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Abstract
We prove a rigidity theorem for closed hypersurfaces witmstant mean
curvature in a symmetric Riemannian manifold, which is aegalization of main
results in [3] and [15].

1. Introduction

It seems interesting to generalize the famous optimal itigitheorem for minimal
hypersurfaces in a sphere due to J. Simons, H.B. Lawsomdr$S&. Chern, M. do Carmo
and S. Kobayashi to general cases (see [4], [8], [12]). Q.Mer@hand H. Nakagawa
[3], and H.W. Xu [15] proved the following optimal rigidityheorem for hypersurfaces
of constant mean curvature in a sphere independently.

Theorem A ([3], [15]). Let M" be an n-dimensional closed hypersurface with
constant mean curvature H in a unit spher&™S If the squared norm of the second
fundamental form S satisfies

S=a(n, H),

then M is congruent to one of the following

(1) totally umbilic sphere §1/+/1 + H?2);

(2) one of the Clifford minimal hypersurface/(§/k/n) x S k(/(n —k)/n) in S™(1),
fork=1,2,...,n—-1,

(3) the isoparametric hypersurface”S(1/+v/1 +12) x S'(L/+/1 +12) in S™L(1).
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Here A and «(n, H) are given by

5= nH+/n?H2+4(n - 1)

2(n—1)

and

n3 , nh-2)
2h—1)  2(n—-1)

a(n, H)=n+ VN2H%4 +4(n — 1)H2.

Motivated by Theorem A and a theorem due to G. Huisken [7], Bdraws [2]
proposed a following conjecture on mean curvature flow fosetl hypersurfaces in a
unit sphere.

Conjecture. Let My = Fo(M) be a closed hypersurface in™$ which satisfies
(1.1) S < a(n, H).

Then there exists a smooth family of hypersurfddés= F;(M)}o<t~1 Which satisfy(1.1)
and move by mean curvature flow with initial datag.MEither T < co and M is
asymptotic to a family of geodesic spheres shrinking ta tb@nmon centreor T = oo
and M approaches to a great sphere

The topological sphere theorem due to K. Shiohama and H.W[IA{I says that
any closed hypersurface i8™! which satisfiesS < «(n, H) must be a topological
sphere, which provides an positive evidence to the conjecéhbove. In this paper,
we generalize Theorem A as follows.

Main Theorem. Let N™! be an(n+ 1)-dimensional simply connected symmetric
Riemannian manifold witld pinched curvaturgi.e, § < Ky <1, and M" be a closed
hypersurface with constant mean curvature H ift*N If

(S—nH?[a(n, H) — S—2n(1—9)] — %(1— $)N*?Hy/S—nH2 >0,

then M is congruent to one of the following

(1) totally umbilical hypersurface

(2) one of the Clifford minimal hypersurface(§/k/n) x S"*(/(n = Kk)/n) in S™(1),
fork=1,2,...,n-1;

(3) the isoparametric hypersurface™S(1/v/1 +12) x S{(A/+/1+12) in S™*1(1).
Here a(n, H), A are defined as ifrheorem A.
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Consequently we have

Corollary. Let M" be an n-dimensional closed minimal hypersurface "N
with curvature Ky satisfyingd < Ky < 1. If the squared norm of the second fun-
damental form S satisfies

S< (25 — 1)n,

then M is congruent to one of the following

(1) totally geodesic submanifgld

(2) one of the Clifford minimal hypersurface/(§/k/n) x S k(/(n —k)/n) in S™(1),
fork=1,2,...,n—1.

It should be mentioned that whevi” is a minimal hypersurface ibN"*1, then our
pinching condition reduces t8 < (26 — 1)n, which is weaker than the one in [5], [10]
and [14].

Motivated by the main theorem, one can propose an analogubeotdnjecture
above for closed hypersurfaces in a symmetric Riemannianifabé with § pinched
curvature.

2. Preliminaries

Throughout this paper, lé" be ann-dimensional closed hypersurface isometrically
immersed in anr(+ 1)-dimensional simply connected symmetric Riemanniamifokl
N™1 The following convention of indices are used throughout.

1<i,j,k...,<n,

1<ABC,...,<n+1.

Choose an orthonormal frame fiefda} in a neighborhood op € M such that the
{&} span the tangent spadgM to M at p. Let {wa} be the dual frame fields diea}
and {wag} be the connection 1-forms dfl. Restricting these forms tM, we have

On+1i :Zhijwj, hij = hji.
i

The curvature tensors di, M are denoted byKagcp, Rijk respectively. The
second fundamental form dfl is denoted byh and the mean curvature normal field
by &. Denote the mean curvature ™ and squared norm ofi by H = ||| and S
respectively. We have then

(2.1) h= Z hijo' ® ® ® e,
i
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1 n
(2.2) §= ﬁ .lez hii en+1,
(2.3) Rik = Kijk +hikhji — hyjhj,
(2.4) S=Y (hy)~
i

DEFINITION 2.1. M is called a hypersurface with constant mean curvatund if
is constant. In particularM is called minimal hypersurface i = 0.

We denote the first and second covariant derivativeshipf by hijc and hjq
respectively, which are defined as in [4]. Following to [4]daji6], we have

(2.5) hijk — hikj = —Kn+aijk,
and the Ricci formula

(2.6) hijki — hijik :Zhsj Rsiki +Zhisstkl-
S S

Let Kn+yji be the covariant derivative okn+ijk as the section oftM ® T*M ®
T*M ® T*M and Kagcpe the covariant derivative oK agcp @s curvature tensor of
N. Restricted toM we have

(2.7) Z Kn+tijki @ = d Kpegije + Z Kn+1sjkwis + Z Kn+1ijs Wks:
| S s
and
(2.8) Kn+tijkg = Knstijh — Knrtinskhji — Knegijn+1hig +Z Kmijkhmi.
m

DEFINITION 2.2. N is called a symmetric Riemannian manifold if for evepye
N there exists an isometrig,: N — N such thatoy(p) = p, and the differential ot
at p is equal to—Ip, wherel, is the identity transformation of,N. The Laplacian
of the second fundamental form is defined hy; = >, hjjik.

The following propositions will be used in the proof of Main &drem.

Proposition 2.3 ([3], [15]). If a3,...,a, are n real numbers witl[i”ﬂai =0, then

>
i=1

Moreover the equality holds if and only if at least-a1 numbers of ds are equal

i=1

n 3/2
< (n—2)n(n - 1]"V2 (Z‘ aﬁ) :
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Proposition 2.4. If the function f(Xa, ..., Xn, Y1, .-, Yn) = > it; Xi Vi satisfies
n n
(2.9) Yox=0, Y x=A, s=<y=Ll
i=1 i=1
Then

1
f(XL ooy X Y1y e os Vi) > 5(8 — 1)(nA)Y2,

Proof. We assume

Thus

k n
f(xl,...,xn,yl,...,yn):inyi+inyi
i=1

i=k+1

k n
(2.10) >Y X +8 )X
i=1

i=k+1
n
=0-1)) x.
i=k+1
By (2.9) we have
k n
kA =k xZ+k Y x?
i=1 i=k+1
k 2 Kk n 2
(2.11) > <in> + n—k<,z xi>
i=1 i=k+1
n . ?
i=k+1

So by (2.11) we have

Thus

n
1
f(X, ..o Xny Y1r e ovs Yn) = (8 —1) E Xi > 5(8 —1)(nA)Y2,
i=k+1
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This proves Proposition 2.4. 0
From (2.5) and (2.6),

(2.12) Ahjj = — Z(Kn+1kik| + Knsaijik) + Z(hmkRmijk + Nim Rmkiji)-
k k,m

Since N is a symmetric manifoldN is complete and locally symmetric. Thus
Kascpe =0
for all A, B, C, D, E. This together with (2.3), (2.8) and (2.12) implies
1
(2.13) EAS: izj;((hijk)z‘FiZj:hijAhij =X+Y+Z,
where
X=nHtrH3, — (tr HZ,)?,

Y=2 Z (hmjhij Kimkik + hmkhij Kmije) + Z(hijk)z,
mk,i,j i,j.k

Z=- Z(Kn+1kn+lkhij hij + Knswinethijhij + Kneainswhjichij + Knsaijn+2hihij).
ik

3. Proof of Main Theorem
The following lemmas are useful in the proof of the main tleaor
Lemma 3.1. X > (S—nH?)[2nH? — S— (n(n — 2)//n(n — 1))H(S— nH?)Y2],

Proof. Let{g} be an orthonormal frame at a point & such that the matrix
Hn+1 = (hij)nxn takes the diagonal form and such thet = A;6; for all i, j. Set

fie= Y (i)
i=1

n
Be= (i),
i=1
mi =H — A
Then we have
(3.1) B,=0, B,=S—nH?
and

(3.2) Bs=3HS—2nH?3 — f.
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From (3.1), (3.2) and Proposition 2.3, we get

X =nHfy - S
>nH[3HS—2nH3—n—_283/2}—52
- J/nn —1) 2
n(n — 2)
> (S—nH?)|2nH? - S— ———Z—_H(S—nH? 1/2]
> (s ) D H(S k)
This proves Lemma 3.1. ]

Lemma 3.2. Y > 25n(S— nH?).
Proof. It follows that
Y = 2 [Kikik(hi)? + Kigihiadii]
ik
= > Kikik(ti — )
ik
> 8y (M — M)’
ik
= 2n8(S— nH?).

This proves Lemma 3.2. O

Lemma 3.3. Z > —n(S—nH? —(1/2)(1 - 8)n*?H/S— nH2.

Proof.
Z==" Knraka(hi)® + Y Kosakneahichy
Kii K,i
(3.3) > —-nS+nH Z K+ kn+1kAk
k

= —n(S—nHY) +nH > Knemkneiktbks
k

where we sefux = Ak — H. Since} ", uk =0, Y, 2= S—nH? and$ < Knsknek < 1,
by Proposition 2.4, we have

1
(3.4) Z > -n(S—nH? — E(l_ 8)N*?Hy/S—nH2,

This proves Lemma 3.3. ]
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Proof of Main Theorem. IS=nH?2, then; = H fori =1,2,...,n, which means
that M is a totally umbilic submanifold.
If S#nH?, thenS> nH2 By the assumption that

(S—nH?[a(n, H) — S—2n(1—8)] — %(1— 8)N¥?Hy/S—nH2 >0,
we get
S<a(n, H)—2n(1-3) < a(n, H).

Combining this with Lemmas 3.1, 3.2 and 3.3, we have

1 [ n(n — 2)
ZAS>(S—nHY| —n+2ns+2nHZ2 —S— =2 H(S— nH? 1/2]
2 = )_ +/n(n —1) ( )
1
—5(1—5)n3/2H S—nH2
[ n(n — 2)
> (S—nH?)|n+2nH2 —a(n, H) = ———=2 H(a(n, H) — nH2)¥2
> ( )_ a(n, H) —— (@(n, H) )

+a(n, H)— S—2n(1 — a)} - %(1 — 8)n¥2H/S—nH?
= (S—nH?[x(n, H) — S—2n(1—8)] — %(1— 8)N*?Hy/S—nH2,

By the assumption and Hopf’s maximum principle, we see tBatnust be a con-
stant. This implies that the inequalities in (3.3) and (34rome equalities. Since
S> nH? > 0, it follows from (3.3) thatKpsunax = 1 for all k =1,...,n. On the
other hand, it follows fromS > nH?2 and >« uk = 0 that there exisk andl such that
uk < 0 andp > 0, where 1< k <| <n. By (3.4) and Proposition 2.4, we have
Kn+un+u =8 for somel. Therefore

§=1 and S—nH)[S—a(n, H)]=0,

which implies thatS = «a(n, H) and N is isometric to a unit sphere. It follows from
Theorem A thatM must be congruent to either

(i) one of the Clifford minimal hypersurfaceg(/k/n) x S"k(/(n = K)/n) in S™(1),
fork=1,2,...,n—1; or

(i) the isoparametric hypersurfac®—1(1/+/1 +12) x S(A/+/1 +12) in S™(1),
where A is given by

5= nH+/n?H2+4(n - 1)

2(n—1)

This proves the theorem. ]
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