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Abstract
We prove a rigidity theorem for closed hypersurfaces with constant mean

curvature in a symmetric Riemannian manifold, which is a generalization of main
results in [3] and [15].

1. Introduction

It seems interesting to generalize the famous optimal rigidity theorem for minimal
hypersurfaces in a sphere due to J. Simons, H.B. Lawson Jr., and S.S. Chern, M. do Carmo
and S. Kobayashi to general cases (see [4], [8], [12]). Q.M. Cheng and H. Nakagawa
[3], and H.W. Xu [15] proved the following optimal rigidity theorem for hypersurfaces
of constant mean curvature in a sphere independently.

Theorem A ([3], [15]). Let Mn be an n-dimensional closed hypersurface with
constant mean curvature H in a unit sphere Sn+1. If the squared norm of the second
fundamental form S satisfies

S� �(n, H ),

then M is congruent to one of the following

(1) totally umbilic sphere Sn(1=p1 + H2);
(2) one of the Clifford minimal hypersurface Sk(

p
k=n)�Sn�k(

p
(n� k)=n) in Sn+1(1),

for k = 1, 2,: : : , n� 1;

(3) the isoparametric hypersurface Sn�1(1=p1 +�2)� S1(�=p1 +�2) in Sn+1(1).
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Here � and �(n, H ) are given by

� =
nH +

p
n2H2 + 4(n� 1)

2(n� 1)

and

�(n, H ) = n +
n3

2(n� 1)
H2� n(n� 2)

2(n� 1)

p
n2H4 + 4(n� 1)H2.

Motivated by Theorem A and a theorem due to G. Huisken [7], B. Andrews [2]
proposed a following conjecture on mean curvature flow for closed hypersurfaces in a
unit sphere.

Conjecture. Let M0 = F0(M) be a closed hypersurface in Sn+1 which satisfies

(1.1) S< �(n, H ).

Then there exists a smooth family of hypersurfacesfMt = Ft (M)g0�t<T which satisfy(1.1)
and move by mean curvature flow with initial data M0. Either T < 1 and Mt is
asymptotic to a family of geodesic spheres shrinking to their common centre, or T =1
and Mt approaches to a great sphere.

The topological sphere theorem due to K. Shiohama and H.W. Xu[11] says that
any closed hypersurface inSn+1 which satisfiesS < �(n, H ) must be a topological
sphere, which provides an positive evidence to the conjecture above. In this paper,
we generalize Theorem A as follows.

Main Theorem. Let Nn+1 be an (n + 1)-dimensional simply connected symmetric
Riemannian manifold withÆ pinched curvature, i.e., Æ � KN � 1, and Mn be a closed
hypersurface with constant mean curvature H in Nn+1. If

(S� nH2)[�(n, H )� S� 2n(1� Æ)] � 1

2
(1� Æ)n3=2H

p
S� nH2 � 0,

then M is congruent to one of the following
(1) totally umbilical hypersurface;
(2) one of the Clifford minimal hypersurface Sk(

p
k=n)�Sn�k(

p
(n� k)=n) in Sn+1(1),

for k = 1, 2,: : : , n� 1;
(3) the isoparametric hypersurface Sn�1(1=p1 +�2)� S1(�=p1 +�2) in Sn+1(1).
Here �(n, H ), � are defined as inTheorem A.
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Consequently we have

Corollary. Let Mn be an n-dimensional closed minimal hypersurface in Nn+1

with curvature KN satisfying Æ � KN � 1. If the squared norm of the second fun-
damental form S satisfies

S� (2Æ � 1)n,

then M is congruent to one of the following
(1) totally geodesic submanifold;
(2) one of the Clifford minimal hypersurface Sk(

p
k=n)�Sn�k(

p
(n� k)=n) in Sn+1(1),

for k = 1, 2,: : : , n� 1.

It should be mentioned that whenMn is a minimal hypersurface inNn+1, then our
pinching condition reduces toS� (2Æ�1)n, which is weaker than the one in [5], [10]
and [14].

Motivated by the main theorem, one can propose an analogue of the conjecture
above for closed hypersurfaces in a symmetric Riemannian manifold with Æ pinched
curvature.

2. Preliminaries

Throughout this paper, letMn be ann-dimensional closed hypersurface isometrically
immersed in an (n + 1)-dimensional simply connected symmetric Riemannian manifold
Nn+1. The following convention of indices are used throughout.

1� i , j , k, : : : , � n,

1� A, B, C, : : : , � n + 1.

Choose an orthonormal frame fieldfeAg in a neighborhood ofp 2 M such that thefei g span the tangent spaceTpM to M at p. Let f!Ag be the dual frame fields offeAg
and f!ABg be the connection 1-forms ofN. Restricting these forms toM, we have

!n+1i =
X

j

hi j! j , hi j = h j i .

The curvature tensors ofN, M are denoted byK ABC D, Ri jkl respectively. The
second fundamental form ofM is denoted byh and the mean curvature normal field
by � . Denote the mean curvature ofM and squared norm ofh by H = k�k and S
respectively. We have then

h =
X
i , j

hi j !i 
 ! j 
 en+1,(2.1)
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� =
1

n

nX
i =1

hi i en+1,(2.2)

Ri jkl = K i jkl + hikh j l � hi l h jk ,(2.3)

S =
X
i , j

(hi j )
2.(2.4)

DEFINITION 2.1. M is called a hypersurface with constant mean curvature ifH
is constant. In particular,M is called minimal hypersurface ifH = 0.

We denote the first and second covariant derivatives ofhi j by hi jk and hi jkl

respectively, which are defined as in [4]. Following to [4] and [16], we have

(2.5) hi jk � hik j = �Kn+1i jk ,

and the Ricci formula

(2.6) hi jkl � hi j lk =
X

s

hs j Rsikl +
X

s

his Rs jkl.

Let Kn+1i jkl be the covariant derivative ofKn+1i jk as the section ofT?M 
 T�M 

T�M 
 T�M and K ABC D;E the covariant derivative ofK ABC D as curvature tensor of
N. Restricted toM we have

(2.7)
X

l

Kn+1i jkl!l = dKn+1i jk +
X

s

Kn+1s jk!is +
X

s

Kn+1i js!ks,

and

(2.8) Kn+1i jk ;l = Kn+1i jkl � Kn+1in+1kh j l � Kn+1i jn+1hkl +
X

m

Kmi jkhml.

DEFINITION 2.2. N is called a symmetric Riemannian manifold if for everyp 2
N there exists an isometric�p: N! N such that�p(p) = p, and the differential of�p

at p is equal to�I p, where I p is the identity transformation ofTpN. The Laplacian
of the second fundamental form is defined by1hi j =

P
k hi jkk .

The following propositions will be used in the proof of Main Theorem.

Proposition 2.3 ([3], [15]). If a1,:::,an are n real numbers with
Pn

i =1ai = 0, then

�����
nX

i =1

a3
i

����� � (n� 2)[n(n� 1)]�1=2 nX
i =1

a2
i

!3=2
.

Moreover, the equality holds if and only if at least n� 1 numbers of ai ’s are equal.
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Proposition 2.4. If the function f(x1, : : : , xn, y1, : : : , yn) =
Pn

i =1 xi yi satisfies

(2.9)
nX

i =1

xi = 0,
nX

i =1

x2
i = 3, Æ � yi � 1.

Then

f (x1, : : : , xn, y1, : : : , yn) � 1

2
(Æ � 1)(n3)1=2.

Proof. We assume

x1 � x2 � � � � � xk � 0� xk+1 � � � � � xn.

Thus

(2.10)

f (x1, : : : , xn, y1, : : : , yn) =
kX

i =1

xi yi +
nX

i =k+1

xi yi

� kX
i =1

xi + Æ nX
i =k+1

xi

= (Æ � 1)
nX

i =k+1

xi .

By (2.9) we have

(2.11)

k3 = k
kX

i =1

x2
i + k

nX
i =k+1

x2
i

�
 

kX
i =1

xi

!2

+
k

n� k

 
nX

i =k+1

xi

!2

=
n

n� k

 
nX

i =k+1

xi

!2

.

So by (2.11) we have  
nX

i =k+1

xi

!2 � k(n� k)

n
3 � n

4
3.

Thus

f (x1, : : : , xn, y1, : : : , yn) � (Æ � 1)
nX

i =k+1

xi � 1

2
(Æ � 1)(n3)1=2.
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This proves Proposition 2.4.

From (2.5) and (2.6),

(2.12) 1hi j = �X
k

(Kn+1kikl + Kn+1i jkk) +
X
k,m

(hmkRmi jk + him Rmkjk).

Since N is a symmetric manifold,N is complete and locally symmetric. Thus

K ABC D;E � 0

for all A, B, C, D, E. This together with (2.3), (2.8) and (2.12) implies

(2.13)
1

2
1S =

X
i , j ,k

(hi jk )2 +
X
i , j

hi j1hi j = X + Y + Z,

where

X = nH tr H3
n+1� (tr H2

n+1)
2,

Y = 2
X

m,k,i , j

(hmjhi j Kmkik + hmkhi j Kmi jk) +
X
i , j ,k

(hi jk )2,

Z = �X
i , j ,k

(Kn+1kn+1khi j hi j + Kn+1kin+1hk j hi j + Kn+1in+1kh jkhi j + Kn+1i jn+1hkkhi j ).

3. Proof of Main Theorem

The following lemmas are useful in the proof of the main theorem.

Lemma 3.1. X � (S� nH2)[2nH2 � S� (n(n� 2)=pn(n� 1))H (S� nH2)1=2].

Proof. Let fei g be an orthonormal frame at a point onM such that the matrix
Hn+1 = (hi j )n�n takes the diagonal form and such thathi j = �i Æi j for all i , j . Set

fk =
nX

i =1

(�i )
k,

Bk =
nX

i =1

(�i )
k,

�i = H � �i .

Then we have

(3.1) B1 = 0, B2 = S� nH2,

and

(3.2) B3 = 3H S� 2nH3 � f3.
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From (3.1), (3.2) and Proposition 2.3, we get

X = nH f3 � S2

� nH

�
3H S� 2nH3 � n� 2p

n(n� 1)
B3=2

2

�� S2

� (S� nH2)

�
2nH2� S� n(n� 2)p

n(n� 1)
H (S� nH2)1=2�.

This proves Lemma 3.1.

Lemma 3.2. Y � 2Æn(S� nH2).

Proof. It follows that

Y = 2
X
i ,k

[K ikik(hi i )
2 + Kki ikhkkhi i ]

=
X
i ,k

K ikik(�i � �k)2

� ÆX
i ,k

(�i � �k)2

= 2nÆ(S� nH2).

This proves Lemma 3.2.

Lemma 3.3. Z � �n(S� nH2)� (1=2)(1� Æ)n3=2H
p

S� nH2.

Proof.

(3.3)

Z = �X
k,i

Kn+1kn+1k(�i )
2 +

X
k,i

Kn+1kn+1k�k�i

� �nS+ nH
X

k

Kn+1kn+1k�k

= �n(S� nH2) + nH
X

k

Kn+1kn+1k�k,

where we set�k = �k�H . Since
P

k�k = 0,
P

k�2
k = S�nH2 and Æ � Kn+1kn+1k � 1,

by Proposition 2.4, we have

(3.4) Z � �n(S� nH2)� 1

2
(1� Æ)n3=2H

p
S� nH2.

This proves Lemma 3.3.
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Proof of Main Theorem. IfS= nH2, then�i = H for i = 1, 2,: : : , n, which means
that M is a totally umbilic submanifold.

If S 6= nH2, then S> nH2. By the assumption that

(S� nH2)[�(n, H )� S� 2n(1� Æ)] � 1

2
(1� Æ)n3=2H

p
S� nH2 � 0,

we get

S� �(n, H )� 2n(1� Æ) � �(n, H ).

Combining this with Lemmas 3.1, 3.2 and 3.3, we have

1

2
1S� (S� nH2)

��n + 2nÆ + 2nH2 � S� n(n� 2)p
n(n� 1)

H (S� nH2)1=2�

� 1

2
(1� Æ)n3=2H

p
S� nH2

� (S� nH2)

�
n + 2nH2 � �(n, H )� n(n� 2)p

n(n� 1)
H (�(n, H )� nH2)1=2

+ �(n, H )� S� 2n(1� Æ)�� 1

2
(1� Æ)n3=2H

p
S� nH2

= (S� nH2)[�(n, H )� S� 2n(1� Æ)] � 1

2
(1� Æ)n3=2H

p
S� nH2.

By the assumption and Hopf’s maximum principle, we see thatS must be a con-
stant. This implies that the inequalities in (3.3) and (3.4)become equalities. Since
S> nH2 � 0, it follows from (3.3) thatKn+1kn+1k = 1 for all k = 1, : : : , n. On the
other hand, it follows fromS> nH2 and

P
k �k = 0 that there existk and l such that�k < 0 and�l > 0, where 1� k < l � n. By (3.4) and Proposition 2.4, we have

Kn+1ln+1l = Æ for somel . Therefore

Æ = 1 and (S� nH2)[S� �(n, H )] = 0,

which implies thatS = �(n, H ) and N is isometric to a unit sphere. It follows from
Theorem A thatM must be congruent to either
(i) one of the Clifford minimal hypersurfacesSk(

p
k=n)� Sn�k(

p
(n� k)=n) in Sn+1(1),

for k = 1, 2,: : : , n� 1; or
(ii) the isoparametric hypersurfaceSn�1(1=p1 +�2)� S1(�=p1 +�2) in Sn+1(1),
where� is given by

� =
nH +

p
n2H2 + 4(n� 1)

2(n� 1)
.

This proves the theorem.
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