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Abstract
In this paper we show that a uniruled manifold with a split tangent bundle

admits almost holomorphic fibrations that are related to thesplitting. We analyse
these fibrations in detail in several special cases. This yields new results about the
integrability of the direct factors and the universal covering of the manifold.

Contents
1. Introduction ......................................................................... 1067
2. Notation and basic results ....................................................... 1070
3. The rationally connected quotient map ....................................... 1073
4. The projective case ............................................................... 1076
5. An application to the universal covering ..................................... 1079
References ................................................................................. 1083

1. Introduction

A compact Kähler manifoldX has a split tangent bundle ifTX = V1�V2, whereV1

and V2 are subbundles ofTX. Initiated by Beauville’s conjecture 1.6 on the universal
covering of these manifolds [2], these manifolds have been studied by several authors
during the last years ([12], [9], [4], [17]). One of the main themes of these papers
is that uniruled manifolds with split tangent bundle play a distinguished role. For ex-
ample if X is projective and not uniruled, then bothV1 and V2 are integrable [17,
Theorem 1.3], while for uniruled manifolds it is easy to construct examples where this
is not the case.

The goal of this paper is to develop a structure theory for uniruled Kähler man-
ifolds of arbitrary dimension. The main tool in this study will be the rationally con-
nected quotient map(cf. Theorem 2.10 for the definition and properties). We willob-
serve in Proposition 3.16 that ifZ is a general fibre of the rationally connected quotient
map of X, then

TZ = (TZ \ V1jZ)� (TZ \ V2jZ).

2000 Mathematics Subject Classification. Primary 14F10; Secondary 14D06, 14E30, 14J40,
32Q30, 57R30.
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In particularZ is a rationally connected manifold with a (maybe trivial) splitting of the
tangent bundle. This “ungeneric position property” (cf. [16] for the terminology) puts
us in a much better situation since we have the following description for rationally
connected manifolds with split tangent bundle.

Theorem 1.1 ([17, Theorem 1.4]). Let X be a rationally connected projective
manifold such that TX = V1 � V2. If V1 or V2 is integrable, then there exists an iso-
morphism X' X1� X2 such that Vj = p�X j

TX j for j = 1, 2. In particular both V1 and
V2 are integrable.

So far there are no examples of rationally connected manifolds with split tangent
bundle where the direct factors are not integrable. In fact Iam fairly optimistic that
such examples do not exist.

Conjecture 1.2. Let X be a projective manifold with split tangent bundle TX =
V1 � V2. If X is rationally connected, V1 or V2 is integrable.

Using Theorem 1.1 we can show the existence of a meromorphic fibration on X
that is related to the decomposition of the tangent bundle. More precisely we have the

Theorem 1.3. Let X be a uniruled compact Kähler manifold such that TX = V1�
V2. Let Z be a general fibre of the rationally connected quotient map, and suppose
that TZ \ V1jZ or TZ \ V2jZ is integrable. Then for i = 1, 2 there exists an almost
holomorphic fibration(cf. Definition 2.9)�i : X 99K Yi such that the general fibre Fi is
rationally connected and

TFi = (TZ \ Vi jZ)jFi � Vi jFi .

If we specify to the case where one of the direct factors has rank 2 we obtain a
more precise statement1.

Theorem 1.4. Let X be a uniruled compact Kähler manifold such that TX = V1�
V2 and rk V1 = 2. Let Z be a general fibre of the rationally connected quotient map,
and suppose that TZ \ V1jZ or TZ \ V2jZ is integrable. Then there are three possibili-
ties:
1) TZ \ V1jZ = V1jZ . Then the manifold X admits the structure of an analytic fibre
bundle X! Y such that the general fibre is rationally connected and TX=Y = V1.
2) TZ \ V1jZ is a line bundle. Then there exists an equidimensional map� : X ! Y
such that the general�-fibre F is a rational curve and TF � V1jF .
3) TZ � V2jZ.

1The situation where one of the direct factors has rank 1 is fully understood, cf. [4].
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This result is an analogue to the classification of compact Kähler surfaces: such
a surfaceS is rationally connected or admits a fibrationS! C with general fibre a
rational curve or is not covered by rational curves.

In the projective case, we then give two applications of thisstructure theory: the
first application is to try to “contract the obstruction to being integrable”, that is to
construct a fibrationX ! Y such thatY and the general fibreF have a split tangent
bundle with integrabledirect factors. We attain this goal for a splitting in vectorbun-
dles of small rank by showing a special case of Conjecture 1.2(cf. Lemma 4.21) and
combining it with the structure Theorem 1.4.

Theorem 1.5. Let X be a uniruled projective manifold such that TX =
Lk

j =1 Vj ,
where for all j2 f1,:::,kg we haverkVj � 2. Let Z be a general fibre of the rationally
connected quotient map. If TZ \ Vj jZ 6= 0, the direct factor Vj is integrable.

Furthermore the rationally connected quotient map can be realised as a flat fibra-
tion � : X ! Y on a projective manifold Y such that

TY =
kM

j =1

T�(Vj ).

In particular T�(Vj ) is an integrable subbundle of TY for every j2 f1, : : : , kg (cf. No-
tation 2.13for the precise definition of T�(Vj )).

As a second application we go back to the origin of our study ofmanifolds with
split tangent bundle which is the

Conjecture 1.6 (A. Beauville). Let X be a compact Kähler manifold such that
TX = V1 � V2, where V1 and V2 are vector bundles. Let � : X̃ ! X be the univer-
sal covering of X. Then X̃ ' X1 � X2, where p�X j

TX j ' ��Vj . If moreover Vj is

integrable, then there exists an automorphism ofX̃ such that we have an identity of
subbundles of the tangent bundle��Vj = p�X j

TX j .

This will be done in Section 5 where we obtain the

Theorem 1.7. Let X be a uniruled projective manifold such that TX = V1 � V2

and rk V1 = 2. Let Z be a general fibre of the rationally connected quotient map, then
one of the following holds.
1) TZ \ V1jZ 6= 0. If V1 and V2 are integrable, Conjecture1.6 holds.
2) TZ \ V1jZ = 0. ThendetV�

1 is pseudoeffective and V2 is integrable.

This result generalises and considerably simplifies the proof of [17, Theorem 1.5].
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2. Notation and basic results

We work over the complex fieldC. For standard definitions in complex alge-
braic geometry we refer to [15] or [19], for positivity notions of vector bundles we
follow the definitions from [25]. Manifolds and varieties arealways supposed to be
irreducible.

A fibration is a proper surjective morphism�: X ! Y with connected fibres from a
complex manifold onto a normal complex varietyY. The�-smooth locus is the largest
Zariski open subsetY� � Y such that for everyy 2 Y�, the fibre��1(y) is a smooth
variety of dimension dimX � dim Y. The �-singular locus is its complement. A fibre
is always a fibre in the scheme-theoretic sense, a set-theoretic fibre is the reduction of
the fibre.

Let us recall some basic definitions from the theory of rational curves.

DEFINITION 2.8. Let X be a compact Kähler variety. A rational curve is a non-
constant morphismf : P1 ! X.

The manifold is uniruled if through a general point ofX there exists a rational
curve. It is rationally connected if for two general points there exists a rational curve
through these two points.

REMARK . By a theorem of Campana [6], a rationally connected compactKähler
manifold is projective, in particular Theorem 1.1 applies in the Kähler situation.

DEFINITION 2.9. A meromorphic map�: X 99K Y from a compact Kähler man-
ifold to a normal Kähler variety is almost holomorphic if there exist non-empty open
subsetsX� � X and Y� � Y such that�jX� : X� ! Y� is a fibration. In particular for
y 2 Y a general point, the fibre��1(y) exists in the usual sense and is compact.

The importance of almost holomorphic maps is due to the fact that every compact
Kähler manifold admits such a fibration that separates the rationally connected part and
the non-uniruled part: therationally connected quotient map[21] or MRC-fibration
[23] or rational quotient map[10]:

Theorem 2.10 ([22, Theorem 5.4], [8, Theorem 1.1], [13]).2 Let X be a com-
pact Kähler manifold. Then there exists an almost holomorphic fibration� : X 99K Y
onto a normal compact Kähler variety Y such that the general fibre is rationally con-
nected and the variety Y is not uniruled. This map is unique up to meromorphic equiv-
alence of fibrations(cf. [7, 1.1.2] for the definition), and is called rationally connected
quotient map.

2The statement in [22] is in the algebraic setting, but the same proof goes through in the compact
Kähler category: the main technical tool [8, Theorem 1.1] holds in this larger generality.
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The rationally connected quotient map has the following universal property: let : X 99K Z be an almost holomorphic fibration such that the general fibre is rationally
connected. Then� factors through , i.e. there exists an almost holomorphic fibration� : Z 99K Y such that� = � Æ  .

2.1. Foliation theory. We recall some basic statements about holomorphic foli-
ations, for more details we refer to [5, 16]. LetX be a compact Kähler manifold. A
subbundleV � TX is integrable if it is closed under the Lie bracket. We recallthat
the Lie bracket

[ . , . ] : V � V ! TX

is a bilinear antisymmetric mapping that is notOX-linear but induces anOX-linear mapV2 V ! TX=V that is zero if and only ifV is integrable. In particular

H0

 
X, Hom

 
2̂

V , TX=V
!!

= 0

implies thatV is integrable. In general we will show this vanishing property using a
dominating family of subvarieties (Zs)s2S of X (i.e. through a general point ofX passes
at least one member of the family) such that a general member of the family satisfies

H0

 
Zs, Hom

 
2̂

V , TX=V
!�����

Zs

!
= H0

 
Zs,

  
2̂

V

!�

 (TX=V)

!�����
Zs

!
= 0.

Since an antiample vector bundle does not have any global sections, we will use this
frequently in the following form.

Lemma 2.11. Let X be a compact Kähler manifold, and let V� TX be a sub-
bundle. Let (Zs)s2S be a dominating family of X such that for a general member Zs

of the family, the vector bundle
V2 V jZs is ample and(TX=V)jZs is trivial. Then V is

integrable.

By the Frobenius theorem an integrable subbundleV of TX induces a foliation on
X, i.e. for everyx 2 X there exists an analytic neighbourhoodU and a submersion
U ! W such thatTU=W = V jU . These submersions are called the distinguished maps
of the foliation and the fibres are the so-called plaques. Thefoliation induces an equiv-
alence relation onX, two points being equivalent if and only if they can be connected
by chains of smooth (open) curvesCi such thatTCi � V jCi . An equivalence class is
called a leaf of the foliation. A subset ofX is V-saturated if it is a union of leaves.

The next proposition, which is a corollary of the global stability theorem for foli-
ations on Kähler manifold (cf. [27] for a short proof) gives afirst idea why rationally
connected manifolds are so useful in this context.
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Proposition 2.12. Let X be a compact Kähler manifold such that TX = V1 � V2.
Suppose that V1 � TX is integrable and that one leaf is compact and rationally con-
nected. Then X has the structure of an analytic fibre bundle X! Y over a compact
Kähler manifold Y such that TX=Y = V1 and the fibres are rationally connected.

Proof. By [17, Corollary 2.11] there exists a submersionX ! Y onto a compact
Kähler manifoldY such thatTX=Y = V1 and the fibres are rationally connected. The
arguments of [17, Lemma 3.19] (which do not use the projectiveness hypothesis made
there) then establish that the submersion is locally trivial.

2.2. Pushing forward subsheaves of the tangent bundle.For the applications
in the projective case it will be crucial to track the behaviour of the splitting under
certain morphisms. Let us first give a precise definition of the push forward of a sub-
sheaf of the tangent bundle, this definition just formalizesthe idea of looking at the
natural tangent map.

NOTATION 2.13. Let � : X ! Y be a fibration between quasiprojective mani-
folds. The canonical map���Y ! �X induces a a generically surjective sheaf homo-
morphism T� : TX ! ��TY. In particular forS � TX a quasicoherent subsheaf, we
have an inclusionT�(S) � ��TY. Since� is proper, by Grauert’s theorem the push-
forward ��(T�(S)) � TY is a quasicoherent subsheaf.

For the convenience of the reader, we will denote by

T�(S) � TY

the saturation of��(T�(S)) in TY [26, III, 1.6]. With this notationT�(S) is a reflexive
subsheaf ofTY.

Let X be a projective manifold such thatTX = V1 � V2. Suppose thatX is the
blow-up�: X ! X0 of a projective manifoldX0 along a smooth submanifoldZ. Since
in the complement of the exceptional locus we have an isomorphism���X0 ' �X , we
can consider the reflexive sheavesT�(Vi ) as subsheaves ofTX0 and it is clear that they
induce a splitting in the complement ofZ. Since Z has codimension at least 2, the
splitting extends toX0, that is

TX0 = T�(V1)� T�(V2).

Furthermore we have an easy lemma relating the universal coverings of X and X0.
Lemma 2.14. Let X be a projective manifold such that TX = V1 � V2. Suppose

that X is the blow-up� : X ! X0 of a projective manifold X0 along a smooth sub-
manifold. Then we have a splitting TX0 = T�(V1) � T�(V2). If T�(V1) and T�(V2)
are integrable andConjecture 1.6holds for X0, then the conjecture holds for X.
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Proof. The proof is exactly the same as in [17, Proposition 4.24] and we refrain
from repeating the lengthy argument.

Lemma 2.15. Let X be a projective manifold such that TX = V1�V2. Let �: X !
Y be a fibration onto a projective manifold Y that makes X into aP1- or conic bundle.
Then for j = 1, 2, the reflexive sheaf T�(Vj ) � TY is a subbundle of TY and

TY = T�(V1)� T�(V2).

Proof. If � is a P1-bundle the morphism is smooth, so [17, Lemma 4.22] applies.
If � is a conic bundle it is well-known that the setD � Y such that fory 2 D, the fibre��1(y) is not reduced, has codimension at least 2 [28, Proposition1.8.5]. Therefore
[17, Lemma 4.22] applies again.

3. The rationally connected quotient map

In this section we show Proposition 3.16 which is the crucialobservation of this
paper. The moral idea behind the statement is that the rationally connected quotient
map reflects the existence of an ‘positive’ subsheafS of the tangent bundleTX. Propo-
sition 3.16 can then be seen as a translation of the basic factthat a direct sum of
sheaves is ‘positive’ (e.g. ample) if and only if both directfactors are ‘positive’ (e.g. am-
ple). Once we have established this technical statement, wecan use Theorem 1.1 to
show Theorem 1.3 and with some extra effort Theorem 1.4.

Proposition 3.16. Let X be a compact Kähler manifold such that TX = V1� V2.
Let X 99K Y be an almost holomorphic fibration such that the general fibre is rationally
connected. Then the general fibre Z satisfies

TZ = (TZ \ V1jZ)� (TZ \ V2jZ).

Proof. The general fibre has a trivial normal bundleNZ=X and is rationally con-
nected, so

Hom(TZ , NZ=X) ' H0�Z, �Z 
O� dim X�dim Z
Z

�
= 0.

Fix now an arbitraryx 2 Z, and let t be an element of the vector spaceTZ,x. The
decompositionTX,x = V1,x � V2,x induces a decompositiont = v1 + v2 with v j 2 Vj ,x.
Furthermore for j = 1, 2 we have a decompositionv j = t j + n j with t j 2 TZ,x and
n j 2 NZ=X,x. Since Hom(TZ , NZ=X) = 0, the composition of the mapst 7! v j 7! n j is
zero. Thereforen j = 0 for j = 1, 2, so we havet = t1 + t2. Moreover by construction
t j 2 (TZ,x \ Vj ,x), this shows the claim.

REMARK . The reader will have noticed that the proof does not really use the ratio-
nal connectedness ofZ, but merely the cohomological conditionh0(Z,Hom(TZ , NZ=X)) =
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h0(Z, �Z) = 0. In fact the proposition is part of a more “ungeneric position” theory
describing fibre spaces with split tangent bundle that is developed in [16]. A similar
cohomological condition was used in [2, 4.4.] to show a more special result.

Proof of Theorem 1.3. LetZ be a general fibre of the rationally connected quo-
tient map of X. By Proposition 3.16 we have

TZ = (TZ \ V1jZ)� (TZ \ V2jZ).

By hypothesis one of the intersectionsTZ \ V1jZ or TZ \ V2jZ is integrable. Therefore
by Theorem 1.1 the general fibreZ is isomorphic to a productZ1� Z2 such thatTZ \
Vj jZ = p�Z j

TZ j for j = 1, 2.
If TZ \ V1 = 0 the identity mapX ! X satisfies the statement, so we suppose

without loss of generality thatTZ \V1 is not zero. Since this holds for a general fibre,
the submanifoldsZ1 � z for z 2 Z2 form a dominant family of submanifolds ofX.
Let Y�

1 � C(X) be the open subset parametrizing the family in the cycle space C(X)
[14, Chapter VIII], let01 � Y�

1 � X be the graph of the family, and letq1 : 01 ! Y�
1

and p1 : 01 ! X be the natural projections. By constructionp1 is dominant and an
isomorphism on its imagep1(01). Sinceq1 is a fibration, we have a fibration��1 :=

q1Æ p�1
1 : p1(01) ! Y�

1 . Let Y1 be the normalisation of the closure ofY�
1 in C(X), then

we obtain the stated almost holomorphic fibration�1 : X 99K Y1. The general fibreF1

of this map is just a member of the familyZ1 � z, so clearlyTF1 � V1jF1 and F1 is
rationally connected. The statement forTZ \ V2 follows analogously.

REMARK . It is clear from examples that in general the constructed fibration is
not a holomorphic map, so we might think about resolving the indeterminacies by
blowing-up X0 ! X. It is not obvious and would be interesting to see if this can
be done in a way such thatX0 has a split tangent bundle.

Proposition 3.17. Let X be a uniruled compact Kähler manifold with split tan-
gent bundle TX = V1�V2. Let Z be a general fibre of the rationally connected quotient
map, and suppose that TZ \ V1jZ or TZ \ V2jZ is integrable. If TZ \ V1jZ = V1jZ , the
manifold X has the structure of an analytic fibre bundle X! Y such that TX=Y = V1.

Proof. By Theorem 1.3 the conditionTZ \ V1jZ = V1jZ implies that there exists
an almost holomorphic map�1 : X 99K Y1 such that the general fibreF1 is rationally
connected and satisfies

TFi = (TZ \ V1jZ)jFi = V1jF1.

It follows that V1 is integrable and has a rationally connected leaf. We conclude with
Proposition 2.12.
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In view of Proposition 3.17 it is clear that Theorem 1.4 follows as soon as we have
understood the geometry whenTZ \ V1jZ is a line bundle. Since we will consider this
situation also in the next section, we state this case as a

Proposition 3.18. Let X be a uniruled compact Kähler manifold with split tan-
gent bundle TX = V1 � V2 where rk V1 = 2. Suppose that the general fibre Z of the
rationally connected quotient map satisfiesrk(TZ \ V1jZ) = 1. Then there exists an
equidimensional map� : X ! Y on a compact Kähler variety such that the general
fibre F is a rational curve that satisfies TF � V1jF .

Proof. The line bundleTZ \ V1jZ is integrable, so by Theorem 1.3 there exists
an almost holomorphic map�1 : X 99K Y1 such that the general fibreF1 is rationally
connected and satisfies

TF1 = (TZ \ V1jZ)jF1 � V1jF1.

Since rk(TZ \ V1jZ) = 1, the general fibre is a smooth rational curve such that

TXjF1 ' OP1(2)�Odim X�1
P1 .

Since h0(F1, NF1=X) = dim X � 1 and h1(F1, NF1=X) = 0, the corresponding open sub-
variety of the cycle spaceC(X) is smooth of dimension dimX � 1. We denote byY
its closure inC(X) and endow it with the reduced structure. Denote by0 � Y� X the
reduction of the graph overY. Denote furthermore bypX : 0 ! X and pY : 0 ! Y
the restrictions of the projections to the graph.

STEP 1. We show that pX is finite. We argue by contradiction, then by the an-
alytic version of Zariski’s main theorem there are fibres of positive dimension. Let
x 2 X be a point such thatp�1

X (x) has a component of positive dimension. Let1 �
pY(p�1

X (x)) be an irreducible component of dimensionk > 0. Then 01 := p�1
Y (1)

has dimensionk + 1. Consider now the foliation induced byp�XV1 on 0 � Y � X.
Since a generalpY-fibre is contained in ap�XV1-leaf and this is a closed condition,
every fibre p�1

Y (y) is contained in ap�XV1-leaf. So for y 2 1, the set pX(p�1
Y (y))

is contained inVx
1, the V1-leaf throughx. It follows that S := pX(p�1

Y (1)) is con-
tained set-theoretically inVx

1. Since pX is injective on the fibres ofpY, and p�1
Y (1)

has dimensionk + 1 � 2, the subvarietyS has dimension at least 2. Since rkV1 = 2,
it has dimension 2 andS = Vx

1 (at least set-theoretically). SoVx
1 is a compact leaf

and is covered by a family of rational cycles that intersect in the pointx. HenceVx
1

is rationally connected, so by Proposition 2.12 there exists a submersion : X ! Z
such thatTX=Z = V1 and the fibres are rationally connected. By the universal property
of the rationally connected quotient the general -fibre is contracted by the rationally
connected quotient map. This implies rk(TZ \ V1jZ) = rk V1, a contradiction.

STEP 2. Construction of�. Since pX is birational by construction and finite,
it is bijective by the analytic version of Zariski’s main theorem. SinceX is smooth
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and 0 reduced this shows thatpX is an isomorphism. SincepY is equidimensional,� := pY Æ p�1
X : X ! Y is equidimensional.

Proof of Theorem 1.4. By Proposition 3.16, the general fibreZ of the rationally
connected quotient map satisfies

TZ = (V1jZ \ TZ)� (V2jZ \ TZ).

Since rkV1 = 2, there are three cases.
If V1jZ \ TZ = V1jZ , we conclude with Proposition 3.17.
If 0 ( V1jZ \ TZ ( TZ , the intersection has rank 1. Proposition 3.18 shows that

we are in the second case of the statement.
If V1jZ \ TZ = 0, clearly TZ = TZ \ V2jZ � V2jZ .

4. The projective case

The main setback of Theorem 1.4 is that in the second case it isnot clear if the
base of the constructed fibration is smooth, yet the smoothness is crucial to show that
the splitting of the tangent bundle pushes down to the base. In order to improve our
analysis of this fibration we have to use the theory of Mori contractions, this forces us
leave the Kähler world. In Lemma 4.21 we will then show the integrability of at least
one direct factor for a splitting in vector bundles of rank 2.For uniruled varieties, the
statement does not generalise to a splitting in vector bundles of higher rank. Never-
theless the lemma provides some first evidence for Conjecture 1.2 which it establishes
for manifolds of dimension four.

A Mori contraction of a projective manifoldX is a morphism with connected fibres� : X ! Y to a normal varietyY such that the anticanonical bundle�KX is �-ample.
We say that the contraction is elementary if the relative Picard number�(X=Y) is equal
to one. The contraction is said to be of fibre type if dimY < dim X; otherwise it is
birational.

Lemma 4.19. Let X be a projective manifold, and let � : X ! Y be an equi-
dimensional fibration of relative dimension1 on a normal variety Y such that the gen-
eral fibre F is a rational curve. Then there exists a factorisation� = �̃ Æ �, where� : X ! X̃ is a birational morphism onto a projective manifold̃X and �̃ : X̃ ! Y
makesX̃ into a P1- or conic bundle. Furthermore� is a composition of blow-ups of
projective manifolds along submanifolds of codimension2, and Y is smooth.

Proof. We argue by induction on the relative Picard number�(X=Y). If �(X=Y) =
1, the anticanonical divisor�KX is �-ample and the contraction is elementary, so by
Ando’s theorem� induces aP1-bundle or a conic bundle structure. In both casesY is
smooth.
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Suppose now that�(X=Y) > 1. Since the general fibre is a rational curve, the
canonical divisor is not�-nef. It follows from the relative contraction theorem [20,
Theorem 4-1-1] that there exists an elementary contraction� : X ! X̃ that is a
Y-morphism, i.e. there exists a morphism̃� : X̃ ! Y such that� = �̃ Æ �. Since�
is equidimensional of relative dimension 1, it follows thatall the �-fibres have dimen-
sion at most 1. Thus� is of fibre type of relative dimension 1 or of birational type.

We claim that� is not of fibre type. We argue by contradiction and suppose that
dimX = dimX̃+1. Then dimX̃ = dimY, so �̃ is a birational morphism. Since�(X̃=Y) =�(X=Y) � 1 > 0, the map�̃ is not an isomorphism, so by Zariski’s main theorem
there exists a fibrẽ��1(y) of positive dimension. Since� is of fibre type, we see that��1(y) = ��1(�̃�1(y)) has dimension at least 2, a contradiction.

Hence� is a birational contraction such that all the fibres have dimension at most 1.
Recall now the Ionescu-Wiśniewski inequality [18, Theorem 0.4], [29, Theorem 1.1]

dim E + dim G � dim X,

where E is the exceptional locus of the birational contraction� and G is any�-fibre.
It follows that the contraction is divisorial, i.e. dimE = dim X � 1 and all the fibres
have dimension at most 1. By Ando’s theorem [1, Theorem 2.1] we know that X̃ is
smooth and� is the blow-up of X̃ along a smooth submanifold of codimension 2.
Now �(X̃=Y) = �(X=Y)� 1 and �̃ is equidimensional of relative dimension 1 overY,
so the statement follows by the induction hypothesis.

REMARK . In order to generalise the proof to the compact Kähler case it would
be necessary to establish a relative contraction theorem for projective morphisms be-
tween compact Kähler varieties. Unfortunately the Mori theory for compact Kähler
manifolds is not yet at this stage, in particular there seem to be no statements for the
relative situation.

Corollary 4.20. Let X be a uniruled projective manifold such that TX = V1� V2

and rk V1 = 2. Let Z be a general fibre of the rationally connected quotient map, and
suppose that TZ \ V1jZ or TZ \ V2jZ is integrable. Suppose that TZ \ V1jZ 6= 0. Then
X admits a flat fibration� : X ! Y onto a smooth projective manifold Y such that

TY = T�(V1)� T�(V2).

Proof. If TZ \ V1jZ = V1jZ we conclude with the first case of Theorem 1.4.
If 0 ( TZ\V1jZ ( TZ we are in the second case of Theorem 1.4, so there exists an

equidimensional fibrationX ! Y such that the general fibre is a rational curve. Since
X is projective, there exists by Lemma 4.19 a factorisation� = �̃Æ�, where�: X ! X̃
is birational morphism onto a projective manifold̃X and �̃ : X̃ ! Y makes X̃ into a
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P1- or conic bundle. Since� is a composition of smooth blow-ups a repeated appli-
cation of Lemma 2.14 shows that

TX̃ = T�(V1)� T�(V2).

We can now apply Lemma 2.15 tõ� to see that fori = 1, 2

T �̃(T�(Vi )) = T�(Vi )

is a subbundle ofTY such thatTY = T�(V1)� T�(V2).

Lemma 4.21. Let X be a uniruled projective manifold such that TX =
Lk

j =1 Vj ,
where for all j = 1,:::,k we haverkVj � 2. Then one of the direct factors is integrable.

In particular if dim X � 4, one of the direct factors is integrable.

Proof. The statement is trivial if one direct factor has rank1, so we suppose that
all the direct factors have rank 2. Letf : P1 ! X be a general minimal rational curve
on X [10, Chapter 4], then

kM
j =1

f �Vj = f �TX ' OP1(2)�OP1(1)�a �O�b
P1 .

We may suppose up to renumbering thatf �V1 ' OP1(2)�OP1(c) wherec = 0 or 1. It
follows that for i � 2, we have f �Vi ' OP1(1)�OP1 or f �Vi ' OP1(1)�2 or f �Vi '
O�2

P1 , in particular

H1(P1, f �V�
i ) = 0, 8i � 2.

By [9, Lemma 0.4], we havec1(Vi ) 2 H1(X, V�
i ), so c1( f �Vi ) 2 H1(P1, f �V�

i ) is zero

for i � 2. So f � detVi ' OP1, since f �Vi is nef this implies f �Vi ' O�2
P1 for i � 2.

This shows that
V2 V1j f (P1) is ample and (TX=V1)j f (P1) =

L
j�2 Vj j f (P1) is trivial. By

Lemma 2.11 this implies the integrability ofV1.

Proof of Theorem 1.5. LetZ be a general fibre of the rationally connected quo-
tient map, then an application of Proposition 3.16 to all thepossible decompositions
W1 := Vi and W2 :=

Lk
j =1, j 6= i Vj implies

TZ =
kM

j =1

(TZ \ Vj jZ).

Moreover we have rk(TZ \Vj jZ) � 2 for all j 2 f1, : : : , kg, so one of the direct factors
is integrable by Lemma 4.21. We can now apply Theorem 1.1 inductively to see that
all the direct factorsTZ \ Vj jZ are integrable andZ splits in a product.
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STEP 1. Integrability of the direct factors. Suppose thatTZ \ Vi jZ is not zero,
then there are two possibilities. EitherTZ \ Vi jZ = Vi jZ , so the integrability ofVi is
immediate from the integrability ofTZ \Vi jZ ; or TZ \Vi jZ ( Vi jZ, then Vi has rank 2
and the splitting ofZ in a product yields a dominant family of rational curves such
that a general memberC satisfiesTC � Vi jC and the normal bundleNC=X is trivial.
Since

TXjC = Vi jC � kM
j =1, j 6= i

Vj jC = TC � NC=X

and rkVi = 2, this implies that
�V2 Vi

���
C is ample and (TX=Vi )jC 'Lk

j =1, j 6= i Vj jC is
trivial. By Lemma 2.11 this implies the integrability ofVi .

STEP 2. Structure of the rationally connected quotient map. We proceed by in-
duction on the dimension ofX, the case dimX = 1 is trivial. Up to renumbering we
can suppose that the intersectionTZ \ V1jZ is not empty.

If V1 has rank 1, we haveTZ\V1jZ = V1jZ , so V1 is integrable and the general leaf
is rationally connected. Thus by Proposition 2.12 there exists a submersion : X ! Y0
such thatTX=Y0 = V1. HenceT 0

Y =
Lk

j =2 T (Vj ). If Y0 is not uniruled we are done,
otherwise apply the induction hypothesis toY0.

If V2 has rank 2, we apply Corollary 4.20 to obtain a flat fibration : X ! Y0
onto a projective manifoldY0 such that the general fibre is rationally connected and

TY0 = T (V1)� T 
0
� kM

j =2

Vj

1
A =

kM
j =1

T (Vj ).

If Y0 is not uniruled we are done, otherwise apply the induction hypothesis toY0.
STEP 3. Integrability of the images. Let � : X ! Y be the map constructed in

Step 2. Then

TY =
kM

j =1

T�(Vj )

and Y is not uniruled. Apply Lemma 5.22 below to all the possible decompositions
W1 := T�(Vi ) andW2 :=

Lk
j =1, j 6= i T�(Vj ) to see that for alli 2 f1,:::,kg, the subbundle

T�(Vi ) is integrable.

5. An application to the universal covering

This section is essentially devoted to the proof of Theorem 1.7. The basic strat-
egy is to prove Conjecture 1.6 by a reduction to the case of non-uniruled varieties and
induction on the rank of the direct factors. Before we come tothe proof we have to
show a refinement of [17, Theorem 1.3].
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Lemma 5.22. Let X be a projective manifold with split tangent bundle TX = V1�
V2. Suppose that a general fibre Z of the rationally connected quotient map satisfies
TZ � V2jZ . Then V2 is integrable anddetV�

1 is pseudo-effective.

Proof. STEP 1. Suppose that detV�
1 is pseudoeffective. SinceV�

1 is a direct fac-

tor of �X, the vector bundle detV1 
 Vrk V1 �X has a trivial direct factor. If� 2
H0
�
X, detV1
Vrk V1 �X

�
is the associated nowhere-vanishing detV1-valued form, and� a germ of any vector field, a local computation shows thati � � = 0 if and only if �

is in V2. An integrability criterion by Demailly [11, Theorem] shows that V2 is inte-
grable.

STEP 2. detV�
1 is pseudoeffective. We argue by contradiction, then by [3] there

exists a birational morphism� : X0 ! X and a general intersection curveC := D1 \� � � \ Ddim X�1 of very ample divisorsD1, : : : , Ddim X�1 where Di 2 jmi H j for some
ample divisorH such that�� detV�

1 � C < 0. Let

0 = E0 � E1 � � � � � Er = ��V1

be the Harder-Narasimham filtration with respect to the polarisation H , i.e. the graded
piecesEi +1=Ei are semistable with respect toH . Sincem1, : : : , mdim X�1 can be arbi-
trarily high, we can suppose that the filtration commutes with restriction toC. Further-
more sinceC is general andE1 a reflexive sheaf, the curveC is contained in the locus
where E1 is locally free. Since

�(E1jC) � �(��V1jC) =
�� detV1 � C

rk ��V1
> 0

and E1jC is semistable, it is ample by [24, p.62]. By [21, Corollary 1.5] this implies
that E1 is vertical with respect to the rationally connected quotient map of X0, that is
a general fibreZ0 of the rationally connected quotient satisfiesE1jZ0 \ TZ0 = E1jZ0 . In
particular the intersectionTZ0 \��V1jZ0 is not zero. SinceX0 and X are birational, this
implies thatTZ \ V1jZ is not zero, a contradiction.

Proof of Theorem 1.7. IfTZ \ V1jZ = 0, Proposition 3.16 shows thatTZ � V2jZ .
Therefore we can conclude with Lemma 5.22.

If TZ\V1jZ = V1jZ there exists a submersionX ! Y such thatTX=Y = V1. Further-
more V2 is an integrable connection on the submersion, so we conclude with the
Ehresmann theorem [17, Theorem 3.17].

If TZ\V1jZ ( V1jZ is a line bundle there exists an equidimensional map�: X ! Y
of relative dimension one such that the general�-fibre F is a rational curve andTF �
V1jF . Since X is projective there exists by Lemma 4.19 a factorisation� = �̃ Æ �,
where�: X ! X̃ is birational morphism onto a projective manifold̃X and �̃ : X̃ ! Y
makes X̃ into a P1- or conic bundle. Furthermore� is a composition of blow-ups of
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projective manifolds along submanifolds of codimension 2,so Lemma 2.14 implies

TX̃ = T�(V1)� T(�V2).

By the same lemma it is sufficient to show the conjecture forX̃, so we can replace
without loss of generalityX by X̃ and suppose that the fibration� makes X into a
P1- or conic bundle over the projective manifoldY. Set Wj := T�(Vj ), then

TY = W1 � W2

by Lemma 2.15 andW1 has rank 1. Furthermore by ([17, Proposition 4.23.], see also
[16, Corollary 4.3.9]) all the fibres of� are reduced.

The manifoldY can’t have the structure of aP1-bundleY ! M such thatTY=M =
W1: this would yield a morphismX ! M such thatTX=M = V1 and the general fibre is
rationally connected. This contradictsTZ \ V1jZ ( V1jZ. Therefore by [4, Theorem 1]
the subbundleW2 is integrable, and the universal covering�: Ỹ ! Y satisfiesỸ ' Y1�
Y2 such that��W1 = p�Y1

TY1 and��W2 = p�Y2
TY2. Furthermore we have a commutative

diagram

where �̃ : X̃ := X �Y Ỹ ! X is étale. By construction the set-theoretical fibres ofq
are �̃�V1-leaves. Since� has no multiple fibres, the fibratioñ� has no multiple fibres.
Henceq = pY2 Æ �̃ does not have any multiple fibres, so the scheme-theoreticalfibres
are �̃�V1-leaves. This shows thatq is a submersion with integrable connection ˜��V2.
Since

T �̃(�̃�V2) = ��W2 = p�Y2
TY2,

there exists for every ˜��V2-leaf V2 a y1 2 Y1 such that�̃(V2) = y1�Y2. By Lemma 5.23
below the restriction ofq to a �̃�V2 leaf is an étale covering, so we conclude with the
Ehresmann theorem [17, Theorem 3.17].

REMARK . Note that Theorem 1.7 generalises immediately to the compact Kähler
case if we show that the map in the second case of Theorem 1.4 isflat.

Lemma 5.23. Let � : X ! Y1 � Y2 be a proper surjective map from a complex
manifold X onto a product of(not necessarily compact) complex manifolds such that
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the morphism q:= pY2 Æ � : X ! Y2 is a submersion that admits an integrable con-
nection V� TX. Suppose that for every V -leafV, there exists a y1 2 Y1 such that�(V) = y1 � Y2. Then the restriction of q to every V -leaf is an étale covering.

The proof consists merely of rephrasing the classical proofof the Ehresmann theo-
rem as in [5, V.,§2, Proposition 1]. For the convenience of the reader we nevertheless
include this technical exercise.

Proof. In this proof all fibres and intersections are set-theoretical.
Let V be aV-leaf, and lety1 2 Y1 such that�(V) = y1�Y2. Since pY2jy1�Y2 : y1�

Y2 ! Y2 is an isomorphism, it is sufficient to show that�jV : V ! y1�Y2 is an étale
map. Furthermore it is sufficient to show that fory1 � y2 2 y1 � Y2, there exists a
disc D � y1�Y2 such that fory 2 D, the fibre��1(y) cuts each leaf of the restricted
foliation V j��1(D) exactly in one point. Granting this for the moment, we show how
this implies the result. The connected components ofV\��1(D) are leaves ofV j��1(D)

Let V0 be such a connected component. Since fory 2 D, the intersectionV0 \ ��1(y)
is exactly one point, the restricted morphism�jV0 : V0 ! D is one-to-one and onto, so
it is a biholomorphism. This shows that�jV\��1(D): V\��1(D)! D is a trivialisation
of �jV.

Let us now show the claim. Setk := rkV andn := dimX, and setZ := ��1(y1�Y2).
Since everyV-leaf is sent on someb � Y2, the complex spaceZ is V-saturated. In
particular if V � Z is leaf, the restriction of a distinguished mapfi : Wi ! Dn�k to Z
which we denote byfi jWi\Z : Wi \ Z ! Dn�k, is a distinguished map for the foliation
V jZ and a plaque offi is contained inV if and only if it is a plaque of fi jWi\Z .

STEP 1. The local situation. Let x 2 ��1(y1 � y2) be a point. Sinceq is a
submersion with integrable connectionV there exists coordinate neighbourhoodx 2
W0

x � X with local coordinatesz1, : : : , zk, zk+1, : : : , zn and a coordinate neighbourhood
y2 2 Ux � Y2 with coordinatew1, : : : , wk such thatq(W0

x) = Ux and qjW0
x
: Wx ! Ux

is given in these coordinates by

(z1, : : : , zn) ! (z1, : : : , zk).

Furthermore there exists a distinguished mapfx : W0
x ! Dn�k given in these coordi-

nates by

(z1, : : : , zn) ! (zk+1, : : : , zn).

Sincex 2 ��1(y1� y2) and� is equidimensional over a smooth base, so open,�(W0
x)

is a neighbourhood ofy1 � y2 in Y1 � Y2. Since pY2jy1�Ux : y1 � Ux ! Ux is an iso-
morphism we can suppose that up to restrictingUx and W0

x a bit that

�(W0
x) \ (y1 � Y2) = y1 �Ux.

Set Wx := W0
x \ Z, then �jZ(Wx) = y1 � Ux. It then follows from this local descrip-

tion that �jWx : Wx ! y1 � Ux has the property that fory 2 y1 � Ux the fibre��1(y)
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intersects each plaque of the distinguished mapfxjWx : Wx ! Dk in exactly one point.
STEP 2. Using the properness. Since the fibre��1(y1 � y2) is compact, we can

take a finite cover of the fibre byWi := Wxi where i = 1,: : : , l and Wxi is as in Step 1.
For eachi 2 f1, : : : , l g, the image�(Wi ) is a neighbourhood ofy1 � y2 2 y1 � Y2.
Let D � Tl

i =1 �(Wi ) be a disc that containsy1 � y2. If V0 is a leaf of V j��1(D), it is
contained in some plaqueP of Wi for somei 2 f1, : : : , l g. Since the plaques intersect
each fibre at most in one point,�jV0 : V0 ! D is injective. The equalityP\��1(D) =
V0 then implies that

�(V0) = �(P \ ��1(D)) = �(P) \ D = D,

so �jV0 : V0 ! D is surjective. SoV0 intersects each fibre exactly in one point.
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[29] J.A. Wiśniewski: On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math.
417 (1991), 141–157.

Université Paris 6
Institut de Mathématiques de Jussieu
Equipe de Topologie et Géométrie Algébrique
175, rue du Chevaleret, 75013 Paris
France
e-mail: hoering@math.jussieu.fr


