THE STRUCTURE OF ALGEBRAIC EMBEDDINGS OF \mathbb{C}^{2} INTO \mathbb{C}^{3} (THE NORMAL QUARTIC HYPERSURFACE CASE. II)

Tomoaki OHTA

(Received March 14, 2008)

Abstract

We obtain the affirmative answer for a special case of the linearization problem for algebraic embeddings of \mathbb{C}^{2} into \mathbb{C}^{3}. Indeed, we determine all the compactifications (X, Y) of \mathbb{C}^{2} such that X are normal quartic hypersurfaces in \mathbb{P}^{3} without triple points and Y are hyperplane sections of X. Moreover, for each (X, Y), we construct a tame automorphism of \mathbb{C}^{3} which transforms the hypersurface $X \backslash Y$ onto a coordinate hyperplane.

1. Introduction

A polynomial mapping $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is called an algebraic embedding of \mathbb{C}^{n} into \mathbb{C}^{m} for $m>n \geq 1$ if f is injective and if the image of f is a smooth algebraic subvariety of \mathbb{C}^{m}. Let $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ be the group of algebraic automorphisms of \mathbb{C}^{n}. Here we consider the following conjecture:

Conjecture. Let $f: \mathbb{C}^{n} \hookrightarrow \mathbb{C}^{n+1}$ be an algebraic embedding. Then f is equivalent to a linear embedding up to $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n+1}\right)$, equivalently to say, there exists an algebraic automorphism of \mathbb{C}^{n+1} which transforms the image $f\left(\mathbb{C}^{n}\right)$ onto a coordinate hyperplane.

For the case $n=1$, Abhyankar-Moh [1] and Suzuki [14] showed that the conjecture is true. For the cases $n \geq 2$, the conjecture is still unsolved. In this paper, we will consider the case $n=2$ only. Our approach is geometric and our main tool is a method of compactifications of \mathbb{C}^{2}. Let $f: \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3}$ be an algebraic embedding. We identify \mathbb{C}^{3} with an affine part of the complex projective space \mathbb{P}^{3} in the standard way. We denote by X_{f} the closure of the image of f in \mathbb{P}^{3} and put $Y_{f}:=X_{f} \backslash f\left(\mathbb{C}^{2}\right)$. By construction, we see that Y_{f} is a hyperplane section of X_{f} and that $X_{f} \backslash Y_{f}$ is biregular to \mathbb{C}^{2}, that is $\left(X_{f}, Y_{f}\right)$ is a compactification of \mathbb{C}^{2}. We call Y_{f} the boundary of the compactification. Our main purpose is to write down explicitly a defining equation of the image of f up to affine transformations of \mathbb{C}^{3} and to construct explicitly

[^0]an algebraic automorphism of \mathbb{C}^{3} linearizing the defining equation, when the image of f is of low degree. This explicit way is very important for us not only to obtain examples but also to find geometric invariants and inductive methods. In this direction, in Ohta [10], we showed that the conjecture is true when the degree of the image of f is less than or equal to three. For the case of degree three, we needed a so-called Nagata automorphism (cf. [10]) to linearize some embedding.

Next we consider the case of degree four. Then we have the following three possibilities: (1) X_{f} is normal and it has at least a triple point; (2) X_{f} is normal and it has no triple points; (3) X_{f} is non-normal. For the case (1), in Ohta [11], we showed that the conjecture is true, and we needed a generalization and an analogue of a Nagata automorphism to linearize some embeddings. In this paper, we will treat the case (2) only. The case (3) will be dealt with elsewhere. Thus it suffices to consider a compactification (X, Y) of \mathbb{C}^{2} such that X is a normal quartic hypersurface in \mathbb{P}^{3} without triple points and Y is a hyperplane section of X. First we will determine the defining equations of such compactifications (X, Y) by using the classification of minimal normal compactifications of \mathbb{C}^{2} due to Morrow [9] and the structure theorem of minimally elliptic singularities due to Laufer [8]. Finally, for each (X, Y), we will construct a tame automorphism of \mathbb{C}^{3} explicitly which linearizes the defining equation of $X \backslash Y$.

From now on to the end of this paper, we assume the following:
Assumption. Let X be a normal quartic hypersurface in \mathbb{P}^{3} without triple points and Y a hyperplane section of X such that $X \backslash Y$ is biholomorphic to \mathbb{C}^{2}. Denote by H the hyperplane in \mathbb{P}^{3} with $Y=X \cap H$.

We define some notations as follows. Let $Y=\bigcup_{i=1}^{t} Y_{i}$ be the irreducible decomposition of Y. We put $\mathcal{Y}:=\left.H\right|_{X}$. We note that Supp $\mathcal{Y}=Y$ and $\mathcal{O}_{H}\left(\left.X\right|_{H}\right) \cong \mathcal{O}_{\mathbb{P}^{2}}(4)$. We put $x:=\operatorname{Sing} X=\left\{x_{1}, \ldots, x_{m}\right\}$. Let $\pi: M \rightarrow X$ be the minimal resolution of X with exceptional set $E=\bigcup_{i=1}^{s} E_{i}:=\pi^{-1}(x)$, where each E_{i} is irreducible. We denote by \hat{C} the proper transform of a curve C in X by π. In $\S 2$, we shall see that X has a unique minimally elliptic double point, which is denoted by x_{1}, and that $Z^{2}=-1,-2$ for the fundamental cycle Z of $\pi^{-1}\left(x_{1}\right)$. Then our main results are the following:

Theorem 1. Let (X, Y) be a pair satisfying Assumption. Then the weighted dual graph of $\hat{Y} \cup E$ is one of Fig. 1, where the notations \bullet, \circ, Δ mean smooth rational curves with self-intersection numbers $-1,-2,-3$ respectively and all \circ, Δ are irreducible components of E.

Theorem 2. For each weighted dual graph of $\hat{Y} \cup E$ in Theorem 1, the defining equation of (X, Y) is one of the following up to $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$:
(XV) $X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}+z_{0} z_{3}^{3}+z_{1}^{3} z_{3}=0, \beta^{2}-4 \alpha \gamma=0$,
(XVI) $X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}+z_{0} z_{3}^{3}+z_{1}^{3} z_{3}=0, \beta^{2}-4 \alpha \gamma \neq 0$,
(XV)

(XVII)

(XIX)

(XXI)

(XVI)

(XVIII)

(XX)

Fig. 1.
(XVII) $X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-\left(z_{0} z_{3}+z_{1}^{2}\right)^{2}+z_{1} z_{3}^{3}=0,\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-\right.$ $4 \alpha(\gamma+1)\}=0$,
(XVIII) $X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-\left(z_{0} z_{3}+z_{1}^{2}\right)^{2}+z_{1} z_{3}^{3}=0,\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-\right.$ $4 \alpha(\gamma+1)\} \neq 0$,
(XIX) $X: \quad\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-z_{1}^{4}+z_{0} z_{3}^{3}+\delta z_{1}^{2} z_{3}^{2}=0,\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-\right.$ $4 \alpha(\gamma+1)\}=0$,
(XX) $X: \quad\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-z_{1}^{4}+z_{0} z_{3}^{3}+\delta z_{1}^{2} z_{3}^{2}=0, \quad\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-\right.$ $4 \alpha(\gamma+1)\} \neq 0$,
(XXI) $X: z_{2}^{2} z_{3}^{2}+\left(2 z_{0}^{3}+3 z_{0} z_{1} z_{3}\right) z_{2}-z_{1}^{3} z_{3}-(3 / 4) z_{0}^{2} z_{1}^{2}+z_{0} z_{3}^{3}+\delta\left(z_{1} z_{3}+z_{0}^{2}\right) z_{3}^{2}=0$,
where $z=\left(z_{0}: z_{1}: z_{2}: z_{3}\right)$ is a homogeneous coordinate of $\mathbb{P}^{3}, H=\left\{z_{3}=0\right\}, \alpha, \beta, \gamma, \delta \in$ \mathbb{C} and $\alpha \neq 0$.

REMARK. In Theorems 1 and 2, we continue to number the types of (X, Y) from the previous paper [11] and we obtain some invariants as follows:
$(\mathrm{XV}) Z^{2}=-2, \mathcal{Y}=4 Y_{1}\left(Y_{1}\right.$: line $), x=\left\{x_{1}\right\}$.
(XVI) $Z^{2}=-2, \mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $), x=\left\{x_{1}\right\}$.
(XVII) $Z^{2}=-2, \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $), x=\left\{x_{1}, x_{2}\right\}$.
(XVIII) $Z^{2}=-2, \mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $), x=\left\{x_{1}\right\}$.
(XIX) $Z^{2}=-2, \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $), x=\left\{x_{1}, x_{2}\right\}$.
$(\mathrm{XX}) Z^{2}=-2, \mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $), x=\left\{x_{1}\right\}$.
(XXI) $Z^{2}=-1, \mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ conic), $x=\left\{x_{1}\right\}$.

For each type, $x_{1}=(0: 0: 1: 0)$ is the unique minimally elliptic double point and x_{2}
is a rational double point of type A_{1}, where

$$
x_{2}=\left\{\begin{array}{l}
(\beta:-2 \alpha: \beta: 0) \text { for the type (XVII) and } \beta^{2}-4 \alpha(\gamma-1)=0 \\
(\beta:-2 \alpha:-\beta: 0) \text { for the type (XVII) and } \beta^{2}-4 \alpha(\gamma+1)=0 . \\
(\beta:-2 \alpha: 0: 0) \text { for the type (XIX). }
\end{array}\right.
$$

Moreover, every line in X through x_{1} is an irreducible component of Y (see Lemma 3.2 (ii) and Lemma 4.1 (v)).

Here we recall some special subgroups of $\operatorname{Aut}\left(\mathbb{C}^{3}\right)$. Let $A(3, \mathbb{C})$ and $J(3, \mathbb{C})$ be the subgroups of all affine transformations and de Jonquières automorphisms respectively. Let us denote by $T(3, \mathbb{C})$ the subgroup generated by $A(3, \mathbb{C})$ and $J(3, \mathbb{C})$. An algebraic automorphism of \mathbb{C}^{3} is said to be tame if it is an element of $T(3, \mathbb{C})$ (cf. [11]).

Theorem 3. For each defining equation of (X, Y) in Theorem 2, there exists a tame automorphism of \mathbb{C}^{3} which transforms $X \backslash Y$ onto a coordinate hyperplane.

As a consequence of Theorems 2 and 3, we obtain the following:
Theorem 4. Let $f: \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3}$ be an algebraic embedding. Assume that X_{f} is a normal quartic hypersurface in \mathbb{P}^{3} without triple points. Then f is equivalent to a linear embedding up to $\operatorname{Aut}\left(\mathbb{C}^{2}\right)$ and $T(3, \mathbb{C})$.

Indeed, if one has such an algebraic embedding f, then $\left(X_{f}, Y_{f}\right)$ has one of the defining equations of the types (XV) through (XXI) up to $\operatorname{Aut}\left(\mathbb{P}^{3}\right)$ by Theorem 2 and there exists a tame automorphism of \mathbb{C}^{3} transforming $f\left(\mathbb{C}^{2}\right)=X_{f} \backslash Y_{f}$ onto a coordinate hyperplane by Theorem 3. Thus we obtain Theorem 4.

Notation. $\quad b_{i}(V)=\operatorname{dim}_{\mathbb{R}} H^{i}(V, \mathbb{R}): i$-th Betti number of V.
Exc φ : exceptional set of birational morphism $\varphi: V \rightarrow W$.
$\operatorname{Pic}(V)$: Picard group of V.
K_{V} : canonical divisor of V.
ω_{V} : dualizing sheaf of V.
$\mathfrak{m}_{V, v}$: maximal ideal of $\mathcal{O}_{V, v}$.
mult $_{W} V$: multiplicity of V at general point of W.
$\left.D\right|_{V}$: restriction of Cartier divisor D to V.
$(D \cdot C)_{V, v}$: local intersection number of D and C at $v \in V$.
$D_{1} \sim D_{2}: D_{1}$ and D_{2} are linearly equivalent.
(V, v) : normal two-dimensional singularity.
$p_{g}(v)$: geometric genus of (V, v).
$p_{g}\left(v_{1}, \ldots, v_{n}\right)=\sum_{i=1}^{n} p_{g}\left(v_{i}\right)$.
$\mathbb{N}=\{1,2,3, \ldots\}:$ set of all positive integers.
$(-n)$-curve: smooth rational curve with self-intersection number $-n$.
$\stackrel{-n}{\circ}$: (-n)-curve.
\odot : 0-curve.
-: (-1)-curve.
○: (-2)-curve.
Δ : (-3)-curve.

2. Preliminaries

In this section, we shall describe the fundamental properties of a pair (X, Y) satisfying Assumption in $\S 1$. We use the same notation as that in $\S 1$. Let $Y=\bigcup_{i=1}^{t} Y_{i}$ be the irreducible decomposition of Y. We denote by $\operatorname{deg} Y_{i}$ the degree of Y_{i} as a plane curve of $H \cong \mathbb{P}^{2}$. We set $\mathcal{Y}:=\left.H\right|_{X}=\sum_{i=1}^{t} k_{i} Y_{i}$, where $k_{i} \in \mathbb{N}$ and $\sum_{i=1}^{t} k_{i} \operatorname{deg} Y_{i}=4$. We put $x:=\operatorname{Sing} X=\left\{x_{1}, \ldots, x_{m}\right\}$. Let $\pi: M \rightarrow X$ be the minimal resolution of X with exceptional set $E=\bigcup_{j=1}^{s} E_{j}:=\pi^{-1}(x)$, where each E_{j} is irreducible. We may assume that $\pi^{-1}\left(x_{i}\right)=\bigcup_{j=s_{i-1}+1}^{s_{i}} E_{j}$ for $1 \leq i \leq m$, where $0=: s_{0} \leq s_{1} \leq \cdots \leq s_{m}:=s$. Let $Z^{(i)}=\sum_{j=s_{i-1}+1}^{s_{i}} a_{j} E_{j}$ be the fundamental cycle of $\pi^{-1}\left(x_{i}\right)$ with $a_{j} \in \mathbb{N}$. We denote by \hat{C} the proper transform of a curve C in X by π. Let Γ be a general smooth hyperplane section of X with $\Gamma \cap x=\emptyset$. We have the relations $\left(\hat{\Gamma} \cdot \hat{Y}_{i}\right)_{M}=\left(\Gamma \cdot Y_{i}\right)_{X}=\operatorname{deg} Y_{i}$ and $\hat{\Gamma} \sim \sum_{i=1}^{t} k_{i} \hat{Y}_{i}+\sum_{j=1}^{s} b_{j} E_{j}$ with $b_{j} \in \mathbb{N}$. We note that $\omega_{X}=\mathcal{O}_{X}\left(K_{X}\right) \cong \mathcal{O}_{X}$ and $x \subset Y$ and that $M \backslash(\hat{Y} \cup E)$ is biholomorphic to \mathbb{C}^{2}. By Kodaira [6] and Ramanujam [12], we see that $X \backslash Y$ and $M \backslash(\hat{Y} \cup E)$ are biregular to \mathbb{C}^{2}. In particular, X and M are rational surfaces. Then we have the next proposition.

Proposition 2.1 (Ohta [10]). One obtains the following:
(i) $H_{0}(X, \mathbb{Z}) \cong H_{0}(Y, \mathbb{Z})=\mathbb{Z}$.
(ii) $H_{1}(X, \mathbb{Z}) \cong H_{1}(Y, \mathbb{Z})=0$.
(iii) $H_{2}(X, \mathbb{Z}) \cong H_{2}(Y, \mathbb{Z})=\bigoplus_{i=1}^{t} \mathbb{Z} \cdot Y_{i}$.
(iv) $H_{3}(X, \mathbb{Z}) \cong H_{3}(Y, \mathbb{Z})=0$.
(v) $H^{1}\left(X, \mathcal{O}_{X}\right)=0$.
(vi) $p_{g}(x)=1$.
(vii) X is not a cone.
(viii) $\operatorname{gcd}\left(\operatorname{deg} Y_{1}, \ldots, \operatorname{deg} Y_{t}\right)=1$.
(ix) $\operatorname{mult}_{p} X \leq \sum_{i=1}^{t} k_{i} \operatorname{mult}_{p} Y_{i}(\forall p \in Y=X \cap H)$.

Remark. (1) By (i) and (ii), Y is a connected divisor without cycles. In particular, each Y_{i} is a rational curve without nodes. If Y contains at least two lines, then Y consists of lines which meet at only one point. Indeed, this follows since Y has no cycles and each Y_{i} is a plane curve.
(2) By (vi), (vii) and Assumption in $\S 1$, we may assume that x_{1} is a minimally elliptic double point and $x \backslash\left\{x_{1}\right\}$ consists of at most rational double points. For simplic-
ity, we put $Z:=Z^{(1)}$. By Artin [2] and Laufer [8], we see that $K_{M} \sim-Z, Z^{2}=-1,-2$ and $Z^{(i) 2}=-2$ for $2 \leq i \leq m$.
(3) Since $(M, \hat{Y} \cup \bar{E})$ also satisfies the assertions (i) through (v), $\hat{Y} \cup E$ is a connected divisor without cycles (cf. [10]). By Noether's formula, we obtain $b_{2}(\hat{Y})+$ $b_{2}(E)=b_{2}(M)=10-Z^{2}$. Thus $\hat{Y} \cup E$ consists of $10-Z^{2}$ rational curves.

For the divisor \mathcal{Y}, we obtain the following classification. In the last part of this section, we will make this classification to be detailed.

Lemma 2.2. There exist the following seven possibilities for the divisor \mathcal{Y} :
(i) $\mathcal{Y}=4 Y_{1}\left(Y_{1}:\right.$ line $)$ with $x \subset Y_{1}$.
(ii) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$ with $x \subset Y_{1}$.
(iii) $\mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $)$ with $x \subset Y$.
(iv) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}$ (Y_{i} : line) with $x \subset Y_{1}$ and $Y_{1} \cap Y_{2} \cap Y_{3}=\{$ one point $\}$.
(v) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}\right.$: line) with $x=\left\{x_{1}\right\}=Y_{1} \cap Y_{2} \cap Y_{3} \cap Y_{4}$.
(vi) $\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, Y_{2} : conic) with $x \subset Y_{1}$ and $Y_{1} \cap Y_{2}=\{$ one point $\}$.
(vii) $\mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ cuspidal cubic) with $x \subset \operatorname{Sing} Y$ and $Y_{1} \cap Y_{2}=\{$ one point $\}$.

Proof. By Proposition 2.1 (ii), (viii) and (ix), we obtain the assertions.
For the fundamental cycles Z and $Z^{(i)}$, we shall prove some lemmas with strong effect to the structure of (X, Y).

Lemma 2.3 ([8], [10]). One obtains the following:
(1) Assume that $Z^{2}=-2$. Then

$$
\pi^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M}(-Z)
$$

Moreover, the blowing-up morphism at x_{1} of X factors π and $(\hat{C} \cdot Z)=\operatorname{mult}_{x_{1}} C$ for any curve C in X through x_{1}.
(2) Assume that $Z^{2}=-1$. Denote by E_{1} a unique irreducible component E_{i} of Z with $\left(E_{i} \cdot Z\right)=-1$ and $a_{i}=1$. Then there exists a unique point p_{0} of $E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$ such that

$$
\left(\pi \circ \pi_{0}\right)^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}-2 E_{0}^{\prime}\right),
$$

where $\pi_{0}: M^{\prime} \rightarrow M$ is a blowing-up at p_{0} with exceptional curve E_{0}^{\prime} and Z^{\prime} is the proper transform of Z in M^{\prime}. Moreover, the blowing-up morphism at x_{1} of X factors $\pi \circ \pi_{0}$ and $\left(\hat{C}^{\prime} \cdot Z^{\prime}+2 E_{0}^{\prime}\right)=$ mult $_{x_{1}} C$ for any curve C in X through x_{1}, where \hat{C}^{\prime} is the proper transform of C in M^{\prime}.

Proof. First we use Theorem 3.13 in [8] and the universal property of blowingup (cf. Proposition II.7.14 in [5]). By applying the same argument as in the proof of Lemma 3 in [10], we obtain the assertions.

REMARK. In (ii), we note that $\pi_{0}^{*} Z=Z^{\prime}+E_{0}^{\prime}, K_{M^{\prime}} \sim-Z^{\prime}$ and $Z^{\prime 2}=-2$ (cf. §4).
Lemma 2.4 ([2], [10]). Assume that x contains at least two points. Then

$$
\pi^{*} \mathfrak{m}_{X, x_{i}} \cong \mathcal{O}_{M}\left(-Z^{(i)}\right)
$$

for $2 \leq i \leq m$. Moreover, the blowing-up morphism at x_{i} of X factors π and $\left(\hat{C} \cdot Z^{(i)}\right)=$ $\operatorname{mult}_{x_{i}} C$ for any curve C in X through x_{i}.

Proof. First we use Theorem 4 in [2] and the universal property of blowing-up (cf. Proposition II.7.14 in [5]). By applying the same argument as in the proof of Lemma 3 in [10], we obtain the assertions.

Lemma 2.5. One obtains the following:
(i) Assume that C is a line or a conic in X. Then $\hat{C} \cong \mathbb{P}^{1}$ and $\left(\hat{C} \cdot Z^{(i)}\right)=1$ when $x_{i} \in C(1 \leq i \leq m)$. If $x_{1} \in C$, then \hat{C} is a (-1)-curve with $(\hat{C} \cdot Z)=1$. If $x_{1} \notin C$, then \hat{C} is a (-2)-curve with $(\hat{C} \cdot Z)=0$.
(ii) Assume that C is a plane cuspidal cubic in X and $\operatorname{Sing} C=\left\{x_{1}\right\}$. Then $\hat{C} \cong \mathbb{P}^{1}$ and $\left(\hat{C} \cdot Z^{(i)}\right)=1$ when $x_{i} \in C(2 \leq i \leq m)$. If $Z^{2}=-2$, then \hat{C} is a 0 -curve with $(\hat{C} \cdot Z)=2$. If $Z^{2}=-1$, then \hat{C} is a 0 -curve with $(\hat{C} \cdot Z)=2$ or a (-1)-curve with $(\hat{C} \cdot Z)=1$.

Proof. By Lemma 2.3, we note that the blowing-up morphism at x_{1} of X factors π or $\pi \circ \pi_{0}$ if $Z^{2}=-2$ or -1 respectively. By Lemmas 2.3, 2.4 and the adjunction formula, we obtain the assertions.

REmARK. In (i) and (ii), we note that $\hat{C} \cup \pi^{-1}\left(\left(x \backslash\left\{x_{1}\right\}\right) \cap C\right)$ is a simple normal crossing divisor of smooth rational curves. In (i), we see that \hat{C} meets $\pi^{-1}\left(x_{1}\right)$ transversally at only one point if $x_{1} \in C$.

Lemma 2.6 (Reid [13]). One obtains the following:
(i) Z is a numerically 2-connected divisor of M with $\omega_{Z} \cong \mathcal{O}_{Z}$ and $p_{a}(Z)=h^{0}\left(\mathcal{O}_{Z}\right)=$ $h^{1}\left(\mathcal{O}_{Z}\right)=1$. Here an effective divisor D of smooth projective surface is said to be nummerically n-connected for $n \geq 0$ if it satisfies the condition $\left(D_{1} \cdot D_{2}\right) \geq n$ for every effective decomposition $D=D_{1}+D_{2}$ with $D_{1}, D_{2}>0$.
(ii) There exists an exact sequence

$$
0 \rightarrow \mathbb{C} \rightarrow \operatorname{Pic}(Z) \xrightarrow{\operatorname{deg}} \mathbb{Z}^{\oplus s_{1}} \rightarrow 0
$$

of abelian groups, where the homomorphism deg is given for $\mathcal{L} \in \operatorname{Pic}(Z)$ by

$$
\operatorname{deg} \mathcal{L}=\left(\left.\operatorname{deg}_{E_{1}} \mathcal{L}\right|_{E_{1}}, \ldots,\left.\operatorname{deg}_{E_{s_{1}}} \mathcal{L}\right|_{E_{s_{1}}}\right)
$$

(iii) If \mathcal{L} is a nef line bundle on Z with $\operatorname{deg}_{Z} \mathcal{L}:=\left.\sum_{i=1}^{s_{1}} a_{i} \operatorname{deg}_{E_{i}} \mathcal{L}\right|_{E_{i}}=1$, then there exists a unique smooth point P of Z such that $\mathcal{L} \cong \mathcal{O}_{Z}(P)$.
(iv) If P and Q are smooth points of Z, then $P=Q$ if and only if $\mathcal{O}_{Z}(n(P-Q)) \cong \mathcal{O}_{Z}$ for some integer $n \geq 1$.

Proof. (i) By the adjunction formula, Lemma 3.11 and Theorem 4.21 in [13], we obtain the assertions.
(ii) Note that $H^{1}(Z, \mathbb{Z})=0$ and $H^{2}(Z, \mathbb{Z}) \cong \mathbb{Z}^{\oplus s_{1}}$ since $\hat{Y} \cup E$ has no cycles and Supp Z consists of s_{1} rational curves. Note that $H^{1}\left(\mathcal{O}_{Z}\right) \cong \mathbb{C}$ and $H^{2}\left(\mathcal{O}_{Z}\right)=0$ by (i) and $\operatorname{dim}_{\mathbb{C}} Z=1$. By applying the exponential cohomology sequence of sheaves on Z, we obtain the assertion.
(iii) By Lemma 4.23 in [13], we obtain the assertion.
(iv) By noting (ii) and (iii), we obtain the assertion.

We shall prove some useful lemmas for smooth compactifications of \mathbb{C}^{2}. It is wellknown that the weighted dual graph of a boundary of minimal normal compactification of \mathbb{C}^{2} is a linear tree of smooth rational curves by Ramanujam [12] and these graphs are classified by Morrow [9] (cf. Proposition 2 in [10]). Here a smooth compactification (S, C) of \mathbb{C}^{2} is said to be minimally normal if it satisfies the following two conditions: (1) C is a simple normal crossing divisor; (2) any (-1)-curve in C meets at least three other irreducible components of C.

Lemma 2.7. \quad There exists no boundary C of smooth compactification of \mathbb{C}^{2} satisfying the following conditions:
(i) C contains a smooth rational curve C_{0} with $C_{0}^{2} \geq-1$.
(ii) $\overline{C \backslash C_{0}}$ consists of at least three connected components, which are denoted by C_{1}, C_{2}, \ldots, C_{n} with $n \geq 3$.
(iii) C_{i} meets C_{0} transversally at only one point for any $1 \leq i \leq n$.
(iv) C_{i} is a simple normal crossing divisor of smooth rational curves whose selfintersection numbers are less than or equal to -2 for any $i=1,2$.

Proof. Assume that there exists such a smooth compactification (S, C) of \mathbb{C}^{2}. By applying some blowing-ups on $\left(C_{3} \cup \cdots \cup C_{n}\right) \backslash C_{0}$, we obtain a smooth compactification $\left(S^{\prime}, C^{\prime}\right)$ of \mathbb{C}^{2} with simple normal crossing boundary, where C^{\prime} is the total transform of C in S^{\prime}. Let C_{i}^{\prime} be the total transform of C_{i} in S^{\prime} for $0 \leq i \leq n$. Then C^{\prime} satisfies the following conditions:
(1) C_{0}^{\prime} is a smooth rational curve in C^{\prime} with $\left(C_{0}^{\prime}\right)^{2} \geq-1$;
(2) $\overline{C^{\prime} \backslash C_{0}^{\prime}}$ consists of the n connected components $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}$ with $n \geq 3$;
(3) C_{i}^{\prime} meets C_{0}^{\prime} transversally at only one point for any $1 \leq i \leq n$;
(4) C_{i}^{\prime} is a simple normal crossing divisor of smooth rational curves whose selfintersection numbers are less than or equal to -2 for any $i=1,2$;
(5) C_{i}^{\prime} is a simple normal crossing divisor of smooth rational curves for any $3 \leq i \leq n$.

Fig. 2.

Fig. 3.
By [12], we obtain a linear tree in Fig. 2 as a boundary of minimal normal compactification of \mathbb{C}^{2} by applying some blowing-downs in C^{\prime}, where $C_{0}^{\prime \prime}, C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ are the proper transforms of $C_{0}^{\prime}, C_{1}^{\prime}$ and C_{2}^{\prime} respectively. However this dual graph is not found in Morrow's classification. This is a contradiction.

Lemma 2.8. Assume that C is a boundary of smooth compactification of \mathbb{C}^{2} satisfying the following conditions:
(i) C contains a (-1)-curve C_{0}.
(ii) $\overline{C \backslash C_{0}}$ consists of exactly two connected components C_{1} and C_{2}.
(iii) C_{i} meets C_{0} transversally at only one point for any $i=1,2$.
(iv) C_{1} is a simple normal crossing divisor of (-2)-curves.

Then the weighted dual graph of $C_{0} \cup C_{1}$ is a linear tree $\bullet-\square-\cdots \multimap$.
Proof. Assume that the weighted dual graph of $C_{0} \cup C_{1}$ is not such a linear tree. Then there exists an irreducible component $C_{1,1}$ of C_{1} such that $\overline{\left(C_{0} \cup C_{1}\right) \backslash C_{1,1}}$ consists of at least three connected components and such that the weighted dual graph of the connected component of $\overline{\left(C_{0} \cup C_{1}\right) \backslash C_{1,1}}$ containing C_{0} is a linear tree. By contracting the connected component of $\overline{\left(C_{0} \cup C_{1}\right) \backslash C_{1,1}}$ containing C_{0}, we obtain a boundary of smooth compactification of \mathbb{C}^{2} satisfying the conditions in Lemma 2.7. This is a contradiction.

Lemma 2.9. Assume that C is a simple normal crossing boundary of smooth compactification of \mathbb{C}^{2} which is a union of only one (-1)-curve and some (-2)-curves. Then the weighted dual graph of C is a linear tree $\multimap \multimap$ — or a tree as in Fig. 3.

Proof. Let C_{0} be the unique (-1)-curve in C and $\overline{C \backslash C_{0}}=\bigcup_{i=1}^{n} C_{i}$ the decomposition into connected components with $n \geq 1$. By Lemma 2.7, we obtain $n=1,2$. Then we consider the following cases (1) and (2).
(1) Assume that $n=2$. By Lemma 2.8, the weighted dual graphs of $C_{0} \cup C_{1}$ and $C_{0} \cup C_{2}$ are linear trees $\bullet-\bigcirc-\cdots \multimap$. By using Morrow's classification after the contraction of $C_{0} \cup C_{1}$ or $C_{0} \cup C_{2}$, we see that the weighted dual graph of C is a linear tree $\circ \longrightarrow$ - -
(2) Assume that $n=1$. Note that the weighted dual graph of C is not a linear tree by the assumption. Then there exists an irreducible component $C_{1,1}$ of C_{1} such that $\overline{C \backslash C_{1,1}}$ consists of at least three connected components and such that the weighted dual graph of the connected component of $\overline{C \backslash C_{1,1}}$ containing C_{0} is a linear tree. By contracting the connected component of $\overline{C \backslash C_{1,1}}$ containing C_{0}, we obtain a simple normal crossing boundary D of smooth compactification of \mathbb{C}^{2} which is a union of only one (-1)-curve D_{0} and some (-2)-curves and such that $\overline{D \backslash D_{0}}$ consists of at least two connected components. By Lemma $2.7, \overline{D \backslash D_{0}}$ consists of exactly two connected components. By the same argument as that in (1), the weighted dual graph of D is a linear tree $-\bigcirc-$. Hence the weighted dual graph of C is obtained as in Fig. 3.

From now on to the end of this section, we shall show that some cases do not occur for the classification of the divisor \mathcal{Y} in Lemma 2.2. In the proofs of the following lemmas, we mainly use Lemmas 2.5, 2.7 and 2.8. Especially, we always note Remark of Lemma 2.5.

Lemma 2.10. It does not occur the case where

$$
\mathcal{Y}=2 Y_{1}+2 Y_{2} \quad\left(Y_{i}: \text { line }\right) \text { with } \quad x_{1} \notin Y_{1} \cap Y_{2}
$$

Proof. Assume that this case occurs. We may assume that $x_{1} \in Y_{1} \backslash Y_{2}$. By Lemma $2.5, \hat{Y}_{1}$ is a (-1)-curve and \hat{Y}_{2} is a (-2)-curve in M. Note the linear equivalence

$$
\hat{\Gamma} \sim 2 \hat{Y}_{1}+2 \hat{Y}_{2}+\sum_{i} b_{i} E_{i}
$$

with $b_{i} \in \mathbb{N}$. Then we consider the following cases (1) and (2).
(1) Assume that $Y_{1} \cap Y_{2}$ is a smooth point of X. Note that $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=1$ by computing the intersection number of the above linear equivalence and \hat{Y}_{1}. By Lemma 2.7, $x \cap\left(Y_{1} \backslash Y_{2}\right)$ consists of only one point x_{1}. Since $\left(\sum_{i} b_{i} E_{i} \cdot \hat{Y}_{2}\right)=3>0, x \cap\left(Y_{2} \backslash Y_{1}\right)$ contains at least one point. By Lemma 2.8, $x \cap\left(Y_{2} \backslash Y_{1}\right)$ consists of exactly one point, which is denoted by x_{2}, and the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \pi^{-1}\left(x_{2}\right)$ is a linear tree as in Fig. 4 (1), where $E_{S_{1}+1}, \ldots, E_{S_{2}}$ are the irreducible components of $\pi^{-1}\left(x_{2}\right)$ ($s_{2}-s_{1} \geq 1$). By computing the intersection number of the above linear equivalence and $\hat{Y}_{2}+Z^{(2)}$, we obtain $b_{s_{2}}=-1$. This is a contradiction.
(2) Assume that $Y_{1} \cap Y_{2}$ is a singular point of X, which is denoted by x_{2}. By Lemma 2.4, the blowing-up morphism at x_{2} of X factors π. Thus we obtain $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$.

Fig. 4.

By Lemma 2.7, $x \cap\left(Y_{1} \backslash Y_{2}\right)$ consists of only one point x_{1}. By Lemma 2.8, $x \cap\left(Y_{2} \backslash Y_{1}\right)$ consists of no points or exactly one point, which is denoted by x_{3}, and the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \pi^{-1}\left(x \cap Y_{2}\right)$ is a linear tree as in Fig. 4 (2), where $E_{s_{1}+1}, \ldots, E_{s_{2}}$ are the irreducible components of $\pi^{-1}\left(x_{2}\right)$ and $E_{s_{2}+1}, \ldots, E_{s_{3}}$ are the irreducible components of $\pi^{-1}\left(x_{3}\right)\left(s_{2}-s_{1} \geq 1, s_{3}-s_{2} \geq 0\right)$. If $x=\left\{x_{1}, x_{2}\right\}$, then we have $b_{s_{1}+1}=-1$ by computing the intersection number of the above linear equivalence and $\hat{Y}_{2}+Z^{(2)}$. This is a contradiction. If $x=\left\{x_{1}, x_{2}, x_{3}\right\}$, then we have $b_{s_{1}+1}+b_{s_{3}}=1$ by computing the intersection number of the above linear equivalence and $\hat{Y}_{2}+Z^{(2)}+Z^{(3)}$. This is a contradiction.

Lemma 2.11. It does not occur the case where

$$
\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3} \quad\left(Y_{i}: \text { line }\right) \text { with } \quad x_{1} \in Y_{1} \backslash\left(Y_{2} \cup Y_{3}\right)
$$

Proof. Assume that this case occurs. Note that $x \subset Y_{1}$ and that $\hat{Y}_{1}, \hat{Y}_{2}, \hat{Y}_{3}$ are a (-1)-curve and two (-2)-curves in M respectively by Lemma 2.5. If $Y_{1} \cap Y_{2} \cap Y_{3}$ is a smooth point of X, then we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=\left(\hat{Y}_{2} \cdot \hat{Y}_{3}\right)=\left(\hat{Y}_{3} \cdot \hat{Y}_{1}\right)=1$ by computing the intersection number of each \hat{Y}_{i} and $\hat{\Gamma} \sim 2 \hat{Y}_{1}+\hat{Y}_{2}+\hat{Y}_{3}+\sum_{i} b_{i} E_{i}\left(b_{i} \in \mathbb{N}\right)$. By applying the blowing-up on $\hat{Y}_{1} \cap \hat{Y}_{2} \cap \hat{Y}_{3}$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction. Thus $Y_{1} \cap Y_{2} \cap Y_{3}$ is a singular point of X, which is denoted by x_{2}. By Lemma 2.4, the blowing-up morphism at x_{2} of X factors π. Thus we have $\left(\hat{Y}_{i} \cdot \hat{Y}_{j}\right)=0$ for $i \neq j$. Hence the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \hat{Y}_{3} \cup \pi^{-1}\left(x_{2}\right)$ is not a linear tree and $x=\left\{x_{1}, x_{2}\right\}$ by Lemma 2.7. On the other hand, the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \hat{Y}_{3} \cup \pi^{-1}\left(x_{2}\right)$ is a linear tree by Lemma 2.8. This is a contradiction.

Lemma 2.12. It does not occur the case where

$$
\mathcal{Y}=2 Y_{1}+Y_{2} \quad\left(Y_{1}: \text { line, } Y_{2}: \text { conic }\right) \text { with } \quad x_{1} \in Y_{1} \backslash Y_{2} .
$$

Fig. 5.
Proof. Assume that this case occurs. Note that $x \subset Y_{1}$ and that \hat{Y}_{1} and \hat{Y}_{2} are a (-1)-curve and a (-2 -curve in M respectively by Lemma 2.5 . Note the linear equivalence

$$
\hat{\Gamma} \sim 2 \hat{Y}_{1}+\hat{Y}_{2}+\sum_{i} b_{i} E_{i}
$$

with $b_{i} \in \mathbb{N}$. If $Y_{1} \cap Y_{2}$ is a smooth point of X, then we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=2$ by computing the intersection number of the above linear equivalence and \hat{Y}_{2}. By applying the blowing-ups twice on $\hat{Y}_{1} \cap \hat{Y}_{2}$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction. Thus $Y_{1} \cap Y_{2}$ is a singular point of X, which is denoted by x_{2}. By computing the intersection number of the above linear equivalence and \hat{Y}_{1}, we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$, 1. If $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=1$, then each pair of \hat{Y}_{1}, \hat{Y}_{2} and $\pi^{-1}\left(x_{2}\right)$ meets transversally at only one point since $\left(\hat{Y}_{1} \cdot Z^{(2)}\right)=\left(\hat{Y}_{2} \cdot Z^{(2)}\right)=1$. By applying the blowing-up on $\hat{Y}_{1} \cap \hat{Y}_{2} \cap \pi^{-1}\left(x_{2}\right)$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction. Thus we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$. Hence $x=\left\{x_{1}, x_{2}\right\}$ by Lemma 2.7 and the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \pi^{-1}\left(x_{2}\right)$ is a linear tree as in Fig. 5 by Lemma 2.8, where $E_{s_{1}+1}, \cdots, E_{s_{2}}$ are the irreducible components of $\pi^{-1}\left(x_{2}\right)\left(s_{2}-s_{1} \geq 1\right)$. By computing the intersection number of the above linear equivalence and $\hat{Y}_{2}+Z^{(2)}$, we obtain $b_{s_{1}+1}=-1$. This is a contradiction.

Lemma 2.13. It does not occur the case where

$$
\mathcal{Y}=Y_{1}+Y_{2} \quad\left(Y_{1}: \text { line, } Y_{2}: \text { cuspidal cubic }\right) \text { with } \quad Y_{1} \cap Y_{2}=\left\{x_{1}\right\} \neq \text { Sing } Y_{2}
$$

Proof. Assume that this case occurs. In $H \cong \mathbb{P}^{2}, Y_{1}$ and Y_{2} meet tangentially to the third order at x_{1} which is a smooth point of Y_{2}. By Lemmas 2.3 and $2.5, \hat{Y}_{1}$ is a (-1)-curve in M and $\left(\hat{Y}_{1} \cdot Z\right)=\left(\hat{Y}_{2} \cdot Z\right)=1$. Note that $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0,1$ by computing the intersection number of \hat{Y}_{1} and $\hat{\Gamma} \sim \hat{Y}_{1}+\hat{Y}_{2}+\sum_{i} b_{i} E_{i}\left(b_{i} \in \mathbb{N}\right)$. If Sing Y_{2} is a smooth point of X, then we see that $\hat{Y}_{2} \cong Y_{2}$ and $\hat{Y}_{2}^{2}=1$ by the adjunction formula. By applying the blowing-ups three times on Sing \hat{Y}_{2}, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction. Thus $\operatorname{Sing} Y_{2}$ is a singular point of X, which is denoted by x_{2}, and in particular $x=\left\{x_{1}, x_{2}\right\}$. By Lemma 2.4, the blowing-up morphism at x_{2} of X factors π. Thus \hat{Y}_{2} is a smooth curve and in partic-
ular a (-1)-curve in M since $\left(\hat{Y}_{2} \cdot Z\right)=1$. Note that $\left(\hat{Y}_{2} \cdot Z^{(2)}\right)=2$ by Lemma 2.4 and $Z^{(2)}=\sum_{i=s_{1}+1}^{s_{2}} a_{i} E_{i}\left(a_{i} \in \mathbb{N}\right)$. Then we consider the following cases (1), (2) and (3).
(1) Assume that there exists an irreducible component $E_{i_{1}}$ of $\pi^{-1}\left(x_{2}\right)$ such that $\left(\hat{Y}_{2} \cdot E_{i_{1}}\right)=2$ and $a_{i_{1}}=1$. Note that $\left(\hat{Y}_{2} \cdot Z^{(2)}-E_{i_{1}}\right)=0$. By applying the blowing-ups twice on $\hat{Y}_{2} \cap E_{i_{1}}$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction.
(2) Assume that there exist two irreducible components $E_{i_{1}}$ and $E_{i_{2}}$ of $\pi^{-1}\left(x_{2}\right)$ $\operatorname{such}\left(\hat{Y}_{2} \cdot E_{i_{1}}\right)=\left(\hat{Y}_{2} \cdot E_{i_{2}}\right)=1$ and $a_{i_{1}}=a_{i_{2}}=1$. Note that $\left(\hat{Y}_{2} \cdot Z^{(2)}-E_{i_{1}}-E_{i_{2}}\right)=0$. By applying the blowing-up on $\hat{Y}_{2} \cap E_{i_{1}} \cap E_{i_{2}}$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction.
(3) Assume that there exists an irreducible component $E_{i_{1}}$ of $\pi^{-1}\left(x_{2}\right)$ such that $\left(\hat{Y}_{2} \cdot E_{i_{1}}\right)=1$ and $a_{i_{1}}=2$. Note that $\left(\hat{Y}_{2} \cdot Z^{(2)}-2 E_{i_{1}}\right)=0$. Note that $\hat{Y}_{2} \cup \pi^{-1}\left(x_{2}\right)$ is of simple normal crossing and that x_{2} is a rational double point not of type A. If $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$, then x_{2} is a rational double point of type A by Lemma 2.8. This is a contradiction. Thus we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=1$. Since $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=\left(\hat{Y}_{1} \cdot Z\right)=\left(\hat{Y}_{2} \cdot Z\right)=1$, each pair of \hat{Y}_{1}, \hat{Y}_{2} and $\pi^{-1}\left(x_{1}\right)$ meets transversally at only one point. By applying the blowing-up on $\hat{Y}_{1} \cap \hat{Y}_{2} \cap \pi^{-1}\left(x_{1}\right)$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction.

Lemma 2.14. It does not occur the case where

$$
\mathcal{Y}=Y_{1}+Y_{2} \quad\left(Y_{1}: \text { line }, Y_{2}: \text { cuspidal cubic }\right) \text { with } \quad Y_{1} \cap Y_{2} \neq\left\{x_{1}\right\}=\operatorname{Sing} Y_{2}
$$

Proof. Assume that this case occurs. Note that Y_{1} and Y_{2} meet in $H \cong \mathbb{P}^{2}$ tangentially to the third order at a smooth point of Y_{2} and that $x \backslash\left\{x_{1}\right\}$ is contained in $Y_{1} \cap Y_{2}$ and $\left\{x_{1}\right\}=\operatorname{Sing} Y_{2}$. By Lemma $2.5, \hat{Y}_{1}$ is a (-2)-curve in M with $\left(\hat{Y}_{1} \cdot Z\right)=0$ and \hat{Y}_{2} is a (-1)-curve with $\left(\hat{Y}_{2} \cdot Z\right)=1$ or a 0 -curve with $\left(\hat{Y}_{2} \cdot Z\right)=2$. Note the linear equivalence

$$
\hat{\Gamma} \sim \hat{Y}_{1}+\hat{Y}_{2}+\sum_{i} b_{i} E_{i}
$$

with $b_{i} \in \mathbb{N}$. If $Y_{1} \cap Y_{2}$ is a smooth point of X, then we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=3$ by computing the intersection number of the above linear equivalence and \hat{Y}_{1}. By applying the blowing-ups three times on $\hat{Y}_{1} \cap \hat{Y}_{2}$, we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7. This is a contradiction. Thus $Y_{1} \cap Y_{2}$ is a singular point of X, which is denoted by x_{2}, and in particular $x=\left\{x_{1}, x_{2}\right\}$. Note that $\left(\hat{Y}_{1} \cdot Z^{(2)}\right)=\left(\hat{Y}_{2} \cdot Z^{(2)}\right)=1$ by Lemma 2.4. By computing the intersection number of the above linear equivalence and \hat{Y}_{1}, we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0,1,2$. If $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=1,2$, then there exists a unique irreducible component $E_{i_{1}}$ of $\pi^{-1}\left(x_{2}\right)$ such that \hat{Y}_{1}, \hat{Y}_{2} and $E_{i_{1}}$ meet at only one point since $\left(\hat{Y}_{1} \cdot Z^{(2)}\right)=\left(\hat{Y}_{2} \cdot Z^{(2)}\right)=1$. By applying the blowing-ups $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)$ times on $\hat{Y}_{1} \cap \hat{Y}_{2} \cap E_{i_{1}}$, we obtain a smooth compactification of \mathbb{C}^{2} with the

Fig. 6.
conditions in Lemma 2.7. This is a contradiction. Hence we have $\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$. Then we consider the following cases (1) and (2).
(1) Assume that \hat{Y}_{2} is a (-1)-curve in M with $\left(\hat{Y}_{2} \cdot Z\right)=1$. By Lemma 2.8, the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \pi^{-1}\left(x_{2}\right)$ is a linear tree as in Fig. 6 (1), where $E_{s_{1}+1}, \ldots, E_{s_{2}}$ are the irreducible components of $\pi^{-1}\left(x_{2}\right)\left(s_{2}-s_{1} \geq 1\right)$. By computing the intersection number of the above linear equivalence and $\hat{Y}_{1}+Z^{(2)}$, we have $b_{s_{1}+1}=-1$. This is a contradiction.
(2) Assume that \hat{Y}_{2} is a 0 -curve in M with $\left(\hat{Y}_{2} \cdot Z\right)=2$. Since $\left(\hat{Y}_{2} \cdot Z\right)=2$, we have $\operatorname{mult}_{p} Z=1,2$, where $\{p\}:=\hat{Y}_{2} \cap \operatorname{Supp} Z$. If $\operatorname{mult}_{p} Z=1$, then we obtain a smooth compactification of \mathbb{C}^{2} with the conditions in Lemma 2.7 by applying the blowing-ups twice on p. This is a contradiction. If mult $Z=2$, then after applying the blowingup on p, by Lemma 2.8, we have the weighted dual graph of $\hat{Y}_{1} \cup \hat{Y}_{2} \cup \pi^{-1}\left(x_{2}\right)$ as in Fig. 6 (2), where $E_{s_{1}+1}, \ldots, E_{s_{2}}$ are the irreducible components of $\pi^{-1}\left(x_{2}\right)\left(s_{2}-s_{1} \geq 1\right)$. By computing the intersection number of the above linear equivalence and $\hat{Y}_{1}+Z^{(2)}$, we obtain $b_{s_{1}+1}=-1$. This is a contradiction.

As a consequence, we obtain the following refined classification of the divisor \mathcal{Y}.
Proposition 2.15. There exist the following seven possibilities for the divisor \mathcal{Y} :
(i) $\mathcal{Y}=4 Y_{1}\left(Y_{1}:\right.$ line $)$ with $x \subset Y_{1}$.
(ii) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$ with $x \subset Y_{1}$.
(iii) $\mathcal{Y}=2 Y_{1}+2 Y_{2}$ ($Y_{i}:$ line) with $x \subset Y$ and $Y_{1} \cap Y_{2}=\left\{x_{1}\right\}$.
(iv) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}\right.$: line) with $x \subset Y_{1}$ and $Y_{1} \cap Y_{2} \cap Y_{3}=\left\{x_{1}\right\}$.
(v) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}\right.$: line) with $x=\left\{x_{1}\right\}=Y_{1} \cap Y_{2} \cap Y_{3} \cap Y_{4}$.
(vi) $\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ conic $)$ with $x \subset Y_{1}$ and $Y_{1} \cap Y_{2}=\left\{x_{1}\right\}$.
(vii) $\mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ cuspidal cubic) with $x=\left\{x_{1}\right\}=Y_{1} \cap Y_{2}=\operatorname{Sing} Y_{2}$.

In particular, for each case, Y contains at least one line through x_{1}.

3. Proof of Theorem 1 for $Z^{2}=\mathbf{- 2}$

In this section, we shall prove Theorem 1 for the case $Z^{2}=-2$. Let (X, Y) be a pair satisfying Assumption in $\S 1$ and $Z^{2}=-2$. We use the same notation as that in $\S 1$ and $\S 2$. We mainly consider a projection from x_{1} and a blowing-up at x_{1} to investigate the pair (X, Y). First we note that $\hat{Y} \cup E$ is a connected divisor without cycles which
consists of twelve rational curves. For each irreducible component E_{i} of Z, we may assume that $\left(E_{i} \cdot Z\right)<0$ for $1 \leq i \leq s_{0,1}$ and $\left(E_{i} \cdot Z\right)=0$ for $s_{0,1}<i \leq s_{1}$, where $s_{0,1}$ is an integer with $1 \leq s_{0,1} \leq s_{1}$. We put $Z_{1}:=\sum_{i=1}^{s_{0,1}} a_{i} E_{i}$ and $Z_{2}:=\sum_{i=s_{0,1+1}}^{s_{1}} a_{i} E_{i}$, where $Z_{2}=0$ is allowed. Thus we obtain an effective decomposition $Z=Z_{1}+Z_{2}$. Since $Z^{2}=-2$, we note that $s_{0,1}=1,2$. Let $\sigma: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{3}$ be the blowing-up at x_{1} with exceptional divisor Δ, which is isomorphic to \mathbb{P}^{2}. Let \bar{T} be the proper transform of a closed algebraic subset T of \mathbb{P}^{3} by σ. We have that $\left.\sigma\right|_{\overline{\mathbb{P}^{3}} \backslash \Delta}: \overline{\mathbb{P}^{3}} \backslash \Delta \cong \mathbb{P}^{3} \backslash\left\{x_{1}\right\}$ and $\left.\mathcal{O}_{\overline{\bar{p}^{3}}}(\Delta)\right|_{\Delta} \cong \mathcal{O}_{\mathbb{P}^{2}}(-1)$. We set $\bar{E}:=\bar{X} \cap \Delta$. We have that $\left.\sigma\right|_{\bar{X} \backslash \bar{E}}: \bar{X} \backslash \bar{E} \cong X \backslash\left\{x_{1}\right\}$ and that $(\bar{X}, \bar{Y} \cup \bar{E})$ is a compactification of \mathbb{C}^{2} with dualizing sheaf $\omega_{\bar{X}} \cong \mathcal{O}_{\bar{X}}$. Let $\nu: \bar{X}^{\nu} \rightarrow \bar{X}$ be the normalization of \bar{X}. Let \bar{C}^{ν} be the proper transform of a curve C in X by $\left.\sigma\right|_{\bar{X}} \circ \nu$. We have that $\left.\nu\right|_{\bar{X}^{\nu} \backslash \nu^{-1}(\bar{E})}: \bar{X}^{\nu} \backslash \nu^{-1}(\bar{E}) \cong \bar{X} \backslash \bar{E}$ and that $\left(\bar{X}^{\nu}, \bar{Y}^{\nu} \cup\right.$ $\nu^{-1}(\bar{E})$) is a compactification of \mathbb{C}^{2}. Let $\psi: \mathbb{P}^{3} \cdots \rightarrow \mathbb{P}^{2}$ be the projection from x_{1} and $\bar{\psi}: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{2}$ the resolution of indeterminacy of ψ. We have that $\left.\bar{\psi}\right|_{\Delta}: \Delta \rightarrow \mathbb{P}^{2}$ is an isomorphism and $\left.\bar{\psi}\right|_{\bar{X}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is a generically finite morphism of degree two. We note that $\left.\bar{\Gamma} \sim \bar{H}\right|_{\bar{X}}+\left.\Delta\right|_{\bar{X}}, \bar{\Gamma}^{v} \sim v^{*}\left(\left.\bar{H}\right|_{\bar{X}}\right)+v^{*}\left(\left.\Delta\right|_{\bar{X}}\right)$ and $\hat{\Gamma} \sim \sum_{i=1}^{t} k_{i} \hat{Y}_{i}+\sum_{j=1}^{s} b_{j} E_{j}$ with $b_{j} \in \mathbb{N}$. Then we have some fundamental lemmas.

Lemma 3.1. One obtains the following:
(i) \bar{X} is non-normal. Moreover, $\left.\bar{X}\right|_{\Delta}=2 \bar{E}=2$ line and $\Delta \cap \operatorname{Sing} \bar{X}=\bar{E}$.
(ii) $\operatorname{Sing} \bar{X}^{v}$ consists of at most rational double points.
(iii) There exists a birational morphism $\bar{\pi}: M \rightarrow \bar{X}$ satisfying $\left.\sigma\right|_{\bar{X}} \circ \bar{\pi}=\pi$. Then $\bar{\pi}^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=Z$ and $\bar{\pi}^{*}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cong \mathcal{O}_{M}(\hat{\Gamma}-Z)$. Moreover, $\operatorname{deg}\left(\left.\bar{\pi}\right|_{E_{i}}\right)=-\left(E_{i} \cdot Z\right)$ for each irreducible component E_{i} of Z_{1} and $\bar{\pi}\left(\operatorname{Supp} Z_{2}\right)$ is a finite set. In particular, $\left.\bar{\pi}\right|_{M \backslash E}: M \backslash E \cong \bar{X} \backslash\left(\bar{E} \cup\left(\left.\sigma\right|_{\bar{X}}\right)^{-1}\left(x \backslash\left\{x_{1}\right\}\right)\right)$.
(iv) There exists a birational morphism $\bar{\pi}^{\nu}: M \rightarrow \bar{X}^{\nu}$ satisfying $\nu \circ \bar{\pi}^{\nu}=\bar{\pi}$. Then $\operatorname{deg}\left(\left.\bar{\pi}^{\nu}\right|_{E_{i}}\right)=1$ and $\operatorname{deg}\left(\left.\nu\right|_{E_{i}}{ }^{v}\right)=-\left(E_{i} \cdot Z\right)$ with ${\overline{E_{i}}}^{\nu}:=\bar{\pi}^{\nu}\left(E_{i}\right)$ for each irreducible component E_{i} of Z_{1}, and $\bar{\pi}^{\nu}\left(\operatorname{Supp} Z_{2}\right)$ is a finite set. Moreover, $\bar{\pi}^{\nu}$ is a minimal resolution of \bar{X}^{ν} with $\operatorname{Exc} \bar{\pi}^{\nu}=\operatorname{Supp} Z_{2} \cup \pi^{-1}\left(x \backslash\left\{x_{1}\right\}\right)$. Here one puts the push-forward Weil divisor $\bar{Z}^{\nu}:=\left(\bar{\pi}^{\nu}\right)_{*}(Z)$ of \bar{X}^{ν}.
(v) Let $\bar{X}^{\nu} \xrightarrow{g} V \xrightarrow{h} \mathbb{P}^{2}$ be the Stein factorization of $\bar{\psi} \mid \bar{X} \circ \nu$. Then V is normal, g is a birational morphism and h is a finite morphism of degree two. In particular, $\left.g\right|_{\bar{X}} \backslash \operatorname{Exc} g: \bar{X}^{v} \backslash \operatorname{Exc} g \cong V \backslash g(\operatorname{Exc} g)$ and $\operatorname{Exc} g$ is the proper transform of the union of all lines in X through x_{1} by $\left.\sigma\right|_{\bar{X}} \circ \mathcal{V}$. Thus one obtains the commutative diagram as in Fig. 7.
(vi) Assume that l is a line in X through x_{1}. Then $\bar{l}^{\nu} \cap \operatorname{Sing} \bar{X}^{v}$ consists of at most one rational double point of type A and the weighted dual graph of $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{l}^{\nu}\right)=\hat{l} \cup$ $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{l}^{\nu} \cap\right.$ Sing $\left.\bar{X}^{\nu}\right)$ is a linear tree • or $\bullet \bigcirc-\cdots \cdots \multimap$. In particular, $g\left(\bar{l}^{\nu}\right)$ is a smooth point of V and $x \cap l=\left\{x_{1}\right\},\left\{x_{1}, A_{n}\right\}$ for some $n \geq 1$.
(vii) Sing V consists of at most rational double points.

Fig. 7.
Proof. (i), (ii) The assertions are the general properties of the minimally elliptic singularity (X, x_{1}) with $Z^{2}=-2$. Indeed, we can check the assertions by applying a blowing-up of the local analytic defining equation of $\left(X, x_{1}\right)$ in Theorem 4.57 (2) of [7] (cf. [8]).
(iii) There exists a birational morphism $\bar{\pi}: M \rightarrow \bar{X}$ satisfying $\left.\sigma\right|_{\bar{X}} \circ \bar{\pi}=\pi$ by Lemma 2.3 (i). In particular, we have $(\bar{\pi})^{-1}(\bar{E})=\operatorname{Supp} Z$. By the isomorphisms

$$
\bar{\pi}^{*}\left(\mathcal{O}_{\bar{P}^{3}}(-\Delta) \mid \bar{X}\right) \cong \bar{\pi}^{*}\left(\left.\sigma\right|_{\bar{X}}\right)^{*} \mathfrak{m}_{X, x_{1}} \cong \pi^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M}(-Z)
$$

we obtain $\bar{\pi}^{*}\left(\left.\Delta\right|_{\bar{X}}\right) \sim Z$. Since $\bar{\pi}^{*}\left(\left.\Delta\right|_{\bar{X}}\right)$ is an effective divisor of M whose support equals to $\operatorname{Supp} Z$ and the intersection matrix of $\operatorname{Supp} Z$ is negative definite, we obtain $\bar{\pi}^{*}(\Delta \mid \bar{X})=Z$. In particular, we have

$$
\bar{\pi}^{*}(\bar{\psi} \mid \bar{X})^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cong \bar{\pi}^{*} \mathcal{O}_{\bar{X}}\left(\left.\bar{H}\right|_{\bar{X}}\right) \cong \bar{\pi}^{*} \mathcal{O}_{\bar{X}}\left(\bar{\Gamma}-\left.\Delta\right|_{\bar{X}}\right) \cong \mathcal{O}_{M}(\hat{\Gamma}-Z)
$$

Let E_{i} be any irreducible component of Z. Since $\left.\bar{\pi}\right|_{E_{i}}$ is identified with $\left.\left.\bar{\psi}\right|_{\bar{X}} \circ \bar{\pi}\right|_{E_{i}}$, we obtain $\operatorname{deg}\left(\left.\bar{\pi}\right|_{E_{i}}\right)=-\left(E_{i} \cdot Z\right)$. By noting that $\left(\left.\sigma\right|_{\bar{X}}\right)^{-1}(x)=\bar{E} \cup\left(\left.\sigma\right|_{\bar{X}}\right)^{-1}\left(x \backslash\left\{x_{1}\right\}\right)$, we have $\left.\bar{\pi}\right|_{M \backslash E}: M \backslash E \cong \bar{X} \backslash\left(\bar{E} \cup\left(\left.\sigma\right|_{\bar{X}}\right)^{-1}\left(x \backslash\left\{x_{1}\right\}\right)\right)$.
(iv) There exists a birational morphism $\bar{\pi}^{\nu}: M \rightarrow \bar{X}^{\nu}$ satisfying $v \circ \bar{\pi}^{v}=\bar{\pi}$ by the lifting property of normalization (cf. Proposition 8.4.3 in [4]). By noting (iii) and that v is a finite morphism, we obtain the assertions.
(v) Note the general properties of Stein factorization (cf. Corollary III.11.5 in [5]).
(vi) First we note (ii) and that \hat{l} is a (-1)-curve in M by Lemma 2.5 (i). By applying Lemma 4 in [10] for the morphisms $\bar{\pi}^{\nu}:\left(M,\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{l}^{\nu}\right)\right) \rightarrow\left(\bar{X}^{\nu}, \bar{l}^{\nu}\right)$ and $g:\left(\bar{X}^{v}, \bar{l}^{\nu}\right) \rightarrow\left(V, g\left(\bar{l}^{\nu}\right)\right)$, we obtain the assertions.
(vii) By using (ii), (v) and (vi), we obtain the assertion.

Lemma 3.2. One obtains the following:
(i) $\bar{H} \cap \Delta=\bar{E}$. In particular, Y is a union of lines through x_{1}.
(ii) Every line in X through x_{1} is contained in Y.
(iii) \hat{Y}_{i} is a (-1)-curve in M with $\left(\hat{\Gamma} \cdot \hat{Y}_{i}\right)=\left(\hat{Y}_{i} \cdot Z\right)=1(1 \leq i \leq t)$.
(iv) $\overline{Y_{i}} \cap \overline{Y_{j}}={\overline{Y_{i}}}^{v} \cap{\overline{Y_{j}}}^{\nu}=\hat{Y}_{i} \cap \hat{Y}_{j}=\emptyset(i \neq j)$.
(v) $x \backslash\left\{x_{1}\right\}$ consists of at most rational double points of type A.
(vi) Exc $g=\bar{Y}^{\nu}$ and $\left.g\right|_{\bar{X}^{\nu} \backslash \bar{Y}^{\nu}}: \bar{X}^{\nu} \backslash \bar{Y}^{\nu} \cong V \backslash g\left(\bar{Y}^{\nu}\right)$.
(vii) (Sing $\left.\bar{X}^{\nu}\right) \backslash \bar{Y}^{\nu}=g^{-1}($ Sing $V)$.
(viii) $\left(\bar{X}^{\nu}, \bar{Y}^{\nu} \cup \operatorname{Supp} \bar{Z}^{\nu}\right)$ and $\left(V, g\left(\operatorname{Supp} \bar{Z}^{\nu}\right)\right)$ are compactifications of \mathbb{C}^{2}.

Proof. (i) Assume that $\bar{H} \cap \Delta \neq \bar{E}$. Let l be any line in H such that $x_{1} \in l \not \subset X$ and $\bar{l} \cap \bar{E}=\emptyset$. Since $(\bar{X} \cdot \bar{l})_{\overline{\mathbb{P}^{3}}}=2$ and $(\bar{l} \cap \Delta) \cap \bar{X}=\emptyset$, we have

$$
\sum_{p \in l \backslash\left\{x_{1}\right\}}\left(\sum_{i=1}^{t} k_{i} Y_{i} \cdot l\right)_{H, p}=\sum_{p \in \backslash \backslash\left\{x_{1}\right\}}(X \cdot l)_{\mathbb{P}^{3}, p}=2 .
$$

On the other hand, by Proposition 2.15, we have $\sum_{p \in l \backslash\left\{x_{1}\right\}}\left(\sum_{i=1}^{t} k_{i} Y_{i} \cdot l\right)_{H, p}=0,1$ for a general line l in H through x_{1}. This is a contradiction. Thus we obtain $\bar{H} \cap \Delta=\bar{E}$. Since $\bar{E} \subset \operatorname{Sing} \bar{X}$ and $\left(\bar{X} \cdot \bar{l}_{\overline{\mathbb{P}}^{3}}=2\right.$ for a general line l in H through x_{1}, we see that Y is a union of lines through x_{1}.
(ii) Let l be any line in X through x_{1}. Then we have $\bar{l} \cap \Delta \subset \bar{X} \cap \Delta=\bar{E}=\bar{H} \cap \Delta$. Hence we obtain $l \subset H$ and thus $l \subset X \cap H=Y$.
(iii) Note that each Y_{i} is a line in X through x_{1} by (i).
(iv) Since each $\overline{Y_{i}}$ is the proper transform of a line through x_{1} by the blowing-up at x_{1}, we see that $\overline{Y_{i}} \cap \overline{Y_{j}}=\emptyset(i \neq j)$. By noting this, we obtain the assertions.
(v) By using (i), (ii) and Lemma 3.1 (vi), we obtain the assertion.
(vi) By using (i), (ii) and Lemma 3.1 (v), we obtain the assertions.
(vii) Note (vi) and that $g\left(\bar{Y}^{\nu}\right)$ consists of smooth points of V.
(viii) Note (vi) and that $\nu^{-1}(\bar{E})=\operatorname{Supp} \bar{Z}^{v}$.

Lemma 3.3. One obtains the following:
(i) \bar{Z}^{v} is the Cartier divisor $\nu^{*}\left(\left.\Delta\right|_{\bar{X}}\right)$ of \bar{X}^{ν}. In particular, $\left(\bar{\pi}^{\nu}\right)^{*}\left(\bar{Z}^{\nu}\right)=Z$.
(ii) $g_{*}\left(\bar{Z}^{\nu}\right)=h^{*}(\bar{\psi}(\bar{E})), g^{*} g_{*}\left(\bar{Z}^{\nu}\right)=\bar{Z}^{\nu}+\sum_{i=1}^{t} k_{i}{\overline{Y_{i}}}^{\nu}=v^{*}\left(\left.\bar{H}\right|_{\bar{X}}\right)$.
(iii) $k_{i} \bar{Y}_{i}^{v}$ is a Cartier divisor of $\bar{X}^{v}(1 \leq i \leq t)$.
(iv) $\bar{\Gamma}^{v} \sim \sum_{i=1}^{t} k_{i} \bar{Y}_{i}{ }^{v}+2 \bar{Z}^{v}, \hat{\Gamma} \sim \sum_{i=1}^{t}\left(\overline{\pi^{v}}\right)^{*}\left(k_{i} \bar{Y}_{i}{ }^{\nu}\right)+2 Z$.
(v) $g_{*}\left(\bar{\Gamma}^{\nu}\right)$ is a smooth Cartier divisor of V with $g_{*}\left(\bar{\Gamma}^{v}\right) \cap \operatorname{Sing} V=\emptyset$.
(vi) $g_{*}\left(\bar{\Gamma}^{\nu}\right) \sim 2 g_{*}\left(\bar{Z}^{\nu}\right), g^{*} g_{*}\left(\bar{\Gamma}^{\nu}\right)=\bar{\Gamma}^{\nu}+\sum_{i=1}^{t} k_{i} \bar{Y}_{i}^{\nu}$.
(vii) $\left(g_{*}\left(\bar{\Gamma}^{v}\right) \cdot g_{*}\left(\bar{\Gamma}^{v}\right)\right)_{V}=8,\left(g_{*}\left(\bar{\Gamma}^{\nu}\right) \cdot g_{*}\left(\bar{Z}^{\nu}\right)\right)_{V}=4,\left(g_{*}\left(\bar{Z}^{v}\right) \cdot g_{*}\left(\bar{Z}^{v}\right)\right)_{V}=2$.
(viii) $\left(g_{*}\left(\bar{\Gamma}^{\nu}\right) \cdot g_{*}\left(\bar{Z}^{\nu}\right)\right)_{V, g\left(\bar{Y}_{i}^{v}\right)}=(\bar{\psi}(\bar{\Gamma}) \cdot \bar{\psi}(\bar{E}))_{\mathbb{P}^{2}, \bar{\psi}\left(\overline{Y_{i}}\right)}=k_{i}(1 \leq i \leq t)$.
(ix) $K_{\bar{X}^{v}} \sim-\bar{Z}^{v}, K_{V} \sim-g_{*}\left(\bar{Z}^{\nu}\right)=-h^{*}(\bar{\psi}(\bar{E}))$.

Proof. (i) By Lemma 3.1 (iii) and (iv), we have $\left(\bar{\pi}^{v}\right)^{*} v^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=Z$. By pushing this forward, we obtain $v^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=\left(\bar{\pi}^{\nu}\right)_{*}(Z)=\bar{Z}^{v}$.
(ii) By noting that $v^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=\bar{Z}^{v}$ and $\left.\bar{\psi}\right|_{\bar{E}}: \bar{E} \cong \bar{\psi}(\bar{E})$, we have $g_{*}\left(\bar{Z}^{v}\right)=h^{*}(\bar{\psi}(\bar{E}))$. Thus we obtain $g^{*} g_{*}\left(\bar{Z}^{v}\right)=v^{*}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)^{*}(\bar{\psi}(\bar{E}))=v^{*}\left(\left.\bar{H}\right|_{\bar{X}}\right)=\bar{Z}^{v}+\sum_{i=1}^{t} k_{i} \bar{Y}_{i}{ }^{\nu}$.
(iii) By (i) and (ii), we see that $\sum_{i=1}^{t} k_{i} \bar{Y}_{i}$ b is a Cartier divisor of \bar{X}^{v}. By Lemma 3.2 (iv), we obtain the assertion.
(iv) Note (i), (ii), (iii) and that $\bar{\Gamma}^{v} \sim v^{*}\left(\left.\bar{H}\right|_{\bar{X}}\right)+v^{*}\left(\left.\Delta\right|_{\bar{X}}\right)$.
(v) First we note that $\bar{\Gamma}^{v}$ is a smooth Cartier divisor of \bar{X}^{ν} with $\bar{\Gamma}^{v} \cap \operatorname{Sing} \bar{X}^{v}=\emptyset$ which intersects each \bar{Y}_{i} v transversally at only one point by $\left(\Gamma \cdot Y_{i}\right)_{X}=1$. Since each $g\left({\overline{Y_{i}}}^{v}\right)$ is a smooth point of V, we obtain the assertion.
(vi) By pushing the first relation of (iv) forward, we obtain the first assertion. By noting (i), (ii), (iii) and (iv), we have $\left(\bar{\pi}^{v}\right)^{*}\left(g^{*} g_{*}\left(\bar{\Gamma}^{v}\right)\right) \sim \hat{\Gamma}+\sum_{i=1}^{t}\left(\bar{\pi}^{v}\right)^{*}\left(k_{i} \bar{Y}_{i}^{v}\right)$. Since $\operatorname{Supp}\left(\bar{\pi}^{\nu}\right)^{*}\left(g^{*} g_{*}\left(\bar{\Gamma}^{\nu}\right)\right)=\hat{\Gamma} \cup\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{v}\right)$ and the intersection matrix of $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{v}\right)=$ $\left(g \circ \bar{\pi}^{\nu}\right)^{-1}\left(g\left(\bar{Y}^{\nu}\right)\right)$ is negative definite, we have $\left(\bar{\pi}^{\nu}\right)^{*}\left(g^{*} g_{*}\left(\bar{\Gamma}^{\nu}\right)\right)=\hat{\Gamma}+\sum_{i=1}^{t}\left(\bar{\pi}^{\nu}\right)^{*}\left(k_{i} \bar{Y}_{i}{ }^{\nu}\right)$. By pushing this forward, we obtain the second assertion.
(vii) Note (vi) and that $\operatorname{deg} h=2$ and $\mathcal{O}_{V}\left(g_{*}\left(\bar{Z}^{v}\right)\right) \cong h^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$.
(viii) By noting that $\left.h\right|_{g_{*}\left(\bar{\Gamma}^{\nu}\right)}: g_{*}\left(\bar{\Gamma}^{v}\right) \cong \bar{\psi}(\bar{\Gamma})$, we obtain the first equality of the assertion. By the same argument as in the proof of Proposition 2.2 (vi) in [11], we obtain the second equality of the assertion.
(ix) Since both of Sing \bar{X}^{v} and Sing V consist of at most rational double points, we see that $K_{\bar{X}^{v}}$ and K_{V} are Cartier divisors. Since $\bar{\pi}^{v}$ is the minimal resolution of \bar{X}^{v}, we have $\left(\bar{\pi}^{v}\right)^{*} K_{\bar{X}^{v}} \sim K_{M} \sim-Z$. By pushing this forward, we also have $K_{\bar{X}^{v}} \sim$ $-\bar{Z}^{v}$. By noting Lemma 3.2 (vi), we obtain $K_{V} \sim-g_{*}\left(\bar{Z}^{v}\right)$.

REMARK. The branch locus B of h is a reduced plane quartic curve. Indeed, this is showed as follows. First we note that $\operatorname{Pic}(V)$ is torsion-free by Lemma 3.1 (vii), Lemma 3.2 (viii), and Proposition 1 in [10]. Thus we obtain the injectivity of $h^{*}: \operatorname{Pic}\left(\mathbb{P}^{2}\right) \cong$ $\mathbb{Z} \rightarrow \operatorname{Pic}(V)$. Let R be the ramification divisor of h. Since $\operatorname{deg} h=2$, we have $K_{V} \sim$ $h^{*} K_{\mathbb{P}^{2}}+R$ and $h^{*} B=2 R$. By noting (ix), we obtain $h^{*}(B-4 L) \sim 0$ and hence $B-$ $4 L \sim 0$, where L is a line in \mathbb{P}^{2}. In the following, we omit the investigation of a detailed structure of B since there is no necessity in our arguments.

Lemma 3.4. One obtains the following:
(i) The weighted dual graph of $\left(\bar{\pi}^{v}\right)^{-1}\left({\overline{Y_{i}}}^{\nu}\right)$ is given as in Fig. 8(a), (b), (c), (d) for $k_{i}=1,2,3,4$ respectively, where the integers adjacent to vertices are coefficients in the divisor $\left(\bar{\pi}^{\nu}\right)^{*}\left(k_{i} \bar{Y}_{i}^{\nu}\right)$.
(ii) $b_{2}\left(\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{v}\right)\right)=4$. In particular, $8 \leq b_{2}\left(\pi^{-1}\left(x_{1}\right)\right) \leq 11$.
(iii) $\left(\operatorname{Sing} \bar{X}^{\nu}\right) \backslash \bar{Y}^{\nu} \neq \emptyset$. In particular, $\operatorname{Sing} \bar{X}^{\nu} \neq \emptyset$ and $\operatorname{Sing} V \neq \emptyset$.
(iv) If $x \cap Y_{i}$ contains more than one point for some i, then $2 \leq k_{i} \leq 4$ and $\left(x \cap Y_{i}\right) \backslash\left\{x_{1}\right\}$ consists of only one rational double point of type $A_{k_{i}-1}$.
(v) $\hat{Y} \cup E$ is a simple normal crossing divisor of twelve smooth rational curves whose weighted dual graph is not a linear tree. In particular, each irreducible component E_{i} of E is a smooth rational curve with $E_{i}^{2}=\left(E_{i} \cdot Z\right)-2$.

Fig. 8.
Proof. (i) By Lemma 3.3 (vi), we have $\left(\bar{\pi}^{v}\right)^{*}\left(g^{*} g_{*}\left(\bar{\Gamma}^{v}\right)\right)=\hat{\Gamma}+\sum_{i=1}^{t}\left(\bar{\pi}^{v}\right)^{*}\left(k_{i} \bar{Y}_{i}^{v}\right)$. By noting that $\left.\left(g \circ \bar{\pi}^{v}\right)\right|_{M \backslash\left(g \circ \bar{\pi}^{\nu}\right)^{-1}(\operatorname{Sing} V)}: M \backslash\left(g \circ \bar{\pi}^{\nu}\right)^{-1}(\operatorname{Sing} V) \rightarrow V \backslash \operatorname{Sing} V$ is a composite of blowing-ups whose exceptional set is $\left(\bar{\pi}^{v}\right)^{-1}\left(\bar{Y}^{v}\right)=\left(g \circ \bar{\pi}^{v}\right)^{-1}\left(g\left(\bar{Y}^{v}\right)\right)$ and that $\left(\bar{\pi}^{v}\right)^{*}\left(g^{*} g_{*}\left(\bar{\Gamma}^{v}\right)\right)$ is the total transform of $g_{*}\left(\bar{\Gamma}^{v}\right)$ by $g \circ \bar{\pi}^{v}$, we obtain the assertion.
(ii) By noting (i) and that $\hat{Y} \cup E=\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right) \cup \pi^{-1}\left(x_{1}\right)$, we obtain the assertions.
(iii) Assume that $\operatorname{sing} \bar{X}^{\nu} \subset \bar{Y}^{\nu}$. Then we have $\hat{Y} \cup E=\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{v}\right) \cup \operatorname{Supp} Z_{1}$. Thus we obtain $b_{2}(\hat{Y} \cup E) \leq 4+2=6$. This is a contradiction.
(iv) By noting (i) and that $\bar{X}^{v} \backslash \nu^{-1}(\bar{E}) \cong X \backslash\left\{x_{1}\right\}$, we obtain the assertion.
(v) By using $b_{2}\left(\pi^{-1}\left(x_{1}\right)\right) \geq 4$ and Proposition 3.5 in [8], we have that $\pi^{-1}\left(x_{1}\right)$ is a simple normal crossing divisor of smooth rational curves. By using $p_{g}\left(x_{1}\right) \neq 0$ and Satz 2.10 in Brieskorn [3], we see that the weighted dual graph of $\pi^{-1}\left(x_{1}\right)$ is not a linear tree. By Lemma 3.1 (vi) and $\left(\hat{Y}_{i} \cdot Z\right)=1(1 \leq i \leq t)$, we obtain the assertions.

Since $Z^{2}=-2$, there exist the following three possibilities for the divisor $Z_{1}=$ $\sum_{i=1}^{s_{0,1}} a_{i} E_{i}$. From now on, we shall consider these cases separately:
(1) $Z_{1}=E_{1}$ with $\left(E_{1} \cdot Z\right)=-2$.
(2) $Z_{1}=2 E_{1}$ with $\left(E_{1} \cdot Z\right)=-1$.
(3) $Z_{1}=E_{1}+E_{2}$ with $\left(E_{1} \cdot Z\right)=\left(E_{2} \cdot Z\right)=-1$.

3.1. The case $Z_{1}=E_{1}$ with $\left(E_{1} \cdot Z\right)=-2$.

Proposition 3.5. This case does not occur.

Proof. Assume that this case occurs. By Lemma 3.4 (v), we have that E_{1} is a (-4)-curve in M. By Lemma 3.3 (iv) and Lemma 3.4 (i), (v), we see that $\left(\hat{Y}_{i} \cdot E_{1}\right)=1$ and $\left(\left(\bar{\pi}^{\nu}\right)^{*}\left(k_{i} \bar{Y}_{i}{ }^{v}\right)-k_{i} \hat{Y}_{i} \cdot E_{1}\right)=0(1 \leq i \leq t)$. In particular, $\bar{Y}^{v} \cap{\overline{E_{1}}}^{v}$ consists of smooth points of \bar{X}^{ν}. By contracting the curve $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right)$, we obtain a boundary of a minimal normal compactification of \mathbb{C}^{2} which is a union of seven (-2)-curves and one 0 -curve. However its weighted dual graph cannot be found in Morrow's classification. This is a contradiction.
3.2. The case $\boldsymbol{Z}_{\mathbf{1}}=\mathbf{2} \boldsymbol{E}_{\mathbf{1}}$ with $\left(\boldsymbol{E}_{\mathbf{1}} \cdot \boldsymbol{Z}\right)=\mathbf{- 1}$. By Lemma 3.4 (v), we have that E_{1} is a (-3)-curve in M. By Lemma 3.1 (iii) and the isomorphism $\left.\bar{\psi}\right|_{\bar{E}}$, we obtain $E_{1} \cong{\overline{E_{1}}}$ §g(${\overline{E_{1}}}{ }^{v}) \cong \bar{\psi}(\bar{E}) \cong \bar{E} \cong \mathbb{P}^{1}$. By Lemma 3.1 (iv) and Lemma 3.3 (ii), we also obtain ${\overline{E_{1}}}^{\nu}=\bar{\pi}^{\nu}(\operatorname{Supp} Z)$ and $g\left({\overline{E_{1}}}{ }^{v}\right)=h^{-1}(\bar{\psi}(\bar{E}))$.

Fig. 9.
Proposition 3.6. There exist the following two cases:
(i) $\mathcal{Y}=4 Y_{1}\left(Y_{1}\right.$: line) with $x=\left\{x_{1}\right\}$.
(ii) $\mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}\right.$: line) with $x=\left\{x_{1}\right\}=Y_{1} \cap Y_{2}$.

Moreover, for the cases (i) and (ii), the weighted dual graphs of $\hat{Y} \cup E$ are of types (XV) and (XVI) in Theorem 1 respectively.

Proof. First we note that $\hat{Y} \cup E$ is of simple normal crossing. Since $a_{1}=2$ and $\left(\hat{Y}_{i} \cdot Z\right)=1$, we obtain $\left(\hat{Y}_{i} \cdot E_{1}\right)=0(1 \leq i \leq t)$. In particular, $\bar{Y}^{v} \cap{\overline{E_{1}}}{ }^{\nu}$ consists of singular points of \bar{X}^{\prime}. By Lemma 3.4 (i), we have that $x=\left\{x_{1}\right\}$ and $2 \leq k_{i} \leq 4$ $(1 \leq i \leq t)$. Thus we obtain $\mathcal{Y}=4 Y_{1}$ or $\mathcal{Y}=2 Y_{1}+2 Y_{2}$ (Y_{i} : line). By Lemma 3.3 (iv), we obtain $\left(\sum_{i=1}^{t}\left(\bar{\pi}^{v}\right)^{*}\left(k_{i} \bar{Y}_{i}^{v}\right) \cdot E_{1}\right)=2$. By noting this, we see that the weighted dual graphs of $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right) \cup E_{1}$ are given as in Fig. 9 (a) and (b) for the cases $\mathcal{Y}=4 Y_{1}$ and $\mathcal{Y}=2 Y_{1}+2 Y_{2}$ respectively. By contracting the curve $\left(\bar{\pi}^{v}\right)^{-1}\left(\bar{Y}^{\nu}\right)$, we have a boundary of a smooth compactification of \mathbb{C}^{2} which is a simple normal crossing divisor of seven (-2)-curves and one (-1)-curve. By Lemma 2.9 , its weighted dual graph is given as in Fig. 9 (c). Since the (-1)-curve in Fig. 9 (c) is the proper transform of E_{1}, we obtain the assertions.
3.3. The case $\boldsymbol{Z}_{\mathbf{1}}=\boldsymbol{E}_{\mathbf{1}}+\boldsymbol{E}_{\mathbf{2}}$ with $\left(\boldsymbol{E}_{\mathbf{1}} \cdot \boldsymbol{Z}\right)=\left(\boldsymbol{E}_{\mathbf{2}} \cdot \boldsymbol{Z}\right)=\mathbf{- 1}$. By Lemma 3.4 (v), we have that E_{1} and E_{2} are (-3)-curves in M. By Lemma 3.1 (iv), (v) and Lemma 3.3 (ii), we also have that ${\overline{E_{1}}}^{v} \neq{\overline{E_{2}}}^{v}, g\left({\overline{E_{1}}}^{v}\right) \neq g\left({\overline{E_{2}}}^{v}\right),{\overline{E_{1}}}^{v} \cup{\overline{E_{2}}}^{v}=\bar{\pi}^{v}(\operatorname{Supp} Z)$ and $g\left({\overline{E_{1}}}^{\nu}\right) \cup g\left({\overline{E_{2}}}^{\nu}\right)=h^{-1}(\bar{\psi}(\bar{E}))$. Since Supp Z is connected, both of ${\overline{E_{1}}}^{\nu} \cup{\overline{E_{2}}}^{\nu}$ and $g\left(\overline{E_{1}}\right) \cup g\left({\overline{E_{2}}}^{\nu}\right)$ are also connected.

Lemma 3.7. One obtains the following:
(i) $E_{i} \cong{\overline{E_{i}}}^{\nu} \cong g\left(\overline{E_{i}}\right) \cong \bar{\psi}(\bar{E}) \cong \bar{E} \cong \mathbb{P}^{1} \quad(i=1,2)$.
(ii) Both of $\overline{E_{1}} \cap{\overline{E_{2}}}^{v}$ and $g\left({\overline{E_{1}}}^{v}\right) \cap g\left({\overline{E_{2}}}^{v}\right)$ consist of only one point.
(iii) Sing $V=g\left({\overline{E_{1}}}^{\nu}\right) \cap g\left({\overline{E_{2}}}^{\nu}\right)$, (Sing $\left.\bar{X}^{\nu}\right) \backslash \bar{Y}^{\nu}={\overline{E_{1}}}{ }^{\wedge} \cap{\overline{E_{2}}}^{\nu}$.
(iv) $\left(\hat{Y}_{i} \cdot E_{1}+E_{2}\right)=1,\left(\left(\bar{\pi}^{v}\right)^{*}\left(k_{i} \bar{Y}_{i}^{v}\right)-k_{i} \hat{Y}_{i} \cdot E_{1}+E_{2}\right)=0(1 \leq i \leq t)$.
(v) $\left(\right.$ Sing $\left.\bar{X}^{\nu}\right) \cap\left(\overline{E_{1}} \cup{\overline{E_{2}}}^{v}\right)={\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}^{v}$.
(vi) $\left(\bar{\pi}^{v}\right)^{-1}\left(\overline{E_{1}} \cap{\overline{E_{2}}}^{\nu}\right)=\operatorname{Supp}\left(Z-E_{1}-E_{2}\right), b_{2}\left(\operatorname{Supp}\left(Z-E_{1}-E_{2}\right)\right)=6$.

Fig. 10.
(vii) There exist the following two cases:
(a) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $), x=x \cap Y_{1}=\left\{x_{1}, A_{1}\right\},\left\{x_{1}\right\}=Y_{1} \cap Y_{2} \cap Y_{3}$.
(b) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}$ (Y_{i} : line), $x=\left\{x_{1}\right\}=Y_{1} \cap Y_{2} \cap Y_{3} \cap Y_{4}$.

Moreover, for the cases (a) and (b), the weighted dual graphs of $\left(\bar{\pi}^{v}\right)^{-1}\left(\bar{Y}^{v}\right) \cup E_{1} \cup E_{2}$ are given as in Fig. 10 (a) and (b) respectively.
(viii) $E_{1} \cap E_{2}=\emptyset$. Moreover, there exists no irreducible component of $\operatorname{Supp}\left(Z-E_{1}-\right.$ $\left.E_{2}\right)$ intersecting both of E_{1} and E_{2}.

Proof. (i) By Lemma 3.1 (iii) and the isomorphism $\left.\bar{\psi}\right|_{\bar{E}}$, we obtain the assertion.
(ii) First we note that $\left(\bar{X}^{v}, \bar{Y}^{\nu} \cup{\overline{E_{1}}}{ }^{\nu} \cup{\overline{E_{2}}}^{\nu}\right)$ and $\left(V, g\left({\overline{E_{1}}}^{\nu}\right) \cup g\left({\overline{E_{2}}}{ }^{\nu}\right)\right)$ are compactifications of \mathbb{C}^{2} and that \bar{X}^{ν} and V are normal. By Proposition 1 (ii) in [10], we obtain the assertion.
(iii) By Lemma 3.4 (iii), we have that Sing $V \neq \emptyset$. Since $h^{*}(\bar{\psi}(\bar{E}))=g\left(\overline{E_{1}}{ }^{\nu}\right)+$ $g\left({\overline{E_{2}}}^{\nu}\right)$ and $\sum_{q \in h^{-1}(p)} \operatorname{mult}_{q} V \leq \operatorname{deg} h=2$ for any point p of \mathbb{P}^{2}, we obtain the first assertion. By Lemma 3.2 (vii), we also obtain the second assertion.
(iv) By noting (iii), Lemma 3.3 (iv) and Lemma 3.4 (i), (v), we obtain the assertions.
(v) By using (iii) and (iv), we obtain the assertion.
(vi) By using (v) and $b_{2}\left(\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{v}\right)\right)=4$, we obtain the assertions.
(vii) By Lemma 3.3 (iv), we obtain $\left(\sum_{i=1}^{t}\left(\bar{\pi}^{\nu}\right)^{*}\left(k_{i} \bar{Y}_{i}^{\nu}\right) \cdot E_{j}\right)=2(j=1,2)$. By noting this and (iv), we have that $\mathcal{Y}=2 Y_{1}+2 Y_{2}, 2 Y_{1}+Y_{2}+Y_{3}$ or $Y_{1}+Y_{2}+Y_{3}+Y_{4}$ (Y_{i} : line). Now we assume that $\mathcal{Y}=2 Y_{1}+2 Y_{2}$ (Y_{i} : line). Then we may assume that \hat{Y}_{i} and $E_{i} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$ meet transversally at only one point, which is denoted by p_{i}, for each $i=1$, 2. Let L be a line in \mathbb{P}^{2} such that $\left(h \circ g \circ \bar{\pi}^{\nu}\right)\left(p_{1}\right) \in L \neq \bar{\psi}(\bar{E})$. Since $h^{*}(\bar{\psi}(\bar{E}))=g\left(\overline{E_{1}}{ }^{\nu}\right)+g\left(\overline{E_{2}}{ }^{\nu}\right)$, we see that the divisor $\left(\bar{\pi}^{\nu}\right)^{*} g^{*} h^{*} L$ intersects Z transversally at only two points p_{1} and q_{2}, where q_{2} is a point of $E_{2} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$. By noting this and Lemma 3.1 (iii), we obtain

$$
\mathcal{O}_{Z}(Z) \cong \mathcal{O}_{Z}(-(\hat{\Gamma}-Z)) \cong \mathcal{O}_{Z}\left(-\left(\bar{\pi}^{\nu}\right)^{*} g^{*} h^{*} L\right) \cong \mathcal{O}_{Z}\left(-p_{1}-q_{2}\right)
$$

By Lemma 3.3 (iv), we obtain $\mathcal{O}_{Z}(2 Z) \cong \mathcal{O}_{Z}\left(-2 p_{1}-2 p_{2}\right)$. Thus we obtain $\mathcal{O}_{Z}\left(2\left(q_{2}-\right.\right.$ $\left.\left.p_{2}\right)\right) \cong \mathcal{O}_{Z}$. By Lemma 2.6 (iv), we see that $q_{2}=p_{2}$. Hence we obtain

$$
\left(h \circ g \circ \bar{\pi}^{\nu}\right)\left(p_{1}\right)=\left(h \circ g \circ \bar{\pi}^{\nu}\right)\left(q_{2}\right)=\left(h \circ g \circ \bar{\pi}^{\nu}\right)\left(p_{2}\right) .
$$

By noting that $\left(h \circ g \circ \bar{\pi}^{\nu}\right)\left(p_{i}\right)=\bar{\psi}\left(\overline{Y_{i}}\right)(i=1,2)$, we have $\bar{\psi}\left(\overline{Y_{1}}\right)=\bar{\psi}\left(\overline{Y_{2}}\right)$. On the other hand, we have $\bar{\psi}\left(\overline{Y_{1}}\right) \neq \bar{\psi}\left(\overline{Y_{2}}\right)$ since Y_{1} and Y_{2} are distinct two lines through x_{1}. This is a contradiction. Thus we obtain the assertions.
(viii) Since $\overline{E_{1}}$ $\cap \overline{E_{2}}{ }^{\nu}$ consists of only one point and Supp Z is of simple normal crossing, we have $E_{1} \cap E_{2}=\emptyset$. Next we assume that there exists an irreducible component of $\operatorname{Supp}\left(Z-E_{1}-E_{2}\right)$ intersecting both of E_{1} and E_{2}. By contracting the curve $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right) \cup E_{1} \cup E_{2}$, we obtain a boundary of a minimal normal compactification of \mathbb{C}^{2} which is a union of five (-2)-curves and one 0 -curve. However its weighted dual graph cannot be found in Morrow's classification. This is a contradiction. Thus we obtain the assertions.

Now we have that ${\overline{E_{1}}} 1 \cap{\overline{E_{2}}}$ is a rational double point of \bar{X}^{ν} of type A_{6}, D_{6} or E_{6} by Lemma 3.7 (vi). Let W be the fundamental cycle of $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\overline{E_{1}}{ }^{\nu} \cap{\overline{E_{2}}}^{\nu}\right)$. Then we note that $\left(\bar{\pi}^{\nu}\right)^{-1}\left({\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}^{v}\right)=\operatorname{Supp}\left(Z-E_{1}-E_{2}\right)=\operatorname{Supp} W=\bigcup_{i=3}^{8} E_{i}$ and $Z=E_{1}+E_{2}+\sum_{i=3}^{8} a_{i} E_{i}$ with $a_{3}, \ldots, a_{8} \in \mathbb{N}$. By Lemmas 2 and 3 in [10], we also note that $\left(E_{1} \cdot W\right)=\left(E_{2} \cdot W\right)=1$. Since $\left(Z \cdot E_{i}\right)=0(3 \leq i \leq 8)$, we obtain $(Z \cdot W)=0$.

Proposition 3.8. Assume that ${\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}^{v}$ is of type A_{6}. Then the weighted dual graph of $\hat{Y} \cup E$ is of type (XVII) or (XVIII) in Theorem 1, for the case $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}$ or $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}\right.$: line) respectively.

Proof. Assume that ${\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}$ is of type A_{6}. Then the weighted dual graph of Supp W is given as in Fig. 11 (a), where the integers adjacent to vertices are coefficients in W. We note that $\left(E_{3} \cdot W\right)=\left(E_{8} \cdot W\right)=-1$ and $\left(E_{i} \cdot W\right)=0(4 \leq i \leq 7)$. By computing the intersection number $(Z \cdot W)$, we have

$$
0=(Z \cdot W)=\left(E_{1} \cdot W\right)+\left(E_{2} \cdot W\right)+\sum_{i=3}^{8} a_{i}\left(E_{i} \cdot W\right)=2-a_{3}-a_{8} .
$$

Thus we obtain $a_{3}=a_{8}=1$. Moreover, by computing the intersection numbers $\left(Z \cdot E_{1}\right)$ and $\left(Z \cdot E_{2}\right)$, we obtain $\left(\sum_{i=3}^{8} a_{i} E_{i} \cdot E_{1}\right)=\left(\sum_{i=3}^{8} a_{i} E_{i} \cdot E_{2}\right)=2$. By noting that $\operatorname{Supp} Z$ is of simple normal crossing, we see that $E_{1} \cap\left(E_{3} \cup E_{8}\right)=E_{2} \cap\left(E_{3} \cup E_{8}\right)=\emptyset$. Here we note Lemma 3.7 (viii). By contracting the curve $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right) \cup E_{1} \cup E_{2}$ and suitable curves in $\hat{Y} \cup E$, we have a boundary of a minimal normal compactification of \mathbb{C}^{2}. Since its weighted dual graph must be found in Morrow's classification, the weighted dual graph of $\operatorname{Supp} Z$ is uniquely determined as in Fig. 11 (b). By Lemma 3.7 (vii), we obtain the assertion.

Proposition 3.9. It does not occur the case where ${\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}^{v}$ is of type D_{6}.
Proof. Assume that ${\overline{E_{1}}}^{v} \cap{\overline{E_{2}}}^{v}$ is of type D_{6}. Then the weighted dual graph of Supp W is given as in Fig. 12 (a), where the integers adjacent to vertices are co-

(a)

(b)

Fig. 11.

$(1)(2)(2)(2)(1)$
(a)

(b)

Fig. 12.
efficients in W. We note that $\left(E_{1} \cdot W\right)=\left(E_{2} \cdot W\right)=1$. By contracting the curve $\left(\bar{\pi}^{\nu}\right)^{-1}\left(\bar{Y}^{\nu}\right) \cup E_{1} \cup E_{2}$ and suitable curves in $\hat{Y} \cup E$, we have a boundary of a minimal normal compactification of \mathbb{C}^{2}. Since its weighted dual graph must be found in Morrow's classification, the weighted dual graph of Supp Z is uniquely determined as in Fig. 12 (b). We note that $\left(E_{6} \cdot W\right)=-1$ and $\left(E_{i} \cdot W\right)=0(i=3,4,5,7,8)$. By computing the intersection numbers $(Z \cdot W)$ and $\left(Z \cdot E_{7}\right)$, we have $0=(Z \cdot W)=2-a_{6}$ and $0=\left(Z \cdot E_{7}\right)=a_{6}-2 a_{7}+1$. Thus we obtain $a_{7}=3 / 2 \notin \mathbb{N}$. This is a contradiction.

Proposition 3.10. Assume that $\overline{E_{1}} \cap \overline{E_{2}}$ is of type E_{6}. Then the weighted dual graph of $\hat{Y} \cup E$ is of type (XIX) or (XX) in Theorem 1, for the case $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}$ or $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$ respectively.

Proof. Assume that ${\overline{E_{1}}}^{\nu} \cap{\overline{E_{2}}}^{\nu}$ is of type E_{6}. Then the weighted dual graph of Supp W is given as in Fig. 13 (a), where the integers adjacent to vertices are coefficients in W. By Lemma 3.7 (viii) and $\left(E_{1} \cdot W\right)=\left(E_{2} \cdot W\right)=1$, the weighted dual graph of Supp Z is uniquely determined as in Fig. 13 (b). By Lemma 3.7 (vii), we obtain the assertion.

Thus we complete the proof of Theorem 1 for the case $Z^{2}=-2$.

4. Proof of Theorem 1 for $Z^{\mathbf{2}}=\mathbf{- 1}$

In this section, we shall prove Theorem 1 for the case $Z^{2}=-1$. Let (X, Y) be a pair satisfying Assumption in $\S 1$ and $Z^{2}=-1$. We use the same notation as that in $\S 1$ and $\S 2$. We mainly consider a projection from x_{1} and a blowing-up at x_{1} to investigate the pair (X, Y). First we note that $\hat{Y} \cup E$ is a connected divisor without

Fig. 13.
cycles which consists of eleven rational curves. Since $Z^{2}=-1$, we may assume that E_{1} is a unique irreducible component of $Z=\sum_{i=1}^{s_{1}} a_{i} E_{i}$ such that $\left(E_{1} \cdot Z\right)=-1$ and $a_{1}=1$. Then we have that $\left(E_{i} \cdot Z\right)=0$ for any irreducible component E_{i} of $Z-$ E_{1}. By Lemma 2.3 (ii), there exists a unique point p_{0} of $E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$ such that $\left(\pi \circ \pi_{0}\right)^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}-2 E_{0}^{\prime}\right)$, where $\pi_{0}: M^{\prime} \rightarrow M$ is a blowing-up at p_{0} with exceptional curve E_{0}^{\prime} and Z^{\prime} is the proper transform of Z by π_{0}. We put $\pi^{\prime}:=\pi \circ \pi_{0}$. Let \hat{C}^{\prime} be the proper transform of a curve C in X by π^{\prime}. Let E_{i}^{\prime} and E^{\prime} be the proper transforms of E_{i} and E by π_{0} respectively for $i \geq 1$. We note that $\pi_{0}^{*} Z=Z^{\prime}+E_{0}^{\prime}$, Supp $\pi_{0}^{*} Z=\left(\pi^{\prime}\right)^{-1}\left(x_{1}\right)$, Exc $\pi^{\prime}=Z^{\prime} \cup E_{0}^{\prime}, K_{M^{\prime}} \sim-Z^{\prime}$ and $Z^{\prime 2}=-2$. Let $\sigma: \overline{\mathbb{P}^{3}} \rightarrow$ \mathbb{P}^{3} be the blowing-up at x_{1} with exceptional divisor Δ, which is isomorphic to \mathbb{P}^{2}. Let \bar{T} be the proper transform of a closed algebraic subset T of \mathbb{P}^{3} by σ. We have that $\left.\sigma\right|_{\overline{\mathbb{P}^{3}} \backslash \Delta}: \overline{\mathbb{P}^{3}} \backslash \Delta \cong \mathbb{P}^{3} \backslash\left\{x_{1}\right\}$ and $\left.\mathcal{O}_{\overline{\mathbb{P}^{3}}}(\Delta)\right|_{\Delta} \cong \mathcal{O}_{\mathbb{P}^{2}}(-1)$. We set $\bar{E}:=\bar{X} \cap \Delta$. We have that $\left.\sigma\right|_{\bar{X} \backslash \bar{E}}: \bar{X} \backslash \bar{E} \cong X \backslash\left\{x_{1}\right\}$ and that $(\bar{X}, \bar{Y} \cup \bar{E})$ is a compactification of \mathbb{C}^{2} with dualizing sheaf $\omega_{\bar{X}} \cong \mathcal{O}_{\bar{X}}$. Let $\psi: \mathbb{P}^{3} \cdots \rightarrow \mathbb{P}^{2}$ be the projection from x_{1} and $\bar{\psi}: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{2}$ the resolution of indeterminacy of ψ. We have that $\left.\bar{\psi}\right|_{\Delta}: \Delta \rightarrow \mathbb{P}^{2}$ is an isomorphism and $\left.\bar{\psi}\right|_{\bar{X}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is a generically finite morphism of degree two. We note that $\left.\bar{\Gamma} \sim \bar{H}\right|_{\bar{X}}+\left.\Delta\right|_{\bar{X}}$ and $\hat{\Gamma} \sim \sum_{i=1}^{t} k_{i} \hat{Y}_{i}+\sum_{j=1}^{s} b_{j} E_{j}$ with $b_{j} \in \mathbb{N}$. Then we have some fundamental lemmas.

Lemma 4.1. One obtains the following:
(i) \bar{X} is normal. Moreover, $\left.\bar{X}\right|_{\Delta}=2 \bar{E}=2$ line and $\bar{E} \cap \operatorname{Sing} \bar{X}$ consists of only one point, which is denoted by $\overline{x_{1}}$.
(ii) Sing \bar{X} consists of exactly one minimally elliptic singular point $\overline{x_{1}}$ and at most rational double points.
(iii) There exists a birational morphism $\bar{\pi}^{\prime}: M^{\prime} \rightarrow \bar{X}$ satisfying $\left(\left.\sigma\right|_{\bar{X}}\right) \circ \bar{\pi}^{\prime}=\pi^{\prime}$. Then $\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=Z^{\prime}+2 E_{0}^{\prime},\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cong \mathcal{O}_{M^{\prime}}\left(\hat{\Gamma}^{\prime}-Z^{\prime}-2 E_{0}^{\prime}\right),\left.\bar{\pi}^{\prime}\right|_{E_{0}^{\prime}}: E_{0}^{\prime} \cong \bar{E}$ and $\bar{\pi}^{\prime}\left(\operatorname{Supp} Z^{\prime}\right)=\left\{\overline{x_{1}}\right\}$. Moreover, $\bar{\pi}^{\prime}$ is a minimal resolution of \bar{X} with $\operatorname{Exc} \bar{\pi}^{\prime}=\left(\bar{\pi}^{\prime}\right)^{-1}\left(\overline{x_{1}}\right) \cup$ $\left(\pi^{\prime}\right)^{-1}\left(x \backslash\left\{x_{1}\right\}\right)$.
(iv) Z^{\prime} is the fundamental cycle of $\left(\bar{\pi}^{\prime}\right)^{-1}\left(\overline{x_{1}}\right)$ with $Z^{\prime 2}=-2$. Moreover, $\overline{x_{1}}$ is a minimally elliptic double point of \bar{X} and $\left(\bar{\pi}^{\prime}\right)^{*} \mathfrak{m}_{\bar{X}, \overline{x_{1}}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}\right)$.

Fig. 14.
(v) There exists exactly one line l_{1} in X through x_{1}. Then $x_{1} \in l_{1} \subset Y$ and $\overline{x_{1}} \in \overline{l_{1}} \subset \bar{Y}$. Moreover, \hat{l}_{1}^{\prime} is a (-1)-curve in M^{\prime} with $\left(\hat{l}_{1}^{\prime} \cdot Z^{\prime}\right)=1$ and $\left(\hat{l}_{1}^{\prime} \cdot E_{0}^{\prime}\right)=0$ and \hat{l}_{1} is a (-1) curve in M with $\left(\hat{l}_{1} \cdot Z\right)=1$ and $p_{0} \notin \hat{l}_{1}$.
(vi) Let $\bar{X} \xrightarrow{g} V \xrightarrow{h} \mathbb{P}^{2}$ be the Stein factorization of $\left.\bar{\psi}\right|_{\bar{X}}$. Then V is normal, g is a birational morphism and h is a finite morphism of degree two. In particular, $\left.g\right|_{\bar{X} \backslash \bar{l}_{1}}: \bar{X} \backslash$ $\overline{l_{1}} \cong V \backslash g\left(\overline{l_{1}}\right)$ with $\operatorname{Exc} g=\overline{l_{1}}=g^{-1}\left(g\left(\overline{x_{1}}\right)\right)$ and $(V, g(\bar{Y} \cup \bar{E}))$ is a compactification of \mathbb{C}^{2}. Thus one obtains the commutative diagram as in Fig. 14.
(vii) V is a projective normal Gorenstein surface with dualizing sheaf $\omega_{V} \cong \mathcal{O}_{V}$. Moreover, Sing V consists of exactly one minimally elliptic double point $g\left(\overline{x_{1}}\right)$ and at most rational double points.

Proof. (i) The assertions are the general properties of the minimally elliptic singularity (X, x_{1}) with $Z^{2}=-1$. Indeed, we can check the assertions by applying a blowing-up of the local analytic defining equation of $\left(X, x_{1}\right)$ in Theorem 4.57 (3) of [7] (cf. [8]).
(ii) By using $K_{\bar{X}} \sim 0$ and Proposition 1 (vi) in [10], we obtain $p_{g}(\operatorname{Sing} \bar{X})=1$. Since $\left.\sigma\right|_{\bar{X} \backslash \bar{E}}: \bar{X} \backslash \bar{E} \cong X \backslash\left\{x_{1}\right\}$ and $\bar{E} \cap$ Sing $\bar{X}=\left\{\overline{x_{1}}\right\}$, we obtain the assertion.
(iii) There exists a birational morphism $\bar{\pi}^{\prime}: M^{\prime} \rightarrow \bar{X}$ satisfying $\left(\left.\sigma\right|_{\bar{X}}\right) \circ \bar{\pi}^{\prime}=\pi^{\prime}$ by Lemma 2.3 (ii). In particular, we obtain $\left(\bar{\pi}^{\prime}\right)^{-1}(\bar{E})=\operatorname{Supp}\left(Z^{\prime}+2 E_{0}^{\prime}\right)$. By the isomorphisms

$$
\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\mathcal{O}_{\overline{\mathbb{P}^{3}}}(-\Delta)\right|_{\bar{X}}\right) \cong\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\sigma\right|_{\bar{X}}\right)^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}-2 E_{0}^{\prime}\right),
$$

we obtain $\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\Delta\right|_{\bar{X}}\right) \sim Z^{\prime}+2 E_{0}^{\prime}$. Since $\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\Delta\right|_{\bar{X}}\right)$ is an effective divisor of M^{\prime} whose support equals to $\operatorname{Supp}\left(Z^{\prime}+2 E_{0}^{\prime}\right)$ and the intersection matrix of $\operatorname{Supp}\left(Z^{\prime}+2 E_{0}^{\prime}\right)$ is negative definite, we obtain $\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=Z^{\prime}+2 E_{0}^{\prime}$. In particular, we have

$$
\left(\bar{\pi}^{\prime}\right)^{*}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cong\left(\bar{\pi}^{\prime}\right)^{*} \mathcal{O}_{\bar{X}}\left(\left.\bar{H}\right|_{\bar{X}}\right) \cong\left(\bar{\pi}^{\prime}\right)^{*} \mathcal{O}_{\bar{X}}\left(\bar{\Gamma}-\left.\Delta\right|_{\bar{X}}\right) \cong \mathcal{O}_{M^{\prime}}\left(\hat{\Gamma}^{\prime}-Z^{\prime}-2 E_{0}^{\prime}\right) .
$$

Let E_{i}^{\prime} be any irreducible component of $\left(\pi^{\prime}\right)^{-1}\left(x_{1}\right)$ for $i \geq 0$. Since $\left.\bar{\pi}^{\prime}\right|_{E_{i}^{\prime}}$ is identified with $\left(\left.\bar{\psi}\right|_{\bar{X}}\right) \circ\left(\left.\bar{\pi}^{\prime}\right|_{E_{i}^{\prime}}\right.$, we obtain $\operatorname{deg}\left(\left.\bar{\pi}^{\prime}\right|_{E_{i}^{\prime}}\right)=-\left(Z^{\prime}+2 E_{0}^{\prime} \cdot E_{i}^{\prime}\right)_{M^{\prime}}$. Thus we see that $\left.\bar{\pi}^{\prime}\right|_{E_{0}^{\prime}}: E_{0}^{\prime} \cong \bar{E}$ and $\bar{\pi}^{\prime}\left(\operatorname{Supp} Z^{\prime}\right)=\left\{\overline{x_{1}}\right\}$. Here we note that $\operatorname{Exc} \bar{\pi}^{\prime}=\left(\bar{\pi}^{\prime}\right)^{-1}\left(\overline{x_{1}}\right) \cup$ $\left(\pi^{\prime}\right)^{-1}\left(x \backslash\left\{x_{1}\right\}\right)$. Since $\operatorname{Supp} Z=\pi^{-1}\left(x_{1}\right)$ and $p_{0} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$, there exist no (-1)-curves in Supp $Z^{\prime}=\left(\bar{\pi}^{\prime}\right)^{-1}\left(\overline{x_{1}}\right)$. Thus $\bar{\pi}^{\prime}$ is a minimal resolution of \bar{X}.
(iv) Note that $\bar{\pi}^{\prime}$ gives a minimal resolution of the minimally elliptic singularity $\left(\bar{X}, \overline{x_{1}}\right)$ and $K_{M^{\prime}} \sim-Z^{\prime}$. By using Theorem 3.4 in [8], we have that Z^{\prime} is the fundamental cycle of $\left(\bar{\pi}^{\prime}\right)^{-1}\left(\overline{x_{1}}\right)$. By using $Z^{\prime 2}=-2$ and Theorem 3.13 in [8], we see that $\operatorname{mult}_{\overline{x_{1}}} \bar{X}=2$ and $\left(\bar{\pi}^{\prime}\right)^{*} \mathfrak{m}_{\bar{X}, \overline{\bar{x}_{1}}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}\right)$.
(v) There exists at least a line l in X through x_{1} by Proposition 2.15. By Lemma 2.3 (ii), we obtain $\left(\hat{l}^{\prime} \cdot Z^{\prime}+2 E_{0}^{\prime}\right)=1$. Hence $\hat{l^{\prime}}$ is a (-1)-curve in M^{\prime} with $\left(\hat{l}^{\prime} \cdot Z^{\prime}\right)=1$ and $\left(\hat{l}^{\prime} \cdot E_{0}^{\prime}\right)=0$. In particular, \hat{l} is a (-1)-curve in M with $(\hat{l} \cdot Z)=1$ and $p_{0} \notin \hat{l}$. Since $\left(\hat{l}^{\prime} \cdot Z^{\prime}\right)=1$, we see that \bar{l} passes through $\overline{x_{1}}$ necessarily. From this, the existence of l is unique. Thus we put $l_{1}:=l$. By Proposition 2.15 again, we obtain $l_{1} \subset Y$ and in particular $\overline{l_{1}} \subset \bar{Y}$.
(vi) Note the general properties of Stein factorization (cf. Corollary III.11.5 in [5]).
(vii) Since $\operatorname{deg} g=2$, Sing V consists of at most double points. Note that any double point is a hypersurface singularity and in particular a Gorenstein singularity. Thus V is Gorenstein. Since $\left.g\right|_{\bar{X} \backslash \bar{l}_{1}}: \bar{X} \backslash \overline{l_{1}} \cong V \backslash g\left(\overline{l_{1}}\right)$ and $K_{\bar{X}} \sim 0$, we obtain $K_{V} \sim 0$. By applying Proposition 1 (vi) in [10], we obtain $p_{g}(\operatorname{Sing} V)=1$. Hence we obtain the assertions.

Remark. The branch locus B of h is a reduced plane sextic curve. Indeed, this is showed as follows. First we note that $\operatorname{Pic}(V)$ is torsion-free by Lemma 4.1, and Proposition 1 in [10]. Thus we obtain the injectivity of $h^{*}: \operatorname{Pic}\left(\mathbb{P}^{2}\right) \cong \mathbb{Z} \rightarrow \operatorname{Pic}(V)$. Let R be the ramification divisor of h. Since $\operatorname{deg} h=2$, we have $K_{V} \sim h^{*} K_{\mathbb{P}^{2}}+R$ and $h^{*} B=2 R$. By noting that $K_{V} \sim 0$, we obtain $h^{*}(B-6 L) \sim 0$ and hence $B-6 L \sim 0$, where L is a line in \mathbb{P}^{2}. In the following, we omit the investigation of a detailed structure of B since there is no necessity in our arguments.

Lemma 4.2. One obtains the following:
(i) $x=\left\{x_{1}\right\}$, Sing $\bar{X}=\left\{\overline{x_{1}}\right\}, 1 \leq b_{2}(Y) \leq 2, b_{2}(E)=11-b_{2}(Y)$. In particular, $\operatorname{Sing} V=$ $\left\{g\left(\overline{x_{1}}\right)\right\}$.
(ii) E is a simple normal crossing divisor of one (-3)-curve E_{1} and some (-2)-curves whose weighted dual graph is not a linear tree.
(iii) \hat{l}_{1} is a (-1)-curve in M with $\left(\hat{l}_{1} \cdot E_{1}\right)=1,\left(\hat{l}_{1} \cdot Z-E_{1}\right)=0$ and $p_{0} \notin \hat{l}_{1}$.
(iv) $\hat{l}_{1} \cap \operatorname{Supp} Z$ is a smooth point of Z, which is denoted by p_{1}. In particular, $p_{0} \neq$ $p_{1} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$.
(v) $\mathcal{O}_{Z}(Z) \cong \mathcal{O}_{Z}\left(-p_{0}\right)$.

Proof. (i) First we show that $\left(\overline{l_{1}} \cap \operatorname{Sing} \bar{X}\right) \backslash\left\{\overline{x_{1}}\right\}=\emptyset$. Assume that $\left(\overline{l_{1}} \cap \operatorname{Sing} \bar{X}\right) \backslash$ $\left\{\overline{x_{1}}\right\} \neq \emptyset$. By Lemma 2.5 (i) and Lemma 4.1 (ii), there exists an irreducible component E_{i}^{\prime} of $\left(\bar{\pi}^{\prime}\right)^{-1}\left(\left(\overline{l_{1}} \cap \operatorname{Sing} \bar{X}\right) \backslash\left\{\overline{x_{1}}\right\}\right)$ which is a (-2)-curve in M^{\prime} with $\left(\hat{l_{1}^{\prime}} \cdot E_{i}^{\prime}\right)=1$. By using $Z^{\prime 2}=-2$ and Lemma $4.1(\mathrm{v})$, we obtain $\left(Z^{\prime}+E_{i}^{\prime}+2 \hat{l}_{1}^{\prime}\right)^{2}=0$ directly. On the other hand, the intersection matrix of $\left(g \circ \bar{\pi}^{\prime}\right)^{-1}\left(g\left(\overline{l_{1}}\right)\right)=\hat{l}_{1}^{\prime} \cup \operatorname{Supp} Z^{\prime} \cup\left(\bar{\pi}^{\prime}\right)^{-1}\left(\left(\overline{l_{1}} \cap\right.\right.$ Sing $\left.\left.\bar{X}\right) \backslash\left\{\overline{x_{1}}\right\}\right)$ is negative definite. This is a contradiction. Thus we have that $\overline{l_{1}} \cap \operatorname{Sing} \bar{X}=\left\{\overline{x_{1}}\right\}$ and
in particular $x \cap l=\left\{x_{1}\right\}$. By noting Proposition 2.15 and Lemma 4.1 (v), we obtain $1 \leq b_{2}(Y) \leq 2$ and $x=\left\{x_{1}\right\}$. Immediately, we also obtain the other assertions.
(ii) By using $b_{2}(E) \geq 4$ and Proposition 3.5 in [8], we have that E is a simple normal crossing divisor of smooth rational curves. By using $p_{g}\left(x_{1}\right) \neq 0$ and Satz 2.10 in [3], we see that the weighted dual graph of E is not a linear tree. By the adjunction formula, we obtain the assertion.
(iii) Note that \hat{l}_{1}^{\prime} is a (-1)-curve in M^{\prime} with $\left(\hat{l_{1}^{\prime}} \cdot Z^{\prime}\right)=1$ and $\left(\hat{l_{1}^{\prime}} \cdot E_{0}^{\prime}\right)=0$ by Lemma 4.1 (v). Since $\left(\hat{l_{1}^{\prime}} \cdot Z^{\prime}\right)=1$, there exists a unique irreducible component E_{i}^{\prime} of Z^{\prime} such that $\left(\hat{l_{1}^{\prime}} \cdot E_{i}^{\prime}\right)=1$ and $\left(\hat{l_{1}^{\prime}} \cdot Z^{\prime}-E_{i}^{\prime}\right)=0$. Since the intersection matrix of $(g \circ$ $\left.\bar{\pi}^{\prime}\right)^{-1}\left(g\left(\overline{l_{1}}\right)\right)=\hat{l_{1}^{\prime}} \cup \operatorname{Supp} Z^{\prime}$ is negative definite, we obtain $3\left(E_{i}^{\prime}\right)^{2}+6=\left(Z^{\prime}+E_{i}^{\prime}+2 \hat{l_{1}^{\prime}}\right)^{2}<0$ and thus $\left(E_{i}^{\prime}\right)^{2} \leq-3$. Since $p_{0} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$, we have $E_{i}^{\prime}=E_{1}^{\prime}$. By noting that $\left(\hat{l_{1}^{\prime}} \cdot E_{0}^{\prime}\right)=0$, we obtain the assertion.
(iv) By noting (iii), we obtain the assertions.
(v) Let L be a line in \mathbb{P}^{2} such that $(h \circ g)\left(\overline{x_{1}}\right)=\bar{\psi}\left(\overline{x_{1}}\right) \notin L$. Then we have $\operatorname{Supp}\left(h \circ g \circ \bar{\pi}^{\prime}\right)^{*} L \cap \operatorname{Supp} Z^{\prime}=\emptyset$. By the projection formula and $\left.\left(h \circ g \circ \bar{\pi}^{\prime}\right)\right|_{E_{0}^{\prime}}: E_{0}^{\prime} \cong$ $\bar{\psi}(\bar{E})$, we also have $\left(\left(h \circ g \circ \bar{\pi}^{\prime}\right)^{*} L \cdot E_{0}^{\prime}\right)_{M^{\prime}}=\left(L \cdot \bar{\psi}(\bar{E})_{\mathbb{P}^{2}}=1\right.$. Hence $\left(\pi_{0}\right)_{*}\left(h \circ g \circ \bar{\pi}^{\prime}\right)^{*} L$ intersects Z transversally at only one point p_{0}, which is a smooth point of Z. By Lemma 4.1 (iii), we obtain $\hat{\Gamma}-Z \sim\left(\pi_{0}\right)_{*}\left(h \circ g \circ \bar{\pi}^{\prime}\right)^{*} L$. By restricting this relation to Z, we obtain the assertion.

Lemma 4.3. There exists only the case where

$$
\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}: \text { line, } Y_{2}: \text { conic }\right) \text { with } x=Y_{1} \cap Y_{2}=\left\{x_{1}\right\} .
$$

In this case, one has that $Y_{1}=l_{1}, \bar{\psi}(\bar{H})=\bar{\psi}(\bar{E})$ and $\left.\bar{H}\right|_{\bar{X}}=2 \overline{Y_{1}}+\overline{Y_{2}}+\bar{E}$. Moreover, one has that $g\left(\overline{Y_{2}}\right) \neq g(\bar{E}), g\left(\overline{Y_{2}}\right)+g(\bar{E})=h^{*}(\bar{\psi}(\bar{E}))$ and $\overline{Y_{2}} \cong g\left(\overline{Y_{2}}\right) \cong \bar{\psi}(\bar{E}) \cong g(\bar{E}) \cong$ $\bar{E} \cong \mathbb{P}^{1}$.

Proof. By Proposition 2.15, Lemma 4.1 (v) and Lemma 4.2 (i), there exist the following four possibilities:
(1) $\mathcal{Y}=4 Y_{1}\left(Y_{1}\right.$: line) with $x=x \cap Y_{1}=\left\{x_{1}\right\}$.
(2) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{1}, Y_{2}\right.$: line) with $x=x \cap\left(Y_{1} \backslash Y_{2}\right)=\left\{x_{1}\right\}$.
(3) $\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}\right.$: line, Y_{2} : conic) with $x=Y_{1} \cap Y_{2}=\left\{x_{1}\right\}$.
(4) $\mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}\right.$: line, Y_{2} : cuspidal cubic) with $x=Y_{1} \cap Y_{2}=\operatorname{Sing} Y_{2}=\left\{x_{1}\right\}$.

For each case, we note that $Y_{1}=l_{1}, \overline{x_{1}} \in \overline{Y_{1}}$ and $\overline{Y_{i}} \cong \mathbb{P}^{1}$ for any i. By noting the position of x_{1} in Y and that $\left.\bar{\psi}\right|_{\bar{X}}$ is a generically finite morphism of degree two, we obtain $\bar{\psi}(\bar{H})=\bar{\psi}(\bar{E})$. First we consider the case (3). In this case, we obtain $\left.\bar{H}\right|_{\bar{X}}=$ $2 \overline{Y_{1}}+\overline{Y_{2}}+\bar{E}$ since $\bar{\psi}(\bar{H})=\bar{\psi}(\bar{E})$. By noting Lemma 4.1 (vi) and that $\left.\bar{\psi}\right|_{\bar{E}}: \bar{E} \cong \bar{\psi}(\bar{E})$, we have that $g\left(\overline{Y_{2}}\right) \neq g(\bar{E}), g\left(\overline{Y_{2}}\right)+g(\bar{E})=h^{*}(\bar{\psi}(\bar{E}))$ and $\overline{Y_{2}} \cong g\left(\overline{Y_{2}}\right) \cong \bar{\psi}(\bar{E}) \cong g(\bar{E}) \cong$ $\bar{E} \cong \mathbb{P}^{1}$. Next we show that the cases (1), (2) and (4) do not occur.
(1) Assume that the case (1) occurs. Since $\bar{\psi}(\bar{H})=\bar{\psi}(\bar{E})$, we obtain $\left.\bar{H}\right|_{\bar{X}}=4 \bar{Y}_{1}+$ $2 \bar{E}$. By Lemma 4.1 (iii), there exists an effective divisor D of M such that $\operatorname{Supp} D=$

Supp Z and $\hat{\Gamma}-Z \sim 4 \hat{Y}_{1}+D$. From this, we obtain $\left(D \cdot E_{i}\right)=\left(3 Z \cdot E_{i}\right)$ for each irreducible component E_{i} of Z. Since the intersection matrix of $\operatorname{Supp} Z=\pi^{-1}\left(x_{1}\right)$ is negative definite, we have $D=3 Z$ and thus $\hat{\Gamma} \sim 4 \hat{Y}_{1}+4 Z$. In particular, we have $\mathcal{O}_{Z}(4 Z) \cong \mathcal{O}_{Z}\left(-4 p_{1}\right)$. By Lemma $4.2(\mathrm{v})$, we also have $\mathcal{O}_{Z}\left(4\left(p_{0}-p_{1}\right)\right) \cong \mathcal{O}_{Z}$. By Lemma 2.6 (iv), we obtain $p_{0}=p_{1}$. This is a contradiction.
(2) Assume that the case (2) occurs. Since $\bar{\psi}(\bar{H})=\bar{\psi}(\bar{E})$, we obtain $\left.\bar{H}\right|_{\bar{X}}=$ $3 \overline{Y_{1}}+\overline{Y_{2}}+\bar{E}$. By Lemma 4.1 (iii), there exists an effective divisor D of M such that $\operatorname{Supp} D=\operatorname{Supp} Z$ and $\hat{\Gamma}-Z \sim 3 \hat{Y}_{1}+\hat{Y}_{2}+D$. From this, we obtain $\left(D \cdot E_{i}\right)=\left(2 Z \cdot E_{i}\right)$ for each irreducible component E_{i} of Z. Since the intersection matrix of $\operatorname{Supp} Z=\pi^{-1}\left(x_{1}\right)$ is negative definite, we have $D=2 Z$ and thus $\hat{\Gamma} \sim 3 \hat{Y}_{1}+\hat{Y}_{2}+3 Z$. In particular, we have $\mathcal{O}_{Z}(3 Z) \cong \mathcal{O}_{Z}\left(-3 p_{1}\right)$. By Lemma 4.2 (v), we have $\mathcal{O}_{Z}\left(3\left(p_{0}-p_{1}\right)\right) \cong \mathcal{O}_{Z}$. By Lemma 2.6 (iv), we obtain $p_{0}=p_{1}$. This is a contradiction.
(4) Assume that the case (4) occurs. Note that $\overline{Y_{1}}$ and $\overline{Y_{2}}$ meet at only one point $\overline{x_{1}}$ transversally. In particular, $\overline{Y_{2}}$ is smooth. By using $\left(\bar{\pi}^{\prime}\right)^{*} \mathfrak{m}_{\bar{X}, \overline{x_{1}}} \cong \mathcal{O}_{M^{\prime}}\left(-Z^{\prime}\right)$ and Lemma 3 in [10], we obtain $\left(\hat{Y}_{2}^{\prime} \cdot Z^{\prime}\right)=1$. On the other hand, we obtain $\left(\hat{Y}_{2}^{\prime} \cdot Z^{\prime}\right)=0,2$ by Lemma 2.3 (ii). This is a contradiction.

Lemma 4.4. One obtains the following:
(i) \hat{Y}_{2} is a (-1)-curve in M with $\left(\hat{Y}_{2} \cdot Z\right)=1,\left(\hat{Y}_{1} \cdot \hat{Y}_{2}\right)=0$ and $p_{0} \notin \hat{Y}_{2}$.
(ii) $\hat{Y}_{2} \cap \operatorname{Supp} Z$ is a smooth point of Z, which is denoted by p_{2}, and $p_{2} \neq p_{0}, p_{1}$.
(iii) $\hat{Y} \cup E$ is a simple normal crossing divisor of two (-1)-curves \hat{Y}_{1}, \hat{Y}_{2}, one (-3)curve E_{1} and eight (-2)-curves whose weighted dual graph is not a linear tree.
(iv) $\hat{\Gamma} \sim 2 \hat{Y}_{1}+\hat{Y}_{2}+3 Z$. In particular, $\mathcal{O}_{Z}(3 Z) \cong \mathcal{O}_{Z}\left(-2 p_{1}-p_{2}\right)$.
(v) $\mathcal{O}_{Z}\left(3 p_{0}-2 p_{1}-p_{2}\right) \cong \mathcal{O}_{Z}$. In particular, $p_{2} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$.

Proof. (i) Note that each pair of $\overline{Y_{1}}, \overline{Y_{2}}$ and \bar{E} meet transversally at only one point $\overline{x_{1}}$ and that the blowing-up morphism at $\overline{x_{1}}$ of \bar{X} factors $\bar{\pi}^{\prime}$ by Lemma 4.1 (iv) and Proposition II. 7.14 in [5]. From these, we have $\left(\hat{Y}_{1}^{\prime} \cdot \hat{Y}_{2}^{\prime}\right)=\left(\hat{Y}_{1}^{\prime} \cdot E_{0}^{\prime}\right)=\left(\hat{Y}_{2}^{\prime} \cdot E_{0}^{\prime}\right)=0$. Thus we obtain the assertion.
(ii) By using (i), we obtain the assertions.
(iii) By (i), (ii) and Lemma 4.2 (ii), (iii), we obtain the assertion.
(iv) Note that $\left.\bar{H}\right|_{\bar{X}}=2 \overline{Y_{1}}+\overline{Y_{2}}+\bar{E}$. By Lemma 4.1 (iii), there exists an effective divisor D of M such that $\operatorname{Supp} D=\operatorname{Supp} Z$ and $\hat{\Gamma}-Z \sim 2 \hat{Y}_{1}+\hat{Y}_{2}+D$. From this, we have $\left(D \cdot E_{i}\right)=\left(2 Z \cdot E_{i}\right)$ for each irreducible component E_{i} of Z. Since the intersection matrix of $\operatorname{Supp} Z=\pi^{-1}\left(x_{1}\right)$ is negative definite, we obtain $D=2 Z$ and thus $\hat{\Gamma} \sim 2 \hat{Y}_{1}+$ $\hat{Y}_{2}+3 Z$. In particular, we obtain $\mathcal{O}_{Z}(3 Z) \cong \mathcal{O}_{Z}\left(-2 p_{1}-p_{2}\right)$.
(v) By (iv) and Lemma 4.2 (v), we have $\mathcal{O}_{Z}\left(3 p_{0}-2 p_{1}-p_{2}\right) \cong \mathcal{O}_{Z}$ and in particular $\operatorname{deg} \mathcal{O}_{Z}\left(3 p_{0}-2 p_{1}-p_{2}\right)=\operatorname{deg} \mathcal{O}_{Z}=(0, \ldots, 0)$. By noting (ii) and that $p_{0}, p_{1} \in E_{1}$, we obtain $p_{2} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$.

Fig. 15.
Proposition 4.5. There exists only the case where

$$
\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}: \text { line, } Y_{2}: \text { conic }\right) \text { with } x=Y_{1} \cap Y_{2}=\left\{x_{1}\right\} .
$$

Moreover, the weighted dual graph of $\hat{Y} \cup E$ is of type (XXI) in Theorem 1.
Proof. We have already obtained the first assertion. Now we prove the second assertion. Let $\hat{Y}_{2}^{*}, E_{i}^{*}$ and E^{*} be the proper transforms of \hat{Y}_{2}, E_{i} and E by the contraction morphism of \hat{Y}_{1} respectively. By Lemma 4.2 (iv) and Lemma 4.4 (ii), (iii), $\hat{Y}_{2}^{*} \cup E^{*}$ is a boundary of a smooth compactification of \mathbb{C}^{2} which is a simple normal crossing divisor of one (-1)-curve \hat{Y}_{2}^{*} and nine (-2)-curves. By Lemma 2.9 and $p_{2} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$, the weighted dual graph of $\hat{Y}_{2}^{*} \cup E^{*}$ is given as in Fig. 15. Since $p_{1} \in E_{1} \backslash \operatorname{Sing}(\operatorname{Supp} Z)$ and $p_{1} \neq p_{2}$, we obtain the assertion.

Thus we complete the proof of Theorem 1 for the case $Z^{2}=-1$.

5. Proof of Theorems 2 and 3

In this section, we shall prove Theorems 2 and 3 . We use the same notation as that in the previous sections. For each weighted dual graph of $\hat{Y} \cup E$ of type (XV) through (XXI) in Theorem 1, we know the shape of the divisor $\hat{\Gamma} \cup(\hat{Y} \cup E)$ by noting that $\left(\hat{\Gamma} \cdot \hat{Y}_{i}\right)_{M}=\left(\Gamma \cdot Y_{i}\right)_{X}=\operatorname{deg} Y_{i}$ and $(\hat{\Gamma} \cdot E)_{M}=0$. By contracting suitable (-1)-curves in $\hat{Y} \cup E$ repeatedly, we can obtain \mathbb{P}^{2} or $\mathbb{P}^{1} \times \mathbb{P}^{1}$ as a compactification of \mathbb{C}^{2}. Let $\tau=\tau_{1} \circ \cdots \circ \tau_{N}: M_{N}:=M \rightarrow \cdots \rightarrow M_{0}$ be the composite of blowing-downs to $M_{0}:=\mathbb{P}^{2}$ or $\mathbb{P}^{1} \times \mathbb{P}^{1}$, where $10 \leq N \leq 11$. Conversely, we obtain M by applying blowing-ups of M_{0} on $\tau(\hat{Y} \cup E)$ repeatedly. We denote by P_{i-1} the center of the blowing-up τ_{i} and by F_{i} the proper transform of $\operatorname{Exc} \tau_{i}=\tau_{i}^{-1}\left(P_{i-1}\right)$ in M for $1 \leq i \leq N$. The birational map $\phi:=\pi \circ \tau^{-1}: M_{0} \cdots \rightarrow X$, which has points of indeterminacy at $\tau(\operatorname{Exc} \tau)$, gives an isomorphism $M_{0} \backslash \tau(\hat{Y} \cup E) \cong X \backslash Y$. The commutative diagram in Fig. 16 gives a resolution of indeterminacy of ϕ. The image $G:=\tau_{*} \hat{\Gamma}$ is an irreducible curve on M_{0} with $\operatorname{Sing} G=\tau(\operatorname{Exc} \tau)$. Since π is determined by the linear system $|\hat{\Gamma}|$ on M, the map ϕ is determined by the linear system $\tau_{*}|\hat{\Gamma}|=\left|G-m_{0} P_{0}-m_{1} P_{1}-\cdots-m_{N-1} P_{N-1}\right|$ on M_{0} with $m_{i} \geq 1$. By chasing the process of the resolution of indeterminacy of ϕ, we can determine a basis of the four-dimensional \mathbb{C}-vector space associated with $\tau_{*}|\hat{\Gamma}|$. Thus we write down the map ϕ and the pair (X, Y) as the image of ϕ concretely. Finally we construct a tame automorphism of \mathbb{C}^{3} explicitly which linearizes the hypersurface

Fig. 16.
$X \backslash Y$ of $\mathbb{P}^{3} \backslash H=\mathbb{C}^{3}$. Let $w=\left(w_{0}: w_{1}: w_{2}\right)$ and $z=\left(z_{0}: z_{1}: z_{2}: z_{3}\right)$ be homogeneous coordinates of \mathbb{P}^{2} and \mathbb{P}^{3} respectively. Let $(x, y)=\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right)$ be a bihomogeneous coordinate of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
5.1. The types (XV) and (XVI). For each type, there exists a composite $\tau=$ $\tau_{1} \circ \cdots \circ \tau_{11}: M_{11}=M \rightarrow \cdots \rightarrow M_{0}=\mathbb{P}^{2}$ of blowing-downs to \mathbb{P}^{2} such that Exc τ is contained in $\hat{Y} \cup E$. Let L be the image $\tau(\hat{Y} \cup E)$, which is a line in \mathbb{P}^{2}, and \bar{L} the proper transform of L in M. We note that $\tau(\operatorname{Exc} \tau)=\left\{P_{0}\right\}$ and $\hat{Y} \cup E=\bar{L} \cup\left(\bigcup_{i=1}^{11} F_{i}\right)$, whose weighted dual graph is given as in Fig. $17(\mathrm{XV})$ or (XVI). By the shape of $\hat{\Gamma} \cup$ $(\hat{Y} \cup E)$ and $\hat{\Gamma}^{2}=4$, we see that G is a plane sextic curve with $\operatorname{Sing} G=G \cap L=\left\{P_{0}\right\}$ and that ϕ is determined by the linear system $\mid 6 L-2 P_{0}-2 P_{1}-2 P_{2}-2 P_{3}-2 P_{4}-$ $2 P_{5}-2 P_{6}-P_{7}-P_{8}-P_{9}-P_{10}$, whose base locus consists of only one point P_{0}. We may assume that $L=\left\{w_{2}=0\right\}$ and $P_{0}=(0: 1: 0)$. Then we have the next proposition by computing directly.

Proposition 5.1. One obtains the following:
(i) The map ϕ is given, up to automorphisms of \mathbb{P}^{2} and \mathbb{P}^{3}, as follows:

$$
\phi:\left\{\begin{array}{l}
z_{0}=w_{0} w_{2}^{5} \\
z_{1}=f_{1}(w) w_{2}^{3} \\
z_{2}=w_{1} w_{2}^{5}+\left\{f_{1}(w)+\lambda_{1} w_{0} w_{2}^{2}\right\}\left\{f_{1}(w)+\lambda_{2} w_{0} w_{2}^{2}\right\} \\
z_{3}=w_{2}^{6}
\end{array}\right.
$$

with $f_{1}(w)=f_{1}\left(w_{0}, w_{1}, w_{2}\right)=w_{0}^{3}+w_{1}^{2} w_{2}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{C}$, where $\lambda_{1}=\lambda_{2}$ for the type (XV) and $\lambda_{1} \neq \lambda_{2}$ for the type (XVI).
(ii) The pair (X, Y) is given, up to automorphisms of \mathbb{P}^{3}, as follows:

$$
\left\{\begin{array}{l}
X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}+z_{0} z_{3}^{3}+z_{1}^{3} z_{3}=0 \\
Y: z_{3}=\left(\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}=0
\end{array}\right.
$$

with $\alpha, \beta, \gamma \in \mathbb{C}$ and $\alpha \neq 0$, where $\beta^{2}-4 \alpha \gamma=0$ for the type (XV) and $\beta^{2}-4 \alpha \gamma \neq 0$ for the type (XVI).
(iii) For each type, there exists a tame automorphism of \mathbb{C}^{3} which transforms the hypersurface $X \backslash Y$ onto a coordinate hyperplane.
5.2. The types (XVII) and (XVIII). For each type, there exists a composite $\tau=\tau_{1} \circ \cdots \circ \tau_{10}: M_{10}=M \rightarrow \cdots \rightarrow M_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ of blowing-downs to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $\operatorname{Exc} \tau$ is contained in $\hat{Y} \cup E$. Let $C_{1} \cup C_{2}$ be the image $\tau(\hat{Y} \cup E)$, which is a union of fibers of the two standard projections of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and $\overline{C_{1}} \cup \overline{C_{2}}$ the proper transform of $C_{1} \cup C_{2}$ in M. We note that $\tau(\operatorname{Exc} \tau)=\left\{P_{0}, P_{5}\right\}$ and $\hat{Y} \cup E=\overline{C_{1}} \cup \overline{C_{2}} \cup\left(\bigcup_{i=1}^{10} F_{i}\right)$, whose weighted dual graph is given as in Fig. 17 (XVII) or (XVIII). By the shape of $\hat{\Gamma} \cup(\hat{Y} \cup E)$ and $\hat{\Gamma}^{2}=4$, we see that G is an irreducible curve of bidegree $(4,4)$ with Sing $G=G \cap\left(C_{1} \cup C_{2}\right)=\left\{P_{0}, P_{5}\right\}$ and that ϕ is determined by the linear system $\left|\left(4 C_{1}+4 C_{2}\right)-\left(2 P_{0}+2 P_{1}+2 P_{2}+P_{3}+P_{4}\right)-\left(2 P_{5}+2 P_{6}+2 P_{7}+P_{8}+P_{9}\right)\right|$, whose base locus consists of two points P_{0} and P_{5}. We may assume that $C_{1}=\left\{y_{1}=0\right\}, C_{2}=\left\{x_{1}=0\right\}$, $P_{0}=((0: 1),(1: 0))$ and $P_{5}=((1: 0),(0: 1))$. Then we have the next proposition by computing directly.

Proposition 5.2. One obtains the following:
(i) The map ϕ is given, up to automorphisms of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{3}, as follows:

$$
\phi:\left\{\begin{array}{l}
z_{0}=x_{0} x_{1}^{3} y_{0} y_{1}^{3} \\
z_{1}=f_{2}(x, y) x_{1}^{2} y_{1}^{2} \\
z_{2}=\lambda_{3} x_{1}^{4} y_{0} y_{1}^{3}+\left\{f_{2}(x, y)+\lambda_{1} x_{0} x_{1} y_{0} y_{1}\right\}\left\{f_{2}(x, y)+\lambda_{2} x_{0} x_{1} y_{0} y_{1}\right\} \\
z_{3}=x_{1}^{4} y_{1}^{4}
\end{array}\right.
$$

with $f_{2}(x, y)=f_{2}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=x_{0}^{2} y_{0}^{2}+x_{0} x_{1} y_{1}^{2}+x_{1}^{2} y_{0} y_{1}, \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$ and $\lambda_{3} \neq 0$, where $\left(\lambda_{1}-\lambda_{2}\right)^{2}\left\{\left(\lambda_{1}-\lambda_{2}\right)^{2}+4 \lambda_{3}\right\}=0$ for the type (XVII) and $\left(\lambda_{1}-\lambda_{2}\right)^{2}\left\{\left(\lambda_{1}-\lambda_{2}\right)^{2}+\right.$ $\left.4 \lambda_{3}\right\} \neq 0$ for the type (XVIII).
(ii) The pair (X, Y) is given, up to automorphisms of \mathbb{P}^{3}, as follows:

$$
\left\{\begin{array}{l}
X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-\left(z_{0} z_{3}+z_{1}^{2}\right)^{2}+z_{1} z_{3}^{3}=0 \\
Y: z_{3}=\left(\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-z_{1}^{4}=0
\end{array}\right.
$$

with $\alpha, \beta, \gamma \in \mathbb{C}$ and $\alpha \neq 0$, where $\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-4 \alpha(\gamma+1)\right\}=0$ for the type (XVII) and $\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-4 \alpha(\gamma+1)\right\} \neq 0$ for the type (XVIII).
(iii) For each type, there exists a tame automorphism of \mathbb{C}^{3} which transforms the hypersurface $X \backslash Y$ onto a coordinate hyperplane.
5.3. The types (XIX) and (XX). For each type, there exists a composite $\tau=$ $\tau_{1} \circ \cdots \circ \tau_{11}: M_{11}=M \rightarrow \cdots \rightarrow M_{0}=\mathbb{P}^{2}$ of blowing-downs to \mathbb{P}^{2} such that Exc τ is contained in $\hat{Y} \cup E$. Let L be the image $\tau(\hat{Y} \cup E)$, which is a line in \mathbb{P}^{2}, and \bar{L} the proper transform of L in M. We note that $\tau(\operatorname{Exc} \tau)=\left\{P_{0}, P_{7}\right\}$ and $\hat{Y} \cup E=$
$\bar{L} \cup\left(\bigcup_{i=1}^{11} F_{i}\right)$, whose weighted dual graph is given as in Fig. 17 (XIX) or (XX). By the shape of $\hat{\Gamma} \cup(\hat{Y} \cup E)$ and $\hat{\Gamma}^{2}=4$, we see that G is a plane sextic curve with Sing $G=G \cap L=\left\{P_{0}, P_{7}\right\}$ and that ϕ is determined by the linear system $\mid 6 L-\left(2 P_{0}+\right.$ $\left.2 P_{1}+2 P_{2}+2 P_{3}+2 P_{4}+P_{5}+P_{6}\right)-\left(2 P_{7}+2 P_{8}+P_{9}+P_{10}\right) \mid$, whose base locus consists of two points P_{0} and P_{7}. We may assume that $L=\left\{w_{2}=0\right\}, P_{0}=(0: 1: 0)$ and $P_{7}=(1: 0: 0)$. Then we have the next proposition by computing directly.

Proposition 5.3. One obtains the following:
(i) The map ϕ is given, up to automorphisms of \mathbb{P}^{2} and \mathbb{P}^{3}, as follows:

$$
\phi:\left\{\begin{array}{l}
z_{0}=w_{0} w_{2}^{5} \\
z_{1}=f_{3}(w) w_{2}^{3} \\
z_{2}=w_{0}^{2} w_{2}^{4}+w_{1} w_{2}^{5}+\left\{f_{3}(w)+\lambda_{1} w_{0} w_{2}^{2}\right\}\left\{f_{3}(w)+\lambda_{2} w_{0} w_{2}^{2}\right\} \\
z_{3}=w_{2}^{6}
\end{array}\right.
$$

with $f_{3}(w)=f_{3}\left(w_{0}, w_{1}, w_{2}\right)=w_{0}^{2} w_{1}+w_{1}^{2} w_{2}+\lambda_{3} w_{1} w_{2}^{2}$ and $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$, where $\left(\lambda_{1}-\right.$ $\left.\lambda_{2}\right)^{2}\left\{\left(\lambda_{1}-\lambda_{2}\right)^{2}-4\right\}=0$ for the type (XIX) and $\left(\lambda_{1}-\lambda_{2}\right)^{2}\left\{\left(\lambda_{1}-\lambda_{2}\right)^{2}-4\right\} \neq 0$ for the type (XX).
(ii) The pair (X, Y) is given, up to automorphisms of \mathbb{P}^{3}, as follows:

$$
\left\{\begin{array}{l}
X:\left(z_{2} z_{3}+\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-z_{1}^{4}+z_{0} z_{3}^{3}+\delta z_{1}^{2} z_{3}^{2}=0 \\
Y: z_{3}=\left(\alpha z_{0}^{2}+\beta z_{0} z_{1}+\gamma z_{1}^{2}\right)^{2}-z_{1}^{4}=0
\end{array}\right.
$$

with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ and $\alpha \neq 0$, where $\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-4 \alpha(\gamma+1)\right\}=0$ for the type (XIX) and $\left\{\beta^{2}-4 \alpha(\gamma-1)\right\}\left\{\beta^{2}-4 \alpha(\gamma+1)\right\} \neq 0$ for the type (XX).
(iii) For each type, there exists a tame automorphism of \mathbb{C}^{3} which transforms the hypersurface $X \backslash Y$ onto a coordinate hyperplane.
5.4. The type (XXI). For this type, there exists a composite $\tau=\tau_{1} \circ \cdots \circ$ $\tau_{10}: M_{10}=M \rightarrow \cdots \rightarrow M_{0}=\mathbb{P}^{2}$ of blowing-downs to \mathbb{P}^{2} such that Exc τ is contained in $\hat{Y} \cup E$. Let L be the image $\tau(\hat{Y} \cup E)$, which is a line in \mathbb{P}^{2}, and \bar{L} the proper transform of L in M. We note that $\tau(\operatorname{Exc} \tau)=\left\{P_{0}\right\}, F_{9}=\hat{Y}_{2}, F_{10}=\hat{Y}_{1}$ and $\hat{Y} \cup E=\bar{L} \cup\left(\bigcup_{i=1}^{11} F_{i}\right)$, whose weighted dual graph is given as in Fig. 17 (XXI). By the shape of $\hat{\Gamma} \cup(\hat{Y} \cup E)$ and $\hat{\Gamma}^{2}=4$, we see that G is a plane curve of degree nine with Sing $G=G \cap L=\left\{P_{0}\right\}$ and that ϕ is determined by the linear system $\left|9 L-3 P_{0}-3 P_{1}-3 P_{2}-3 P_{3}-3 P_{4}-3 P_{5}-3 P_{6}-3 P_{7}-2 P_{8}-P_{9}\right|$, whose base locus consists of only one point P_{0}. We may assume that $L=\left\{w_{2}=0\right\}$ and $P_{0}=(0: 1: 0)$. Then we have the next proposition by computing directly.

Proposition 5.4. One obtains the following:
(i) The map ϕ is given, up to automorphisms of \mathbb{P}^{2} and \mathbb{P}^{3}, as follows:

$$
\phi:\left\{\begin{array}{l}
z_{0}=f_{4}(w) w_{2}^{6} \\
z_{1}=w_{0} w_{2}^{8}+f_{4}(w)^{2} w_{2}^{3} \\
z_{2}=w_{1} w_{2}^{8}-f_{4}(w)^{3}+\frac{3}{2} f_{4}(w)\left\{w_{0} w_{2}^{5}+f_{4}(w)^{2}\right\} \\
z_{3}=w_{2}^{9}
\end{array}\right.
$$

with $f_{4}(w)=f_{4}\left(w_{0}, w_{1}, w_{2}\right)=w_{0}^{3}+w_{1}^{2} w_{2}+\lambda w_{0} w_{2}^{2}$ and $\lambda \in \mathbb{C}$.
(ii) The pair (X, Y) is given, up to automorphisms of \mathbb{P}^{3}, as follows:

$$
\left\{\begin{array}{l}
X: z_{2}^{2} z_{3}^{2}+\left(2 z_{0}^{3}+3 z_{0} z_{1} z_{3}\right) z_{2}-z_{1}^{3} z_{3}-\frac{3}{4} z_{0}^{2} z_{1}^{2}+z_{0} z_{3}^{3}+\delta\left(z_{1} z_{3}+z_{0}^{2}\right) z_{3}^{2}=0 \\
Y: z_{3}=z_{0}^{2}\left(z_{0} z_{2}-\frac{3}{8} z_{1}^{2}\right)=0
\end{array}\right.
$$

with $\delta \in \mathbb{C}$.
(iii) There exists a tame automorphism of \mathbb{C}^{3} which transforms the hypersurface $X \backslash Y$ onto a coordinate hyperplane.

Remark. In (ii), the hypersurface $X \backslash Y$ is expressed as follows:

$$
\begin{aligned}
0 & =z_{2}^{2}+\left(2 z_{0}^{3}+3 z_{0} z_{1}\right) z_{2}-z_{1}^{3}-\frac{3}{4} z_{0}^{2} z_{1}^{2}+z_{0}+\delta\left(z_{1}+z_{0}^{2}\right) \\
& =\left(z_{2}+z_{0}^{3}+\frac{3}{2} z_{0} z_{1}\right)^{2}-\left(z_{1}+z_{0}^{2}\right)^{3}+z_{0}+\delta\left(z_{1}+z_{0}^{2}\right)
\end{aligned}
$$

where $\left(z_{0}, z_{1}, z_{2}\right)$ is a coordinate of $\mathbb{C}^{3}=\mathbb{P}^{3} \backslash H$.
Thus we complete the proof of Theorems 2 and 3 for the types (XV) through (XXI) in Theorem 1.

Acknowledgments. The author would like to express his hearty gratitude to Professor Mikio Furushima for his invaluable advice and encouragement during the preparation of this paper. Furthermore, the author is grateful to the referee for his/her suggestions and corrections.

(XVI)

(XVII)

(XVIII)

(XIX)

(XXI)

Fig. 17.

References

[1] S.S. Abhyankar and T.T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
[2] M. Artin: On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[3] E. Brieskorn: Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[4] H. Grauert and R. Remmert: Coherent analytic sheaves, Springer, Berlin, 1984.
[5] R. Hartshorne: Algebraic geometry, Springer, New York, 1977.
[6] K. Kodaira: Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry 6 (1971), 33-46.
[7] J. Kollár and S. Mori: Birational geometry of algebraic varieties, Cambridge Univ. Press, Cambridge, 1998.
[8] H.B. Laufer: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[9] J.A. Morrow: Minimal normal compactifications of \mathbf{C}^{2}, Rice Univ. Studies 59 (1973), 97-112.
[10] T. Ohta: The structure of algebraic embeddings of \mathbb{C}^{2} into \mathbb{C}^{3} (the cubic hypersurface case), Kyushu J. Math. 53 (1999), 67-106.
[11] T. Ohta: The structure of algebraic embeddings of \mathbb{C}^{2} into \mathbb{C}^{3} (the normal quartic hypersurface case. I), Osaka J. Math. 38 (2001), 507-532.
[12] C.P. Ramanujam: A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69-88.
[13] M. Reid: Chapters on algebraic surfaces; in Complex Algebraic Geometry (Park City, UT, 1993), IAS/Park City Math. Ser. 3, Amer. Math. Soc., Providence, RI., 1997, 3-159.
[14] M. Suzuki: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbf{C}^{2}, J. Math. Soc. Japan 26 (1974), 241-257.

Faculty of Engineering Kyushu Kyoritsu University
Jiyugaoka, Yahatanishi-ku Kitakyushu, 807-8585
Japan
e-mail: tohta@kyukyo-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14R10; Secondary 32J05.

