i on S̃. Then a geodesiĉ�i in f%�1(�̃i )g, and thus a component Di of H� �̂i can be
selected so that the map�i with respect to Di satisfies the condition that'�([�i ]) = t�i .

Proof. For simplicity, we denote� = �i and g = gi . Since'�([� ]) is a mapping
class, we denote byf : S! S the map that represents'�([� ]). By construction,�
commutes withg. Thus '�([� ]) commutes withg� = '�(g). By Theorem 2 of [10]
or Theorem 2 of [14],g� = '�(g) is represented byt�1� Æ t�, where f�, �g bounds a
punctured cylinderP containinga. we obtain

f Æ (t��1 Æ t�) Æ f �1 = t��1 Æ t�.

That is,

(3.3) t f (�)
�1 Æ t f (�) = t��1 Æ t�.

From (3.3) we conclude thatf (P) = P, i.e., f keepsf�, �g invariant.
Let f̃ : S̃! S̃ be the map isotopic tof as a is filled in. Since P is a cylinder

containinga, it projects to a simple geodesic ˜�. �̃ is the projection of the axis ofg.
It follows that f̃ keeps ˜� invariant. Thus it defines a map̃f0 on S̃� f�̃g.

On the other hand, by (2.1), we know thatf projects to the Dehn twist along�̃. So f̃ = t�̃. That is, f̃0 = id, which says thatf jS�P is isotopic to the identity. In
particular, this implies thatf (�) = � and f (�) = �. Hence, f can be written ast�k+1� Æ
tk� , where we may assume thatk � 1.

To show thatk = 1, we consider� 0 = g�1� . By Property (1),� 0 is with respect to
D0, and is also a lift oft�̃. By the same argument as above,'�([� 0]) is represented
by tm� Æ t�m+1� for m � 1. Thus'�([� 0�1]) is represented byt�m� Æ tm�1� . Since � 0�1�
coincides withg on �R, '�([� 0�1� ]) is represented byt�m�k+1� Æ tm+k�1� . Once again,
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by Theorem 2 of [10] or Theorem 2 of [14],'�(g) is represented byt�1� Æ t�. We
see that

t�m�k+1� Æ tm+k�1� = t�1� Æ t1� .

It follows that m + k � 1 = 1. Sincem � 1 and k � 1, we conclude thatm = k = 1.
This proves (1).

From (1), we see that either'�([� ]) or '�([g�1� ]) is represented by a Dehn twist
t�1 along a simple closed geodesic�1 on S for which there is an element� 2 F such
that � (�1) = �. Since '�(G) = F , there is an elementh 2 G such that'�(h) = � .
Now it is easy to see thath(�̂) � H is the desired geodesic, and thus eitherh�h�1 or
hg�1�h�1 is the desired lift oft�̃. This proves (2).

Lemma 3.3. Let �1 and �2 be any lifts of t̃�1 and t̃�2 with H1\ H2 = ;. Then for
sufficiently large integers r, s, the map� r

2��s
1 does not fix any parabolic fixed points

of G.

Proof. Suppose thatx 2 �H = R̂ is a parabolic fixed point that is fixed by� r
2��s

1 .
There is a parabolic elementT 2 G so thatT(x) = x.

Notice that Hi is closed. ThusH1 \ H2 is also closed. Ifx lies outside of any
maximal elements ofU1 andU2 (in the sense thatx does not belong to any closed half
plane inU1 andU2), then x lies in the closure (H1 \ H2)\ R̂. There is a fundamental
region1�H that takesx as a cusp and has an overlap withH1\H2. This in particular
implies that H1 \ H2 is not empty. This is a contradiction.

Assume thatx 2 D2 for a maximal elementD2 of U2. If x does not lie in any
maximal elements ofU1, then ��s

1 (x) = x. Thus � r
2��s

1 (x) = � r
2 (x) 6= x. If x 2 D1 for

a maximal elementD1 of U1, but not lie in any maximal elements ofU2, we use the
same argument to prove that (� r

2��s
1 )�1(x) 6= x.

For any half planeD in U1 or U2, let �D denote the boundary ofD in H. Let
h 2 G be a simple hyperbolic element so thath(D) = D. If x is a vertex ofD, i.e.,
x 2 �D \ H, then T and h would share a common fixed pointx, and this would
contradict to thatG is discrete.

By the above discussion, we are left with the possibility that x 2 D2 \ D1 for a
maximal elementD1 of U1 and a maximal elementD2 of U2. If �D2 intersects�D1,
the intersection point is inH. It follows that H1\H2 6= ;, contradicting the hypothesis.

Now we assume thatD2 � D1. Let gi 2 G be hyperbolic such thatgi (Di ) = Di ,
i = 1, 2. Sincex 2 D2, from (3.2),

(3.4) g�s
1 (x) � ��s

1 (x).

From Property (4), we know thatg�s
1 (D2) 2 U2 is also maximal, and Property (2) says

that �2 keepsg�s
1 (D2) invariant. Thus� r

2 g�s
1 (x) 2 g�s

1 (D2). Since �D2 projects to a
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simple closed geodesic ˜�2, D2 \ g�s
1 (D2) = ;. We assert that

(3.5) x < � r
2 g�s

1 (x).

By Property (3),�i is monotonic. It follows from (3.4) and (3.5) that

x < � r
2 g�s

1 (x) � � r
2��s

1 (x).

In particular, � r
2��s

1 (x) 6= x. If x 2 D1\ D2 and D1 � D2, by using the same argument
above, we conclude that the inverse (� r

2��s
1 )�1 does not fix any parabolic fixed point

of G, which is equivalent to that� r
2��s

1 (x) 6= x. Finally, we assume thatx 2 D1 \ D2

where �D1 \ �D2 = ; and neitherD1 � D2 nor D2 � D1. In this case, we can use
Lemma 3.1 to prove that for large integersr and s, � r

2��s
1 (s) 2 D1 \ D2 is covered

by more elements ofU1 than x is, from which we derive� r
2��s

1 (x) 6= x. Details are
omitted. See [20] for more information. The lemma is proved.

4. Proof of Theorem 1.1

For the sufficient condition, suppose thatH1\H2 6= ;. Choose a point̂z2 H1\H2

and let z = %(ẑ), where % : H ! S̃ is the universal covering. Thenz belongs to a
component ofS̃� f�̃1, �̃2g. By hypothesis,S̃� f�̃1, �̃2g consists of once punctured
disks fQ1, : : : , Qkg.

Assume thatz 2 Q1, say. Let x0 be the puncture ofQ1. In Q1, we connectz
and the puncturex0 by an arc that avoids ˜�1 and �̃2. Obviously,  can be lifted
to an arc ˆ � H connectingẑ and a parabolic cusp̂x0. Since � Q1, ̂ � H1 \ H2.
But � jH1\H2 = id. It follows that � ĵ = id. Since� has a continuous extension toH,
we see that� (x̂0) = x̂0. Therefore, according to the discussion in Section 2,'�([� ]) is
reducible by a single reduced loop onS that is the boundary of a twice punctured disk
enclosinga.

For the necessary condition, we assume thatH1 \ H2 = ;. By Lemma 3.2, the
mapping class'�([�i ]) is induced by the Dehn twistt�i , where�i is a geodesic onS
homotopic to ˜�i on S̃. It follows that '�([� ]) 2 Moda

S is represented by (1.3).
From Lemma 3.3,� r

2��s
1 does not fix any parabolic fixed point ofG for large r

and s, which says that if'�([� r
2��s

1 ]) is reducible, it must be reduced by a loopc that
is also non-trivial onS̃. It follows that '�([� r

2��s
1 ]) projects to a reducible mapF0 that

is reduced byc̃. But since�i is a lift of t�̃i , F0 is isotopic tot r�̃2
Æ t�s�̃1

. By hypothesis,f�̃1, �̃2g fills S̃. Thus t r�̃2
Æ t�s�̃2

is isotopic to a pseudo-Anosov map. It follows thatF0

can not be reducible. This is a contradiction.
We conclude that'�([� r

2��s
1 ]) is pseudo-Anosov. Hencef�1, �2g fills S. Now by

the Theorem of [17, 2, 12], for any integersN, r i , si 2 Z+,

� � =
NY

i =1

t r i�2
Æ t�si�1
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is pseudo-Anosov. This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

Let f�1, �2g be such thatH1 \ H2 6= ;. Let Di 2 Ui be maximal half planes such
that �D1\�D2 6= ;. Let D0

1 2 U1 be another maximal element that is disjoint from both
D1 and D2. From Lemma 5.3.8 of Beardon [3], we can choose a hyperbolic element
h 2 G whose repelling fixed point lies inD2 and whose attracting fixed point lies in
D0

1. For j � 1, h j (D2) is a maximal half plane forh j �2h� j and the complement of
h j (D2) is contained inD0

1. Thus for large j � 1, all pairs (�1, h j �2h� j ) satisfies the
condition of Theorem 1.1. From the theorem we conclude that

(5.1) '�
 "Y

i

h j � r i
2 h� j ��si

1

#!

is a pseudo-Anosov mapping class projecting to the class represented by�̃ . This is
equivalent to that

(5.2)
NY

i =1

h j � r i
2 h� j ��si

1

does not fix any parabolic fixed point ofG on R̂.

REMARK 5.1. To understand the mapping class (5.1) in topological term, we no-
tice that the map that represents (5.1) is generated by the two geodesics�1 and f (�2)
where f 2 F is determined by an elementh of G. To see how the curve�2 is altered
to f (�2), we refer to Theorem 2 of Kra [10]. For example, ifh is a simple hyper-

bolic, then f = '�(h) j is a multiple of a spin map, written ast j
c Æ t� j

c0 , where bothc
and c0 are homotopic toc̃, the projection of the axis ofh. if h is parabolic, thenf
is an ordinary power of the Dehn twist along the boundary of a twice punctured disk
on S enclosinga.

Note that�i determines an isomorphism�i : G! G that is defined by

(5.3) �i h = �i (h)�i .

It follows from (5.3) that (5.2) can be written asg j � for g j 2 G.
We claim that for sufficiently largej ,

g j +1� 6= g j � .

Indeed, as discussed above, for largej , the complement ofD3 = h j (D2) is contained
in D0

1. This implies thatD3 � D1. Let D4 = h(D3). We haveD4 � D3 � D1 and D4 is
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Fig. 2.

a maximal element for the maph j +1�2h� j�1. For simplicity, we denote�3 = h j �2h�1
j

and �4 = h j +1�2h�1
j +1. Let

! j =
NY

i =1

(� r i
3 ��si

1 )

and

! j +1 =
NY

i =1

(� r i
4 ��si

1 ).

Pick any pointx 2 D1 \ R̂. Since D1 is maximal for �1, y = ��s1
1 (x) 2 D1 \ R̂. Note

also thatD3 is maximal for�3. Since�̃1 is simple, by Property (3),�3 is monotonic on
D3\ R̂. By (3.2), we conclude that for all positive integersr1, � r1

3 (y) 2 (D3� D1)\ R̂.

By induction process, one can show that! j (x) 2 (D3 � D1) \ R̂.
On the other hand, sinceD4 � D3 is a maximal element for�4 and hence is in-

variant under the action of�4. Denote�D4\R̂ = fX, Yg as shown in Fig. 2. Letg4 2 G
be the element that keepsD4 invariant and takes the same orientation as in Fig. 1.

Now y = ��s1
1 (x) 2 D1\ R̂ � D3\ R̂. Hence we get thatgr1

4 (y) 2 gr1
4 (D3). Observe

that gr1
4 (D3) is disjoint from D3 (the shaded region in Fig. 2).

It is obvious thatgr1
4 (D3) containsgr1

4 (D1). By Property (4),gr1
4 (D1) is a maximal

element ofU1, which means that��s2
1 keepsgr1

4 (D1) invariant. It follows that

(5.4) ��s2
1 gr1

4 (y) 2 (D4 � D3) \ R̂.

On the other hand, (3.2) and (3.2) along with Property (2) yield

X < � r1
4 (y) < gr1

4 (y).

Hence by Property (3) again, we obtain

X < ��s2
1 � r1

4 (y) < ��s2
1 gr1

4 (y).
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It follows from (5.4) that��s2
1 � r1

4 (y) 2 (D4 � D3) \ R̂ and that� r2
4 ��s2

1 � r1
4 (y) 2 (D4 �

D3) \ R̂. That is, � r2
4 ��s2

1 � r1
4 ��s1

1 (x) 2 (D4 � D3) \ R̂.
By induction process, we can show that

(� r N
4 ��sN

1 ) � � � (� r2
4 ��s2

1 )(� r1
4 ��s1

1 )(x) 2 (D4 � D3) \ R̂.

That is, ! j +1(x) 2 (D4 � D3) \ R̂. In particular, we conclude that! j +1(x) 6= ! j (x).
Similar argument yields that! j +k(x) 6= ! j +l (x) for k 6= l and k, l � 0. This completes
the proof of Theorem 1.2.

6. Proof of Theorem 1.3

From Theorem 1.2, there are infinitely many elementsh j 2 G so that! j = h j �
do not fix any fixed points ofG. Hence all!�j = '�([! j ]) are pseudo-Anosov mapping
class of S projecting to (1.1). From the construction, each!�j is induced by a map
with from (1.3). By the argument of Theorem 1.2, there are infinitely many distinct
elements in the sequencef!�j g. This proves (1)–(3) of Theorem 1.3.

To prove (4)–(6) of Theorem 1.3, we choose a point in the Teichimüller space
T(S̃) representedF-minimal surface denoted bỹS. Let G be the Fuchsian group so
that H=G = S̃. Let z0 be a zero of� (� is defined by the pseudo-Anosov mapF), so
that F(z0) = z0 and Ht (z0), 0� t � 1, is trivial if z0 is not a puncture. It may or may
not be a puncture of̃S.

Associated to eacĥz0 2 H with %(ẑ0) = z0, there is a map� defined by (1.3). To
see that'�([� ]) is pseudo-Anosov ifz0 is a non-puncture zero, we refer to [18] and
outline the proof as follows. Letl denote the (unique) Teichmüller geodesic inT(S̃)
determined by�̃ defined as (1.1). Let̂l � F(S̃) be a lift of l defined by

l̂ = f([t�], wt�(ẑ0)), t 2 (�1, 1)g � F(S̃).

Clearly, l̂ is a line in F(S̃) passing througĥz0. By [10], '(l̂ ) � T(S) is a Teichmüller
geodesic inT(S). By the argument of Proposition 3 and Corollary 2 of [10],l̂ is in-
variant under a liftF̂ of F with F̂(ẑ0) = ẑ0. From the assumption,Ht (z0) is a trivial
loop. This implies that� jR̂ = F̂ jR̂. Therefore,'(l̂ ) is invariant under the action of'�([� ]). So by Bers [5],'�([� ]) is pseudo-Anosov.

We need to prove that all!�n, for large j , are not conjugate to'�([� ]).
Suppose that for somej � 1, there ish0 2 G such that

(6.1)
NY

i =1

(h j �2h� j )r i ��si
1 = h0�h�1

0 ,

where� is defined in (1.4). Note thatf�1, �2g possesses the property thatH1\ H2 6= ;.
If S̃�f�̃1, �̃2g consists of once punctured disks only,� fixes a parabolic fixed point of
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Fig. 3.

G on R. However, if S̃�f�̃1, �̃2g contains some disk components, for some� defined
as (1.4), the existence of fixed points of� that are also fixed by elements ofG is not
clear. In this case, we use a different approach as follows.

For i = 1, 2, let Di be maximal elements ofUi so that�D1 intersects with�D2.
Let � = D1 \ D2 and3 = � \ R̂. See Fig. 3.

Now we consider the action of� on 3. The endpointY is moved to the right
while the pointZ is moved to the left. Since the action of� on 3 is continuous, there
is a point V 2 3 so that� (V) = V (according to Lemma 2.2,V is not a hyperbolic
fixed point of G, but it could be a parabolic fixed point ofG). Thus h0�h�1

0 fixes

h0(V) 2 R̂.
On the other hand,f�1, h j �2h� j g has the property thatH1 \ H2 = ;. By the same

argument of Lemma 3.3,

NY
i =1

(h j �2h� j )r i ��si
1

does not fix any point on̂R. This contradicts to (6.1). The same methods can be used
to prove that all!�j lie in different conjugacy classes. Details are omitted.
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