# UNKNOTTING SINGULAR SURFACE BRAIDS BY CROSSING CHANGES 

MASAHIDE IWAKIRI

(Received May 15, 2006, revised December 25, 2006)


#### Abstract

C.A. Giller defined a crossing change for surfaces in 4 -space, and proved an unknotting theorem. In this paper, we present such an unknotting theorem for singular surface braids, extending S. Kamada's result for those without branch points. As a consequence, we recover Giller's unknotting theorem. We also study finite type invariants for singular surface braids associated with the crossing changes.


## 1. Introduction

A surface braid was introduced by O. Viro [12] and has extensively studied by S. Kamada [9]. L. Rudolph introduced a similar notion earlier in [11]. By a singular surface braid, we mean an immersed (closed) surface braid (see $\S 2$ ). We call a transverse double point of a singular surface braid a crossing point. By a crossing change, we mean an operation for a singular surface braid $S$ inserting a pair of positive and negative crossing points along a chord that is a straight segment connecting adjacent sheets of $S$ (cf. [4, 6]). In this paper, we present an unknotting theorem (Theorem 4.1 in $\S 4$ ) for singular surface braids, which was proved by Kamada [4] for those without branch points. C.A. Giller [2, 8] proved that such an unknotting theorem for surfaces in Euclidean 4 -space. We recover Giller's unknotting theorem in Corollary 4.2. In §5, we also study finite type invariants for singular surface braids associated with crossing changes. These invariants are completely determined by the number of sheets, the Euler characteristic and the numbers of (signed) crossing points for each component (Theorem 5.2).

## 2. Singular surface braids, chart descriptions and $\boldsymbol{C}$-moves

Let $D_{1}$ be an oriented 2-disk and let $X_{m}$ be a fixed set of $m$ interior points of $D_{1}$. Let $U_{0}$ be the standard 2-sphere $U_{0}=\left\{(x, y, z, w) \in \mathbf{R}^{4} \mid x^{2}+y^{2}+z^{2}=1, w=0\right\}$ in $\mathbf{R}^{4}$ with a base point $q_{0}$. We denote by pr: $D_{1} \times U_{0} \rightarrow U_{0}$ the second factor projection. Let $S$ be a compact oriented immersed surface in $D_{1} \times U_{0}$. Then $S$ is called a (closed) singular surface m-braid if the following conditions are satisfied: (i) Singularities of $S$ are crossing points, (ii) for an immersion $f: F \rightarrow D_{1} \times U_{0}$ associated with $S$, the composition $\mathrm{pr} \circ f$


Fig. 1.
is a simple $m$-fold branched covering map, i.e. for each $y \in U_{0}, \#\left\{\operatorname{pr}^{-1}(y) \cap S\right\}=m-1$ or $m$. We may assume that $\mathrm{pr}^{-1}\left(q_{0}\right) \cap S=X_{m}$. Two singular surface $m$-braids $S$ and $S^{\prime}$ are equivalent if they are ambiently isotopic by a fiber-preserving isotopy $\left\{h_{u}\right\}_{0 \leq u \leq 1}$ of $D_{1} \times U_{0}$, as a $D_{1}$-bundle over $U_{0}$. A singular surface $m$-braid is trivial if it is equivalent to $X_{m} \times U_{0}$. Let $S^{1}, \ldots, S^{l}$ be components of a singular surface braid $S$, that is, each $S^{i}$ is the image $f\left(F^{i}\right)$ of a connected component $F^{i}$ of $F$. A $\left(k_{1}, k_{2}\right)$-crossing point is a crossing point of $S^{k_{1}}$ and $S^{k_{2}}$. In particular, a ( $k, k$ )-crossing point is a self-crossing point of $S^{k}$.

An $m$-chart $\Gamma$ is a (possibly empty) finite immersed graph in an oriented 2-sphere $U_{0}$ with a base point $q_{0}$, which may have hoops (that are closed edges without vertices), satisfying the following conditions:
(i) Every vertex has degree one, two or six.
(ii) Every edge is directed, and labeled by an integer in $\{1,2, \ldots, m-1\}$.
(iii) For each vertex of degree six, three consecutive edges are directed inward and the other three are directed outward; these six edges are labeled by $i$ and $i+1$ alternately for some $i$.
(iv) For each vertex of degree two, the two edges are labeled by the same integer and oppositely directed.
(v) Each singularity of $\Gamma$ is a transverse double point of two edges whose difference in labels is more than one.
(vi) $\Gamma \cap\left\{q_{0}\right\}=\emptyset$.

A vertex of degree one, two or six is called a black vertex, a node or a white vertex, respectively (Fig. 1 (A)-(C)). In [6], Kamada gave a method to present a singular surface $m$-braid by an $m$-chart $\Gamma$. Black vertices, nodes or white vertices in a chart $\Gamma$ represent branch points, crossing points or triple points in a diagram of a singular surface $m$-braid. A
node whose adjacent edges are directed inward (or outward) is called a positive (or negative) node. The set of black vertices in $\Gamma$ is denoted by $B_{\Gamma}$. An edge attached to a white vertex is called a middle edge if it is the middle of the three consecutive edges which are oriented in the same directions; otherwise a non-middle edge. A free edge is an edge both endpoints of which are black vertices (Fig. 1 (D)). A quasi-free edge is a smooth arc in a chart whose endpoints are black vertices and the other vertices on it are nodes (Fig. 1 (E)). A quasi-free edge is called positive (or negative) if the number of positive (or negative) nodes is larger than that of negative (or positive) nodes. A quasi-hoop is a simple loop in a chart with two nodes and no other vertices (Fig. 1 (F)). We regard a free edge as a quasi-free edge, but do not regard a hoop as a quasi-hoop. An f-oval nest (or h-oval nest) is a quasi-free edge (or quasi-hoop) together with some concentric hoops (Fig. $1(\mathrm{G})-(\mathrm{H})$ ). We always assume that the base point $q_{0}$ is outside f-oval nests and h-oval nests.

Let $S_{1}$ and $S_{2}$ be singular surface $m$-braids presented by $m$-charts $\Gamma_{1} \subset U_{0}$ and $\Gamma_{2} \subset U_{0}^{\prime}$ with base points $q_{0}$ and $q_{0}^{\prime}$, respectively. The product of $\Gamma_{1}$ and $\Gamma_{2}$, denoted by $\Gamma_{1} \bullet \Gamma_{2}$, is an $m$-chart obtained by identifying the boundaries of $U_{0} \backslash \operatorname{Int} N\left(q_{0}\right)$ and $U_{0}^{\prime} \backslash \operatorname{Int} N\left(q_{0}^{\prime}\right)$ for neiborhoods $N\left(q_{0}\right) \subset U_{0}$ and $N\left(q_{0}^{\prime}\right) \subset U_{0}^{\prime}$ in such a way that $\overline{N\left(q_{0}\right)} \cap \Gamma_{1}=\emptyset$ and $\overline{N\left(q_{0}^{\prime}\right)} \cap$ $\Gamma_{2}=\emptyset$. Then, we set a base point of $\Gamma_{1} \bullet \Gamma_{2}$ on the identified boundaries. The product of $S_{1}$ and $S_{2}$, denoted by $S_{1} \bullet S_{2}$, is a singular surface $m$-braid presented by an $m$-chart $\Gamma_{1} \bullet \Gamma_{2}$.

REMARK 2.1. A crossing change of a singular surface braid corresponds to insertion of a quasi-hoop in a chart. See [6]. Thus, in this paper, a crossing change also means insertion of a quasi-hoop in a chart.

Operations listed below (and their inverses) are called a $C_{\mathrm{I}^{-}}, C_{\mathrm{II}^{-}}, C_{\mathrm{III}^{-}}, C_{\mathrm{IV}^{-}}$and $C_{\mathrm{V}}$-move, respectively. These moves are called $C$-moves. Two $m$-charts are $C$-move equivalent if they are related by a finite sequence of such $C$-moves and ambient isotopies.
$\left(C_{\mathrm{I}}\right)$ For a 2-disk $E$ on $U_{0}$ such that $\Gamma \cap E$ has neither black vertices nor nodes, replace $\Gamma \cap E$ with an arbitrary chart that has neither black vertices nor nodes.
$\left(C_{\text {II }}\right)$ Suppose that an edge $\alpha$ is attached to a black vertex $B$ and intersects another edge $\beta$ near $B$. Shorten $\alpha$ to remove the intersection and move $B$ across $\beta$.
( $C_{\text {III }}$ ) Let a black vertex $B$ and a white vertex $W$ be connected by a non-middle edge $\alpha$ of $W$. Remove $\alpha$ and $W$, attach $B$ to the edge of $W$ opposite to $\alpha$, and connect other four edges in a natural way.
$\left(C_{\mathrm{IV}}\right)$ Let $N$ be a node attached by edges $\alpha_{1}, \alpha_{2}$ and suppose that $\alpha_{1}$ intersects an edge $\beta$ near $N$. Move $N$ across $\beta$.
$\left(C_{\mathrm{V}}\right)$ Let a node $N$ and a white vertex $W$ be connected by a non-middle edge of $W$. Move $N$ across $W$.
We illustrate examples of $C_{\mathrm{I}}$-moves in Fig. 2 and $C_{\mathrm{II}}-C_{\mathrm{V}}$-moves in Fig. 3.

Lemma 2.2 (cf. [5, 6, 9]). Two m-charts are C-move equivalent if and only if their presenting singular surface $m$-braids are equivalent.


Fig. 2. some $C_{\mathrm{I}}$ moves


Fig. 3. $C_{\mathrm{II}}-C_{\mathrm{V}}$ moves

## 3. Factorization graph of singular surface braids

Here, we introduce the notation of a factorization graph [1] to see which sheets of a singular surface braid are connected. It will be useful in proving Theorem 4.1.

Let $S$ be a singular surface $m$-braid presented by an $m$-chart $\Gamma$ and $U_{0}, q_{0}$ and $B_{\Gamma}$ be as in $\S 2$. A Hurwitz arc system of $\Gamma$ is $H=\left(a_{1}, \ldots, a_{n}\right)$ with $n=\left|B_{\Gamma}\right|$ such that for $1 \leq i \leq n, a_{i}$ is a simple path intersecting $\Gamma$ transversely (missing all the vertices except at the initial points) such that
(i) $q_{0}$ is the terminal point of $a_{i}$ for each $i$,
(ii) the intersection of the images of $a_{i}$ and $a_{j}$ is $q_{0}$ for $i \neq j$,
(iii) the images of $a_{1}, \ldots, a_{n}$ appear in this order around the point $q_{0}$,
(iv) the initial points are in $B_{\Gamma}$.

For each $i$, consider a loop $\eta_{i}$ in $U_{0} \backslash B_{\Gamma}$ with base point $q_{0}$ such that it goes along $a_{i}$, turns around the initial point of $a_{i}$ in positive direction and comes back along $a_{i}$. For loops $\eta_{i}$ with $1 \leq i \leq n$, assign to each intersection point with $\Gamma$ a letter $\sigma_{j}$ if its intersecting edge of $\Gamma$ is labeled $j$ and directed from left to right with respect to $\eta_{i}$; otherwise a letter $\sigma_{j}^{-1}$, where $\sigma_{j}$ and $\sigma_{j}^{-1}$ are standard generators of the $m$-string braid group $B_{m}$ and their inverse. We obtain a word $w_{\Gamma}\left(\eta_{i}\right)$ of $B_{m}$ on these standard generators by reading off the letters along $\eta_{i}$. For $w_{\Gamma}\left(\eta_{i}\right)$ with $1 \leq i \leq n$, let $w_{i}=\pi\left(w_{\Gamma}\left(\eta_{i}\right)\right)$ where $\pi: B_{m} \rightarrow \Sigma_{m}$ is natural homomorphism to symmetry group $\Sigma_{m}$. Then, by the definition of $\eta_{i}$, we see that $w_{i}$ is a transposition.

DEfinition 3.1 ([1]). (i) Let $H$ be a Hurwitz arc system of a chart $\Gamma$. The factorization graph $G=(V, E)$ of $\Gamma$ associated with $H$ is the graph where $V=\{1, \ldots, m\}$ is the set of vertices of $G$ and $E=\left\{(x, y) \mid \exists i\right.$ s.t. $\left.w_{i}=(x, y)\right\}$ is the set of edges of $G$. And we define the weight $W((x, y))$ of an edge of $(x, y) \in E$ as the number of elements $i$ s.t. $w_{i}=(x, y)$.
(ii) For a given graph $G$, we denote the graphs of its connected components as $G^{1}, \ldots, G^{l}$ where $l$ is the number of the connected components of the graph. For each connected component, let $G^{k}=\left(V^{k}, E^{k}\right)$, where $V^{k}$ are the vertices of $G^{k}$ and $E^{k}$ are the edges.

In Fig. 4, two examples of factorization graphs with $m=6$ are given.

REMARK 3.2. Two Hurwitz arc system of a chart are related by some slide actions. See [9]. It is easy to see that slide actions do not change $V^{k}$. Thus, we also denote $V^{k}$ for a Hurwitz arc system of a chart $\Gamma$ by $V^{k}(\Gamma)$.

Let $n_{k}$ be the maximal number among the elements of $V^{k}$. A factorization graph is good if it is satisfied that $V^{k}=\left\{x \mid n_{k-1}+1 \leq x \leq n_{k}\right\}$ for each $1 \leq k \leq l$. (For example, see Fig. 4 (ii).) By Remark 3.2, the property of being good is independent of the choice of Hurwitz arc systems.


Fig. 4.
Lemma 3.3. By C-moves, any chart $\Gamma$ can be transformed to another whose factorization graph $G$ is good.

Proof. Interchanging sheets in neighborhood of $\mathrm{pr}^{-1}\left(q_{0}\right) \subset S$ leads to exchanging of the vertices of $G$. This is done by insertion of some concentric hoops around $q_{0}$, which is a $C_{\mathrm{I}}$-move.

## 4. Unknotting theorem

An $m$-chart is unknotted if it consists of some quasi-free edges or if it is empty (cf. [9]). A singular surface $m$-braid is unknotted if it can be presented by an unknotted $m$-chart. In this section, we will prove the following theorem.

Theorem 4.1. Any singular surface braid can be transformed to an unknotted one by crossing changes and its inverse operations.

A crossing change of a surface in 4 -space is inserting a pair of positive and negative crossing points in the sense of [2].

Corollary 4.2 ([2, 6]). Any surface in 4 -space can be transformed to an unknotted one by crossing changes and its inverse operations.

Proof. A surface in 4 -space can be represented by a (singular) surface braid $S$ (cf. [9]). By Theorem 4.1, $S$ can be transformed to an unknotted singular surface braid $U$ by crossing changes and its inverse operations. Since an unknotted singular surface braid is an unknotted surface in 4 -space (cf. [7, 9]), we have this corollary.

In order to prove Theorem 4.1, we prepare Proposition 4.3 and Lemmas 4.4-4.8.

Proposition 4.3 ([4]). Any chart without black vertices can be transformed to the empty chart by the some number of insertion and deletion quasi-hoops and C-moves.


Fig. 5.


Fig. 6.

Lemma 4.4. Any chart $\Gamma$ can be transformed to a chart consisting of f-oval nests by insertion and deletion of quasi-hoops and C-moves.

Proof. A move illustrated in Fig. 5 is realized by $C$-moves, insertion and deletion of quasi-hoops. See Fig. 6: (1) Insertion of a quasi-hoop (2) a $C_{\mathrm{I}}$-move and a $C_{\mathrm{V}}$-move (3) $C_{\mathrm{V}}$-moves and a $C_{\mathrm{IV}}$-move. By such moves and $C$-moves, each black vertex can be an end of a quasi-free edge. Applying the procedure as in Fig. 29.2 of [9], we take all quasi-free edges near the base point $q_{0}$ of $U_{0}$. Then, we have a chart $\Gamma^{\prime}$ such that $\Gamma^{\prime} \cap E$ includes no black vertices for a 2-disk $E$ in $U_{0}$. By Proposition 4.3, $\Gamma^{\prime} \cap E$ becomes empty by inserting and deleting quasi-hoops and $C$-moves. This completes the proof.

DEFINITION 4.5. An f-oval nest (or h-oval nest) is simple if the label of the quasi-free edge (or quasi-hoop) is $i$ and the labels of the concentric hoops in the order from inside to outside are $i+1, i+2, \ldots, i+k$ (for some $k$ ) and orientations of the hoops are induced from that of $U_{0}$. See Fig. 7. We consider that a quasi-free edge (or quasi-hoop) is a simple f-oval nest (or simple h-oval nest) with empty hoops.

a simple f-oval nest

a simple h-oval nest

Fig. 7.


Fig. 8.

Lemma 4.6. $\quad$ The replacement illustrated in (i) and (ii) of Fig. 8 are realized by $C$-moves.

Proof. (i) is given in [3,5] and (ii) follows from Fig. 9.

We remark that a given orientation of each hoop in a chart can be reserved by insertion and deletion of quasi-hoops, and we call it an ID-move. See Fig. 10.

Lemma 4.7. (i) Any f-oval nest in a chart is transformed to a simple one by some insertion and deletion of quasi-hoops and $C$-moves.
(ii) Any h-oval nest in a chart is transformed to a simple one by some insertion and deletion of quasi-hoops and C-moves.

Proof. In this proof, for each f-oval nest $f$, we denote the number of hoops of $f$ by $n(f)$. We prove the following assertion for any $n(f)$. (i) is a consequence of it.


Fig. 9.


Fig. 10. ID-move
(i) $\eta=\mu-1$


Fig. 11.

Assertion. Let $f$ be an f-oval nest in a chart. Then, $f$ can be transformed to a simple one $f^{\prime}$ with $n\left(f^{\prime}\right) \leq n(f)$ by ID-moves and $C$-moves.

We prove this assertion by induction on $n(f)$. If $n(f)=0$, it is obvious. Supposed that $n(f)=1$. In the case where the difference of labels of the quasi-free edge and the hoop of $f$ is 1 , by Lemma 4.6 (i) and an ID-move (if necessary), $f$ can be transformed to a simple f-oval nest $f^{\prime}$. In the other cases, the hoop is removed by $C$-moves $\left(C_{\mathrm{II}^{-}}\right.$ moves and $C_{\text {IV }}$-moves). Thus, we proved the assertion if $n(f)=1$. If $n(f) \geq 2$, we consider sub-f-oval nest $\tilde{f}$ of $f$ consisting of the quasi-free edge and hoops except outermost hoop $l$ of $f$. By induction, we transform $\tilde{f}$ to a simple f-oval nest $\hat{f}$ with $n(\hat{f}) \leq n(\tilde{f})$. Then, $\hat{f} \cup l$ is an f -oval nest with $n(\hat{f}) \leq n(f)-1$. If $n(\hat{f})<n(f)-1$, by induction hypothesis, we can transform $\hat{f} \cup l$ to a simple f-oval nest $f^{\prime}$. It is supposed that $n(\hat{f})=n(f)-1$. Let $\mu, v$ and $\eta$ be the labels of the quasi-free edge of $\hat{f}$, the outermost hoop of $\hat{f}$ and $l$, respectively. In the case where $\eta<\mu-1$ or $\eta>v+1$, we remove $l$ by $C$-moves, so we have $f^{\prime}=\hat{f}$. In the cases where $\eta=v, v+1$, by an $I D$-move and $C$-moves (if necessary), we transform $\hat{f} \cup l$ to a simple f-oval nest $f^{\prime}$. In the other case, see Fig. 11 and Fig. 12. (If the orientation of $l$ is reverse in Fig. 11


Fig. 12.
and Fig. 12, we should change it by an $I D$-move.) Thus, the proof of the assertion is complete.
(ii) is proved by a similar method. (Use Lemma 4.6 (ii) instead of Lemma 4.6 (i).) This completes the proof.

For a chart $\Gamma$ consisting of simple f-oval nests $f_{1}, \ldots, f_{k}$, we consider a Hurwitz arc system $H=\left(a_{1}, \ldots, a_{n}\right)$ such that for any $1 \leq i \leq n, a_{i} \cap \Gamma \subset f_{j}$. Such a Hurwitz arc system is called simple. We remark that the factorization graph $G$ is independent of the choice of a simple Hurwitz arc system $H$.

Lemma 4.8. Let $G_{1}, G_{2}$ and $G_{3}$ be the factorization graphs of charts $\Gamma_{1}, \Gamma_{2}$ and $\Gamma_{3}$ consisting of simple f-oval nests, respectively, associated with simple Hurwitz arc systems. Suoopse that $G_{1}, G_{2}$ and $G_{3}$ are locally different each other as in Fig. 13 (a), (b) and (c) and the remainding parts are the same. Then, $\Gamma_{1}, \Gamma_{2}$ and $\Gamma_{3}$ can be changed each other by C-moves.


Fig. 13.


Fig. 14.

Proof. In the case $i<j<k, \Gamma_{1}$ and $\Gamma_{2}$ are locally different each other as in the first stage and the last stage of Fig. 14. Each steps in Fig. 14 is done by $C$-moves. Thus $\Gamma_{1}$ and $\Gamma_{2}$ are changed each other by $C$-moves. And see Fig. 15 for $\Gamma_{2}$ and $\Gamma_{3}$. The other cases are treated similary.

Proof of Theorem 4.1. Let $S$ be a singular surface braid presented by a chart $\Gamma$. By Lemma 4.4, $\Gamma$ is transformed to a chart $\Gamma^{\prime}$ consisting of some f-oval nests. We may assumed that a factorization graph of $\Gamma^{\prime}$ is good by Lemma 3.3. By Lemma 4.7 (i), $\Gamma^{\prime}$ is transformed to a chart $\Gamma^{\prime \prime}$ consisting of some simple f-oval nests. By Lemma 4.8, $\Gamma^{\prime \prime}$ is transformed to a chart $\Gamma^{\prime \prime \prime}$ of which factorization graph associated with simple Hurwitz arc system is illustrated in Fig. 16. $\Gamma^{\prime \prime \prime}$ is unknotted, so we have Theorem 4.1.

Corollary 4.9. Any singular surface braid can be transformed to be a product $U \bullet O^{1} \bullet \cdots \bullet O^{s}$ by crossing changes (and no inverse operations), where $U$ is an unknotted singular surface braid and $O^{t}$ is a singular surface braid presented by a chart consisting a simple h-oval nest for each $1 \leq t \leq s$.

Proof. Instead of deleting quasi-hoops on proof of Theorem 4.1, we take a quasihoop near the base point $q_{0}$ of $U_{0}$ by applying the procedure as in Fig. 29.2 of [9]. Then, the resulting chart is the product of an unknotted chart and some h -oval nests. Thus, by Lemma 4.7 (ii), we have this corollary.

## 5. Finite type invariants

S. Kamada introduced finite type invariants of surfaces in 4-space associated with crossing changes (finger moves) in [8] and 1-handle surgeries in [10]. The author [3] defined finite type invariants of surface braids associated with simple 1-handle surgeries. We consider similar invariants of singular surface braids, which are finite type invariants associated with crossing changes.

Let $L^{m}$ be the family of equivalence classes of singular surface $m$-braids. We consider a pair $\mathfrak{S}=\left\{S,\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right\}$ where $S$ is a singular surface $m$-braid and $c_{1}, c_{2}, \ldots, c_{n}$ are mutually disjoint chords that are straight segment connecting adjacent sheets of $S$. (See [8] for a precise definition of a "chord".) For each $n$-tuple of signs $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$, we denote by

$$
\begin{equation*}
\mathfrak{S}_{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}} \tag{5.1}
\end{equation*}
$$

the singular surface $m$-braid obtained from $S$ by a crossing change about $c_{i}$ (that is a finger move along $c_{i}$ ) for every $i(1 \leq i \leq n)$ with $\varepsilon_{i}=+1$. In a chart description, a crossing change is presented by the insertion of a quasi-hoop. A map $v: L^{m} \rightarrow A$ ( $A$ is an abelian group) is called an order $k$ invariant if, for any pair $\mathfrak{S}=\left\{S,\left\{c_{1}, c_{2}, \ldots, c_{k+1}\right\}\right\}$,


Fig. 15.

$$
\begin{aligned}
& \text { (1)-2 } 2 \cdots \cdots, 2 \\
& n_{1}+1 \quad n_{1}+2,2 \cdots, 2 \\
& n_{l-1}+1-n_{l-1}+22 \cdots 2 n
\end{aligned}
$$

Fig. 16.
the following equation holds:

$$
\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k+1}\right)} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k+1} v\left(\left[\mathfrak{S}_{\left.\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k+1}\right]}\right]\right)=0
$$

A map $v: L^{m} \rightarrow A$ is called a finite type invariant if $v$ is an order $k$ invariant for some $k$.

EXAMPLE 5.1. Let $S$ be a singular surface $m$-braid with $l$ components $S^{1}, \ldots, S^{l}$. For each $k(1 \leq k \leq l)$, let $F^{k}$ be the component of the source $F$ of the immersion $f$ associated with $S$ such that $f\left(F^{k}\right)=S^{k}$. (See §2.) We define maps from $L^{m}$ to $\mathbf{Z}$ as follows;

$$
\begin{aligned}
\alpha_{k}([S]) & \left.=\text { (the number of sheets of } S^{k}\right), \\
\chi_{k}([S]) & \left.=\text { (the Euler characteristic of } F^{k}\right), \\
d_{k_{1}, k_{2}}^{+}([S]) & =\#\left(\text { positive }\left(k_{1}, k_{2}\right) \text {-crossing points) },\right. \\
d_{k_{1}, k_{2}}^{-}([S]) & =\#\left(\text { negative }\left(k_{1}, k_{2}\right) \text {-crossing points) },\right. \\
d_{k_{1}, k_{2}}([S]) & =\#\left(\left(k_{1}, k_{2}\right) \text {-crossing points) },\right. \\
e_{k}([S]) & =d_{k, k}^{+}([S])-d_{k, k}^{-}([S])
\end{aligned}
$$

for $1 \leq k, k_{1}, k_{2} \leq l$. Then, we define the following two invariants;

$$
\begin{aligned}
& d([S])=\sum_{k_{1}=1}^{l} \sum_{k_{1} \leq k_{2}}^{l} d_{k_{1}, k_{2}}([S]), \\
& e([S])=\sum_{k=1}^{l} e_{k}([S]) .
\end{aligned}
$$

If $S_{2}$ is obtained from $S_{1}$ by a crossing change, then

$$
d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right)+2, \quad e\left(\left[S_{1}\right]\right)=e\left(\left[S_{2}\right]\right), \quad \chi\left(\left[S_{1}\right]\right)=\chi\left(\left[S_{2}\right]\right) .
$$

Therefore, $e$ and $\chi$ are order zero invariants and $d$ is an order one invariant.
Theorem 5.2. Let $v: L^{m} \rightarrow A$ be a finite type invariant. Let $S_{1}$ and $S_{2}$ be singular surface $m$-braids with $l$ components. If $\alpha_{k}\left(\left[S_{1}\right]\right)=\alpha_{\tau(k)}\left(\left[S_{2}\right]\right), d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right)$, $e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ for any $1 \leq k \leq l$ and some $\tau \in \Sigma_{l}$, then $v\left(\left[S_{1}\right]\right)=v\left(\left[S_{2}\right]\right)$.

This theorem is a consequence of Theorem 5.3.

For any pair $\mathfrak{S}=\left\{S,\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right\}$ of a singular surface $m$-braid $S$ and a set of $n$ mutually distinct chords $c_{1}, c_{2}, \ldots, c_{n}$ each of which is a straight segment connecting adjacent sheets of $S$, we have an element

$$
\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}\left[\mathfrak{S}_{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}}\right]
$$

of the free $\mathbf{Z}$-module $\mathbf{Z} L^{m}$ generated by $L^{m}$. Denote by $\mathfrak{L}_{n}^{m}$ the submodule of $\mathbf{Z} L^{m}$ spanned by all elements as above. Evidently, we have $\mathfrak{L}_{1}^{m} \supset \mathfrak{L}_{2}^{m} \supset \cdots$.

Theorem 5.3. Let $S_{1}$ and $S_{2}$ be singular surface m -braids with $l$ components. If $\alpha_{k}\left(\left[S_{1}\right]\right)=\alpha_{\tau(k)}\left(\left[S_{2}\right]\right), d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right), e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ for any $1 \leq k \leq l$ and some $\tau \in \Sigma_{l}$, then $\left[S_{1}\right]-\left[S_{2}\right] \in \mathfrak{L}_{n}^{m}$ for any $n$.

From now on, we may assume that $\alpha_{k}([S])=\alpha_{k}\left(\left[S^{\prime}\right]\right), \chi_{k}([S])=\chi_{k}\left(\left[S^{\prime}\right]\right), e_{k}([S])=$ $\left.e_{k}\left(\left[S^{\prime}\right]\right), d_{k, k^{\prime}}[S]\right)=d_{k, k^{\prime}}\left[\left[S^{\prime}\right]\right)$ and $d_{t, t^{\prime}}([S])+2=d_{t, t^{\prime}}\left(\left[S^{\prime}\right]\right)$ for $1 \leq k, k^{\prime} \leq l$ and $\left\{k, k^{\prime}\right\} \neq$ $\left\{t, t^{\prime}\right\}$ where $S^{\prime}$ is a singular surface braid obtained from a singular surface braid $S$ with $l$ components by a crossing change such that inserting crossing points are $\left(t, t^{\prime}\right)-$ crossing points. This is possible by a suitable choice of indices of components of $S^{\prime}$.

In order to prove Theorem 5.3, we use the following lemmas and Proposition 5.9.
Lemma 5.4. Let $S$ be a singular surface braid with $l$ components. If $k \neq k^{\prime}$ $\left(1 \leq k, k^{\prime} \leq l\right)$, then $d_{k, k^{\prime}}^{+}([S])=d_{k, k^{\prime}}^{-}[[S])$. In particular, $d_{k, k^{\prime}}([S])$ is even if $k \neq k^{\prime}$.

Proof. If $S$ is unknotted, let $\Gamma$ be an unknotted chart presenting $S$. Since each node in $\Gamma$ is on a quasi-free edge, each double point is $(\tilde{k}, \tilde{k})$-double points for some $\tilde{k}(1 \leq \tilde{k} \leq l)$. Therefore, $d_{k, k^{\prime}}^{+}([S])=d_{k, k^{\prime}}^{-}([S])=0$. If $S$ is not unknotted, by Theorem 4.1, $S$ can be transformed to an unknotted singular surface braid $S^{\prime}$ by crossing changes and its inverse operations. Since a crossing change is insertion of a pair of a positive and negative double points and $d_{k, k^{\prime}}^{+}\left(\left[S^{\prime}\right]\right)=d_{k, k^{\prime}}^{-}\left(\left[S^{\prime}\right]\right)$, we see that $d_{k, k^{\prime}}^{+}([S])=$ $d_{k, k^{\prime}}^{-}([S])$.

Let $V^{k}(\Gamma)$ be as in Remark 3.2 and we denote the minimal and maximal numbers of $V^{k}(\Gamma)$ by $\eta_{k}(\Gamma)$ and $n_{k}(\Gamma)$, or $\eta_{k}$ and $n_{k}$ for short, respectively.

Lemma 5.5. Let $S_{1}$ and $S_{2}$ be singular surface $m$-braids with $l$ components. If $\alpha_{k}\left(\left[S_{1}\right]\right)=\alpha_{\tau(k)}\left(\left[S_{2}\right]\right), d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right), e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ for any $1 \leq k \leq l$ and some $\tau \in \Sigma_{l}$, then $S_{1}$ and $S_{2}$ can be transformed to $S_{1}^{\prime}=U_{1} \bullet$ $O_{1}^{1} \bullet \cdots \bullet O_{1}^{s_{1}}$ and $S_{2}^{\prime}=U_{2} \bullet O_{2}^{1} \bullet \cdots \bullet O_{2}^{s_{2}}$ with $V^{k}\left(\Gamma_{1}\right)=V^{\tau(k)}\left(\Gamma_{2}\right), d_{k_{1}, k_{2}}\left(\left[S_{1}^{\prime}\right]\right)=$ $d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\left[S_{2}^{\prime}\right]\right), e_{k}\left(\left[S_{1}^{\prime}\right]\right)=e_{\tau(k)}\left(\left[S_{2}^{\prime}\right]\right)$ and $\chi_{k}\left(\left[S_{1}^{\prime}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}^{\prime}\right]\right)$ by the same number of crossing changes where $U_{j}$ is an unknotted singular surface braid, $O_{j}^{t}$ is a singular surface braid presented by chart consisting of a simple h-oval nest and $\Gamma_{j}$ is a chart presenting $S_{j}^{\prime}$ for each $j=1,2$ and $1 \leq t \leq s_{j}$.


Fig. 17.


Fig. 18.
Proof. By Corollary 4.9, $S_{1}$ and $S_{2}$ are transformed to $\hat{S}_{1}=\hat{U}_{1} \bullet \hat{O}_{1}^{1} \bullet \cdots \bullet \hat{O}_{1}^{s_{1}}$ and $\hat{S}_{2}=\hat{U}_{2} \bullet \hat{O}_{2}^{1} \bullet \cdots \bullet \hat{O}_{2}^{s_{2}}$ by some crossing changes, respectively. We may asuume that $V^{k}\left(\hat{\Gamma}_{1}\right)=V^{\tau(k)}\left(\hat{\Gamma}_{2}\right)$ by insertion of some concentric hoops around $q_{0}$ before applying Lemma 4.7 (i) in the proof of Corollary 4.9 (Theorem 4.1) where $\hat{\Gamma}_{j}$ is a chart presenting $\hat{S}_{j}$ for $j=1,2$. Since $d\left(S_{1}\right)=d\left(S_{2}\right)$, applying crossing changes trivially as in Fig. 17 if necessary, we may also assume that $d\left(\hat{S}_{1}\right)=d\left(\hat{S}_{2}\right)$. It is obvious that crossing changes do not change $\chi_{k}$ and $e_{k}$ for each $k$. Thus, it is satisfied that $e_{k}\left(\left[\hat{S}_{1}\right]\right)=$ $e_{\tau(k)}\left(\left[\hat{S}_{2}\right]\right)$ and $\chi_{k}\left(\left[\hat{S}_{1}\right]\right)=\chi_{\tau(k)}\left(\left[\hat{S}_{2}\right]\right)$. By Lemma 5.4, $d_{k_{1}, k_{2}}\left(\hat{S}_{1}\right)$ and $d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\hat{S}_{2}\right)$ are even numbers for $1 \leq k_{1} \neq k_{2} \leq l$, so we see that $d_{k_{1}, k_{2}}\left(\left[\hat{S}_{1}\right]\right)-d_{\tau\left(k_{1}\right) \tau \tau\left(k_{2}\right)}\left(\left[\hat{S}_{2}\right]\right)$ is even. Since $e_{k}\left(\left[\hat{S}_{1}\right]\right)=e_{\tau(k)}\left(\left[\hat{S}_{2}\right]\right)$, we also see that $d_{k, k}\left(\left[\hat{S}_{1}\right]\right)-d_{\tau(k), \tau(k)}\left(\left[\hat{S}_{2}\right]\right)$ is even for $1 \leq k \leq l$. Therefore, applying crossing changes for $\hat{S}_{1}$ and $\hat{S}_{2}$ as in Fig. 18 for all pairs $\left(k_{1}, k_{2}\right)\left(1 \leq k_{1}, k_{2} \leq l\right)$ such that $d_{k_{1}, k_{2}}\left(\left[\hat{S}_{1}\right]\right) \neq d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\left[\hat{S}_{2}\right]\right)$, we can obtain singular surface braids $S_{1}^{\prime}$ and $S_{2}^{\prime}$ such that $d_{k_{1}, k_{2}}\left(\left[S_{1}^{\prime}\right]\right)=d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\left[S_{2}^{\prime}\right]\right)$ for any $1 \leq k_{1}, k_{2} \leq l$. Then, the charts $\Gamma_{1}$ and $\Gamma_{2}$ thus obtained, or the charts corresponding to $S_{1}^{\prime}$ and $S_{2}^{\prime}$, respectively. Here, we need the same number of crossing changes for $\hat{S}_{1}$ and $\hat{S}_{1}$ to have $S_{1}^{\prime}$ and $S_{2}^{\prime}$ because of $d\left(\hat{S}_{1}\right)=d\left(\hat{S}_{2}\right)$. Since the crossing changes as in Fig. 17 and Fig. 18 do not change $V^{k}$ for $1 \leq k \leq l$, the lemma is proved.


Fig. 19.
By $u\left(S_{1}, S_{2}\right)$, we denote the minimal number of crossing changes that are needed to satisfy the statement of Lemma 5.5.

Lemma 5.6. If $|i-j|=1$, then the local operations illustrated in Fig. 19 (i)-(iv) are C-move equivalence, where each $f_{r}$ and $f_{s}^{\prime}$ is a quasi-free edge for $1 \leq r, s \leq 5$ such that the number of nodes in $f_{r}$ is equal to the number of nodes in $f_{r}^{\prime}$.

Proof. See [7] for (i)-(iii). The operation (iv) follows from Fig. 20.
Lemma 5.7. Let $U_{1}$ and $U_{2}$ be unknotted singular surface braids with $l$ components such that $V^{k}\left(\Gamma_{1}\right)=V^{\tau(k)}\left(\Gamma_{2}\right), d_{k, k}\left(\left[U_{1}\right]\right)=d_{\tau(k), \tau(k)}\left(\left[U_{2}\right]\right), e_{k}\left(\left[U_{1}\right]\right)=e_{\tau(k)}\left(\left[U_{2}\right]\right)$ and $\chi_{k}\left(\left[U_{1}\right]\right)=\chi_{\tau(k)}\left(\left[U_{2}\right]\right)$ where $\Gamma_{j}$ is a chart presenting $U_{j}$ for $1 \leq k \leq l$ and $j=1,2$. Then, $U_{1}$ is equivalent to $U_{2}$.

Proof. The $k$-th component $U_{j}^{k}$ of $U_{j}$ is presented by a chart $\Gamma_{j}^{k}$ consisting of quasi-free edges with label $s$ for each $s \in V^{k}\left(\Gamma_{j}\right) \backslash\left\{n_{k}\left(\Gamma_{j}\right)\right\}$. Then, $U_{j}$ is presented by a chart $\Gamma_{j}^{1} \bullet \cdots \bullet \Gamma_{j}^{l}$. We prove the following assertion.

Assertion. $\Gamma_{j}^{k}$ can be transformed to a chart $D_{k}$ by $C$-moves that satisfies the following conditions (see Fig. 21):


Fig. 20.


Fig. 21. $D_{k}$


Fig. 22.
(1) The factorization graph of $D_{k}$ associated with a simple Hurwitz arc system is as in Fig. 16.
(2) The number of quasi-free edge with at least one node is $\left|e_{k}\left(U_{j}\right)\right|$ if $e_{k}\left(U_{j}\right) \neq 0$; otherwise 1 .
(3) The number of quasi-free edge with at least two node is 0 or 1 .
(4) The quasi-free edge with label $w$ has nodes if $w \geq n_{k}\left(\Gamma_{j}\right)-d$ where $d$ is the number of quasi-free edge without nodes; otherwise it dose not have node.
(5) $V\left(D_{k}\right)=V^{k}\left(U_{j}\right)$.

If the number of quasi-free edges in $\Gamma_{j}^{k}$ is more than $\left|V\left(\Gamma_{j}^{k}\right)\right|-1$, that is, $U_{j}^{k}$ is not a sphere, then it is easy to prove this assertion by Lemma 5.6 (iii). In case the number of quasi-free edges in $\Gamma_{j}^{k}$ is equal to $\left|V\left(\Gamma_{j}^{k}\right)\right|-1$ and $e(S)>0$, by Lemma 5.6 (i) and (ii), $\Gamma_{j}^{k}$ is a chart $\Gamma_{1}$ consisting of quasi-free edges that are positive. We may assume that $\Gamma_{1}$ satisfies the condition (4) by Lemma 5.6 (iv). Applying the operation as illustrated in Fig. 22 if necessary, we obtain a chart $D_{k}$ satisfying the conditions (1)-(5). The other cases are treated similary. This completes the proof of the assertion.

Since $V^{k}\left(\Gamma_{1}\right)=V^{\tau(k)}\left(\Gamma_{2}\right), d_{k, k}\left(\left[U_{1}\right]\right)=d_{\tau(k), \tau(k)}\left(\left[U_{2}\right]\right), e_{k}\left(\left[U_{1}\right]\right)=e_{\tau(k)}\left(\left[U_{2}\right]\right)$ and $\chi_{k}\left(\left[U_{1}\right]\right)=\chi_{\tau(k)}\left(\left[U_{2}\right]\right)$, both $U_{1}^{k}$ and $U_{2}^{k}$ can be also presented by the same chart $D_{k}$ for $1 \leq k \leq l$. Therefore, both $U_{1}$ and $U_{2}$ are presented by the chart $D_{1} \bullet \cdots \bullet D_{l}$, and hence $U_{1}$ is equivalent to $U_{2}$.

Lemma 5.8. Let $S$ be a singular surface braid with $l$ components such that $S=$ $U \bullet O$ where $U$ is an unknotted singular surface braid, $O$ is a singular surface braid, whose crossing points are two ( $k, k^{\prime}$ )-crossing points ( $k<k^{\prime}$ ), presented by a chart consisting of a simple h-oval nest. Then, $S$ is equivalent to $U \bullet \hat{O}$ such that $\hat{O}$ is a singular surface braid presented by a chart consisting of a simple $h$-oval nest of which


Fig. 23.
the labels of the quasi-free edge and the outermost circle are $n_{k}\left(\Gamma^{u}\right)$ and $\eta_{k^{\prime}}\left(\Gamma^{u}\right)-1$, respectively, where $\Gamma^{u}$ is a chart presenting $U$. (Fig. 23.)

Proof. Let $\tilde{\Gamma}$ be a chart presenting $O$. ( $\tilde{\Gamma}$ is a simple h-oval nest.) It is seen that the labels of the free edge and the outermost circle are in $V^{k} \backslash\left\{n_{k}\right\}$ and $V^{k^{\prime}} \backslash\left\{n_{k^{\prime}}\right\}$ where $n_{k}=n_{k}\left(\Gamma^{u}\right)$ and $n_{k^{\prime}}=n_{k}\left(\Gamma^{u}\right)$. The chart $\Gamma^{u}$ has quasi-free edges with label $i$ for any $i \in\left(V^{k} \cup V^{k^{\prime}}\right) \backslash\left\{n_{k}, n_{k^{\prime}}\right\}$. Applying the operation in Fig. 24, $\Gamma^{u} \bullet \tilde{\Gamma}$ is equivalent to $\Gamma^{u} \bullet \hat{\Gamma}$ where $\hat{\Gamma}$ is as in Fig. 23.

Proposition 5.9. Let $S_{1}$ and $S_{2}$ be singular surface braids with $l$ components such that $S_{1}=U_{1} \bullet O_{1}^{1} \bullet \cdots \bullet O_{1}^{s_{1}}$ and $S_{2}=U_{2} \bullet O_{2}^{1} \bullet \cdots \bullet O_{2}^{s_{2}}$ with $V^{k}\left(\Gamma_{1}\right)=V^{\tau(k)}\left(\Gamma_{2}\right)$, $d_{k_{1}, k_{2}}\left(\left[S_{1}\right]\right)=d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\left[S_{2}\right]\right), e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ where for each $1 \leq t \leq s_{j}$ and $j=1,2, U_{j}$ is an unknotted singular surface braid, $O_{j}^{t}$ is a singular surface braid presented by chart consisting of a simple $h$-oval nest and $\Gamma_{j}$ is a chart presenting $S_{j}$. Then, $S_{1}$ is equivalent to $S_{2}$.

Proof. If the crossing points of $O_{j}^{i}$ are $(k, k)$-crossing points, $U_{j} \bullet O_{j}^{i}$ is unknotted. Thus, we may assumed that the crossing points of $O_{j}^{i}$ are $\left(k, k^{\prime}\right)$-crossing points with $k<k^{\prime}$. Now, $V^{k}\left(\Gamma_{1}\right)=V^{\tau(k)}\left(\Gamma_{2}\right), d_{k, k}\left(\left[U_{1}\right]\right)=d_{\tau(k), \tau(k)}\left(\left[U_{2}\right]\right), e_{k}\left(\left[U_{1}\right]\right)=e_{\tau(k)}\left(\left[U_{2}\right]\right)$ and $\chi_{k}\left(\left[U_{1}\right]\right)=\chi_{\tau(k)}\left(\left[U_{2}\right]\right)$ where $\Gamma_{j}$ is a chart presenting $U_{j}$ for $1 \leq k \leq l$ and $j=1,2$. Therefore, by Lemma 5.7, $U_{1}$ is equivalent to $U_{2}$. By Lemma 5.8, $S_{j}$ is equivalent to $U_{j} \bullet \hat{O}_{j}^{1} \bullet \cdots \bullet \hat{O}_{j}^{s_{j}}$ where $\hat{O}_{j}^{i}$ is a singular surface braid as $\hat{O}$ in Lemma 5.8. Since $d_{k_{1}, k_{2}}\left(\left[S_{1}\right]\right)=d_{\tau\left(k_{1}\right), \tau\left(k_{2}\right)}\left(\left[S_{2}\right]\right)$ for $k_{1} \neq k_{2}$, it is see that $\hat{O}_{1}^{1} \bullet \cdots \bullet \hat{O}_{1}^{s_{1}}$ is equivalent to $\hat{O}_{2}^{1} \bullet \cdots \bullet \hat{O}_{2}^{s_{2}} . U_{1}$ is also equivalent to $U_{2}$, so $U_{1} \bullet \hat{O}_{1}^{1} \bullet \cdots \bullet \hat{O}_{1}^{s_{1}}$ is equivalent to $U_{2} \bullet \hat{O}_{2}^{1} \bullet \cdots \bullet \hat{O}_{2}^{s_{2}}$. Therefore, $S_{1}$ is equivalent to $S_{2}$.

Proof of Theorem 5.3. We prove the following assersion for every $n \in \mathbf{N}$.
Assertion. Let $S$ and $S^{\prime}$ be singular surface $m$-braids with $\alpha_{k}\left(\left[S_{1}\right]\right)=\alpha_{\tau(k)}\left(\left[S_{2}\right]\right)$, $d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right), e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ for any $1 \leq k \leq l$ and some $\tau \in \Sigma_{l}$. If $u\left(S_{1}, S_{2}\right) \leq r$, then $\left[S_{1}\right]-\left[S_{2}\right] \in \mathfrak{L}_{n}^{m}$ for any $n \geq r+1$.


Fig. 24.
Let $\alpha_{k, 0}:=\alpha_{k}\left(\left[S_{1}\right]\right)=\alpha_{\tau(k)}\left(\left[S_{2}\right]\right), d_{0}:=d\left(\left[S_{1}\right]\right)=d\left(\left[S_{2}\right]\right), e_{k, 0}:=e_{k}\left(\left[S_{1}\right]\right)=e_{\tau(k)}\left(\left[S_{2}\right]\right)$ and $\chi_{k, 0}:=\chi_{k}\left(\left[S_{1}\right]\right)=\chi_{\tau(k)}\left(\left[S_{2}\right]\right)$ for any $1 \leq k \leq l$ and some $\tau \in \Sigma_{l}$.

Let $n$ be an integer with $n \geq r+1$. Take $r$ mutually disjoint cord $c_{i}$ or $d_{i}$ for $1 \leq i \leq r$ each of which is a straight segment connecting adjacent sheets of $S_{1}$ (or $S_{2}$ ) satisfying the following conditions:
(i) The surgery result $S_{1}^{\prime}$ ( or $S_{2}^{\prime}$ ) along cord $c_{1}, c_{2}, \ldots, c_{r}$ (or $d_{1}, d_{2}, \ldots, d_{r}$ ) are as in Lemma 5.5.
(ii) $c_{i}\left(\right.$ or $\left.d_{i}\right)$ is a parallel copy of $c_{1}$ or $d_{1}$ for any $r+1 \leq i \leq n$.

For the pair $\mathfrak{S}_{1}=\left\{S_{1},\left\{c_{1}, \ldots, c_{n}\right\}\right\}$ (or $\mathfrak{S}_{2}=\left\{S_{2},\left\{d_{1}, \ldots, d_{n}\right\}\right\}$ ) and for an $n$-tuple of signs $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, let $\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}$ (or $\left.\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right)$ be a singular surface $m$-braid as the fomula (5.1). And let $p=p\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ be the number of positive signs in the $n$-tuple of signs $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. Then $\alpha_{k}\left(\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=\alpha_{\tau(k)}\left(\left[\left(\mathfrak{S}_{2}\right)_{\left.\varepsilon_{1}, \ldots, \varepsilon_{n}\right]}\right]\right)=\alpha_{k, 0}, d\left(\left[\left(\mathfrak{S}_{1}\right)_{\left.\varepsilon_{1}, \ldots, \varepsilon_{n}\right]}\right]\right)=$ $d\left(\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=d_{0}+2 p, e_{k}\left(\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=e_{\tau(k)}\left(\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=e_{k, 0}$ and $\chi_{k}\left(\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=$ $\chi_{\tau(k)}\left(\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]\right)=\chi_{k, 0}$. If $p>0$, we see that $u\left(\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}},\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right) \leq r-1$.

We prove the assertion by induction on $r$. If $r=1$, then $\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}} \cong\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}$ for any $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $p=p\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right)>0$ by Lemma 5.9. Thus,

$$
\begin{aligned}
& \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), p>0} \varepsilon_{1} \cdots \varepsilon_{n}\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]+(-1)^{n}\left(\left[S_{1}\right]\right) \\
& \equiv \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), p>0} \varepsilon_{1} \cdots \varepsilon_{n}\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]+(-1)^{n}\left(\left[S_{2}\right]\right) \quad\left(\bmod \mathfrak{L}_{n}^{m}\right) .
\end{aligned}
$$

Therefore, we have $[S]-\left[S^{\prime}\right] \in \mathfrak{L}_{n}^{m}$. If $r \geq 2$, then by the induction hypothesis we have $\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]-\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right] \in \mathfrak{L}_{n}^{m}$ for any $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $p=p\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)>0$. Thus,

$$
\begin{aligned}
& \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), p>0} \varepsilon_{1} \cdots \varepsilon_{n}\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]+(-1)^{n}\left(\left[S_{1}\right]\right) \\
& \equiv \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), p>0} \varepsilon_{1} \cdots \varepsilon_{n}\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]+(-1)^{n}\left(\left[S_{2}\right]\right) \quad\left(\bmod \mathfrak{L}_{n}^{m}\right) .
\end{aligned}
$$

Therefore, we see that $\left[\left(\mathfrak{S}_{1}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right]-\left[\left(\mathfrak{S}_{2}\right)_{\varepsilon_{1}, \ldots, \varepsilon_{n}}\right] \in \mathfrak{L}_{n}^{m}$. This completes the proof of assertion. Since $\mathfrak{L}_{1}^{m} \supset \mathfrak{L}_{2}^{m} \supset \cdots$, we have $[S]-\left[S^{\prime}\right] \in \mathfrak{L}_{n}^{m}$ for all $n$.

Acknowledgments. I would like to thank Professor Seiichi Kamada and Shin Satoh for helpful comments. The author is partially supported by JSPS Research Fellowships for Young Scientists.

## References

[1] T. Ben-Itzhak and M. Teicher: Graph theoretic method for determining Hurwitz equivalence in the symmetric group, Israel J. Math. 135 (2003), 83-91.
[2] C.A. Giller: Towards a classical knot theory for surfaces in $\mathbf{R}^{4}$, Illinois J. Math. 26 (1982), 591-631.
[3] M. Iwakiri: Finite type invariants for singular surface braids associated with simple 1-handle surgeries, J. Knot Theory Ramifications 13 (2004), 1-11.
[4] S. Kamada: Crossing changes for singular 2-dimensional braids without branch points, Kobe J. Math. 13 (1996), 177-182.
[5] S. Kamada: An observation of surface braids via chart description, J. Knot Theory Ramifications 5 (1996), 517-529.
[6] S. Kamada: Surfaces in 4-space: a view of normal forms and braidings; in Lectures at KNOTS '96 (Tokyo), World Sci. Publ., River Edge, NJ, 1997, 39-71.
[7] S. Kamada: Unknotting immersed surface-links and singular 2-dimensional braids by 1-handle surgeries, Osaka J. Math. 36 (1999), 33-49.
[8] S. Kamada: Vanishing of a certain kind of Vassiliev invariants of 2-knots, Proc. Amer. Math. Soc. 127 (1999), 3421-3426.
[9] S. Kamada: Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs 95, Amer. Math. Soc., Providence, RI, 2002.
[10] S. Kamada: On 1-handle surgery and finite type invariants of surface knots, Topology Appl. 121 (2002), 219-230.
[11] L. Rudolph: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1-37.
[12] O.Ya. Viro: Lecture given at Osaka City University, September, 1990.

Department of Mathematics
Hiroshima University
Hirohsima 739-8526
Japan
Current address:
Advanced Mathematical Institute
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558-8585
Japan
e-mail: iwakiri@sci.osaka-cu.ac.jp

