Pan, J.
Osaka J. Math.

THE APPROXIMATING CHARACTER ON NONLINEARITIES OF SOLUTIONS OF CAUCHY PROBLEM FOR A SINGULAR DIFFUSION EQUATION

Jiaqing PAN

(Received August 24, 2007)

Abstract

In this paper, we consider the Cauchy problem $$
\begin{cases}u_{t}=\left(u^{m-1} u_{x}\right)_{x}, & x \in \mathbb{R}, t>0,-1<m \leq 1 \\ u(x, 0)=u_{0}, & x \in \mathbb{R}\end{cases}
$$

We will prove that:

1) $\left|u(x, t, m)-u\left(x, t, m_{0}\right)\right| \rightarrow 0$ uniformly on $[-l, l] \times[\tau, T]$ as $m \rightarrow m_{0}$ for any given $l>0,0<\tau<T$ and $-1<m, m_{0}<1$,
2) $\int_{\mathbb{R}}|u(x, t, m)-u(x, t, 1)| d x \leq 2((1-m) / m)\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}$.

1. Introduction

We consider the Cauchy problem

$$
\begin{cases}u_{t}=\left(u^{m-1} u_{x}\right)_{x}, & x \in \mathbb{R}, t>0, \tag{1.1}\\ u(x, 0)=u_{0}, & x \in \mathbb{R} .\end{cases}
$$

Where, $-1<m \leq 1$ and

$$
\begin{equation*}
u_{0} \geq 0, \quad 0<\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}<+\infty . \tag{1.2}
\end{equation*}
$$

In recent years there has been a considerable interest in the equation in (1.1), such as [4], [13] and [15], and so on. The equation encompasses for different ranges of m a variety of qualitative properties with wide scope of applications. For example, the equation is degenerate parabolic as $m>1$, so (1.1) only has weak solutions (see [3]) in this case. If $m=1$, the equation is uniformly parabolic and therefore (1.1) has a unique global smooth solution $u(x, t, 1)=(1 /(2 \sqrt{\pi t})) \int_{\mathbb{R}} u_{0}(\xi) e^{-(x-\xi)^{2} /(4 t)} d \xi$. If $m<1$, then u^{m-1} blows up as $u \rightarrow 0$. It is usually referred to as the singular diffusion equation and has been proposed in plasma physics and in the heat conduction in solid hydrogen

[^0](see [12]). In this case, the problem (1.1) with condition (1.2) also has a unique global smooth solution $u(x, t, m)$ (called maximal solution) for any given $-1<m<1$ (see [6], [12]) such that
\[

$$
\begin{gather*}
u(x, t, m) \in C^{\infty}(Q) \cap C\left([0,+\infty) ; L^{1}(\mathbb{R})\right) \tag{1.3}\\
\frac{1}{m-1}\left(u^{m-1}\right)_{x x} \geq \frac{-1}{(1+m) t}, \quad \text { for } \quad(x, t) \in Q \tag{1.4}\\
\frac{-u}{(1+m) t} \leq u_{t} \leq \frac{u}{(1-m) t}, \quad \text { for } \quad(x, t) \in Q \tag{1.5}
\end{gather*}
$$
\]

and

$$
\begin{equation*}
u(x, t, m) \leq c\left(m, u_{0}\right) \cdot t^{-1 /(1+m)} \tag{1.6}
\end{equation*}
$$

where, the constant $c(m)$ depends on m and $\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}, Q=\mathbb{R} \times(0,+\infty)$.
Although the equation of (1.1) arises in many applications, and have been studied by many authors, there are only a few results concerning the approximating character on the nonlinearities of the equations. In 1981, Belinan and Crandall (see [16]) studied the similar problem for degenerate parabolic equations, but their results are not written in terms of explicit estimates. And then, B. Cockburn and G. Gripenberg (see [2]) extended the result of [16] for degenerate parabolic equations in 1999 and obtained an explicit estimate in $L^{p}\left(\mathbb{R}^{N}\right)$ for any given t. Recently, in 2006 and 2007 , the author (see [9], [10]) discussed the problem (1.1) for $m>1$, and obtain a explicit constant $C^{*}=O\left(T^{\gamma}\right)$ such that

$$
\int_{0}^{T} \int_{\mathbb{R}}\left|u(x, t, m)-u\left(x, t, m_{0}\right)\right|^{2} d x d t \leq C^{*}\left|m-m_{0}\right|, \quad m, m_{0} \geq 1
$$

As to the case of $m \leq 1$, the author (see [11]) considered the singular diffusion problem

$$
\begin{cases}u_{t}=\left(u^{m-1} u_{x}\right)_{x}, & 0<x<1, t>0 \\ \left.\left(\frac{1}{m} u^{m}\right)_{x}\right|_{x=0,1}=0, & t \geq 0 \\ \left.u\right|_{t=0}=u_{0}(x), & 0 \leq x \leq 1\end{cases}
$$

and proved that there exists a unique global solution $u(x, t, m)$ such that

$$
\int_{0}^{\infty} \int_{0}^{1}\left|u(x, t, m)-u\left(x, t, m_{0}\right)\right|^{2} d x d t \leq C^{*}\left|m-m_{0}\right|
$$

where, $0<m, m_{0} \leq 1$ and C^{*} is a explicit constant. To the knowledge of the author, there are no other correlative results on such problem.

Since $m \leq 1$ in this work, by a solution of the Cauchy problem (1.1) on Q, we mean a function $u(x, t, m)$ belongs to (1.3) and satisfies the equation of (1.1) and

$$
\left\|u(\cdot, t, m)-u_{0}(\cdot)\right\|_{L^{1}(\mathbb{R})} \rightarrow 0, \quad \text { as } \quad t \rightarrow 0
$$

Our main results of the work read

Theorem. Let $u(x, t, m)$ be the solutions of (1.1) and (1.2) for $-1<m, m_{0} \leq 1$. If $m_{0} \in(-1,1)$, then for any given $l>0$ and $0<\tau<T$,

$$
\begin{equation*}
\lim _{m \rightarrow m_{0}}\left|u(x, t, m)-u\left(x, t, m_{0}\right)\right|=0, \quad \text { uniformly on } \quad[-l, l] \times[\tau, T] . \tag{1.7}
\end{equation*}
$$

If $m_{0}=1$, then

$$
\begin{equation*}
\int_{\mathbb{R}}|u(x, t, m)-u(x, t, 1)| d x \leq 2 \frac{1-m}{m}\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}, \quad \text { for all } \quad t>0 . \tag{1.8}
\end{equation*}
$$

2. Preliminary lemmas

Lemma 1. Let $u(x, t, m)$ be the solution of (1.1), then

$$
\begin{equation*}
\left|\left(u^{(m-1) / 2}(x, t, m)\right)_{x}\right| \leq \sqrt{\frac{1-m}{2(1+m) t}}, \quad \text { for } \quad m \in(-1,1) \tag{2.1}
\end{equation*}
$$

Proof. By (1.4),

$$
u^{m-1} u_{x x}+(m-2) u^{m-2}\left(u_{x}\right)^{2} \geq \frac{-u}{(1+m) t} .
$$

Since u satisfies the equation in (1.1), so $u_{t}=u^{m-1} u_{x x}+(m-1) u^{m-2}\left(u_{x}\right)^{2}$. Using (1.5) yields

$$
\frac{u}{(1-m) t}-u^{m-2}\left(u_{x}\right)^{2} \geq \frac{-u}{(1+m) t} .
$$

Thus, $u^{m-3}\left(u_{x}\right)^{2} \leq 2 /\left(\left(1-m^{2}\right) t\right)$. This yields (2.1).
Lemma 2. If $f(x) \in L^{1}(\mathbb{R})$ and $f^{\prime}(x)$ is bounded, then $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
This is a well known conclusion of real analysis.
Lemma 3. Let $\phi, \phi_{n} \in L^{p}, p \geq 1, \phi_{n} \rightarrow \phi$ a.e. Then $\left\|\phi_{n}-\phi\right\|_{L^{p}} \rightarrow 0$ if and only if $\left\|\phi_{n}\right\|_{L^{p}} \rightarrow\|\phi\|_{L^{p}}$.

This result is also a well known of real analysis ([7], p.187).
Lemma 4. Let $u(x, t, m)$ be the solution of (1.1), then

$$
\begin{equation*}
\int_{\mathbb{R}} u(x, t, m) d x=\left\|u_{0}\right\|_{L^{\prime}(\mathbb{R})} \quad \text { for all } \quad t>0 . \tag{2.2}
\end{equation*}
$$

Clearly this lemma means the total mass is conserved. It is a well known result (see [12]).

Remark. However, the total mass is not always a constant. In fact, the result is not true for $m<-1$ if the space dimension $N=1$ (see [8]). When $N \geq 2$, J.L. Vázquez proved that the mass can be lost as time grows and neighborhoods of infinity is where the mass is lost (see [14], p.90-92).

Lemma 5. For the Cauchy problem (1.1) and (1.2), let $u(x, t, m)$ and $\hat{u}(x, t, m)$ be two solutions corresponding to initial values $u_{0}(x)$ and $\hat{u}_{0}(x)$, then

$$
\int_{\mathbb{R}}|u-\hat{u}|(x) d x \leq \int_{\mathbb{R}}\left|u_{0}-\hat{u}_{0}\right| d x .
$$

It is also a well known conclusion (see [12]).
Take a function $f(x) \in C_{0}^{\infty}(R), 0 \leq f(x) \leq 1$ and

$$
f(x)= \begin{cases}1, & |x| \leq 1, \\ 0, & |x| \geq 2 .\end{cases}
$$

For any positive constant l, set

$$
\begin{equation*}
f_{l}(x)=f\left(\frac{x}{l}\right) . \tag{2.3}
\end{equation*}
$$

Then there is a positive constant C_{0} such that

$$
\begin{equation*}
\left|f_{l}^{\prime}(x)\right| \leq \frac{C_{0}}{l}, \quad \text { and } \quad\left|f_{l}^{\prime \prime}(x)\right| \leq \frac{C_{0}}{l^{2}} \tag{2.4}
\end{equation*}
$$

Now for any given $t>0$, we have

$$
\begin{equation*}
\left|\int_{0}^{t} \int_{\mathbb{R}} u^{m-1} u_{x} f_{l}^{\prime}(x) d x d \tau\right| \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty \tag{2.5}
\end{equation*}
$$

To prove (2.5), we can use (1.6). In fact, if $m \neq 0$, then there exists a positive constant C_{1} such that

$$
\begin{aligned}
\left|\int_{t_{0}}^{t} \int_{\mathbb{R}} u^{m-1} u_{x} f_{l}^{\prime}(x) d x d \tau\right| & \leq \frac{1}{|m|} \int_{t_{0}}^{t} \int_{l \leq|x| \leq 2 l}\left|u^{m} f_{l}^{\prime \prime}(x)\right| d x d \tau \\
& \leq \frac{C_{1}}{l^{2}} \int_{t_{0}}^{t} \int_{l \leq|x| \leq 2 l} t^{-m /(1+m)} d x d \tau \\
& \rightarrow 0 .
\end{aligned}
$$

This is (2.5). If $m=0$, then $\int_{t_{0}}^{t} \int_{\mathbb{R}} u^{m-1} u_{x} f_{l}^{\prime}(x) d x d \tau=\int_{t_{0}}^{t} \int_{\mathbb{R}} \ln u f_{l}^{\prime \prime}(x) d x d \tau$. We can also use (1.6) to obtain (2.5).

3. Proof of Theorem

We now employ two steps to prove our main results.
Step 1. Proof of (1.7).
For any $T>0$, recalling (1.5), (1.6) and (2.1), we deduce that for any $0<\eta<$ $1 / 2, l>0$ and $0<\tau<T, u$ and u_{x} and u_{t} are bounded uniformly on $(x, t, m) \in$ $[-2 l, 2 l] \times[\tau, T] \times[-1+\eta, 1-\eta]$. Thus, for any $m_{0} \in[-1+\eta, 1-\eta]$, Arzela's theorem claims that there are subsequence $u\left(x, t, m_{k}\right)$ and a function $\bar{u}\left(x, t, m_{0}\right) \in C([-l, l] \times$ $[\tau, T]$), such that

$$
\begin{equation*}
\lim _{m_{k} \rightarrow m_{0}}\left|u\left(x, t, m_{k}\right)-\bar{u}\left(x, t, m_{0}\right)\right|=0, \quad \text { uniformly on } \quad[-l, l] \times[\tau, T] . \tag{3.1}
\end{equation*}
$$

We next want to prove that the function $\bar{u}\left(x, t, m_{0}\right)$ is indeed the solution of problem (1.1) with (1.2) for $m=m_{0}$, i.e. $\bar{u}=u\left(x, t, m_{0}\right)$. If it is true, then by the uniqueness, the total sequence $u(x, t, m)$ converges to $u\left(x, t, m_{0}\right)$ as $m \rightarrow m_{0}$, thus, we can drop k in (3.1) and therefore, (3.1) is (1.7) namely.

To do this, we first prove that $\bar{u}\left(x, t, m_{0}\right)$ satisfies the equation of (1.1) for $m=m_{0}$ in $\mathbb{R} \times(0, T)$.

Let $f_{l}(x)$ be shown by (2.3). For any $0<t<T$, we have

$$
\begin{equation*}
\int_{\mathbb{R}} u\left(x, t, m_{k}\right) f_{l}(x) d x=\int_{\mathbb{R}} u_{0}(x) f_{l}(x) d x-I \tag{3.2}
\end{equation*}
$$

Where $I=\int_{0}^{t} \int_{\mathbb{R}} u^{m_{k}-1}\left(x, \tau, m_{k}\right) u_{x}\left(x, \tau, m_{k}\right) f_{l}^{\prime}(x) d x d \tau$. Using (2.5) we have

$$
\begin{equation*}
\int_{\mathbb{R}} \bar{u}\left(x, t, m_{0}\right) d x=\left\|u_{0}\right\|_{L^{1}(\mathbb{R})} \quad \text { for } \quad 0<t<T . \tag{3.3}
\end{equation*}
$$

Thus, for any given $t \in(0, T)$, there exists a point $x_{0} \in \mathbb{R}$ such that

$$
\bar{u}\left(x_{0}, t, m_{0}\right)>0 .
$$

On the other hand, by (2.1), we have

$$
\left(u\left(x, t, m_{k}\right)\right)^{\left(m_{k}-1\right) / 2} \leq\left(u\left(x_{0}, t, m_{k}\right)\right)^{\left(m_{k}-1\right) / 2}+\sqrt{\frac{1-m_{k}}{2\left(1+m_{k}\right) t}}\left|x-x_{0}\right|
$$

It follows from $m_{k}<1$ that

$$
\begin{array}{r}
u\left(x, t, m_{k}\right) \geq\left[\left(u\left(x_{0}, t, m_{k}\right)\right)^{\left(m_{k}-1\right) / 2}+\sqrt{\frac{1-m_{k}}{2\left(1+m_{k}\right) t}}\left|x-x_{0}\right|\right]^{2 /\left(m_{k}-1\right)} \\
\text { for } \quad x \in \mathbb{R}, 0<t<T
\end{array}
$$

Letting $m_{k} \rightarrow m_{0}$ yields

$$
\begin{aligned}
\bar{u}\left(x, t, m_{0}\right) & \geq\left[\left(\bar{u}\left(x_{0}, t, m_{0}\right)\right)^{\left(m_{0}-1\right) / 2}+\sqrt{\frac{1-m_{0}}{2\left(1+m_{0}\right) t}}\left|x-x_{0}\right|\right]^{2 /\left(m_{0}-1\right)} \\
& >0, \quad \text { for } \quad x \in \mathbb{R}, 0<t<T .
\end{aligned}
$$

Because $\bar{u}\left(x, t, m_{0}\right)>0$ and $\bar{u}\left(x, t, m_{0}\right)$ is continuous, so for any $\left(x_{0}, t_{0}\right) \in \mathbb{R} \times(0, T)$, there exists a neighborhood of $\left(x_{0}, t_{0}\right), Y$, say, $Y \subset(-l, l) \times(\tau, T)$, and two positive constants d and D, such that

$$
d \leq \bar{u}\left(x, t, m_{0}\right) \leq D, \quad \text { for } \quad(x, t) \in Y .
$$

Hence, there exists another positive constant θ, such that

$$
\frac{d}{2} \leq u\left(x, t, m_{k}\right) \leq D, \quad \text { for } \quad(x, t) \in Y,\left|m_{k}-m_{0}\right| \leq \theta
$$

Because $u\left(x, t, m_{k}\right)$ is smooth and bounded, and satisfies the equation in (1.1) in Y, it follows from a generalization of Nash' theorem ([5], p.204) that there exists a neighborhood $Y_{1} \subset Y$ of $\left(x_{0}, t_{0}\right)$ such that $u\left(x, t, m_{k}\right) \in C^{\alpha}\left(\bar{Y}_{1}\right)$ for some $\alpha \in(0,1)$. Where α and $\left\|u\left(x, t, m_{k}\right)\right\|_{C^{\alpha}\left(\bar{Y}_{1}\right)}$ may be estimated independently of m_{k}. It follows from the standard linear theory ([1], p.77) that there exists a neighborhood $Y_{2} \subset Y_{1}$ of $\left(x_{0}, t_{0}\right)$ such that $u\left(x, t, m_{k}\right) \in C^{2+\alpha}\left(\bar{Y}_{2}\right)$ for $\left|m_{k}-m_{0}\right| \leq \theta$, with the norm $\left\|u\left(x, t, m_{k}\right)\right\|_{C^{2+\alpha}\left(\bar{Y}_{2}\right)}$ uniformly bounded with respect to m_{k}. Hence the limit function $\bar{u}\left(x, t, m_{0}\right)$ belongs to $C^{2+\alpha}\left(\bar{Y}_{2}\right)$, and is therefore a classical solution of the equation in Y_{2} for $m=m_{0}$. Recalling τ and l are arbitrary positive constants, so we know that $\bar{u}\left(x, t, m_{0}\right)$ is a classical solution of the equation in (1.1) on $\mathbb{R} \times(0, T)$. Furthermore, $\bar{u}\left(x, t, m_{0}\right)$ satisfies (1.4), (1.5), (1.6) and (2.1) on $\mathbb{R} \times(0, T)$.

In order to prove $\bar{u}\left(x, t, m_{0}\right)$ be the solution of problem (1.1) as $m=m_{0}$ for $0<$ $t<T$, we next will show $\bar{u}\left(x, t, m_{0}\right) \in C\left([0, T) ; L^{1}(\mathbb{R})\right)$. First, recalling (3.3) and
$\bar{u}\left(x, t, m_{0}\right) \in C(\mathbb{R} \times(0, T))$, and using Lemma 3 , we know

$$
\begin{equation*}
\bar{u}\left(x, t, m_{0}\right) \in C\left((0, T) ; L^{1}(\mathbb{R})\right) \tag{3.4}
\end{equation*}
$$

So next we need only to show that $\bar{u}\left(x, t, m_{0}\right)$ satisfies the initial condition in (1.1), i.e.

$$
\begin{equation*}
\left\|\bar{u}\left(x, t, m_{0}\right)-u_{0}(x)\right\|_{L^{1}(\mathbb{R})} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \tag{3.5}
\end{equation*}
$$

To prove (3.5), by the result of Lemma 5 and the translation invariance of the equation in (1.1), we have

$$
\int_{\mathbb{R}}\left|u\left(x+h, t, m_{k}\right)-u\left(x, t, m_{k}\right)\right| d x \leq \int_{\mathbb{R}}\left|u_{0}(x+h)-u_{0}(x)\right| d x
$$

for every $h \in \mathbb{R}$. Letting $m_{k} \rightarrow m_{0}$, we know that for any given $\varepsilon>0$, there exists a positive constant h_{0}, such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\bar{u}\left(x+h, t, m_{0}\right)-\bar{u}\left(x, t, m_{0}\right)\right| d x \leq \varepsilon, \quad \text { for } \quad t \in(0, T),|h|<h_{0} \tag{3.6}
\end{equation*}
$$

On the other hand, letting $m_{k} \rightarrow m_{0}$ in (3.2) yields

$$
\begin{align*}
\int_{\mathbb{R}} \bar{u}\left(x, t, m_{0}\right) f_{l}(x) d x= & \int_{\mathbb{R}} u_{0}(x) f_{l}(x) d x \tag{3.7}\\
& -\int_{0}^{t} \int_{\mathbb{R}} \bar{u}^{m_{0}-1}\left(x, t, m_{0}\right) \bar{u}_{x}\left(x, t, m_{0}\right) f_{l}^{\prime}(x) d x d \tau .
\end{align*}
$$

Using (3.3), we have

$$
\begin{align*}
& \int_{|x| \geq 2 l} \bar{u}\left(x, t, m_{0}\right) d x= \int_{\mathbb{R}} \bar{u}\left(x, t, m_{0}\right) d x-\int_{|x| \leq 2 l} \bar{u}\left(x, t, m_{0}\right) d x \\
& \leq\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}-\int_{\mathbb{R}} \bar{u}\left(x, t, m_{0}\right) f_{l}(x) d x \\
&=\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}-\int_{\mathbb{R}} u_{0}(x) f_{l}(x) d x \\
&+\int_{0}^{t} \int_{\mathbb{R}} \bar{u}^{m_{0}-1}\left(x, t, m_{0}\right) \bar{u}_{x}\left(x, t, m_{0}\right) f_{l}^{\prime}(x) d x d \tau \tag{3.8}\\
& \leq \int_{|x| \geq l} u_{0}(x) d x \\
&+\int_{0}^{t} \int_{\mathbb{R}} \bar{u}^{m_{0}-1}\left(x, t, m_{0}\right) \bar{u}_{x}\left(x, t, m_{0}\right) f_{l}^{\prime}(x) d x d \tau \\
& \text { for } \quad 0<t<T
\end{align*}
$$

Since (1.6) is also valid for $\bar{u}\left(x, t, m_{0}\right)$, we can also use (2.5) for $\bar{u}\left(x, t, m_{0}\right)$ and to obtain

$$
\int_{0}^{t} \int_{\mathbb{R}} \bar{u}^{m_{0}-1}\left(x, \tau, m_{0}\right) \bar{u}_{x}\left(x, \tau, m_{0}\right) f_{l}^{\prime}(x) d x d \tau \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty
$$

Hence, by (3.8), for any given $\varepsilon>0$, there exists $l_{0}>0$ such that

$$
\begin{equation*}
\int_{|x| \geq l} \bar{u}\left(x, t, m_{0}\right) d x \leq \varepsilon, \quad \text { for } \quad l \geq l_{0}, t \in(0, T) \tag{3.9}
\end{equation*}
$$

It follows from (3.6) and (3.9) and [17] (p.31, Theorem 2.21) that $\left\{\bar{u}\left(\cdot, t, m_{0}\right)\right\}_{0<t \leqslant T}$ is a pre-compact family in $L^{1}(\mathbb{R})$. Thus for any sequence $t_{n} \rightarrow 0$, we have a subsequence $\left\{t_{n_{k}}\right\}$ and a function $u_{0}^{*} \in L^{1}(\mathbb{R})$, such that

$$
\left\|\bar{u}\left(\cdot, t_{n_{k}}, m_{0}\right)-u_{0}^{*}(\cdot)\right\|_{L^{1}(\mathbb{R})} \rightarrow 0 \quad \text { as } \quad t_{n_{k}} \rightarrow 0
$$

Hence for any $\phi(x) \in C_{0}^{\infty}(\mathbb{R})$, we have

$$
\begin{equation*}
\lim _{t_{n_{k}} \rightarrow 0} \int_{\mathbb{R}}\left(\bar{u}\left(x, t_{n_{k}}, m_{0}\right)-u_{0}^{*}(x)\right) \phi(x) d x=0 \tag{3.10}
\end{equation*}
$$

On the other hand, letting $t=t_{n_{k}}$ in (3.7), we have

$$
\begin{equation*}
\lim _{t_{n_{k}} \rightarrow 0} \int_{\mathbb{R}} \bar{u}\left(x, t_{n_{k}}, m_{0}\right) f_{l} d x=\int_{\mathbb{R}} u_{0} f_{l} d x \tag{3.11}
\end{equation*}
$$

Clearly, (3.11) is also true for $f_{l}=\phi(x) \in C_{0}^{\infty}(\mathbb{R})$. Thus,

$$
\begin{equation*}
\lim _{t_{n} \rightarrow 0} \int_{\mathbb{R}} \bar{u}\left(x, t_{n}, m_{0}\right) \phi(x) d x=\int_{\mathbb{R}} u_{0} \phi(x) d x, \quad \text { for } \quad \phi \in C_{0}^{\infty}(\mathbb{R}) \tag{3.12}
\end{equation*}
$$

Combining (3.10) and (3.12) yields $\int_{\mathbb{R}}\left(u_{0}-u_{0}^{*}\right) \phi d x=0$ for all $\phi \in C_{0}^{\infty}(\mathbb{R})$. Therefore,

$$
u_{0}^{*}=u_{0}
$$

and

$$
\lim _{t_{n_{k}} \rightarrow 0}\left\|\bar{u}\left(\cdot, t_{n_{k}}, m_{0}\right)-u_{0}(\cdot)\right\|_{L^{1}(\mathbb{R})}=0
$$

It is easy to see that this is true for any subsequence $t_{n} \rightarrow 0$. Therefore we obtain (3.5). Combining (3.4) and (3.5) yields

$$
\bar{u}\left(x, t, m_{0}\right) \in C\left([0, T) ; L^{1}(\mathbb{R})\right)
$$

Now we know the function $\bar{u}\left(x, t, m_{0}\right)$ is indeed the solution of problem (1.1) for $m=m_{0}$ on Q_{T} for any $T>0$. By the uniqueness,

$$
\bar{u}=u\left(x, t, m_{0}\right), \quad \text { for } \quad(x, t) \in Q_{T} .
$$

Thus (1.7) holds for $m, m_{0} \in[-1+\eta, 1-\eta]$. Finally, the arbitresses of $\eta \in(0,1 / 2)$ yields that (1.7) holds for all $m, m_{0} \in(-1,1)$.

STEP 2. Proof of (1.8).
To prove (1.8), we notice that

$$
\begin{aligned}
(u(x, t, m)-u(x, t, 1))_{t} & =\left(\frac{1}{m} u^{m}(x, t, m)-u(x, t, 1)\right)_{x x} \\
& =\frac{1}{m}\left(u^{m}(x, t, m)-u(x, t, 1)\right)_{x x}+\frac{1-m}{m} u(x, t, 1)_{x x} .
\end{aligned}
$$

Let $w=u^{m}(x, t, m)-u(x, t, 1)$ and set

$$
p(s)= \begin{cases}1, & s \geq 1 \tag{3.13}\\ e^{\left(-1 / s^{2}\right) e^{-1 /(1-s)^{2}},} & 0<s<1 \\ 0, & s \leq 0\end{cases}
$$

Then $p(s) \in C^{\infty}(\mathbb{R})$ and $p^{\prime}(s) \geq 0$. Let

$$
p_{\varepsilon}(w)=p\left(\frac{w}{\varepsilon}\right) .
$$

Thus,

$$
\begin{aligned}
\int_{\mathbb{R}}(u(x, t, m)-u(x, t, 1))_{t} p_{\varepsilon}(w) d x= & -\frac{1}{m} \int_{\mathbb{R}}\left(u^{m}(x, t, m)-u(x, t, 1)\right)_{x}^{2} p_{\varepsilon}^{\prime}(w) d x \\
& +\frac{1-m}{m} \int_{\mathbb{R}} u(x, t, 1)_{x x} p_{\varepsilon}(w) d x \\
\leq & \frac{1-m}{m} \int_{\mathbb{R}} u(x, t, 1)_{t} p_{\varepsilon}(w) d x .
\end{aligned}
$$

For any given $t>0$, let

$$
\mathbb{R}_{1}=\left\{x \in \mathbb{R}, u^{m}(x, t, m) \geq u(x, t, 1)\right\}, \quad \mathbb{R}_{2}=\mathbb{R}-\mathbb{R}_{1}
$$

Letting $\varepsilon \rightarrow 0$, using Lemma 3.1 in [12] yields

$$
\frac{d}{d t} \int_{\mathbb{R}_{1}}\left(u^{m}(x, t, m)-u(x, t, 1)\right) d x \leq \frac{1-m}{m} \frac{d}{d t} \int_{\mathbb{R}_{1}} u(x, t, 1) d x .
$$

Thus for any $0 \leq \tau<t$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}_{1}}(u(x, t, m)-u(x, t, 1)) d x-\frac{1-m}{m} \int_{\mathbb{R}_{1}} u(x, t, 1) d x \\
& \leq \int_{\mathbb{R}_{1}}(u(x, \tau, m)-u(x, \tau, 1)) d x-\frac{1-m}{m} \int_{\mathbb{R}_{1}} u(x, \tau, 1) d x
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \int_{\mathbb{R}_{2}}(u(x, t, 1)-u(x, t, m)) d x-\frac{m-1}{m} \int_{\mathbb{R}_{2}} u(x, t, 1) d x \\
& \leq \int_{\mathbb{R}_{2}}(u(x, \tau, 1)-u(x, \tau, m)) d x-\frac{m-1}{m} \int_{\mathbb{R}_{2}} u(x, \tau, 1) d x .
\end{aligned}
$$

Combining the two inequalities gives

$$
\begin{aligned}
\int_{\mathbb{R}}|u(x, t, 1)-u(x, t, m)| d x \leq & \int_{\mathbb{R}}|u(x, \tau, 1)-u(x, \tau, m)| d x \\
& +\frac{1-m}{m}\left[\int_{\mathbb{R}_{1}} u(x, t, 1) d x+\int_{\mathbb{R}_{2}} u(x, \tau, 1) d x\right]
\end{aligned}
$$

Letting $\tau \rightarrow 0$ and recalling $u(x, t, m), u(x, t, 1) \in C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$ and $\int_{\mathbb{R}} u(x, t, 1) d x=$ $\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}$ for any $t>0$, we have

$$
\int_{\mathbb{R}}|u(x, t, 1)-u(x, t, m)| d x \leq 2 \frac{1-m}{m}\left\|u_{0}\right\|_{L^{1}(\mathbb{R})}
$$

This is (1.8).

References

[1] A. Friedman: Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964.
[2] B. Cockburn and G. Gripenberg: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations, J. Differential Equations 151 (1999), 231-251.
[3] B.H. Gilding and L.A. Peletier: The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal. 61 (1976), 127-140.
[4] C. Ebmeyer: Regularity in Sobolev spaces for the fast diffusion and the porous medium equation, J. Math. Anal. Appl. 307 (2005), 134-152.
[5] D.A. Ladyshenskaya, V.A. Solounikov and N.N. Uraltseva: Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Providence, RI, 1968.
[6] D.G. Aronson and P. Bénilan: Régularité des solutions de l'équation des milieux poreux dans \mathbb{R}^{N}, C.R. Acad. Sci. Paris Sér. A 288 (1979), 103-105.
[7] G.B. Folland: Real Analysis, second edition, Modern Techniques and Their Applications, A Wiley-Interscience Publication, Wiley, New York, 1999.
[8] J. Pan: An over critical singular diffusion equation, Chinese Ann. Math. Ser. A 26 (2005), 427-434.
[9] J. Pan and G. Li: The linear approach for a nonlinear infiltration equation, European J. Appl. Math. 17 (2006), 665-675.
[10] J. Pan: The approximating behavior on nonlinearities of solutions of a degenerate parabolic equation, IMA J. Appl. Math. 72 (2007), 464-475.
[11] J. Pan: The continuous dependence on nonlinearities of solutions of the Neumann problem of a singular parabolic equation, Nonlinear Anal. 67 (2007), 2081-2090.
[12] J.R. Esteban, A. Rodríguez and J.L. Vázquez: A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations 13 (1988), 985-1039.
[13] J.L. Vázquez: Symmetrization and mass comparison for degenerate nonlinear parabolic and related elliptic equations, Adv. Nonlinear Stud. 5 (2005), 87-131.
[14] J.L. Vázquez: Smoothing and Decay Estimates for Nonlinear Parabolic Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, Oxford Univ. Press, Oxford, 2006.
[15] K.M. Hui: Existence of solutions of the very fast diffusion equation, Nonlinear Anal. 58 (2004), 75-101.
[16] P. Bénilan and M.G. Crandall: The continuous dependence on φ of solutions of $u_{t}-\Delta \varphi(u)=0$, Indiana Univ. Math. J. 30 (1981), 161-177.
[17] R.A. Adams: Sobolev Spaces, Academic Press, New York, 1940.

Institute of Mathematics
Jimei University
Xiamen, 361021
P.R. China
e-mail: jqp4300@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 35K05, 35K10, 35K15.
 This project was supported by Science Foundation of Jimei University and Natural Science Foundation of Fujian province (S0650022).

