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Abstract

Let {u(x): t >0, x € R} be a random string taking values &f'. It is specified
by the following stochastic partial differential equation

aur(X) _ 32Uy(x) W

at ax?

where W(x, t) is two-parameter white noise. The objective of the presepep
is to study the fractal properties of the algebraic sum of ithage sets for the
random string proces8y(x): t > 0, x € R}. We obtain the Hausdorff and packing
dimensions of the algebraic sum of the image sets of thegstrile also consider
the existence of the local times of the procgag(y) — ui(x): s,t > 0: x, y € R},
and find the Hausdorff and packing dimensions of the leved $et the process
{us(y) —w(x): s, t > 0;x, y € R}.

1. Introduction

Consider the following model of a random string first introdd by Funaki (1983):

() _ 9w |

1.1 +W,
(1.1) ot X2

where W(x, t) is a space-time white noise iR and {u;(x): t > 0, x € R} is a con-
tinuousRY valued process. The componeM&(x, t), ..., Wy(x, t) of the vector noise
W(x, t) are independent space-time white noise, which are géredaGaussian pro-
cesses with covariance given by

E[W; (x, )W (y, S)] = 8(x — y)8(t — 3).

That is, for every 1< j < d, W;(f) is a random field indexed by functiont e
LL2([0, o0) x R), and for two such test function$, g € L3([0, co) x R) we have

B (W@ = [ [ 1t 0g 9 dxdt
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Therefore, W;(f) can be represented as

wj(f):/0 /Rf(t,x)W,-(dxdt).

We suppose that the noise is adapted with respect to a filfmshbility space @, F,
Fi, P), where F is complete and the filtratiofi7;, t > 0} is right continuous, in that
W;(f) is Fi-measurable whenevelr is supported on [0f] x R.

Recall from Mueller and Tribe (2002) that a solution of (1.%)defined as an
Fi-adapted, continuous random figld(x): t > 0, x € R} with values inRY satisfying
properties:

() uo(-) € gexp @lmost surely and is adapted &, whereeep=1J,_ €2 and

& = {f € C[R, RY): | f(X)| exp(=A|x|) — O as|x| — oo};

(i) For everyt > 0, there exists, > 0 such thatus(-) € ¢, for all s <t, almost
surely;
(i) For everyt > 0 andx € R, the following Green’s function representation holds

t
(1.2) Ue(x) = /R Ge(X — Y)uo(y) dy + /0 G (x — y)W(dy dr).

Here Gi(x) = (4rt)~Y/2 exp(—x?/4t) is the fundamental solution of the heat equation.
We call each solutiofui(x): t > 0, x € R} of (1.1) a random string process with
values inRY, or simple a random string as in Mueller and Tribe (2002). Nbiat,
whenever the initial conditiongy are deterministic, or are Gaussian fields independent
of the driving noise, the random string processes are Gaussi

Many authors have studied the properties of the solutionsldf).( For example,
Funaki (1983) investigated various properties of the smhst of semi-linear type sto-
chastic partial differential equations which are more gehthan (1.1). In particular,
his results imply that every solutiofui(x): t > 0, x € R} of (1.1) is Holder continu-
ous of any order less thary4 in space and /4 in time. The anisotropic property of
the procesqui(x): t > 0, x € R} makes it a very interesting object to study. Mueller
and Tribe (2002) found necessary and sufficient conditiamsaf random string irfR¢
to hit points or to have double points of various types. Thisp studied the ques-
tion of recurrence and transience far(x): t > 0, x € R}. Recently Wu and Xiao
(2006) have determined the dimensions of the range, graghlemel sets of the ran-
dom string proces$u(x): t > 0, x € R}. Note that, in general, a random string may
not be Gaussian, a powerful step in the proofs of Mueller arilgeT{2002) is to reduce
the problems about a general random string process to tHodee cstationary pinned
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stringU = {U((x): t > 0, x € R}, obtained by taking the initial functiondy(-) in (1.2)
to be defined by

(1.3) Uo(x) = /o oof (Gr(x — 2) — Gy (2)W(dz d),

where W is a space-time white noise independent of the white ndise One can
verify that Ug = {Ug(x), X € R} is a two-sidedR? valued Brownian motion satisfying
Up(0) =0 and

E[(Uo(x) — Uo(¥))?] = IX = yI.

We assume, by extending the probability space if needed, Upds Fp-measurable.
As pointed out by Mueller and Tribe (2002), the solution taljldriven by the noise
W(X, s) is then given by

t
Ui(X) = | Gi(X —2)Ug(2) dz+ Gi(x —2W(dz dn)
g e st [ ]

:/Ooo/(GHr(x—z)—Gr(z))VV(dz dr)+/ot/ G (x — 2W(dz dn).

A continuous version of the above solution is calledstationary pinned string The
components{Utj (X):t=>0,xeR} for j =1,...,d are independent and identically dis-
tributed Gaussian processes. The stationary pinned dtsgfollowing scaling prop-
erty (or operator-self-similarity): For any constant- O,

(1.5) (MW (€®X): t > 0, x e R} 2 {Uy(x): t > 0, x € R},

where2 means equality in finite dimensional distributions; seedltary 1 in Mueller
and Tribe (2002).

Now we recall briefly some basic theory of local times for thegh of the the-
orem in this paper. More information on local times can be &bum Geman and
Horowitz (1980), Ehm (1981) and Xiao and Zhang (2002).

Let X(t) be a Borel vector field oRN with values inRY. For any Borel sefl C
RN, the occupation measure of on T is defined as the following measure &Y:

ur(e)=an{t e T: X(t) € o}.

If wr is absolutely continuous with respect 1, one say thatX(t) has local times
on T, and define its local timeK e, T) as the Radon-Nikodym derivative @fr with
respect toiq, i.e.,

(1.6) I(u, T) = i%(u), ueRY
d
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In the above,u is the so-callegspace variableandT is thetime variable Sometimes,
we write | (u, T) in place ofl(u, [0, 1]). It is clear that if X have local times o,
then for every Borel seE C T, I(u, E) also exists.

By standard martingale and monotone class arguments, eondechuce that the lo-
cal times have a measurable modification that satisfies fl@ving occupation density
formula: for every Borel seT < RN, and for every measurable functidit RY — R,

(1.7) /T f(X(t))dt:/Rd f(u)l(u, T) du.

For all E, F € R, define
(1.8) X(E) — X(F) 2 {X(s) — X(t): s€ E, t € F}.

As usual, X(E) — X(F) is said to the algebraic sum of the image setstoand F for
the random string process.

This paper is to study the fractal properties of algebram s the image sets gen-
erated by the random string process. In Section 2, we daterthie Hausdorff and
packing dimensions of algebraic sum of the image séf%, 2] x [0, 1]) — u([3, 4] x
[0,1]). In Section 3, we consider the existence of the loitag$ of the procesfus(y) —
u(x): s, t €0, ), X, y € R}. We also obtain the Hausdorff and packing dimensions
of the so-called level sdt, = {(s, t, X, ¥): us(y) — ui(x) = u, s,t € [0, 00) andx, y € R},
whereu e RS,

We will usec, ¢y, ¢, ..., to denote unspecified positive finite constants whose pre-
cise values are not important and may be different in eacleappce.

2. Dimension of algebraic sum of the image sets

In this section, we discuss the Hausdorff and packing diioessof algebraic sum
of the image setsi([1, 2] x [0, 1]) — u([3, 4] x [0, 1]). We refer to Falconer (1990) for
the definitions and properties of Hausdorff dimension glim) and packing dimension
dimp( - ).

For proving the results in this section, we need some lemrhamma 1.1 below
is Proposition 1 of Mueller and Tribe (2002).

Lemma 2.1. The components{Utj (x):t >0, x € R} of the stationary pinned
string are mean zero Gaussian fields with the following ciarare structure for t > 0,

X,y €R,

(2.1) E[(U (x) — U ()2 = 1x — v,
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and forall0<s<t, X,y €R,

(2.2) E[(UtJ (x) — US] (y))z] =(t— S)l/2|:(|x —y|(t — S)—1/2),
where
1 1 D
F@="75=+3 /R/R Gi(a—2)Gi(a - 2)(2 +1Z| - |z~ Z|) dz dz

F(x) is a smooth functionbounded below by27)~Y/2, and F(x)/|x| — 1 as x| —
oo. Furthermore there exists a positive constapt such that for all st € [0, co) and
all x,yeR,

2.3)  caa(Ix — ylI+ It — s|%2) < E[(U] (x) — UL (y))2] < 2(1x — y] + [t — s|*/2).

Lemma 2.2. Let A and L be given positive constants with<t A. Then there
exist constants . > 0 and ¢ 3 > 0, depending on L and only, such that
Co2(IX1 — Xol +y1 — Yol + |51 — 72 + [ty — 1p]7?)
(2.4) < E[((U4 (y2) — U (xa)) — (UL (y2) — Ui, (x2)))?]
< Coa(IXa — Xol + |y1 — Yal + |81 — o2 + [t — t5]*/?)

for all (s«, tk, Xk, Yk) € [0, A] x [0, A] x [—A, A] x [—A, A] such that|s, —t,| > L, where
k,2,be {1, 2.

Proof. We first prove the upper bound in (2.4). Let
(X, Y) = (Ud (ya) — U (x0), U (v2) — U (x2)).
By Lemma 2.1, we have
% v 2E[((UL (y1) — Ul (x0)) — (UL (y2) — UL (x2)))?]
= E[(UJ (1) — Ud (y2))2] + E[(U{ (x1) — Uy} (x2))?]
(2.5) — 2E[(U (y2) — UL (y2)) (UL (x1) — UL (x2))]

< 2E[(Ud (y1) — UJ (v2))2] + 2E[(U{ (x1) — UL, (x2))?]

< Coa(IX1 — Xl + Y1 — Yol + |51 — 2|2 + |ty — o] Y2).
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Using the method similar to that in Mueller and Tribe (2002 @an give a proof
for the lower bound in (2.4). By using the identity

(@a-b—-c+d?=(@a-b?+(Cc—d?+(@-c)?+((b-d?-(a—d)?—(b--c)?
and (2.2), we have

p% v ZE[(UL (y1) — UL (y2))2] + EI(U{ (x1) — U (x2))?]
(2.6) + Hg,_t,(X1 — Y1) + Hg,t,(X2 — ¥2)
— Hs,—t,(%2 — Y1) — Hs,—t, (X1 — ¥2),

where H, (2) = |r |¥2F(|z| [r|~Y?).

Note that, under the conditions of our lemma; —t,| > L, where¢, b € {1, 2.
The functionH; (2) is smooth forr € [—A, —L]U[L, A], z € [—2A, 21]. The last four
terms on the right hand side of (2.6) are differencedHoét the four vertices of a par-
allelogram. Using the mean value theorem twice, these caexpeessed as a double
integral of second derivatives dfi over the parallelogram. Hence the algebraic sum
of the last terms is bounded by the size of the second demgmtind the area of the
parallelogram. Denote the algebraic sum of the last termsSkand we can deduce
that there exists a consta@t such that

(2.7 S<C(Ix1 — Xo* +y1 — Yol + |51 — S2/° + [ts — /7).
Using (2.3), we have

E[(UJ (y1) — Ud (v2))2] + E[(U{ (x1) — Uy (x2))?]

(2.8) _ _ 12 112
> Coa(IX1 — Xo| + |y1 — Yol + 181 — S| 7/ + [ty — t2] 7).

Combining (2.7) and (2.8), we find there exists- 0 such that
C
(2.9) Py = %(m — Xl + Y1 = Yal + 181 — Y2 + [t — 22,

whenever &, tk, Xk, Yk) € [0, A] x [0, A] x [—A, A] x [=A, A], ke {1, 2} and|xg — Xo| +
[Y1— VYol H|S1— S|+t —1o] < &. Becauseo';{’Y is a continuous function ofsg, ty, Xk, Y«) €
[0,A] x [0, A] x [—A, A] x [—A, A], k € {1, 2, it vanishes in this region only or; = Xy,
Vi=Vo, =S, t1 =t Therefore,pi'Y is bounded below wheix; — xa| +|y1 — V2| +
|s1 — S| + |ty — o] > ¢. Changing the constar@@ if necessary, the lower bound goﬁiy
holds without the restrictiofix; — Xa| +|y1 — Ya| +|S1 — S| + [t1 — to| < &. This completes
the proof of Lemma 2.2. O
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Lemma 2.3. For any constantd < y; < 1/4, 0< y» < 1/4, O0< y3 < 1/2 and
0 < y4 < 1/2, there exist a random variable A 0O of finite moments of all orders and
an event2; of probability 1 such that for allw € €,
(2.10)

|(U31(yl! C()) - Utl(xli a))) - (USz(yZi C()) - Utz(XZi w))' < A(a))

sup
(s1txL Y (S y)eR  1SL— S + [ty — o2 + [Xg — Xo| Y2 + |y1 — Yo|74

where R=[1, 2] x [3, 4] x [0, 1] x [0, 1].

Proof. Because of Lemma 2.2, we can use the standard entoopgsfimating
the tail probabilities of the supremum of a Gaussian protessstablish the modulus
of continuity of the procesZ (s, t; X, ¥) = {Us(y) — Ui(X): (s, t, X, y) € [1, 2] x [3, 4] x
[0, 1] x [0, 1]}. Hence, one can apply the method similar to that in Kéno (1985
prove the inequality in (2.10). ]

In the following theorem, we obtain the Hausdorff dimensafnalgebraic sum of
the image setsi([1, 2] x [0, 1]) — u([3, 4] x [0, 1]).

Theorem 2.4. Let {u;(x): t >0, x € R} be a random string process taking values
in RY. Then with probabilityl

(2.11) dinu(u([2, 2] x [0, 1]) — u([3, 4] x [0, 1])) = min{d; 12}.

Proof. Corollary 2 of Mueller and Tribe (2002) states that thistributions of
{uy(x): t > 0, x € R} and the stationary pinned striflg = {U;(x): t > 0, x € R} are
mutually absolutely continuous. We only need to prove (Rfbl the stationary pinned
string U = {U{(x): t > 0, x € R}. For the upper bound in (2.11), we note that clearly

(2.12) dimy(U([1, 2] x [0, 1]) —U([3, 4] x [0, 1])) =d a.s.
Hence, it is enough for us to prove the almost sure upper bound
(2.13) dimy(U([1, 2] x [0, 1]) — U([3, 4] x [0, 1])) < 12.

Let w € 2, be fixed and then suppressed. For any integer2, we divide [1, 2}x
[3, 4] x [0, 1] x [0, 1] into n'? sub-rectangleR,; with sides parallel to the axes and
side-lengthsn™*, n=4, n=2 and n~?, respectively. Therz(R) = U([1, 2] x [0, 1]) —
U([3, 4] x [0, 1]) can be covered by the seF{R,;) (1 <i < n'?). For any constants

O<yy<n<1/4 0<yy<y2<1l/4, O0<yis<ya<1/2 and O< y, < ya < 1/2,
we use (2.10) to deduce that the diameter of the ima¢®, ;) satisfies

(2.14) diamZ(R,i) < co4n~ %,
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whered = maxl — 4y1, 1— 4y, 1— 2y3, 1— 2ys}. We choosey; € (v, 1/4), 2 €
(75 1/4), ys € (v, 1/2) and ys € (v4, 1/2) such that

1 1

1 1
(1—5)(—,+—,+
Y > V3 Va

1
Hence, fory =1/y; +1/y;+1/y4+1/y,, it follows from (2.14) that

ni2

(2.15) 3 [diam Z(Ry)]” < czsnn -7 - 0
i=1

asn — oo. This implies that dim(U ([1, 2] x [0, 1]) — U([3, 4] x [0, 1])) < y a.s. By
letting y; 1 1/4, y; 1 1/4, y; 1 1/2 andy, 1 1/2 along rational numbers, respectively,
we derive (2.13).

To prove the lower bound in (2.11), by Frostman’s theorens lfficient to show
that for any O< y < min{d, 12},
(2.16)

1
&, = E ds dy; dss dy, dty dxg dt, dx:
v /RfR [|usl(y1)—un(xl)—u%(y2)+utz(x2)|y} 5 O 0% G2 0h Ba 6l 6

< 00,

whereR=11, 2] x [3, 4] x [0, 1] x [0, 1]. See, e.g. Kahane (1985, Chapter 10). Since
0 <y <d, we have

E(IE]") < oo,

where E is a standardd-dimensional normal vector. Because the components of the
process{us(y) — ui(x): s, t € [0, o0), X, ¥y € R} is i.i.d., we have

1
E|: [Us, (Y1) — Ug (X1) — Us,(¥2) + Utz(X2)|’”}

d /2
=E |:Z(Usjl(yl) - Utjl(xl) — Usjg(yZ) + UIJQ(XZ))Zj|
(217) j=1
| ' ' i -v/2
= P;);]E |:i (Us{l(yl) - Utjl(Xl) - Usfz(yz) + Utlz(X2)>2:|
j=1 PX,Y

= pxVE(IEI™).
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Combing (2.4), (2.16) and (2.17) with a change of variabies, have

1 1 1 1 1 1 1
&y 502.6/ dS;[/ dSz/ dtl_/ dtzf Xm/ dXZ/ dyl
0 0 0 0 0 0 0
1

(2.18) X
x
/0 (X1 — Xl + Y1 — Yol + |51 — S|V + |ty — tp|1/2)r/2

dyz.

Recall the weighted arithmetic-mean and geometric-meaquality: for all integem >
2andx >0, g >0 (=1,2,...,n) such thaty ", B =1, we have

n n
(2.19) [1x <> Ax.
i=1 i=1
Applying (2.19) withn =4, B; = 8, = 1/6 and 3 = B4 = 2/6, we have
X1 — Xo| + [y1 — Yol + |81 — |2 + |ty — tp|?
1 1 2 2
2.20 > ZIX1 — Xol + Z|Vi — Vol + =51 — |2+ 2|ty — t,]Y/2
(2.20) > 6| 1 — X2 6|y1 Yol 6|31 S| 6| 1— 1]
> X1 — Xo|8ly1 — Y2l "0l — YOIty — o] Y°.

Since 0< y < 12, we obtain

1 1 1 1 1 1
<c d — d dt — __dt
8“‘“£ &A|a—wmziﬁ 1A|n—mmzz

1 1 1 1 1 1
d —d d —d .
X/o Xl/o Xy — Xp[7/12 Xzfo y1/o ly1 — ya|7/12 Yo =0

This completes the proof of Theorem 2.4. O

(2.21)

By using the relationships among the Hausdorff dimensibe, gacking dimension
and the box dimension in Falconer (1990), we determine trekipg dimension of
algebraic sum of the image seig[1, 2] x [0, 1]) — u([3, 4] x [0, 1]) in the following
theorem.

Theorem 2.5. Let {u((x): t >0, x € R} be a random string process taking values
in RY. Then with probabilityl

(2.22) dimp(u([1, 2] x [0, 1]) — u([3, 4] x [0, 1])) = min{d; 12).

Proof. Corollary 2 of Mueller and Tribe (2002) states that thistributions of
{u(x): t > 0, x € R} and the stationary pinned striig = {U;(x): t > 0, X € R} are
mutually absolutely continuous. We only need to prove (Rf2R the stationary pinned
stringU = {U¢(x): t > 0, x € R}.
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Using the relationship between the Hausdorff dimension tedpacking dimen-
sion, by Theorem 2.4 we have

dimp(u([1, 2] x [0, 1]) — u([3, 4] x [0, 1]))
(2.23) > dimu(u([l, 2] x [0, 1]) — u([3, 4] x [0, 1]))

=min{d; 12} a.s.
To prove the upper bound in (2.22), it suffices to prove that
dimp(u([1, 2] x [0, 1]) — u([3, 4] x [0, 1])) < min{d; 12} a.s.

Note that clearly dim(u([1, 2] x [0, 1]) — u([3, 4] x [0, 1])) < d a.s., so we only need
to prove the following inequality:

(2.24) dimp(u([, 2] x [0, 1]) — u([3, 4] x [0, 1])) < 12 a.s.

Let w € 2 be fixed and then suppressed. For any integersO< 1, we divide [1, 2}x

[3, 4] x [0, 1] x [0, 1] into e~*2 sub-rectangledR.; with sides parallel to the axes and
side-lengths?, ¢, ¢2 ande?, respectively. TherZ(R) =U([1, 2] x [0, 1]) — U ([3, 4] x

[0, 1]) can be covered by the selR.;) (1 <i < & '?). For any constants @ y; <
1/4, 0< y» < 1/4, 0< y3 < 1/2 and O< y4 < 1/2, we use (2.10) to deduce that the
diameter of the imag&(R.;) satisfies

(2.25) diamZ(R. ;) < 76179,

whered = max1 — 4y;, 1—4y,, 1—2y3, 1— 2y4}.
For R=1[1, 2] x[3,4]x [0, 1] x [0, 1], let N(R, ¢) denote smallest number of balls
of diametere needed to coveR. By (2.25),

-12

N(Z(R), &) = 3 N(Z(R.j), ¢)

i=1

(2.26) 1-s d
< 12 ( Co.7¢ )
£

= Gy e 12700,

Therefore,

A(Z(R)) = lim suplogN(lsﬂ
£—0 — Ogg

—-12-4sd
(2.27) < lim sup log(cz.5¢ )
e—0 - lOg &

=12 +4d,
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where A(Z(R)) denotes the Kolmogorov's upper index @{R). By letting y1 1 1/4,
vo + 1/4, y3 1 1/2 and y4 t 1/2 along rational numbers, respectively, we can ob-
tain (2.24). So we complete the proof of Theorem 2.5. 0

3. Existence of local times and dimension of the level sets

In this section, we will first consider the existence of thealotimes of the process
{us(y) — ut(x): s, t € [0, o0), X, y € R}. Then, we discuss the Hausdorff and packing
dimensions for the so-called level def = {(s,t, X, y) € [0,00) x [0, 00) x R x R: us(y)—
ur(x) = u}, whereu e RY is fixed.

For proving the results in this section, we need the follgM@mmas. Lemma 3.1
below is implied by the proof of Lemma 4 in Mueller and Tribe @20 p.21).

Lemma 3.1. For any given constant® < A < 1 and L > 0, there exists a con-
stant g1 > 0, depending on L and only, such that

Var(U{ (y1) — Uy (x1) | UL(y2) — UL (x2))

(31) _ _ _ 1/2 _ 1/2
> Caa(lX1 — Xl + |y1 — Yol + 81 — S|/ + [t1 — t27/9)

for all (S, tx, Xk, Vi) € [A, A7 x [, A x [=A~5, A7 x [-A~1, A71] such that|s, —t,| >
L, where k¢,b € {1, 2.

Note that in Lemma 3.1, the paiss andt,, where¢,b € {1, 2}, are well separated.
The following lemma is concerned with the case wreerr t;, s, =t,. By the same
method as in proving Lemma 4 in Mueller and Tribe (2002, p.21¢, can obtain the
following lemma.

Lemma 3.2. For any given constant® < A <1 and L > 0, there exist constants
ho € (0, L/2) and g, > 0, depending on L and. only, such that

Var(Uy (x2) — U (xa) | Ud (y2) — Ud (yn))

3.2) o
> Ca2(|X1 — Yal + X2 — Yol + |t — S|7)

for all s,t € [A, A~Y] with [s—t| < hg and all (x, yk) € [-A~1, A7], where ke {1, 2},
such that|x, — x| > L, |y2— V1| > L and |x — | < L/2 for k=1, 2.

The lemma below will be used to derive a lower bound in the pafoTheorem 3.6.

Lemma 3.3. Leta, B, n and b> 0 be positive constantd-or A> 0 and B> 0, let

. [P dt
o 2|, wroreeo
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Then there exist positive and finite constargg and &4, depending onx, 8, n and b
only, such that the following hold for all reals ,/8 > 0 satisfying A/ < c33B:
(i) if B > 1, then

(3.4) J< C3.4m;
(i) if aB =1, then

1 —1/ay.
(3.5) J = Caagy log(1 +BA™);
(i) if O<aB <landap +n #1, then
3.6 J < - +1
(3.6) =< C3a Bapt1 .

Proof. If b < 1, by using (3.3) and Lemma 10 in [2, p.430], we can prove
(3.4)—(3.6). Ifb > 1, then we can split the integral in (3.3) such that

~ 1 dt b dt
3.7) J-/O W/ (A+tyP(B+1)

By changing the variable of the second term wih= t/b in (3.7) and using again
Lemma 10 in [2, p.430], we get

b dt . ! ds
/1 (A+t)f(B+ty /l/b (A+ (bs)*)?(B + bs)"
(3.8) < pl-op-n /l ds
- o (Ab+s)A(Bb1+s)n
1
AB—atBn’

< Gy 2B

Combining (3.7) and (3.8), we finish the proof of (3.4).
By using Lemma 10 in [2, p.430] and a similar argument as inptuof of (3.4),
we can also prove (3.5) and (3.6). ]

Lemma 3.4. Forany b>0, y >0and1<d <12, let

b b b b
1
(3.9) A(b,y,d) _/o dX/O dY/O dS/O (X +y+SY2 +t1/2)d/2(x + y + 5 +1)¥ dt.

Then there exist positive and finite constandg, acz 7, depending on py and d only
and 8o > 0 small enough such that the following hold for an§ < (0, ¢):
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() if l<d<8andy=4—(1/4)(1+8)d, then A(b, y, d) < Cse,
(i) if 8<d<12andy =6— (1/2)(1+8)d, then A(b, y, d) < Ca7.

Proof. In order to prove the above results, we need considerchses: k d <
4,d=4, 4<d < 8,d=8 and 8< d < 12, respectively.
(1) If 1 <d < 4, applying (3.6) of Lemma 3.3 witlk =1/2, B =d/2, n=y, A=
x+y+st/2 and B = x+y+s, we can choosé > 0 small enough such that9ap < 1
andof +n=4—(1/4)5d # 1. We integratedt] first to get

b b b
1 A
(3.10) A(b, y,d) = C3.8/(; dX/O dY/O (X+y+s)iAr1 ds=cge
sinced/4+y — 1< 3.

(2) If d =4, applying Lemma 3.3 wite =1/2, =2, n=y, A=x+y+s%2 and
B=x+y+s, we havea = 1. We integratedt] and use (3.5) to get

Ay, d) <c /bdx/bd R P S AL PR
g =Cas | A yo X+y+9)y g9 (x +y +s12)2

(3.11) /b /b b 1 1
—— log(1
< C3g A dx A dy | xryrsy og +x+y+s ds

= Ca6

sincey =4—(1/4)(1+8)d =3—65 < 3.
(3) If 4 <d < 8, we integrate dt] first. SinceaB =d/4 > 1, then we can use (3.4)
to get

b b b
1
(3.12) A(b, y, d) 503_8/0 dx/0 dy Ty TS (xtysUaiEe ds.

Note that O< o = (1/2) x (d/2—2) <1 andaf+y —1=2—(1/4)8d # 0 in (3.12),
then we can use (3.6) again to deduce that

b b
1 .
(3.13) A@, y,d) =< 03.9/0 dX/O X+ y)20/a dy = cze,

since 2—48d/4 < 2.
(4) If d =8, then we apply (3.4) of Lemma 3.3 witthg =d/4 =2 andy =6 —
(1/2)(1 +6)d to get

b b b
1
(3.14) A, y,d) < 03.10/0 dX/o dY/o (X +y+8)/ (X +y +sl/2)2 ds.
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Note thatef =1 in (3.14), then we can use (3.5) again to deduce that

b b 1 1 R
(3.15) A@G, y,d) < 03.11/0 dX/o x+y) |09<1+X—+y> dy =cs7,

sincey =2—4§ < 2.

(5) If 8 <d <12, we integratedt] first. Sinceap > 2 in (3.9), then we can use (3.4)
to get

b b b
1

3.16

(3.16) A(b,y,d) < C3.12/0 dX/O dy o (X+y+S)(x+y+st2)iz2 ds.

Note thataep =d/4— 1> 1 in (3.16), then we can use (3.4) again to deduce that

b b
1 -
(3.17) A, y,d) < C3.13/0 dX/O X +y) 24 dy =cs7,

sinced/2+y — 4 =2—-(1/2)8d < 2. Combining (3.10) through (3.17), we finish the
proof of Lemma 3.4. I

For any constants & a; < a, andb; < by, we chooseh > 0 small enough, say,
1
O<h< é(az—al)s L.

Let | =[ay, a; +h] x [ap, ax + h] x [by, by + h] x [b, by + h] C (0, 00)? x R? denote the
corresponding hypercube. We denote the collection of tipeigube having the above
properties byA. The following theorem is concerned with the existence @ fibcal
times of the procesfu:(x) — us(y): s, t € [0, 00), X, ¥y € R} on any hypercubé € A.

Theorem 3.5. Let {u(x): t > 0, x € R} be a random string process iRY. If
d < 12, then for every le A, the procesqus(y) — ui(x): s, t € [0, 00), X,y € R} has
local times{I(u, 1), u e R%} on any hypercube,land I(u, 1) admits the followingL?
representation
(3.18)

I(u, )= (Zﬂ)‘df exp(=i(v, u»/expd (v, Us(y) —ur(x))) ds dtdx dy @, Vue R,
Rd |
where (u, 1) is defined in(1.6).
Proof. By Corollary 2 of Mueller and Tribe (2002), we only netedprove that

[(u, 1) admits the abovd.? representation in (3.18) for the stationary pinned string
U={U(x):t>0, x e R}



ALGEBRAIC SUM OF THE IMAGE SETS 861
Let | € A be fixed. Without loss of generality, we may assuine [a;, a; +h] x

[az2, a2 + h] x [by, by + h] x [by, by +h]. By (2.13) in Geman and Horowitz (1980) and
using the characteristic functions of Gaussian randonabes, it suffices to prove

j(I)E/ dsldtldxldyl/ ds dt dx dy, du

| | Rd

(3.19) B xpl b, Us ) = Ui () +1 v, Us (32) = Ui G o
< OQ.

Since the components &f are i.i.d., it is easy to deduce that

71y = @) / dsidtdxdy:
(3.20) !
x f| [det CovlUs, (1) — Us, (x2), Us,(¥2) — Uy 0ca))] /2 ds; dts de dly.

For any &, tk, Xk, Yk) € | =[a1, a1 +h] x [ap, a2 +h] x [by, by +h] x [by, b +h] (k=1, 2),
we havel|s, —t,| > L, £,b e {1, 2}. By Lemma 2.1 and Lemma 3.1, we obtain

det CovUs, (Y1) — Uy, (X1), Us,(Y2) — U, (X2))
(3.21) = Var(Us, (y1) — Uy (x1)) Var(Us,(Y2) — Uy, (X2) | Us, (y1) — Uy, (X1))
> C31LY2(2m) Y2(1xq — Yol + Iy — Yol * |51 — S| Y2 + [t — 1] ¥?).

Applying (2.19) withn =4, g; = 8, =1/6 and g3 = B4 = 2/6, we have

X1 — Xo| + [y1 — Yol + |81 — S| Y2 + |ty — tp| 2

(3.22)

v

1 1 2 b 2
ZIx%1 = Xol + Z|y1 — Yol + Z|s1 — S| Y2 + Sty — t M2
6| 1— Xo| 6|y1 Yol 6|31 S| 6|1 2|

X1 — Xo|8ly1 — yoIM®st — /MOty — to]VC.

A%

Combining (3.20), (3.21) and (3.22), we obtain
(3.23)

a;+h a;+h 1 ax+h a+h 1
J(l) < cs, / dsl/ —dSZ/ dt/ S —T!
S ar ar |Sfl - 52|d/12 a ! ap |tl - t2|d/12 2

b;+h by+h 1 bo+h bo+h 1
« dx1/ —dxz/ dy1/ = dy
/bl by X1 — Xo|9/12 by b 1YL — Yol9/22

< 00,

sinced < 12. This completes the proof of Theorem 3.5. O
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Mueller and Tribe (2002) proved that for evenye RY,
(3.24) P{u¢(x) = u for some ¢, x) € [0, o0) x R} > 0

if and only if d < 6. Some related results for certain Gaussian random fieldsuyel
in Xiao (1999) and Wu and Xiao (2006, 2007).

Now we consider the Hausdorff and packing dimensions forsthwealled level set
Ly ={(s, t, X, ¥) €0, 00) x [0, 00) x R x R: ug(y) — u¢(x) = u}.

Theorem 3.6. Let {ui(x): t > 0, x € R} be a random string process RY with
d < 12. Then for every & RY, with positive probability

a-l4 it 1<d<s,
(3.25) dimy(Ly N R) = dimp(Ly N R) = )
6-5d, if 8<d<12,

where R=[0, 1] x [2, 3] x [0, 1] x [0, 1].

Proof. By Corollary 2 of Mueller and Tribe (2002), we only needprove (3.25)
for the stationary pinned string = {U;(x): t > 0, x € R}. By the o-stability of dimp,
it is sufficient to show (3.25) holds fdc, N R =L, N[e, 1] x [2+¢, 3] x [¢, 1] x [&, 1]
for everye € (0, 1). We first prove the almost sure upper bound

4— %d, if 1<d<s8,
(3.26) dim(L, N R:) < 1
G_Ed’ if 8<d<12.

For this purpose, we construct coveringslofN R, by cubes of the same side length.
For any integen > 2, we divide R into n'? sub-domainT,, = R} , x R ,, where

R, R?, C (0,00) x R are rectangles of side lengts™(1 — ¢) and n"2(1 — &),

respectively. Let O< § < 1 be fixed and Ietrr'fj be the lower-left vertex oﬂ?:]"g

(k =1, 2). Then the probability’{u € Z(T, ()} is at most

(3.27)

{ max 1Z(S1, ta, X, Y1) — Z(S2, T2, X2, Y2) | <n " u e Z(Tn,l)}
(S1,11,X1, Y1) €T ¢, (S2,12, X2, Y2) €T ¢

+P{ max |Z(s1, t, X1, Y1) — Z(S2, t2, X2, Y2)| > n_(l_a)}
(S15t1,X1, Y1) € Tn e (2,12, X2, Y2) €T ¢
<P{Z(r7,;72,)—ul <n~ )

+P[ max |Z(s1, t1, X1, Y1) — Z(S2, T2, X2, Y2) >n‘(1‘5)},
(St X1, Y1) €T e, (82,2, X2, Y2) €T ¢
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whereZ(s,ti;Xi, ¥i) = {Us (i) — Uy (Xi): (S,ti, %, Vi) € Toe, | =1, 2. For any &, tk, X,
V) € R =[e,1] x [2+¢,3] x[e, 1] x[e,1] (k=1,2), we havels, — t,| > 1 +¢,
£,be{1,2. By Lemma 2.1 and Lemma 3.1, we see tidt; ; 72,) is the Gaussian
random variable with mean 0 and variance at legst+¢)Y/2. Hence,

(328) PHZ(-E#,E' Tr‘lz,l) — u| < n—(l—5)} < C3_15n_(l_5)d.
On the other hand, since
1Z(s1, ta, X1, Y1) = Z(S2, T2, X2, Y2)l = |Us (Y1) — Uy (y2)l + U (1) — Uy (%21,

we have

JP’{ max 1Z(s1, t, X1, Y1) — Z(S2, t2, Xz, Yo)| > n(”)}
(S1,t1,X1, Y1) € Tn e, (S2,12, X2, Y2) €T ¢

n—(1-9
<P max |Us, (Y1) — Us,(¥2)| > >

(3.29) (s1.y1). (52, Y2) R

n-0-5)
+P max |Ut1(X1) - Utz(X2)| >
(t2,%1), (t2,x2)eR2, 2

< exp(—cz 16n?),

where the last inequality follows from Lemma 2.1 and the Gaus isoperimetric in-
equality of Lemma 2.1 in Talagrand (1995).
By (3.28) and (3.29), we have

—(1-8)d

P{u € Z(Tn)} < Ca150 + exp(-Cs 16n?)

(3.30)
< cggn 790,

Define a coverianr;'@} of Lyn R by T, , =Th, if ue Z(Th,) and T, , =@ oth-
erwise.
e Note that eachTr;'(Z can be covered by* cubes of side length—*(1— ¢). There-
fore, for everyn > 2, we have obtained a covering of the $gtN R by cubes of side
length n™(1 — ¢). Consider the sequence of integers 2¢ (k > 1) and let Ny de-
note the minimum number of cubes of side lengtf“P1 — &) that are needed to cover
Ly, N R. It follows from (3.30) that

(3.31) E(Ny) < Cg1721% 2% k(1-0)d = ¢ | ok(16-(1-5)d)

By (3.31), Markov’s inequality and the Borel-Cantelli lemmae deduce that for any
8’ € (0, 8), almost surely fork large enough,

(3.32) Ny < Cgq72<(16-(1=00d),
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e Observe that eacfﬁr;,e can also be covered by 1 cubes of side lengtA(1 — ).
Therefore, for everyn > 2, we also obtain a covering of the set N R by cubes of
side lengthn=2(1 — ¢). Consider the sequence of integers 2¢ (k > 1) and let Ny
denote the minimum number of cubes of side lengtB@ — ¢) that are needed to
cover Ly, N R. It follows from (3.30) that

(3.33) E(Ny) < 3172227 K0=3)d = ¢ | ok(12-(1-5)d),

By (3.33), Markov’s inequality and the Borel-Cantelli lemmae also deduce that for
any &’ € (0, 8), almost surely fork large enough,

(3.34) Ny < Cg 17212~ (1=8)d),

By using the relationship between the packing dimensionthadox dimension, (3.32)
and (3.34) imply that

1
1 1 4— Zd' if 1<d<38,
(3.35) dimp(Ly N R;) < min {4— Zd’ 6— Ed} = 1 a.s.
6—§d, if 8<d<12,

Sincee > 0 is arbitrary, we obtain the desired upper bound forgim N R).
Because of the fact that difE) < dimp(E) for all Borel setE c R*, it remains
to show the following lower bound: for any e (0, 1), with positive probability

4—%01, if 1<d<S8,
(3.36) dimy(Ly N R.) > )
6-5d. if 8<d<12

We only prove (3.36) for the cased d < 8. The other case 8 d < 12 is similar
and is omitted. Le# > 0 such that

1
y£4— Z(l +68)d > 2.
Note that if we can prove that there exists a constang > 0 such that
(3.37) P{dimy(Ly N R) > ¥} > Ca1s,

then the lower bound in (3.36) will follow by letting | 0. Our proof of (3.36) is
based on the capacity argument due to Kahane (1985).

Let M; be the space of all non-negative measuresPomwith y-energy. It is
known due to Adler (1981) thatM; is a complete metric space under the metric

(3.38) il :/ 1(ds dys dty dxg)u(ds dy, dt; dxo)
' T ke Jre (15— 22+ 11 — Yol # [t — ]2 + X1 — X[2)r/2
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We define a sequence of random positive meagyr®n the Borel sefR. by
(3.39)
Mn(c) - /(27m)d/2 exp<_ n|(U5(y) - Ut(x)) -

2

2
ul )ds dt dx dy

2
// xp<—|é—|+| (&, Us(y) — Ut(x)—u)> dsdtdxdy VC e B(R).
Rd

It follows from Kahane (1985) or Testard (1986) that if thare positive constants
C3.19 and cz 20, Which depend oru, such that

(3.40) E(lienll) > €310 E(llinll®) < €320 E(llunll,) < oo,

where | unll = un(Re), then there is a subsequence{pf}, say, {un}, such thaiu, —

w in M;j and u is strictly positive with probability> c§_19/(203_20). It follows from
(3.39) and the continuity of the procefds(y) — Ui(x): s, t € [0, o0), X, ¥y € R} that

has its support irL, N R, almost surely. Hence Frostman’s theorem yields (3.37). We
start the proof with the first inequality in (3.40). By Fuldntheorem and Lemma 2.1,
we have

2
Elnll) = / / exp(—'é—')E[expu(us(y) Ue(x)) — u))] dé ds dt dx dy

= [ [ ewticu)

X exp(—%é(n‘lld + Cov(Us(y) — Ut(x)))s’) dé dsdtdx dy

_ 2 d/2
- /R (nl +Var(Ud(y) — UE(X)))

ul?
x exp(_ 200 L+ VarU(y) — utl(x)))> ds dt dx dy

- /R (1 n \,arw;{;) - utl(x»>d/2

2
xexp(— Ul )ds dt dx dy
2 Var(U(y) — U(x))

= Ca10

Denote by CoWs, (Y1) — Uy, (X1), Us,(Y2) — Uy, (X2)) the covariance matrix of the Gauss-
ian vector Us, (Y1) — Uy, (X1), Us,(¥2) — Uy, (X2)) and by lo4 the identity matrix of order
2d. Let

I =n"tlog + CovlUs, (Y1) — Uy, (X1), Us, (¥2) — Uy, (X))
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Then by the definition oR. and (3.1) in Lemma 3.1, we have

det CovUs, (Y1) — Uy, (X1), Us,(¥2) — U, (X2))
(3.41) = Var(Us, (y1) — Uy (X1)) Var(Us,(y2) — Uy, (X2) | Us, (Y1) — Uy, (X1))

> Cao1(|X1 — Xl + [y1 — Vol + |51 — S|V + [ty — 2] 2).

By (3.41), we have

E(uunnz):/&/&/ﬂ@fm exp(i (£ +1, u)

1
xeXp(—E(é, &, n)’) dédnds dtydx dyids,didx dy,

o) 1
:// (27) exp(—é(u,u)l"l(u,u)’)dsldtldxldyldszdtgdxgdyz
R JR

v/detl’
d ng_dt]_dX]_dyldSZdtdeQdyz
<en [ | e
r. /R (detCovlg (y1) — U (Xa), Ug (¥2) — Ug (x2))/

<c / / ng_dtj_de_dylngdtde2dy2
=732 o Jr (e —Xal +1y1— Yol + 151 — So[/2+ |ty — t[1/2)0/2

< / / dsdydxdyydsdt,dxdys
= R JR (X1 —Xo| [y1— Y2 ISt — S| [ty —t2])d/22

ZC324< 00,

where the last inequality follows frord < 12. We have also applied (2.19) with= 4,
B1=pB2=1/6 and B3 = B4 = 2/6 in the above inequality.
Similar to the proof of the above inequality, we have

E( ol )—/f ds, dt, dx dys dsp dtp d, dyp
Hnlly R JR: (|X1_X2|2+|Y1—Y2|2+|51—52|2+|t1—t2|2)y/2

X fRd /Rd exp(=i (& +n, u)) exp(—%(s, (&, 77)’) dg dn

<// C3.25
T Jr Jr (X1 — Xo| +|y1 — Yol + |51 — |2 + |ty — 1] 1/2)9/2
» ds dt; dx; dyy ds dt dx dys
(IXe = Xa| +y1 — Yol + |81 — ol + [t — t2])7

By a change of variable, we can deduce that
(3.42)

1-¢ 1—¢ 1-¢ 1—¢
C3.26
E(llwnlly) 5/0 dX/O dy/O dS/O (X+y+52 + DI2(x +y +s+1)7 dt
< 00,
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where the last inequality follows from Lemma 3.4. This p®v8.40) and thus the
proof of Theorem 3.6 is finished. L]

Now we consider the Hausdorff and packing dimensions forsthwealled level set
Ly ={(t, X, ¥) € [0, 00) x R x R: ut(x) — u¢(y) = u}. By using Lemma 3.2 and a sim-
ilar argument as in the proof of Theorem 3.6, we can obtainféHewing dimension
result.

Theorem 3.7. Let {uy(x): t > 0, x € R} be a random string process iRY with
d < 8. Then for every u= RY, with positive probability

s-t4 if 1<d<a,
(3.43) dimy(Ly N J) = dimp(Ly N J) = )
4-3d, if 4=d<8,

where J=]0, 1] x [0, 1] x [2, 3] C [0, 00) x R x R.
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